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Voorwoord

Een PhD traject begint officieel wanneer je aangesteld wordt aan de universiteit,
maar eigenlijk is het een stap die volgt op de vele stappen die je in je leven
ervoor al hebt gezet. Het gaat misschien te ver om bij het basisonderwijs, laat
staan de kleuterklas te beginnen, maar ik denk dat voor mij het voortgezet
onderwijs toch wel het begin is geweest van deze carrierestap. Hier kwam de
interesse in de wetenschap voor mij tot leven met in het bijzonder mijn liefde
voor wiskunde, al zal de eigenlijk niet bestaande ”uitmuntend” voor rekenen
op mijn rapport op de basisschool hier misschien ook wel iets mee te maken
hebben gehad. De keuze voor Toegepaste Wiskunde aan de Universiteit Twente
kwam pas na het bezoeken van ongelofelijk veel verschillende studies, want mijn
interesse was breed. Die brede interesse werd tactisch ingezet om aan het eind
van mijn studie een afstudeerproject te accepteren dat meerdere gebieden van
de wiskunde omvatte. Na dit project was de stap richting het promotietraject
dat resulteerde in dit proefschrift snel gezet, het leek er bijna naadloos in door
te vloeien. Maar hoe soepel de weg tot dan toe gelopen was bleek geen voorbode
voor hoe mijn promotietraject zou verlopen. We zijn inmiddels zo’n 13 jaar
verder dan toen het begon. In de tussentijd zijn er naast het werken om tot
dit proefschrift te komen ook werkzaamheden geweest als docent op de UT, als
leraar in het voortgezet onderwijs en als vakdidacticus aan de lerarenopleiding,
waarbij de laatste twee dat ook in de toekomst nog zullen zijn. In deze lange
tijd zijn er vele mensen geweest die een rol hebben gespeeld in het tot stand
komen van dit proefschrift en deze mensen wil ik hiervoor hartelijk danken, een
aantal zal ik specifiek noemen.

Om te beginnen wil ik mijn promotoren Richard J. Boucherie en Hans van
den Berg en mijn co-promotor Maurits de Graaf bedanken voor hun begeleiding
en ondersteuning gedurende mijn promotietraject. Richard, na mijn afstudeer-
project bij jou vroeg je of ik door wou gaan in een promotietraject, waar je
hoge verwachtingen bij had. Ik denk dat het anders is gelopen dan je toen
had verwacht en ik ben je dankbaar dat je ondanks dit andere verloop mij het
vertrouwen hebt gegeven dat dit toch tot een goed einde kon komen. Je directe
aanpak en de door je commentaar compleet rood gekleurde drafts van mijn
papers hebben me veel geleerd over de academische wereld. Ik hoop in mijn
toekomstige baan ook nog van je expertise en visie gebruik te mogen maken.
Hans, het was een voorrecht om jou als rustige en constante factor als promotor
te hebben. Je duidelijke aanwijzingen en gerichte commentaar zijn altijd van
grote waarde geweest. Maurits, als co-promotor heb je mij in een periode dat
de vaart eruit begon te raken op de goede weg weten te zetten. Ik bewonder
hoe je het voor elkaar krijgt op de ene dag op de UT zoveel werk gedaan te
krijgen, inclusief het begeleiden van PhD studenten. Samen met jou heb ik een
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ander vlak van de wiskunde kunnen toevoegen aan dit proefschrift, waarvoor
mijn dank. De leden van mijn promotiecommissie, prof. dr. Chris Blondia, prof.
dr. ir. Sonia Heemstra - de Groot, prof. dr. ir. Hajo Broersma, dr. ir. Geert
Heijenk en dr. ir. Jasper Goseling dank ik voor de bereidheid mijn proefschrift
te beoordelen.

Met iedereen van de vakgroep SOR is het altijd fijn samenwerken geweest in
een vriendelijke en open sfeer. Jasper, het einde van mijn promotietraject was
nooit in zicht gekomen en ook niet bereikt zonder jouw ondersteuning. Vooral
in mijn sabbatical de laatste drie maanden stond je altijd klaar om commentaar
te geven op mijn vele drafts, mee te denken als ik mezelf weer eens in de war
had gebracht en positiviteit uit te stralen dat dit eindpunt bereikt zou worden.
Jan-Kees en Werner, jullie deur, die altijd open stond om te praten over waar
ik maar tegenaan liep in mijn onderzoek, heb ik vaak dankbaar gebruik van
gemaakt. Alle PhD’s; dat zijn er zo veel dat ik niet ga proberen alle namen te
noemen, het was fijn om met jullie samen dit traject te doorlopen.

Iedereen van de vakgroep OMPL, waar ik een aantal jaar als docent werkzaam
heb mogen zijn. Wat een ontzettend fijne sfeer heerste er altijd bij jullie, met
de vele koffiemomenten samen en de bijeenkomsten buiten de UT. Professor de
Smit en professor Zijm, bedankt voor het geven van de mogelijkheid om deel
uit te maken van deze groep. Erwin, Matthieu, Ahmad, Marco en Martijn, de
samenwerking met jullie maakte mijn tijd daar een waardevolle en plezierige
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Collega’s van Reggesteyn, de school waar ik als wiskundeleraar aan de slag
ben gegaan, ik voelde me meteen welkom bij jullie. Tedereen was vriendelijk en
behulpzaam om mij als startend leraar wegwijs te maken. Inmiddels ben ik de
status van startend leraar wel voorbij, maar die vriendelijkheid en behulpzaam-
heid zijn nooit veranderd. Wendy, bedankt dat je mee wilde helpen om mij een
sabbatical te laten nemen om dit proefschrift te kunnen voltooien. Wim, Erik,
Hans, Christiaan, Gerrit-Jan, Esther, Liset, Ina en Erik, jullie zijn een erg leuke
vakgroep om mee samen te werken. Ook jullie bedankt voor het opvangen van
mijn uren zodat ik mijn sabbatical op kon nemen. Marcia, Marco en Aniek,
jullie zijn echt leuk volk!

