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Anharmonic OH phonon dispersion curves have been calculated for the Mg�OH�2 crystal. A crystal
Hamiltonian was set up for the vibrational problem, where the coordinates consists of the bond
lengths of two hydroxide ions in the central unit cell. Its two-dimensional potential energy surface
was constructed from first principle calculations within the density functional theory approximation.
Dispersion curves were calculated by diagonalizing the Hamiltonian in a basis of singly excited
crystal functions. The single particle functions used to construct the crystal states were taken from
a Morse oscillator basis set. These well chosen functions made it possible to restrict calculations to
include only very few functions, which greatly contributed to a transparent presentation of the
underlying theory. All calculations could be done analytically except for the calculation of a few
integrals. We have compared our results with those of a series of harmonic lattice dynamics
calculations and have found that the anharmonicity shifts the IR and Raman dispersion curves
downward appreciably and slightly changes the energy differences between both curves. From an
analysis of the harmonic results we conclude that incorporating the coupling between OH stretching
motion and the motion of their centers of mass will appreciably change the overall features of the
dispersion curves. Extension of the anharmonic model along these lines will cause no problem to the
theoretical approach presented in this paper. © 2010 American Institute of Physics.
�doi:10.1063/1.3458001�

I. INTRODUCTION

Layered hydroxides have important applications as cata-
lysts in chemical, environmental, and biomimetic processes
and as ion exchangers and sorbents �see for example a recent
review on layered hydroxides and clays by Civalleri et al.�.1

The mineral brucite, Mg�OH�2, is a prototype among the
layered hydroxides. The crystal structure is made up of infi-
nite �HO�−–Mg2+– �OH�− layers repeated periodically along
the c�-axis, or equivalently it can be described as two antipar-
allel sublattices of hydroxide ions stacked between two Mg2+

layers and repeated along the c�-axis �Fig. 1�.
An accurate quantum-mechanical calculation of anhar-

monic OH vibrational frequencies �in any crystal� requires
three ingredients: a potential energy surface �PES� of satis-
factory quality, an appropriate Hamiltonian for the vibra-
tional problem, and an adequate method to solve the vibra-
tional Schrödinger equation. One popular method to study
anharmonic effects in the dynamics of crystals is called
mode following, or the method of frozen phonons. It consists
of first performing a harmonic calculation and next calculat-
ing the dynamics of the crystal by moving all atoms along
one particular phonon coordinate while all others are kept
equal to zero. In more detail this means that the potential
energy of the crystal is expanded to second order in the
atomic displacements around their equilibrium positions and

that next the kinetic and potential energies are diagonalized
simultaneously by means of a simple linear coordinate trans-
formation. This can be done because after mass weighing the
coordinates, the kinetic energy is just a fully isotropic qua-
dratic form that will remain diagonal under any orthogonal
linear transformation of the coordinates. After the diagonal-
ization, the Hamiltonian is separated in the sense that it is a
sum of independent harmonic oscillator Hamiltonians, each
depending on just one of the coordinates. In the next step of
the mode-following approach it is assumed that the Hamil-
tonian remains partially separated in terms of the harmonic
oscillator coordinates, even after anharmonic corrections
have been added to the potential energy. In case one is inter-
ested in one particular mode the anharmonic Hamiltonian is
assumed to consist of two parts: one which depends only on
the chosen phonon coordinate and one which depends in
whichever complex way on the remaining phonon coordi-
nates. In pictorial terms this means that one walks along the
potential energy surface in a particular direction and that the
potential energy surface perpendicular to that direction looks
exactly the same at each point along the selected coordinate.
If this condition is not met, mode following is a dangerous
exercise which may have no direct relation to reality.

The mode-following approach has often been used in the
literature to calculate anharmonic frequencies of phonon vi-
brations whose main contributions come from OH stretching
coordinates, and for which it is assumed that they are decou-
pled from all other degrees of freedom. The anharmonic fre-a�Electronic mail: pmitev@mkem.uu.se.
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quency for the Raman-active mode in Mg�OH�2, for ex-
ample, has been calculated in this way from potential energy
curves derived from quantum-mechanical calculations in
Refs. 2–7; the stretching coordinates of all OH groups �both
O and H, or just H� in the two hydroxide sublattices were
varied by the same amount �while keeping constant all other
nuclear coordinates at their equilibrium values�. This is tan-
tamount to exploring the southwest-northeast diagonal of the
full two-dimensional OH potential energy surface in Fig. 2.

The mode-following approach is questionable for crys-
tals with �close� degeneracy between vibrations involving

oscillators which interact appreciably among each other, as is
the case for the OH groups in brucite. In order to investigate
this problem, a Hamiltonian pertaining to two OH oscillators
was diagonalized in Ref. 8, and the results were compared
with those obtained with a frozen phonon approach as an
approximate treatment of the same Hamiltonian. It was clear
that the frozen phonon model of the Raman mode was inad-
equate and, for example, underestimated the anharmonicity
contribution by almost 50%.

In the present paper, we continue the work presented in
Ref. 8, where the Hamiltonian including the stretching ener-
gies of the two antiparallel OH groups in the unit cell was
diagonalized in a basis of product functions of harmonic os-
cillator functions. Given the fact that the OH stretching mode
is already anharmonic in the isolated OH− ion, it seems better
to use a Morse rather than a harmonic oscillator basis. When
using Morse oscillator functions we will find that fully con-
verged results can be obtained by restricting the single par-
ticle basis to the Morse oscillator ground and first excited
states. This makes it possible to obtain the full solution ana-
lytically, apart of course from the calculation of some inte-
grals, and to develop some intuitive feeling for the results. A
second result of this paper is that we extend the Hamiltonian
presented in Ref. 8, such that it can be used to calculate the
dynamics of all OH groups in the crystal, including the cor-
responding anharmonic dispersion curves. Moreover, we de-
rive expressions to calculate IR and Raman intensities, which
allow us to compare our results with experimental observa-
tions.

To the best of our knowledge this is the first time that
anharmonic vibrations in an inorganic crystal have been de-
scribed in great detail. In case our crystal Hamiltonian is
restricted such that each OH group stretches in exactly the
same way as the corresponding one in the central unit cell,
the approach becomes equivalent to that presented in Ref. 8.

II. THEORY-SOLUTION OF A CRYSTAL VIBRATIONAL
HAMILTONIAN

In this section we will describe all theoretical concepts
of our vibrational model in detail and provide the equations
needed to perform the calculations of the dispersion curves
for the anharmonic vibrations. First, in Sec. II A, we will
extend the Hamiltonian presented in Ref. 8 for use in calcu-
lations of the dynamics of the full crystal �all N unit cells�. In
Sec. II B we will describe the methods that we use to diag-
onalize the full Hamiltonian to obtain all OH stretching vi-
brations of the crystal. Finally, in Sec. II C, we briefly de-
scribe a calculation of the selection rules for IR and Raman
experiments allowing us to compare the frequencies that we
calculate to particular experimental results.

We now briefly describe in words how the Hamiltonian
describing the motions of all OH groups in the crystal will be
diagonalized. The corresponding equations will be given be-
low. The method that we use to diagonalize the Hamiltonian
has previously been used to study vibrational motions in mo-
lecular crystals of N2 and O2 molecules Refs. 9–14. In these
cases, rather extended calculations were necessary to obtain
sufficient accuracy, which have concealed the simplicity of
the method to a large extent. In the present application cou-

FIG. 1. �a� The structure of the Mg�OH�2 crystal. �b� A crystal fragment
visualizing the three nearest neighbor OH− ions surrounding an OH− ion in
the crystal.
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FIG. 2. 2D potential energy surface, V�x1 ,x2� for brucite taken from our
DFT calculations in Ref. 8. The energy values are for the total energy for the
Mg�OH�2 unit cell �in cm−1� in the plane spanned by the r1=r�OH1�
−re�OH1� and r2=r�OH2�−re�OH2� displacement coordinates.
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pling terms between the stretching vibrations of the OH
groups are rather weak such that all equations may be pre-
sented in a particularly transparent way. We therefore con-
sider it useful to present the theory with most of its details
rather than to just refer to the literature.

In a first step we calculate a set of single particle states
which will allow us to make use of the Brillouin theorem
later on. To find this set of functions we temporarily treat the
crystal as an Einstein crystal. Each particle moves indepen-
dently from all other particles in the average potential or
mean field.15 The average field felt by a particular particle is
calculated by averaging its interaction energies with the sur-
rounding particles over the mean-field ground states of the
surrounding particles. The corresponding Schrodinger equa-
tions are called mean-field equations and their solution is
iterative by nature. The resulting solutions are called single
particle mean-field states. In the present application there is
just one set of single particle mean-field states since all par-
ticles are identical by symmetry.

One way of arriving at the mean-field equations is by
constructing a mean-field crystal state as a product of single
particle mean-field states, one for every OH group in the
crystal, and then minimizing the expectation value of the
crystal Hamiltonian in this crystal state by varying the single
particle states. As a consequence, making changes at just one
point in the crystal cannot lower the energy of the crystal
ground state anymore. Stated differently, this means that the
matrix element of the crystal Hamiltonian between the
ground state and any crystal state obtained by changing the
ground state at just one point will be zero. This result is
called the Brillouin theorem, which we will use below when
we derive the final expressions to calculate the vibration fre-
quencies.

Details about the mean-field calculation may be found in
Appendix A. It so turns out that the mean-field states do not
differ very much from the Morse oscillator functions intro-
duced as a basis for all our calculations �the first three are
given in Table I�. Therefore we will present all further theo-
retical details using Morse oscillator functions, even when in
that case the Brillouin theorem does not apply exactly. The
correct expressions may be obtained from the ones presented
below by replacing all Morse oscillator functions and their
energies by the corresponding mean-field states and energies.

In a second step the exact crystal states will be written as
linear combinations of certain crystal states described below.

This amounts to diagonalizing the crystal Hamiltonian in this
particular basis of crystal states. In previous application of
the method described here, it turned out that to a good ap-
proximation the crystal basis may be restricted to the state
���, which is a product of single particle ground-state Morse
functions and the 2N states obtained by exciting the single
particle Morse ground state to the single particle first excited
Morse state at just one position in the crystal. As was men-
tioned above, in the more accurate approximation all single
particle Morse states must be replaced by single particle
mean-field states. The Brillouin theorem then states that the
Hamiltonian is block diagonal, a 1�1 block containing the
crystal ground state energy, and a 2N�2N block containing
the matrix elements of the Hamiltonian between the various
singly excited crystal states. The diagonalization of the latter
block will turn out to be an easy task once the crystal states
have been adapted to the translational symmetry of the crys-
tal.

A. The crystal Hamiltonian

Harmonic phonon calculations have shown that to a
good approximation the stretching vibrations of the two OH
groups in brucite are uncoupled from the other degrees of
freedom. Assuming this to be true more generally, i.e., also
when anharmonic contributions to the potential energy are
taken into account, a Hamiltonian may be written down with
only two degrees of freedom per unit cell. Assuming that the
potential energy may be well approximated by a sum of pair
contributions we write

H = �
P

h�xP� +
1

2�
P

�
P�

wP,P��xP,xP�� ,

�1�

h�x� = −
�2

2�

�2

�x2 + v�x� .

Here xP is the OH stretch coordinate of the ion at position P,
i.e., it is equal to �rOH=r�OH�−re�OH� for that ion, and
wP,P��xP ,xP�� is the interaction between ions P and P�. The
quantity � is the reduced mass of an OH group and
wP,P�xP ,xP�=0. Intuitively one would expect that the stretch-
ing motions of the two OH bonds are coupled to the corre-
sponding librational motions, but it may be argued that these
librations mainly cause some shortening of the stretching

TABLE I. The first three Morse oscillator functions.