Collega’s van ELAN, de lerarenopleiding en de nieuwste stap in mijn carriere,
door jullie is het duidelijk dat ik een baan heb waar ik me helemaal in mijn
element voel. Nellie, bedankt voor het mij introduceren in deze wereld middels
de CoL en het uitspreken van het vertrouwen dat ik samen met Mark uiteindelijk
jouw positie zou over kunnen nemen. Met jouw kennis en enorme netwerk zal
dat geen eenvoudige taak zijn, maar je schijnbaar oneindige enthousiasme en
inzet werken aanstekelijk. Hopelijk mag ik nog lang met je samenwerken. Mark,
het samen beginnen als vakdidacticus en de soepele samenwerking vanaf de start
is fantastisch. Ik denk dat we samen een mooie tijd tegenmoet gaan met deze
nieuwe uitdaging. Gerard, het is geruststellend jou als ervaren vakdidacticus
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CHAPTER 1

Introduction

Wireless communication has been developing rapidly in the past decades and
the world relies on it in a still increasing fashion. Pioneering work was done
in the late 1800’s and the 20th century brought many new developments and
devices. This development culminated into the appearance of the mobile phone.
Yet the development did not stop there. Next to communication between people,
many different devices are now communicating, ever collecting, analysing and
interpreting data and taking appropriate actions as a result. One can think
of the use of GPS in navigation systems and the real-time traffic information
that is included in it, a home cinema setup with TV, speakers and hub, all
controlled with a mobile phone, or the monitoring of agricultural areas and
starting irrigation when the fields get too dry. The world is relying heavily on
the reliability and stability of such communication.

To ensure successful wireless communication between devices several aspects
need to be taken into account: The devices must be equipped with appropriate
hardware to transmit and receive the signals and must have enough battery
power to complete communication. As wireless signals fade over distance, the
distance between the devices must be limited to ensure that they can reach
each other. With multiple devices trying to communicate at the same time,
the transmitted signals may collide and disrupt the reception of these signals.
This phenomenon is known as interference. Data to be transmitted needs to
be stored at the devices, which must have sufficient capacity to do so. Also,
the time needed to complete a transmission has to be limited and the network
capacity has to be sufficient to transmit all the data.

Next to infrastructure-based networks, networks without an infrastructure
are becoming more common. These networks are enoted as ad hoc networks. Ad
hoc networks are characterized by a group of (mobile) users who communicate
with each other without the use of dedicated network nodes and without any
centralized control, i.e. these networks are self-configuring.

This thesis focuses on the impact of interference on the performance of
wireless ad hoc networks. Mathematical models are presented that analyse
the impact on the capacity of the network, the delay packets experience and
the throughput the network can achieve. Various views are adopted to take
interference into account, such as an interference graph showing which devices
can and cannot transmit at the same time. Also the lifetime of the network is
considered, as the battery capacity of the devices in ad hoc networks is often
limited. The models presented in this thesis contribute to the understanding
of the impact of interference and provide insights that are of interest when
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Figure 1.1: A Wireless Local Area Network

designing or deploying ad hoc networks.

As a complete description of the world of wireless communication is impossible
to give, this chapter first presents a short overview of the characteristics of wireless
ad hoc networks addressed in this thesis and provides an introduction in the
terminology that is used. The second section presents some basic graph and
queuing theory of interest. The third section discusses the addressed research
questions and the fourth section the contributions of this thesis. The fifth and
final section presents an outline of the thesis.

1.1 Wireless ad hoc networks

Under the term network we understand a collection of devices that want to
exchange data. The different devices in the network are called the nodes of
the network and two nodes are connected by a so called link when direct
communication between these nodes is possible. As the word wireless literally
says, no wires (or cables) are involved in a wireless network, but communication
takes place over radio waves. This provides a number of advantages over the
wired network, such as the ability to move around with the device without losing
the connection to the other devices and lower costs.

Many different types of wireless networks exist, the most commonly known
being the Wireless Local Area Network (WLAN). Such a network links a couple
of devices over a short distance, often to an access point that connects the
devices to the Internet. A cellular network is a mobile network with so called
base stations, each serving a certain area (’cell’) around it. These cells together
provide coverage over larger geographical areas. Devices such as mobile phones
are therefore able to communicate even if the user is moving through cells during
transmission. The first generation, 1G, made it possible to carry analogue voice
over channels. With the introduction of 2G, data services such as SMS became
possible. Its successor, 3G, offered faster rates, making video calls possible. 4G
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Figure 1.2: Example of an ad hoc network, connected to the Internet

and the upcoming 5G improve the data transfer rates even further.

Wireless ad hoc networks are characterized by their decentralized nature.
Where most wireless networks have a configured infrastructure with centralized
control, ad hoc networks are self-configuring and dynamic. An example of an ad
hoc network, connected to the Internet, is shown in Figure 1.2. Due to the high
mobility of the users, which are the nodes of the network, the topology of the
network constantly changes. This calls for dynamic routing, which is capable of
taking these frequent changes into account. Communication between the users
takes place over multiple hops, as other users forward messages to deliver them
to the right recipient.

Ad hoc networks are easy and quick to deploy. No specific tasks are assigned
to the nodes of the network and no routing is prescribed, making ad hoc networks
very suitable for situations where infrastructure no longer exists such as when
natural disasters have destroyed the infrastructure or in war situations. As the
nodes in the network can be very simple, the costs of such a network can be low.
The decentralized nature of the network increases the mobility of the network,
nodes can move around without destroying the infrastructure. Ad hoc networks
are also robust, as the failure of a single node generally does not influence the
overall connectivity of the network.

Within the group of ad hoc networks there are again different types. A mobile
ad hoc network (MANET) consists of continuously self-configuring mobile devices
connected without wires. A vehicular ad hoc network (VANET) is an ad hoc
network between vehicles, which for example can be used in traffic to warn
cars for upcoming congestions or accidents. Wireless sensor networks consist of
sensors deployed in an area they need to monitor. Data that is collected is then
forwarded through the other sensors to some collection point, for example to
monitor a forest [KNBT06]. On a smaller scale, all devices close to a user which
can communicate wirelessly are considered a Personal Area Network (PAN)
[CGIT06].

Wireless (ad hoc) networks face a number of challenges that don’t play
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Figure 1.3: The hidden node problem

in wired networks [Pet06],[Wil06]. This thesis will particularly focus on the
impact of interference. As radio signals use a certain frequency, signals sent
over the same channel can collide, meaning that two communications arriving at
a receiving user at the same time disrupts the reception of these signals. The
information that has been transmitted is not received correctly by the node,
which may then be retransmitted or is lost. Even a a single flow of packets
through a network can cause self-interference, as multiple nodes may be involved
simultaneously in the transmission of packets.

Even though an advantage of ad hoc networks is that they are more flexible,
this also creates a disadvantage. When the nodes in the network are very mobile,
the topology of the network constantly changes, making it hard to set up a
stable communication session between nodes. Dynamic routing protocols have
been developed to tackle this problem. With the absence of an infrastructure,
information can be sent to nodes that do not need it, making the use of the
network less efficient. Especially with the challenge of interference that wireless
networks face, this impact can be large. Another challenge is the lifetime of the
network. As most devices are equipped with a battery, their lifetimes are limited,
especially in sensor networks where there is only space for a small battery.

The communication over multiple nodes also poses problems. The hidden
node problem occurs when a node is visible from one node, but not from other
nodes of the network. Figure 1.3 shows an example of the hidden node problem.
Node A transmits to node C, but node B cannot detect this transmission. Node
B might also start transmitting to node C or another node, causing a collision
at node C. The hidden node problem is a specific example of interference.

To diminish the impact of interference, protocols are active during communic-
ation between devices. The Medium Access Control (MAC) protocols determine
which of the users of a network are allowed to use the medium. An example
of a MAC protocol is CSMA/CA, Carrier Sense Multiple Access with Collision
Avoidance. Using this protocol, a node that wants to transmit first senses if
the network is free, i.e. no other transmissions are taking place. If this is the
case, it starts transmitting. If there is a transmission going on, the node waits
until the transmission is completed. Before transmitting, the node first sends
a request-to-send (RTS) message. This is then received by all nearby nodes,
so that they know they cannot transmit until this node is done. The receiving
node sends a clear-to-send (CTS) message back so that the node knows it can
start transmitting and hidden nodes also know this transmission will take place,
even though they did not receive the original RTS. This way collisions can be
prevented (the hidden node problem is avoided), at the cost of overhead. Also,
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this approach presents the exposed node problem, as nodes might receive a CTS
message and refrain from transmitting, even though there is no need for them to
do so. A different protocol is Time Division Multiple Access (TDMA) where
time is divided into slots and these slots are assigned to different users. Many
protocols and mechanisms are discussed in [Toh02]. The most commonly used
specifications and settings for the MAC layer stem from the IEEE [IEE], where
the IEEE 802.11 protocols are the best known for use in WLANs and ad hoc
networks.

1.2 Methodologies for performance modeling and analysis
of wireless ad hoc network

This section presents some basics of interest for the remainder of this thesis.
The subsections describe the two fields that are used to model (wireless ad hoc)
networks: graph theory and queuing theory. In the chapters that follow, the
definitions presented here are in general not repeated but assumed to be known
to the reader.

1.2.1 Graph theory

Graphs are used as an abstract representation of many different types of networks,
including communication networks, transport networks, biological networks and
social networks. Such an abstract representation of networks is very useful in
order to identify and analyse all kind of structural properties, like connectivity
and shortest paths. In the case of an ad hoc network, the users/devices of the
network are the nodes in the graph and the communication links are depicted as
edges of the graph. When communication is only possible in a certain direction,
these edges are depicted as arrows, known as arcs or directed edges of the network.
Connectivity in the network can be considered using the graph representation,
where nodes are connected if they are within each other’s transmission range. A
path is a collection of edges that lead from one node to another.

Other characteristics can also be modelled as a graph, such as interference.
An interference graph again uses the nodes to depict the users/devices, but
now connects a node to another node when a transmission of the node causes
interference for the other node. Additional information can be included in graphs,
like assigning a value that depicts the capacity to the edges of the network.
Or nodes can be given a value stating the number of radios it has available
for transmission over different channels. For an end-to-end transmission over
multiple hops, each edge in the path between the communicating nodes needs to
have enough capacity and each node an available radio set to the appropriate
channel to allocate the communication.

In this thesis we use graph theory in particular to study the maximum
throughput that can be achieved between two nodes, a source and destination
node, in the network by considering a graph where each edge has a certain
capacity. The max-flow min-cut theorem of Ford and Fulkerson [FF56] provides
this maximal throughput. It makes use of an imaginary line, a cut through the
edges of the network, dividing the network into two parts, each part containing
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either the source or destination node. As the capacity that can be achieved
between the source and destination node is limited by the sum of the capacities of
the edges that are cut, an upper bound on the throughput is acquired. By finding
the cut that gives the lowest value (min-cut), you find the highest throughput
(max-flow) that can be achieved by the network.

When multiple users want to communicate, this problem extends to the multi
commodity flow problem (MCFP). The MCFP states a number of sources and
destinations with their demands and poses the question if these demands can be
accommodated by the edges with their given capacities. To solve this problem in
an integer setting is extremely hard (NP-complete), but using linear programming
it is possible to solve the problem for fractional flows. More constraints can be
added to include other limitations, such as interference, that occur in wireless
networks. Chapter 5 presents an approach to include interference constraints
into the MCFP.

1.2.2 Queuing theory

Communication between wireless devices in a network takes place by packets
being sent from one user to another. By modeling each user in an ad hoc network
as a queue for these packets and the network as a server or servers that process
these packets, we can identify and analyse many properties of the network. The
order in which the packets are served and the time it takes to serve/transmit a
packet are input parameters of the system. The state of a network is described
by a vector with the number of packets in each of the queues and the state space
of the system consists of all possible vectors. When the queues have a limited
capacity to store packets, this state space is bounded, otherwise it is infinite.
The system changes from one state to another due to arrivals and departures of
packets after service. The queue lengths, the time it takes for a packet to reach
its destination, the waiting time of packets before service, the busy time of the
server and the throughput, which is the total amount of data the network can
process per time unit, are performance metrics that can be calculated and all
fall into the domain of queuing theory. We now briefly introduce and discuss
some specific queuing models which are used in this thesis.

This thesis will consider Markov chains, where the transition from one state
to another only depends on the current state, not on previous states. The
transition from one state to another state in the discrete time Markov chain is
given by the transition probability, or in the continuous time Markov chain by
transition rates. The stationary (or steady state) distribution can be seen as the
long run probability distribution of finding the system in a certain state.