�0� = N0e
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�2a2

2�
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3
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�
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��2� − 2�
�2���−5/2 	2 =

5

2
�
 −
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�2a2

2�
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�2a2 y = e−ax 
 =	2Da2

�
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potential v�xP� and some softening of the interactions
wP,P��xP ,xP��.

For the remainder of this paper it is important to notice
that the Hamiltonian governing the dynamics of the crystal is
determined only up to an additive constant. The Hamiltonian
in Eq. �1� may therefore be chosen to be the total crystal-
Hamiltonian �with the usual definition of the zero of energy�
minus the potential energy obtained with all degrees of free-
dom taken at their equilibrium values. Although calculation
of the latter calls for the evaluation of Madelung sums to
include all long range electrostatic interactions, the remain-
ing part of the potential results from small displacements of
the atoms from their equilibrium positions and may safely be
assumed to contain only short range contributions. Only in
the case of longitudinal lattice modes with very long wave-
lengths, i.e., near the gamma-point of the Brillouin-zone, will
this approximation be somewhat doubtful.

In Ref. 8, the potential surface derived from density
functional theory �DFT� calculations was presented as a
function of the two OH stretch coordinates in each unit cell.
Calculations were performed for an infinite crystal such that
xP=xP� whenever P and P� were on the same sublattice. The
total potential energy per unit cell V�x1 ,x2� obtained by these
authors therefore reads in our notation,

V�x1,x2� = v�x1� + v�x2� + 3w�x1,x2� + 6w��x1,x1�

+ 3w��x1,x2� + ¯ . �2�

The factor of 3 in front of the nearest neighbor interactions
w�x1 ,x2� appears because the two groups in each cell have
one interaction among each other and in total four interac-
tions with groups in neighboring cells, which each contribute
half an interaction to the energy of one unit cell. Similar
arguments lead to the factors with the next-nearest neighbors
within one layer of OH groups w��x1 ,x1� and the interactions
across the Mg-layers w��x1 ,x2�. Evidently we cannot calcu-
late the single particle energy v�x� and all the interaction
energies individually without having further information or
making further approximations. We therefore make the fol-
lowing educated approximations. First of all, from the fact
that harmonic dispersion curves show little or no dispersion
for wave vectors along the c�-axis �Fig. 4, upper part� we
conclude that interactions between OH groups in different
layers are very small. We will therefore assume that
w��x1 ,x2�=0, and consequently that the crystal consists of
independent layers of OH groups stacked along the c�-axis.
We thus find it useful to envisage the collection of OH
groups, or oscillating particles, as forming a collection of
layers stacked along the crystal c�-axis. Nearest neighbors in
such a layer are connected to different Mg2+ layers, as shown
in Fig. 1. The Hamiltonian given above may then be re-
stricted to one such layer of antiparallel OH groups, imply-
ing that P= �n� , i� with n� indicating a two-dimensional �2D�
lattice cell and i a sublattice. One way of determining the
remaining terms would be as follows. First, choose the
stretch potential of an individual OH group in the gas phase
as a reference potential. Next attach the ion to a Mg-layer as
it appears in the brucite crystal. This will slightly change the
reference potential by an amount �v�x�, which depends only

on the stretch coordinate x; besides this it will introduce
next-nearest neighbor interactions depending on two coordi-
nates. Finally, combine a collection of Mg-layers with at-
tached OH groups to construct the brucite crystal. This will
introduce the nearest neighbor interactions mentioned above
and possibly slightly change the single particle energy again.
From a model describing the interactions, for example a
model based on mutual polarization of the OH groups, one
may infer the relative importance of the nearest and next-
nearest neighbor contributions and finally calculate them in-
dividually. Notice that the stretch coordinates describe the
difference of the various OH distances with respect to their
equilibrium value, implying that all interaction terms are at
least of the �d�P−�d�P� type, with �d�P=d�P�xP�−d�P�0�, and
d�P�xP� being the dipole at point P. Consequently the interac-
tions will quickly become smaller with increasing distance
between the ions. We therefore assume that we can restrict
our Hamiltonian to include only nearest neighbor interac-
tions, so wP,P��xP ,xP��=w�xP ,xP�� for nearest neighbors and
zero otherwise.

Still, in V�x1 ,x2�=v�x1�+v�x2�+3w�x1 ,x2�, we must dis-
criminate between v�x� and w�x1 ,x2�. To this end we simply
assume that the on-site potential v�x� is by definition given
by a Morse potential function,

v�x� = D�1 − e−ax�2. �3�

The parameters D and a are chosen such that V�x1 ,x2� is best
approximated by a sum of two of these functions. The re-
maining part V�x1 ,x2�−v�x1�−v�x2� is then by definition
equal to 3w�x1 ,x2�. A plot of the interaction term w�x1 ,x2� is
shown in Fig. 3. By comparing Figs. 2 and 3 one realizes that
the interaction is actually very small and that splitting of
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degenerate vibration states due to interactions will be very
small. Notice that for x=0, i.e., when r�OH�=re�OH�, the
Morse potential is equal to zero. With our choice of the zero
of potential energy discussed above, this implies that
w�0,0�=0 as well. Moreover, notice that the Morse potential
remains finite when x=−re�OH�, i.e., when r�OH�=0. This is
a well known artifact of the Morse potential, which has no
effect on the description of bound states since D is very
large.

The consequences of the approximations introduced to
get access to the complete crystal Hamiltonian, complete as
far as the OH stretchings are concerned, are modest. First,
since the total potential energy per unit cell in our model is
the same as in the original model, all calculations at the
�-point will produce the same results as before. Second, at-
tributing the complete interaction energy to the first nearest
neighbors will result in dispersion curves which are
smoothed representations of the real dispersion curves. We
leave a calculation of the, presumably small �see previous
paragraph�, additional structure of the dispersion curves for
future work.

It is perhaps worth mentioning that the procedure, out-
lined below, to calculate the dispersion curves in no way is
limited to the present Hamiltonian. It can easily be applied to
a more complex three-dimensional �3D� Hamiltonian with
more complicated interactions.

B. Crystal excitations

We now continue with a description of the calculation of
low-lying excitation energies of the Hamiltonian just defined.
In principle our task is to choose a basis for the crystal as a
whole and to diagonalize the Hamiltonian in this basis. In
order to define a crystal basis, we first choose an on-site
basis, i.e., a set of basis functions, at each point P, and next
construct crystal functions by taking products of such func-
tions, one factor for each point P. As already stated above, in
order to be allowed to use the Brillouin theorem, we should
use single particle mean-field states to construct our basis of
crystal functions. We have found however that the mean-field
functions hardly differ from the Morse oscillator functions
corresponding to the Morse potential introduced above. We
therefore make use of the latter throughout this subsection,
understanding that the more correct expressions may be ob-
tained by everywhere replacing Morse oscillator functions by

mean-field functions. The numerical results obtained using
these more exact equations will be given in the various tables
as well. It will be seen that the results so obtained hardly
differ from those obtained with the Morse oscillator func-
tions.

As a first step in diagonalizing the full Hamiltonian, we
construct crystal basis functions adapted to the translational
symmetry of the crystal. Restricting ourselves to the crystal
ground state and first excited states we have

��� = 

P

�0�P, �4�

��q�
i � =

1
	N

�
n�

eiq� ·R� n�E�n� ,i�
� ��� . �5�

Here EP
� is an excitation operator, replacing �0�P by �1�P in

the product just following it; q� is a wave vector from the first
Brillouin zone and R� n� the position vector of the unit cell
indexed by n� . N=MxMy is the number of unit cells in the 2D
crystal. The functions �i� are the Morse oscillator functions of
which the first three are given in Table I, together with the
corresponding energies.

Because the matrix elements between ��� and the singly
excited states are �approximately� zero, the ground state will
simply be ��� with corresponding energy

E0 = 2N	0 + 3N�00�w�00� . �6�

The matrix element �00�w�00� is just w�x1 ,x2� sandwiched
between products of two Morse oscillator ground states, once
in the bra and once in the ket, and integrated over the two
variables x1 and x2. A similar notation will be used below for
similar integrals, for example �01�w�10� represents the inte-
gral of w�x1 ,x2� sandwiched between a bra consisting of the
product of a Morse oscillator ground state and a Morse os-
cillator excited state, and a ket consisting of the product of
the same two functions in reverse order.

Since the crystal basis functions have been adapted to
the translational symmetry of the lattice, the Hamiltonian is
block diagonal, one block for each q� vector. Choosing the
unit cell such that the two OH groups are positioned at r�1

=a� /3+2b� /3+z1c� and r�2=2a� /3+b� /3+z2c�, respectively, with
a� , b� , and c� being unit cell vectors, the reciprocal lattice
vectors are a��= �4a� +2b�� / �3a2�, b��= �2a� +4b�� / �3a2�, and c��

=c� /c2. The q� block of H−E0 then reads

�H − E0�q� = �	1 − 	0 + 3�01�w�01� − 3�00�w�00� �1 + e−iq� ·a� + eiq� ·b���01�w�10�

�1 + eiq� ·a� + e−iq� ·b���01�w�10� 	1 − 	0 + 3�01�w�01� − 3�00�w�00�

 . �7�

On diagonalizing this matrix we find the excitation energies

�
�q��g = 	1 − 	0 + 3�01�w�01� − 3�00�w�00� + �01�w�10�	3 + 2 cos�q� · a�� + 2 cos�q� · b�� + 2 cos�q� · �a� + b��� , �8a�

�
�q��u = 	1 − 	0 + 3�01�w�01� − 3�00�w�00� − �01�w�10�	3 + 2 cos�q� · a�� + 2 cos�q� · b�� + 2 cos�q� · �a� + b��� . �8b�
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Letting q� =qa�� we have

�
�qa���g = 	1 − 	0 + 3�01�w�01� − 3�00�w�00�

+ �01�w�10�	5 + 4 cos�q� , �9a�

�
�qa���u = 	1 − 	0 + 3�01�w�01� − 3�00�w�00�

− �01�w�10�	5 + 4 cos�q� . �9b�

Other examples can easily be calculated.
We end this section discussing possible corrections to

the ground state from doubly excited states. Within the ap-
proximations accepted so far, no correlations have been in-
cluded in the crystal ground state between the OH groups in
different cells. While studying phonons in �−N2

12–14 it was
found that with such a method acoustic phonons do not con-
verge to zero frequency at the center of the Brillouin zone.
Using the RPA method, which basically incorporates doubly
excited states in the crystal ground state, could salvage this
problem. This extension of the method, however, had only
small consequences for the energies of the low lying optical
modes and no noticeable consequences at all for the energies
of the higher optical modes. Since in this paper we are con-
cerned with optical modes of rather high energies, it is not
useful to extend our calculations in this direction.

C. Selection rules

The infrared absorption intensity is proportional to the
Fourier transform of the time autocorrelation function of the
total dipole moment of the �2D� crystal:

I�
� �� dtei
t�M� �0� · M� �t�� . �10�

Here M� is the total dipole moment of the crystal. Obviously,
in our system the average dipole moment is zero; the infrared
absorption intensity, however, is proportional to the fluctua-
tions of the dipole moment and in general differs from zero.
In Appendix B it will be shown that the time dependent
autocorrelation function of the total dipole moment may be
reduced to

�M� �0�M� �t�� = 2N�q� ,0���,u�0��� �1� · �1��� �0�e−i�
�0��ut. �11�

Here �� is the single particle dipole moment operator. We
conclude from this result that IR absorption experiments
measure the excitation to the ungerade state at the center of
the Brillouin zone.

Similarly, the Raman scattering intensity is proportional
to the Fourier transform of the time dependent autocorrela-
tion of the total polarizability tensor sandwiched between the
polarization vectors of the incoming and outgoing light
beams. In our model we only have access to the
zz-component Azz of the total polarizability tensor of the
crystal. The scattered intensity then reads

d


d

�� dtei
t�Azz�0�Azz�t�� . �12�

In Appendix B it is shown that the relevant time correlation
function may be calculated as

�Azz�0�Azz�t�� = 2N�q� ,0���,g�0��zz�1� · �1��zz�0�e−i�
�0��gt.