The M/M/1 queue is the most basic queuing model where packets arrive
according to a Poisson process and the service time is exponential. For this
queue the performance measures noted earlier are well known. Jackson net-
works (cf. [Jach7],[Kel79]) are well known for their product-form stationary
distribution, meaning that the stationary distribution of the system is the
product of the stationary distribution of each of the nodes. These networks
play an important role in Chapters 7 and 4. In a Processor Sharing queue (cf.
[NnQOO],[KMR71],[FMI80]), a server does not serve one packet at a time, but its
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capacity is distributed over multiple packets. A different amount of capacity can
be allocated to different packets. Processor sharing plays an important role in
Chapter 6. In a polling system (cf. [Lev90]) a server does not stay at a queue, but
travels from queue to queue to process packets. As due to interference in an ad
hoc network not all users can transmit simultaneously, this corresponds to users
taking turns as is the case in a polling model. In a system with server vacations
(cf. [FC85],[Kra89]), a server does not continually serve packets but may stop
for an amount of time. From the perspective of a user in an ad hoc network,
this corresponds to the user being allowed to transmit a certain amount of time,
whereas due to interference vacations are imposed on the user, during which
the user has to wait. Models that incorporate these properties are considered in
Chapter 3.

1.3 Research questions and contribution

In a wireless ad hoc network, devices can transmit messages with a higher power
to reach devices at a longer distance in one transmission or they can transmit
with lower power and let other nodes forward their messages, which increases
the number of transmissions that are needed. The lifetime of a network, the
time until the first node depletes its battery, is modelled in Chapter 2. Using
mean value analysis, we provide models for the lifetime distribution of a network
where either nodes transmit at a power that ensures that all nodes receive
the transmission or at a power such that only the nearest node receives the
transmission. In the latter case, this node forwards the message to the next
nearest node until the transmission is broadcasted over the complete network.
In addition, networks where a number of nodes are denoted as master nodes,
are analysed. In these networks nodes transmit to their designated master node,
which forwards the message to the other master nodes. These master nodes
then complete the final step by forwarding the message to all nodes in their
designated section of the network. The models provide insight in the trade-off
between power usage per transmission and the number of transmissions needed
to distribute messages over the network. We show that the network size has an
impact on the optimal choice, as for very small networks direct transmission
provides a longer lifetime of the network than full routing.

Regardless of using direct communication between devices or letting other
devices forward messages, the time it takes to complete communication, the
end-to-end delay, has to remain limited. The network needs to be able to
distinguish between different types of communications. This is why priorities
can be set in a network for different users or different applications, for example
by the use of parameters in protocols or by reserving channels for a certain type
of communication. Chapter 3 addresses the aspect of delay and the impact of
traffic prioritization. Considering the nodes as queues and the network as a
server that visits these queues, the network is modelled by a polling system.
The probability that a queue is visited differs due to the priority the traffic
of the queue is given, which is considered to be either high or low. Using an
iterative algorithm the average number of customers in each queue is calculated.
This result is then used to determine the waiting time that packets of each
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type of queue experiences. This provides valuable insight in the impact of QoS
differentiation in networks and the level of prioritization that is needed to ensure
a timely delivery of packets.

The impact that interference has on a wireless ad hoc network can be seen
as a limiting factor on the rate at which nodes can transmit their data. When
multiple nodes are active, the service rate of each active node decreases. Chapter
4 researches which arrival rates a two node ad hoc network can handle and how
the different service rates affect the performance of the network. Building on
known results, we provide insightful expressions for the stability range of the two
node network of coupled queues. By providing conditions for which the network
has a product-form distribution, we construct networks that are similar to the
coupled queue network. Using a Markov reward approach, this enables us to
provide bounds on the performance of the network. In addition, we show that
allocating all capacity to one of the nodes provides better performance measures
over sharing of the network capacity between the nodes.

As transmissions on the same frequency can cause interference and collisions,
several approaches to prevent users from transmitting on the same frequency
at the same time can be used to diminish the impact of interference. Dividing
time into small frames or slots and assigning these slots to different users is
one of them. The portion that is assigned to a user then defines the capacity
allocated to this user. In Chapter 5 we research the maximum capacity that a
network can achieve from a graph theoretic viewpoint, both for networks with
one frequency channel and for networks where the nodes have multiple radios
so that different channels can be used. By extending the multi commodity flow
problem to include the impact of interference, we provide a theorem that gives
sufficient and necessary conditions for a network to have enough capacity to
satisfy a given demand of traffic to be transmitted from a number of sources to
designated destinations. The use of the theorem provides insight in the location
of bottlenecks in the network due to interference, enabling smarter channel
allocation and network design.

A single flow of packets in an ad hoc network can also experience interference
when it travels over multiple hops. The different nodes involved have to compete
with each other to obtain the channel, meaning that part of the time nodes are
waiting their turn. This influences the throughput the network can achieve.
Chapter 6 researches the impact of the CSMA /CA protocol on the throughput of
an ad hoc network from a queuing theoretic point of view. Taking into account
the impact of the protocol on a packet level, the capacity allocated to a flow is
determined. Considering the network on a flow level, we show that processor
sharing models provide a good approximation of the throughput.

Routing has a large impact on the performance of the network. When too
much traffic is routed through a single node, it may not be able to cope. Such a
node is then labelled a ’bottleneck’. Even a single flow of packets with a large
amount of data to be transmitted over multiple hops can cause a bottleneck to
appear. The issue of bottlenecks in an ad hoc network is addressed in Chapter
7. Starting from a discrete time model that incorporates the contention between
the active nodes of the network, a continuous time approximation is constructed
with state dependent service rates. Considering long term average behaviour,
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we determine state independent rates and show that in this case the network
has a product-form distribution. This enables us to analyse the average queue
length at each node, showing accurately where the bottlenecks of the network
are located and at what offered load they appear. The model also correctly
predicts the surprising result that increasing the offered load can change the
location of the bottleneck. Predicting where bottlenecks occur plays a vital role
in the deployment of ad hoc networks.