�13�

Here �zz is the zz-component of the single particle polariz-
ability tensor. We conclude that Raman scattering experi-
ments measure excitations to the first excited gerade vibra-
tional state with q� =0� .

III. HARMONIC CALCULATIONS

In order to asses the validity of our claim that the en-
semble of all OH groups in the crystal can be considered to
form a collection of uncoupled 2D layers of OH groups
stacked along the c�-axis, we have performed harmonic lattice
dynamics calculations. For our claim to be true, it is neces-
sary that there be little or no dispersion along the c�-axis. A
second reason to perform these calculations is that the results
provide us with a valuable reference with which we can com-
pare our anharmonic frequency dispersion curves. Since for
these purposes it is important to have access to complete
dispersion curves and not just frequencies at isolated points,
we chose to use a code which has these options, even though
this meant that the potential energy surface on which the
calculations are based is a bit different from the one used
thrust of this paper �namely for the anharmonic calculations�.
We have checked that at isolated points the results with this
code do not differ much from results obtained with the actual
PES used in this paper.

We have performed our ab initio lattice dynamics �LD�
calculations within the framework of a density functional
perturbation theory �DFPT� approach, using plane waves and
pseudopotentials and the PW91-GGA functional encoded in
CASTEP.16 Details of the calculations are given in Ref. 17.
The results for those modes that are dominated by the OH
stretch coordinates are represented by the drawn line in the
upper panel of Fig. 4. It is seen that in those parts of the plot
where only the component of q� along the c�-axis is changing
only small variations occur in the plotted frequencies. This
confirms to a large extent that the motions of the OH groups
on opposite sides of the Mg-layers are hardly coupled.

The dashed line in this same panel represents the results
obtained with a harmonic model with all degrees of freedom
fixed to their equilibrium values except for the z-coordinates
of the two oxygen and the two hydrogen atoms. We will refer
to this model as the 4D model �four-dimensional model�. It is
seen that restricting the degrees of freedom has no influence
on the Raman or gerade mode and, roughly speaking, shifts
the infrared �IR� or ungerade mode upward by a small
amount. This is intuitively clear since in the gerade mode
possible displacements of the OH centers of mass are in the
opposite direction and therefore their sum does not couple to
the Mg displacements. In the IR mode, on the other hand, the
sum of the two OH centers of mass is not restricted by sym-
metry to be zero, and therefore may couple to the motion of
the Mg ion. The additional degree of freedom then leads to a
softening in the latter case. Notice that as a result of this shift
upward the energy difference between the gerade and unger-
ade modes has become the same in the two parts of the plot
where only the component of q� along c� varies. Moreover the
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crossing of the two modes shifted a little bit toward the zone
boundary. The LO-TO split of the gerade mode will be dis-
cussed in Sec. V B.

IV. POTENTIAL ENERGY SURFACE FOR THE
ANHARMONIC CALCULATIONS

The PES used in the present work is taken from Ref. 8
and we refer to that paper for the technical details concerning
the underlying DFT calculations, which used a GGA type
functional of the PW91 type and ultrasoft pseudopotentials,
and were performed with the VASP package.18–20 Here only
some of the basic information will be repeated. The crystal
structure was optimized and our cell parameters are in good
agreement with experiment and differ by about 1% from the
experimental 15 K parameters of Chakoumakos et al.21 and
the calculated cell volume is about 3% larger.

The potential energy grid, V�x1,x2�, was tabulated be-
tween �0.3152 and 0.3152 Å in steps of �x=0.031 52 Å. In
the second step, a sum of two Morse potential functions,
v�x1�+v�x2�, one for OH1 and one for OH2, were fitted to
the PES energies �cf. Sec. II A�. In the third step, the func-
tion V�x1 ,x2�−v�x1�−v�x2� was calculated at each grid point,
and a spline-type function consisting of smooth fourth order
polynomials connecting the new grid point energies was cal-
culated. By definition this was set equal to 3 w�x1 ,x2� as
mentioned in Sec. II A.

V. RESULTS AND DISCUSSION

A. Excitations at the � point and basis-set
convergence

There are two symmetry-allowed normal modes involv-

ing the OH stretchings in the P3̄m1 crystal structure of bru-
cite: the symmetric Raman-active A1g mode and the antisym-
metric IR-active A2u mode. The experimental �anharmonic�
frequencies of the Raman mode is �3652 cm−1 �see, e.g.,
Ref. 22�, and of the IR mode �3698 cm−1 �see, e.g., Ref.
23�. These frequencies have been addressed from a theoreti-
cal point in Ref. 8. In this subsection we redo these calcula-
tions, but now using a Morse oscillator basis rather than a
simple harmonic oscillator basis.

We have diagonalized the cell-Hamiltonian,

Hcell�x1,x2� = h�x1� + h�x2� + 3w�x1,x2� , �14�

in a basis of Morse oscillator functions of increasing
size. The largest basis that we used was
��00� , �10� , �01� , �11� , �20� , �02��. Because of the symmetry of
the Hamiltonian it has been useful to split the basis in a
symmetric part ��1 ,�2 ,�3 ,�4� and an antisymmetric part
�A1 ,A2�, with

�1 = �00� ,

�2 = ��10� + �01��/	2, A1 = ��10� − �01��/	2,

�15�
�3 = �11�, A2 = ��20� − �02��/	2,

�4 = ��20� + �02��/	2.

The results of the diagonalization are given in Table II, to-
gether with those of a diagonalization in ��1 ,�2 ,A1�. It is
seen that the ground state energy and excited state energies
are pretty much the same with both methods, from which we
conclude that the single particle basis functions can be re-
stricted to the Morse oscillator ground state and first excited
state. Notice that frequencies, i.e., excitation energies, con-
verge even faster than the individual energies.

We also calculated the frequencies using increasingly
large numbers of harmonic oscillator basis functions �and the
program VIB2D�.8 Not surprisingly, many more harmonic os-
cillator functions, in actual fact 8�8, i.e., 64 products of
single particle basis function, are needed to reach conver-
gence. There is an additional point that we want to mention.
In order to get converged results in the harmonic oscillator
basis, many excited harmonic oscillator functions are
needed. Since these functions differ from zero at increasingly
larger values of the coordinates, also w�x1 ,x2� must be
known with sufficient precision at increasingly larger values
of the coordinates in order to be able to calculate matrix
elements of the Hamiltonian correctly. The Morse oscillator
functions are much more efficient in this respect.

It is interesting to have a look at the results in the even
more restricted basis ��2 ,A1�, i.e., without allowing �1 to
mix with �2. Also these energies turn out to be almost exact
and the frequencies even better. From this fact we conclude
that, even though the Brillouin theorem does not apply ex-
actly in the Morse oscillator basis, it is completely safe to
use it anyhow. Indeed the calculation in this very restricted
basis is equivalent to that of Sec. II B, restricted to the �
point. The exact results in this case are

�
g = 	1 − 	0 + 3�01�w�01� − 3�00�w�00� + 3�01�w�10� ,

�16a�

�
u = 	1 − 	0 + 3�01�w�01� − 3�00�w�00� − 3�01�w�10� .

�16b�

It must be pointed out that these formulas are extremely
simple, which pinpoints the merits of the approach we
present in this paper.

Incidentally, the absolute values of the frequencies differ
from experiment by about a hundred cm−1. These discrepan-
cies with respect to experiments must be due to inaccuracies
of the electronic calculations or to coupling of the investi-
gated modes with some or all other crystal vibrations.

B. Dispersion curves

In the previous subsection we have found that the basis
per unit cell may be restricted to ��1 ,�2 ,A1� and that the
Brillouin theorem may be applied. The latter has been sub-
stantiated by results obtained with the mean-field method
described in Appendix A. We therefore continue to calculate
dispersion curves using the theory outlined in Sec. II.

Using Eqs. �8a� and �8b� we have calculated anharmonic
phonon dispersion curves for the A1g and A2u OH modes
along the main directions in the Brillouin zone. The results
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are presented in the lower part of the lower panel of Fig. 4.
Since, to the best of our knowledge, there are no experimen-
tally measured dispersion curves of the OH stretching fre-
quencies in brucite, we will compare our results with those
of harmonic calculations. For this purpose we have presented
in the upper part of this same panel the results obtained with
the restricted, 4D harmonic model presented in Sec. III, and
those of yet another, even more restricted, 2D harmonic
model in which only the two OH stretching degrees of free-
dom are taken into account and next-nearest neighbor inter-
actions are ignored.

One distinctive difference in the features of the various
curves is the characteristic split for ionic materials between
the longitudinal optical �LO� and transverse optical �TO�
modes at the � point occurring in the 4D harmonic model but
not in the other two models. This type of splitting occurs
when charged groups on different sublattices move with re-

spect to each other at very long wavelengths. It is a result of
long range interactions producing macroscopic fields that
couple much stronger to the longitudinal modes than to the
transversal modes. In the harmonic calculations, in the long
wavelength limit, the coupling between the phonons and the
macroscopic electric fields is reproduced by including cor-
rections to the dynamical matrix.24,25 The basic assumption
made in both the 2D harmonic model and in the new anhar-
monic model is that the stretching dynamics of all OH ions
in the crystal can be studied independently from the dynam-
ics of all other degrees of freedom. As we have argued in
Sec. II A, this implies that no long range interactions occur
in the corresponding Hamiltonians and hence that no LO-TO
splitting is observed. However, even if the presumed weak
coupling between the OH stretches and the remaining de-
grees of freedom may be expected to have little or no effects
on the dynamics of the stretch coordinates at most wave-
lengths this may not be true at very large wavelengths. In
that case, even a tiny coupling to the motions of other
charged objects will lead to LO-TO splitting. An example of
such coupling is the correlated dynamics of the OH stretch-
ing coordinates and the displacements of their centers of
mass. The charged OH ions will then move with respect to
each other and with respect to the charged Mg ions.

Another difference between our results and those of the
harmonic calculations is the rather strong symmetry in our
dispersion curves. They display perfect mirror symmetry
with respect to the dashed line shown in the figure. This is a
consequence of the fact that in the end our theoretical treat-
ment leads to the diagonalization of a two-dimensional ma-
trix for every q�-vector. The same holds true for the harmonic
calculations if they are restricted to include only stretching
degrees of freedom, i.e., for the 2D harmonic model. In our
anharmonic model the dimension of the matrices that we
diagonalize is set by the number of excitations used per unit
cell. As we have seen, in the present case it is sufficient to
excite each of the two independent OH groups to their first
excited states, so we need two states per unit cell. Had it
been necessary to include excitations to the second excited
Morse oscillator state, we would have been left with a four
dimensional matrix for every q�-vector. The mirror symmetry
observed in the present calculations would then have been
broken. Similarly, of course if we had included additional
degrees of freedom, like for example the centers of mass

TABLE II. Comparison of the resulting energy levels using different bases.Two decimals are given only to
underline the small differences in our results. The results from a first order perturbation calculation are seen to
be identical to the results with a small basis.

Small basis Large basis Mean field

Ei Freq. Ei Freq. Ei Freq.

3712.58 3712.48 3712.58
7245.72 3533.14 7245.33 3532.85 7245.72 3533.14
7297.31 3584.74 7297.13 3584.65 7297.31 3584.73

10 628.02
10 643.12
10 849.62
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FIG. 4. Comparison of our resulting anharmonic dispersion curves �in �c��
with various harmonic models of different sophistication �in �a� and �b��, as
explained in the text. The anharmonic curves were calculated from Eqs. �8a�
and �8b�, based on the DFT-generated 2D potential energy surfaces shown in
Figs. 2 and 3. The harmonic dispersion curves were calculated from lattice
dynamics calculations including either all vibrational degrees of freedom of
the whole crystallographic unit cell �“full-LD”�, or only four �“4D”� or two
�“2D”� degrees-of-freedom �see text for details�.
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coordinates of all OH groups. In the latter case also the har-
monic calculations loose their mirror symmetry as seen from
the results with the 4D harmonic model.