Overall, this thesis shows the high complexity of wireless ad hoc network
analysis, even for small networks. Due to interference, which is shown to play
a role in many different ways, the performance of wireless ad hoc networks is
hard to analyse. Starting in Chapter 2 with the tradeoff between the number of
hops used versus the power used per transmission, we show that the number of
transmissions that a network can accomodate depends on the network design.
The time it would take to actually perform all these transmissions depends on
the impact of interference. As we show in Chapter 3, different types of traffic
need to be considered as the total time need for a complete transmission may
have to be limited. Even with only two types of traffic, the analysis is quite
involved. Focussing in more detail on interference, Chapters 4,5,6 and 7 present
different approaches to take the impact of interference into account. Where
Chapter 4 provides a way to approximate many relevant performance measures,
Chapter 5 uses graph theory to obtain bounds on the throughput of the network.
Chapter 6 suggests that letting go of the intricate details on packet level of
the effect that interference causes may be needed to make sure results can be
obtained. Finally Chapter 7 uses numerous approximation steps to pinpoint the
location where interference has the biggest impact. All in all, the wide variety
of approaches presented in this thesis provide a good basis for further research,
showing the difficulties that can be expected, providing interesting and relevant
insights and obtaining results on important performance measures of wireless ad
hoc networks.

1.4 Outline of the thesis

This chapter is closed by an outline of the remainder of this thesis, summarizing
the results presented per chapter.

Chapter 2 analyses the lifetime of a network, which is defined as the time
it takes until the battery of the first node is depleted. Two situations are
considered: Direct transmissions between the source and destination or full
routing where neighbouring nodes relay the traffic for each communication.
For these settings the distribution of the network lifetime is determined. The
trade-off between the number of transmissions and the distance bridged by each
transmission is analysed. The nodes of the network are considered to be on
a one dimensional grid or are uniformly distributed. We show that for nodes
on a grid it is beneficial to use full routing. For uniformly distributed nodes,
the number of nodes in the network determines which approach is better. For
small networks, direct transmission outperforms the full routing approach. In
this case, the longer distance that needs to be bridged weighs up against the
increased number of transmissions that are needed. An intermediate approach,
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choosing master nodes that forward data to other master nodes is simulated.
Models for the expected lifetime are provided that give approximations which
are close to the simulated results. The content of this chapter is based on the
following paper:

e T.J.M.Coenen, J.C.W. van Ommeren and M. de Graaf. Routing versus
energy optimization in a linear network, Workshop proceedings of the 23th
International Conference on Architecture of Computer Systems, ARCS
2010, pp. 253-258, 2010.

Chapter 3 models the delay in a wireless ad hoc network using a polling model
to take into account QoS differentiation in ad hoc networks. Traffic can have
either high or low priority, determining the probability that a node is serving a
packet. The delay experienced by packets of each class is analysed by considering
each queue separately as being served by a server that takes holidays. The length
of these holidays depends on the state of the system, making it hard to analyse
them. An iteration algorithm, which is proven to monotonically converge, is
presented to compute the waiting time distribution of a queue that uses the
steady state for all other queues. Iterating over all queues provides de delay for
packets at all queues, which gives accurate results for low to moderately loaded
networks. The content of this chapter is based on the following paper:

e T.J.M.Coenen, J.L. van den Berg and R.J. Boucherie. Analysis of a
polling system modeling QoS differentiation in WLANSs, ValueTools’08 -
Proceedings of the 3rd International Conference on Performance Evaluation
Methodologies and Tools, 2008.

Chapter 4 combines results on product-form networks with a Markov reward
approach to find bounds on any performance measure that is linear in each of
the components of the state space. A two node network is considered where
traffic can be forwarded from the first to the second node. When both nodes are
active, the interference causes a lower service rate than when only one node is
active. The stability range of the system is analysed, showing that increasing
the rate at the boundaries of the system expands the stability range. Conditions
for a geometric product-from solution are given which are used for comparison
with the network under consideration. The Markov reward approach provides
bounds for several performance measures, where we show that comparison with
different product-form networks obtains different bounds. The content of this
chapter is based on the following paper:

e T.J.M.Coenen, R.J. Boucherie and J. Goseling. Bounds on a two node
network, submitted, 2016.

Chapter 5 analyses whether a network with a given traffic demand, capacities
on each link and ranges of interference between the nodes can accommodate all
the traffic demand. In the first part only one channel is available, so interference
plays a large role in determining the throughput of the network. The network is
modelled using a multi commodity flow problem and a theorem is stated that
gives sufficient and necessary conditions for the problem to be solvable. For a
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single source and destination pair the maximal throughput is computed using the
max-flow min-cut theorem. The second part extends the results of the first part
by including the option of using different channels. The theorem is extended to
include these channels, giving a basis for an algorithm for channel allocation in
wireless networks. The content of this chapter is based on the following papers:

e T.J.M.Coenen, M. de Graaf and R.J. Boucherie. An upper bound on
multi-hop wireless network performance, Proceedings of the International
Teletraffic Congress, ITC-20, 2007.

e T.J.M.Coenen, M. de Graaf and R.J. Boucherie. An upper bound on
multi-hop multi-channel wireless network performance, Proceedings of
Mobility’08, 2008.

Chapter 6 considers the throughput of ad hoc networks, taking into account
the parameters involved in the CSMA/CA protocol with RT'S-CTS in a wire-
less network. First, considering the packet level details, the aggregate system
throughput is determined. Next, taking the flow level dynamics into account, the
throughput is divided over all flows, taking into account the impact of multiple
hops used in flows. This leads to two Processor Sharing models: Batch arrival
processor sharing (BPS) and Discriminatory processor sharing (DPS). Simulation
shows that the models provide an accurate estimation of the throughput for
small networks. The content of this chapter is based on the following papers:

e T.J.M.Coenen, J.L. van den Berg and R.J. Boucherie. A flow level model
for wireless multihop ad hoc network throughput, Proceedings of the
3rd International Working Conference on Performance modelling and
Evaluation of Heterogeneous Networks HET-NETSs ’05, pp. 1-10, 2005.

e T.J.M.Coenen, J.L. van den Berg and R.J. Boucherie. Flow transfer times
in wireless multihop ad hoc networks, Performance Modelling and Analysis
of Heterogeneous Networks, pp. 113-132, 2009.