It is important to realize that including interactions other
than nearest neighbor interactions within the OH layers will
not lift the mirror symmetry, neither in our approach, nor in
the harmonic calculations. It may on the other hand intro-
duce more structure in the dispersion curves, which are now
rather “sinusoidal.” Apart from the LO-TO splitting the dis-
persion curves of the 4D harmonic model resemble those of
the other two models rather much. In particular the 4D model
has its gerade and ungerade curves cross at the same point as
the other two models, even though it includes next-nearest
neighbor interactions while the others do not. From this we
conclude that the interactions between next nearest neighbors
within the OH layers are negligible. On the other hand in-
cluding the OH centers of mass coordinates in the 4D har-
monic model allows for some softening in both modes. This
appears to occur mainly on approaching the Brillouin zone
boundaries.

One more point to mention is that if one just plots the
results from Eqs. �8a� and �8b� one will observe an apparent
avoided crossing at every point where the argument of the
square root becomes zero. A quick glance at the correspond-
ing eigenvectors will prove that they switch symmetry as
well and that the curves actually do cross.

C. Isotope isolated systems

In order to probe local environments in crystals, experi-
mentalists often study the dynamics of an OH group in an
otherwise deuterated crystal. Assuming that the OH stretch is
uncoupled from the dynamics of the crystal and only probes
the potential energy provided by the surrounding OD-groups,
the first excitation energy may easily be shown to be

�
iso = 	1 − 	0 + 3�0D1H�w�0D1H� − 3�0D0H�w�0D0H� .

�17�

In our calculations again we have restricted ourselves to us-
ing the Morse oscillator ground and excited states. The sub-
scripts at the Morse oscillator indices indicate the type of
oscillator they refer to, i.e., either OD or OH. Since the ma-
trix elements of w�x ,y� hardly depend on the reduced masses
on the one hand, and since the single-particle mean-field
functions hardly differ from the Morse oscillator functions
on the other hand, the isotope-isolated frequency 
iso is ex-
pected to be approximately equal to �
g+
u� /2.

VI. SUMMARY AND CONCLUDING REMARKS

In many cases when mode-following is not a good ap-
proach, it may be possible to select not just one, but two or
more coordinates, not necessarily phonon coordinates, such
that the full Hamiltonian separates in two independent terms,
one depending on the selected coordinates and the other in-
dependent of these. In such cases the selected coordinates
may be studied independently from all other coordinates.
This is the approach that we adopted in the present paper. We
assumed that the collection of all OH stretch coordinates
constitutes a set of 2M coordinates, with M being the num-

ber of unit cells in the crystal, well separated from all re-
maining coordinates. Using these coordinates we have pro-
posed a Hamiltonian that we treated in as exact manner as
possible. We have assumed that each infinite layer consisting
of two antiparallel OH sublattices �Fig. 1�a�� are uncoupled
from the others, so we were finally left with a 2D crystal
Hamiltonian. Justification for this assumption comes from
the fact that harmonic phonon calculations show little disper-
sion for q�-vectors along the crystal c�-axis.

The method that we have used to diagonalize the Hamil-
tonian contains two ingredients. First we have chosen a
“quantum chemical” approach rather than an approach based
on coordinate transformations as in the usual harmonic cal-
culations. By quantum chemical approach we mean that we
have chosen a set of crystal basis functions and diagonalized
the Hamiltonian in this basis. The basis that we have chosen
consist of one particular product of single particle functions,
one factor for every degree of freedom, or particle, in the
Hamiltonian, together with a set of “singly excited func-
tions,” one for each particle in the crystal. The singly excited
function for particle P is obtained from the original function
by changing the factor at point P. The best set of single
particle functions, from which to choose the factors in the
crystal functions are the so-called mean-field functions. We
have shown however that these mean-field functions hardly
differ from a set of well chosen Morse oscillator functions.
The second ingredient in our model is that we restrict it to
include only nearest neighbor interactions. These two as-
sumptions together allow us to perform the diagonalization
analytically, apart from the evaluation of a few integrals. It is
worth mentioning that the method is not restricted to the
Hamiltonian studied in this paper. It may easily be used in
3D models including interactions beyond the nearest neigh-
bors. In the case of nearest and next nearest neighbor inter-
actions the diagonalization still can be done analytically
without any problems.

At the �-point our results reduce to those of a previous
paper, now obtained in a much simpler way and apt to a
simple intuitive interpretation. One of the conclusions of the
previous paper was that one-dimensional �1D� mode follow-
ing in the present case is not a reliable method. It is therefore
a bit surprising that recently such a calculation has been
claimed to give good results for the isotope isolated case. In
the present setting, i.e., ignoring correlations between OH
stretches and other degrees of freedom, the suggested ap-
proach is to introduce new coordinates according to �q1

= �x1+x2� /2,
q2= �x1−x2� /2� and to investigate the motion along q1, while
keeping q2 equal to zero. The correct cell-Hamiltonian in
q-coordinates reads

Hcell�q1,q2� = −
�2

4�

�2

�q1
2 + v�q1 + q2� −

�2

4�

�2

�q2
2 + v�q1 − q2�

+ 3w�q1 + q2,q1 − q2� . �18�

Taking q2=0 we have
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Hcell�q1,0� = −
�2

4�

�2

�q1
2 + 2v�q1� + 3w�q1,q1� . �19�

Now, replacing both � and 2v�q1�+3w�q1 ,q1� by half their
values, as was done in the cited paper, we arrive at the
Hamiltonian of one single Morse oscillator with three halves
of a small correction. This explains why the suggested
method has produced seemingly reasonable results.

We have presented dispersion curves, both for our anhar-
monic model and for a series of harmonic models. In sum-
mary we have found that the anharmonic model, restricted to
the OH stretching degrees of freedom has dispersion curves
rather similar to those of the corresponding 2D harmonic
model, with the latter shifted upward substantially and hav-
ing slightly smaller splitting between the gerade and unger-
ade modes. Including couplings to the centers of mass mo-
tions of the OH groups allows for softening of both modes at
the Brillouin zone boundaries and introduces rather strong
LO-TO splitting near the center of the Brillouin zone. Finally
adding all other degrees of freedom allows for softening of
the ungerade or IR mode. The combination of the last two
effects give the dispersion curves their rather asymmetric
appearances.

From a technical point of view our model has a few
important advantages. First, since our single particle func-
tions are adjusted to the anharmonicity of the potential only
very few single particle basis functions are needed. As a
consequence all calculations have become very simple.
Moreover, the potential energy needs to be known accurately
only in the range of the Morse oscillator functions actually
being used. Had these functions been represented by sums of
harmonic oscillator functions many of the latter would have
been needed, especially those having nonzero values near the
periphery of the Morse functions. These would automatically
have nonzero values even beyond the range of the Morse
functions and would need accurate potential energy values
also in these regions. Second, it turns out that the whole
procedure is rather robust against variations in the single
particle Morse potentials and the interaction potentials. For
example, instead of the optimized Morse potential described
in Sec. II, we used the gas-phase Morse potential also in the
crystal, incorporating the difference in the perturbation, and
found no difference in the final results.

In conclusion we think that despite the limitation in the
approximation of the Hamiltonian, the results presented in
this work, namely, the results for the anharmonic phonons
dispersion, might be in particular interest for potential stud-
ies of heat transfer properties in hydrogen containing insula-
tors.
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APPENDIX A: MEAN-FIELD CALCULATIONS

The single-particle mean-field states may be expanded in
any basis, preferably adapted as much as possible to the
problem at hand. The best-suited basis for this purpose evi-
dently is the one consisting of Morse wave functions, of
which the first three are given in Table I. In Sec. V A we
have shown that it is sufficiently accurate to restrict the cal-
culations to linear combinations of the Morse oscillator
ground and first excited state. The single-particle mean-field
states then read

�0̃� = C00�0� + C01�1� ,

�A1�
�1̃� = C10�0� + C11�1� .

The coefficients �C00,C01,C10,C11� must be chosen such that

hMF�xP��ĩ� = 	i
MF�ĩ� ,

�A2�
hMF�xP� = h�xP� + �

P��P

�0̃�w�xP,xP���0̃�P�.

The bra and ket in �0̃�w�xP ,xP���0̃�P� refer to particle P�.
Evidently these equations must be solved iteratively, like any
mean-field problem. We have performed these calculations
and found only negligibly small differences between the
mean-field states and the original Morse oscillator states. We
therefore conclude that it is safe to use Morse oscillator func-
tions throughout. We have performed the full calculations
with mean-field functions as well and found no differences
with respect to the ones presented in this paper.

APPENDIX B: DETAILS OF THE CALCULATION OF
SELECTION RULES

The total dipole moment of the crystal is the sum of
single particle dipole moments

M� = �
n� ,i

�− 1�i�� n� ,i. �B1�

The minus sign must be introduced because �� n� ,i is a property
of the OH group at site P= �n� , i� whose direction depends on
the sublattice number i. Stated differently, both dipoles in the
unit cell point in opposite directions. The total dipole mo-
ment autocorrelation function then reads

�M� �0� · M� �t�� = �
n� ,i

�
n��,i�

����� n� ,i · ei�H−E0�t�� n��,i�e
−i�H−E0�t���

��− 1�i+i�. �B2�

We have subtracted the ground state energy from the Hamil-
tonian for later convenience; obviously it does not influence
the final result. Within our approximation the �mean-field�
ground state ��� is the exact ground state with energy E0.
Therefore the rightmost propagator may be set equal to unity.
We next introduce the resolution of the identity just before
and just after the remaining propagator. Within the present
model,
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1 = ������ + �
q� ,�

��q� ,����q� ,�� , �B3�

where ��q� ,��=�
j

��q�
j �Xj,��q�� is the exact excited state with

wave vector q� and of type �, i.e., gerade or ungerade. Intro-
ducing the resolution of the identity as just announced, we
find

�M� �0�M� �t�� = N2�0��� �0� · �0��� �0��
i,i�

�− 1�i+i�

+ �
n� ,i

�
n��,i�

�
q� ,�

�
j,j�

����� n� ,i��q�
j �

· ��q�
j���� n��,i����Xj,��q��Xj�,��q���e−i�
�q���t

��− 1�i+i�. �B4�

The asterisk indicates a complex conjugate. The first term is
equal to zero because of the sums over the sublattices. In the
second sum we introduce the definition of ��q�

j �, obtaining

�M� �0�M� �t�� = �
n� ,i

�
n��,i�

�
q� ,�

1

N
eiq� ·�R� n�−R� n����0��� �1�

· �1��� �0�Xi,��q��Xi�,��q���e−i�
�q���t�− 1�i+i�.

�B5�

Performing the sums over the lattice vectors n� and n�� we get

�M� �0�M� �t�� = N�q� ,0��0��� �1� · �1��� �0��
�

�
i,i�

�− 1�i+i�Xi,��0��

�Xi�,��0���e−i�
�0���t. �B6�

Finally, the eigenvectors for the exact states are particularly
simple for q� =0�:

X1,g�0�� =
1
	2

,X2,g�0�� =
1
	2

,X1,u�0�� =
1
	2

,X2,u�0�� = −
1
	2

.

�B7�

Using these in our last expression for the dipole moment
autocorrelation function we get the final result stated in the
main text.

The total polarizability again is the sum of single particle
polarizabilities

Azz = �
n� ,i

�zz;n� ,i. �B8�

This time no minus sign corresponding to the sublattice in-
dex should be used, since the induced dipoles on both sub-
lattices point in the same direction. The procedure followed
above for the calculation of the dipole-dipole autocorrelation

function may now be repeated literally. Ignoring a fully elas-
tic contribution we obtain the result stated in the main text.
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