Chapter 7 considers the impact of node contention on the throughput in an
ad hoc network. During each time slot the nodes of the network contend for the
channel, depending on the protocol in use. Starting with a discrete time Markov
chain we model the behaviour in the slotted time. To facilitate further analysis,
we use long term average behaviour to model the discrete time Markov chain as
a continuous time Markov chain, taking into account that certain nodes may be
bottleneck nodes. The transition rates in this chain are state dependent, making
it hard to analyse the network, so that further approximation is needed to
obtain results on the throughput of the network. We approximate the continuous
time Markov chain by a product-form network. This enables us to find the
bottlenecks for a wireless network of any size and topology and to approximate
its throughput. As the main result, an algorithm is provided that incorporates
all these steps and gives very accurate results for the maximal throughput of the
network. For a multihop tandem network a limiting result is obtained for the
rate allocated to the first couple of nodes when all nodes continually want to
transmit packets. The content of this chapter is based on the following paper:
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e T.J.M.Coenen, J.L. van den Berg, R.J. Boucherie, M. de Graaf and A.M.
Al Hanbali. Bottlenecks and stability in networks with contending nodes,
International journal of electronics and communications (AEU), vol. 67,
pp. 88-97, 2013.



CHAPTER 2

Routing versus energy optimization in a
linear network

In wireless networks, devices (or nodes) often have a limited battery supply to
use for the sending and reception of transmissions. By allowing nodes to relay
messages for other nodes, the distance that needs to be bridged can be reduced,
thus limiting the energy needed for a transmission. However, the number of
transmissions a node needs to perform increases, costing more energy. Defining
the lifetime of the network as the time until the first node depletes its battery,
we investigate the impact of routing choices on the lifetime. In particular we
focus on a linear network with two extreme cases where nodes send messages
directly to all other nodes, or use ’full routing’ where transmissions are only
sent to neighbouring nodes. We distinguish between networks with nodes on
a grid or uniformly distributed and with full or random battery supply. Using
simulation we validate our analytical results on the lifetime distribution and
discuss intermediate options for relaying of transmissions. We show that the
size of the network is of influence on the optimal approach, as for very small
networks it is optimal to use direct transmission over full routing.

2.1 Introduction

Mobile wireless networks are often battery powered which makes it important
to maximize the network lifetime: batteries are (relatively) heavy, large, and
sometimes difficult to replace. Here, the network lifetime is defined as the
time until the first node depletes its battery. The broadcast network lifetime
problem asks for settings of transmit powers and (node-dependent) sets of relay
nodes, that maximize the network lifetime, under the assumption that all nodes
originate broadcast traffic.

Literature in this area considers the lifetime maximization in mobile ad-hoc
networks (MANETS). Often, the complexity is reduced by assuming transmis-
sions originate from a single source (Kang and Poovendran [KP05], Pow and
Goh [LGO05] and Park and Sahni [PS07]). The related problem of minimizing
the total energy consumption for broadcast traffic has also been widely studied,
because it provides a crude upper bound to the lifetime of the network. Liang
[Lia02] and Cagalj et al. [CHE02] have proven independently that minimizing
the total transmitted power is NP-hard.

The contribution of this chapter is an (approximate) mean value analysis
of two specific cases of this problem, for nodes located on a straight line. The
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analyzed algorithms are the following: (1) direct transmissions (in which each
nodes simply broadcasts its messages to all the other nodes, and no relaying
takes place) and (2) full routing, where each message coming from a node is
relayed by the neighbor(s) of that node. For these algorithms, we provide a
framework for calculation of the probability distribution and expectation of the
network lifetime. Through simulation we also consider the intermediate option
of a fixed number of nodes that relay traffic, called master nodes, in designated
sections of network. These master nodes receive transmissions and relay it to all
nodes within their section and to neighbouring master nodes, thus distributing
the transmission over the complete network.

This chapter answers a question that arose when considering the impact of
routing on the network lifetime. With direct transmissions each node has few
transmissions over a large distance. With full routing nodes perform a lot of
transmissions over short distances. A priori, it is not clear which of the two
approaches is the best for the network lifetime. This analysis provides insight
in the network lifetime that can be gained by introducing (a form) of routing
or master node selection which is directly relevant for radio networks. A more
general interest lies in applications to Wireless Personal Area Networks (WPANS),
and sensor networks. Here one could envisage a distinction between very simple
devices (clients), and more powerful devices (eligible routers). From a theoretical
viewpoint this analysis provides a stepping stone for further generalizations,
mainly to the two dimensional case. Our results show that the network size
influences the optimal choice for routing regarding the network lifetime.

2.2 General model and notation

In this chapter we investigate the effect routing has on the lifetime of the network.
In [GO09] an analysis of networks with a single master node was presented under
different master selection algorithms, including random selection, most centered,
highest battery and optimal. For the random selection algorithm, we extend
the work presented in [GO09] for different scenarios in a linear network. We
distinguish the following scenarios:

1. Direct transmission (DT): Each node transmits its message to all other
nodes

2. Full routing (FR): Each node transmits all messages only to its neighbouring
nodes.

Next to analysing these scenarios analytically, we also investigate a scenario
with master nodes (MN) by simulation. In this scenario a limited number of
nodes are selected as master nodes to relay the transmissions over the network.
The different scenarios are depicted in Figure 2.1, showing possible transmissions
between nodes. In the case of direct transmission, the complete distance is
bridged by a direct transmission, whereas in the case of full routing, multiple
transmissions are made using direct neighbours to relay the transmission. In
case master nodes are chosen (denoted by an M under the node), a node first
transmits to the master node of it region, which relays the transmission to its
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Figure 2.1: Possible transmissions for the direct transmission, full routing and
master node scenarios

neighbour master nodes, which again will relay to its own neighbour master
node and all nodes within its own region.

The lifetime of the network depends on the number of transmissions a node
has to make, the distance it has to bridge and its battery supply. We distinguish
between networks where all nodes have an equal (full) battery supply and where
the battery has a random supply. To analyze the different scenarios, we use the
following notation:

Consider a network with nodes V' which are distributed uniformly on the
line [0,1] and let |V| = n. For a set M C V of potential master nodes, a power
assignment is a function p : V — R. Following the notation of [L.T05], to each
ordered pair (u,v) of transceivers we assign a transmit power threshold, denoted
by c(u,v), with the following meaning: a signal transmitted by transceiver u
can be received by v only when the transmit power is at least c(u,v). We
assume that c(u,v) = ||u — v||? for all pairs {u,v} € V. In the case of full
routing, transmissions are only towards neighbouring nodes, whereas for direct
transmission the transmission goes as far the furthest node. Each vertex is
equipped with battery supply b,, which is reduced by an amount Ap(v) for each
message transmission by v with transmit power p(v). Similarly, b, is reduced by
amount ur(v) for each message reception by v.

In our simplified analysis, we assume pu = 0 (receive power is negligible),
A =1 (by scaling), E corresponds to a complete graph and each node transmits
one message. In this case the only variables are the node locations and the initial
battery levels: G = (V,b).

For a node v € V| let p(v) denote the power assignment p(v) : V' — R defined
as:

p(v) = {c(u,v) w?th u = argmaxyey (|w — v|) for DT 2.1)
c(u,v) with u = arg max,,e y () (|w — v[) for FR,

where N (v) denotes the neigbouring node(s) of node v.
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Let T1,T5,T5,... denote the time periods under consideration, where we
assume that in each period, each node transmits once and all time periods have
equal length. During a transmission all other nodes are silent until completion,
so interference is not taken into account. We call a series of transmissions were
each node transmits once a round and measure the lifetime of the network in
rounds. As the order of transmission may not be known, the message lifetime,
the number of messages sent until the first node depletes its battery, cannot
be calculated exactly. The notion of rounds allows us to disregard the order in
which the transmissions take place. Based on the stated assumptions, we obtain
that after a round r the battery supply is as follows:

b = {bg) —p(v) for all v € V for DT 2.2)

b — np(v)  for all v € V for FR.

Note that in case of full routing, we do not take into account the direction a
transmission has come from. As of a received transmissions it may not always
be known what the origin was, a node can not determine which nodes still need
to receive it. Therefore, in our model, the node will always transmit to both
neighbouring nodes. The network lifetime L, expressed in the number of rounds,
can now be found as:

p(v)

min ey ( n;’z’v) ) for FR.

(2.3)

I {minvev( by for DT

Summarizing, one can see that in full routing, each node only needs to transmit
as far as its furthest direct neighbour, but the number of times this transmission
needs to take place each round is equal to the number of nodes. Opposed to
this, each node transmits only once in the case of direct transmission, but over a
longer distance, using more energy per transmission. In the following we analyze
and compare these two scenarios to determine their impact on the network
lifetime.

2.3 Nodes on a grid

As an example of what we like to achieve, we first present an analysis of a
network where all nodes are located on a grid. We consider both scenarios, direct
transmission and full routing, both with nodes having a full battery capacity or
a random one. The analysis of nodes situated on a grid provides insight in the
impact of routing on the network lifetime when nodes can be tactically placed.
Later we discuss the situation where nodes are uniformly distributed over the
area to be covered. Obviously, the network lifetime is infinite when al nodes
are positioned at the same location and thus no upper bound exists. Assuming
that the complete network should be covered, the nodes are positioned on a
grid, with equal distances between the nodes. Assuming that the first node is
positioned at location 0 and the last one at 1, the remaining n — 2 nodes are

positioned with a distance of ﬁ between them.
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2.3.1 Direct transmission

When each node uses a direct transmission to all other nodes, the longest distance
determines the lifetime of the network when each node has a full battery. The
outer nodes have the longest distance to bridge and will deplete their battery
supply in one round, which gives a lower bound on the network lifetime. When
the battery supply at each node is randomly, i.i.d. distributed, it is not necessarily
one of the outer nodes that depletes its battery supply first. The lifetime L of
the network, when the battery supply is uniformly distributed on [e, 1], is then
given by

P(L>t) = P(min % > )

where the first (second) product denotes the first (second) set of nodes that has

the longest distance to the last (first) node, which is a distance of 2=% (distance

n—1

of :I__ll) This formula follows from the insight that node i has a lifetime L;

larger than t that is given by

(n —1i)%t

P(L;>t) = in(l — ——, 2.5

(Li > t) = ;— min( (n=1)2 ) (2.5)

as the probability that the battery has a certain capacity is given by i and
this capacity is used depending on the distance which is given by Z:i As the

lifetime depends on the first node to deplete its battery, the lifetime of the
network exceeds ¢t when all nodes have a lifetime that exceeds t.

2.3.2 Full routing

In case of full routing, each node has to bridge a distance of ﬁ, leading to

n—1)>2

a network lifetime of —— when all nodes have a full battery supply. With
random battery supply, the node with the lowest battery supply determines the

lifetime, which for @c <t< @ has the following distribution:

P(L<t) = Plminb, < ﬁ) (2.6)
n—172%-n
1oy

(n—1)2(1-c¢)
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as the minimum battery capacity of n nodes is distributed as

1-0
P(minbdb, <b) =1 — " 2.7
(minbd, < b) (=" (2.7)
which leads to an expected lifetime of
—1)? 1
g~ (=D (ne+1) (2.8)

n(n+1)

2.4 Uniformly distributed nodes

As the position of the nodes often can not be chosen, we will analyze the network
where all nodes are uniformly distributed over the region [0, 1].

2.4.1 Direct transmission

When all nodes have a full battery, the lifetime of the network depends only on
the distance the nodes have to bridge. When there are no master nodes, each
node transmits its own message to all other nodes. The distance that needs to be
bridged for this depends on the position of the nodes. Obviously, the outer nodes
have the largest distance D to bridge and will hence have the lowest lifetime.
The probability density function of the distance D between the outer nodes is
given by

fo(d) =n(n—1)d"%(1 —d) (2.9)

with an expected distance of ED = Z—;} The lifetime distribution is given by

1
1.» 1 n1
=1 —1)(=)E = (=
F-1()E - ()
and an expected lifetime EL of
(n—1)
FL=—-—-*"— 2.11
(n—2)(n—3) (21D

for n > 4 and infinity for smaller networks. The expected lifetime in number of
rounds hence is decreasing in n, but the number of messages sent per round is
increasing.

When the nodes in the network do not have the same battery supply, the
nodes that have the longest distance to bridge will not necessarily be the ones
to deplete their battery first. Even though the battery supply at each node is
random and independent, the correlation between the distances between the
nodes makes the analysis of this scenario much harder. Let D; denote the
distance to the farthest node for node ¢ and b; it’s battery power, then the
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lifetime of the node is given by

b
L; = F% (2.12)

and the lifetime of the network is given by
L = min(L;). (2.13)

9

All the B; are independent, but the D; are not, complicating the analysis of
L. We therefore analyze a worst case scenario, providing a lower bound on the
network lifetime, by assuming that the node with the longest distance to bridge
also has the lowest battery supply of all nodes in the network. As was known
from the analysis with nodes having an equal capacity, the maximal distance D
between any two nodes is distributed as (2.9) and the minimum battery capacity
as (2.7). As a bound on the network lifetime we hence obtain (for 2 < 1)

min(Bl,...,B )

P(L <t P(

/P flb(i_i)"db (2.14)
_ // o = -2 - D( _b)”dbdl

2.4.2 Full routing

<t)

Theorem 2.1. The distribution of the lifetime of a network with full routing is
given by

S (N (1 iy /Ly for B0 < < o,
PLst)=9 .., 1(n—1 o for MDY <y < m? 0(215)
i1 (1) ( i )(1 — iy )" a;;d l<m< ;11

Proof. When all nodes use full routing, the lifetime of the network is determined
by the largest distance D that needs to be bridged between two nodes. The
probability that a gap of size d exists between nodes can be found as follows.
First, let d > %, so that only one such gap can be present. In this case we have
that no nodes can be in an interval d. The probability that all nodes are not in
this interval is given by (1 — d)™. This interval has to be somewhere between
the nodes, for which there are n — 1 choices (between 15 and 2"¢ until between
n — 1°" and n'"). This gives for d > $ the probability of

P(D>d)=(n—1)1-d)" (2.16)

Now let ¢ < d < 3. In this case there may be one or two gaps of size d. Using
the reasoning above for there being at least one such gap gives expression (2.16),
but we have to subtract all the situations where there are two such gaps as these
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are counted double (once for each gap). When two gaps exist, all nodes are in
an area (1 — 2d) with probability (1 — 2d)™. The two gaps need to be placed

between the nodes, but not both between the same nodes (as otherwise d > 1),
n—

5 1) ways, leading for % <d< % to the probability

which can be done in (

P(D>d) =(n—1)(1—d)"— (” ) 1)(1 —2d)", (2.17)

assuming that n > 3, otherwise there couldn’t be two gaps. In general this
reasoning leads to

Z;:f( I )(1*Zd)" for 0 —
S =) () (1 —dd)” for L 1

P(Dzd)z{

<d<-
<d<.

(2.18)
Using this result, we get for the distribution of the lifetime L of the network that

1 (2.19)

P(L<t)y=P(D >
(L<t)=PD2,/—

which leads to the lifetime distribution as stated in (2.15) in the theorem. O

The expected lifetime of the network follows from the distribution and is

given by
n—1 m— 1 7 1 n—1
1 - 1t”
— / [ i(1— 2dt (2.20)
TL —oJ(m— 1)2 i—1 n
n—1 i—1
1 (-1) (i)fnz(l—z )
— dt.
+n \/(n 1)2 Z 2

When the battery supply is random, this again has a big impact on the
analysis of the expected network lifetime and its dependence on the number of
nodes. With a network consisting of more nodes, more messages will be sent per
round and the probability of a node having a very low battery increases, which
deteriorates the lifetime of the network. However, the distance that needs to
be bridged may decrease, thus improving the lifetime of the network. We again
analyze a worst case scenario. The battery supply of the node with the lowest
supply is distributed as given in (2.7) and the lower bound on the lifetime of the
network is given by

min(by, .., by) <t

(max(Dl,_an_l)z <), (2.21)

where the D; denote the distance between the it" and i+ 1°* node in the network.
The lifetime distribution is thus given by (for 2 < 1)

P(L<t) (2.22)
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Figure 2.2: Expected lifetime for a network with nodes on a grid and uniformly
distributed battery supply

1 b n 1-b
Y Y ) E !
/c P(maX(D1, » D 1) = \/;)1 _ b(]_ _ C) db

SIS 0 T iy B (=

(2.23)

) or % <y < o,
1 m—1 i—1(n— ; n_n —by\n
fc i1 (51) 1( il)(1*1 %) 1—b(i—lc)) db
2
for (mjll) Stg%zand1<m<n.

2.5 Validation and discussion

For nodes situated on a grid, with uniformly distributed battery levels between
[0, 1], the expected lifetime (in rounds) is as depicted in Figure 2.2 for both the
scenario of direct transmission and full routing.

The figure shows that for the direct transmission scenario the lifetime of the
network in general decreases as the number of nodes grows. This obviously is
the case as adding nodes to the two nodes at the edge of the network can only
decrease the lifetime of the network, as the outer nodes still need to transmit
over the same distance. The increase in lifetime when going from 3 to 4 nodes is
due to the change in the grid. It is better to have two nodes bridging a gap of
%, than one node bridging a gap of %

For the full routing, the addition of nodes is beneficial. In this scenario,
adding a node decreases the distance that needs to be bridged, yet increases the
number of transmissions. Apparently, the increase in number of transmissions
is of lesser effect compared to the gain by decreasing the distance. The result
for a network with two nodes takes into account that for full routing a node
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Figure 2.3: Comparison of the model with simulation for the expected lifetime
of the network for the scenarios of direct transmission and full routing

always resends a received transmission, thus the lower lifetime in the full routing
scenario compared to the direct routing.

Plotting the results for uniformly distributed networks for the scenarios with
direct transmission and full routing and comparing to simulation gives Figure 2.3.
For readability of the upcoming plots, we from now on show an approximation
of the message lifetime, that is nE L, with FL the expected round lifetime as
discussed.

The model and simulation are very close together, thus validating our results.
For small networks (n < 7), it is better to use direct transmission than to use full
routing, whereas for larger networks the opposite holds. When the network is
very small, addition of a node will increase the number of transmissions per node,
but the maximal distance that needs to be bridged needs not to be decreased
significantly. The probability of all nodes being close together in a small network
is high, leading to an infinite expected lifetime of networks smaller than four
nodes. As the network gets bigger, the maximal distance to be bridged will go
to 1 for the direct transmission, shown by the almost linear growth of the graph
for larger n. For the full routing scenario, the increase is steeper as decrease
in distance that needs to be bridged has a quadratic impact and the impact
of the increase of messages to be sent is cancelled by considering the message
lifetime. This reasoning already shows that for very large networks, full routing
will always outperform any other scenario.

The lower bounds calculated for the scenarios with random battery supply
(with ¢ = 0) are depicted in 2.4. The lower bound calculated is not a good
approximation for the expected lifetime, but a lot closer to the simulated result
than for example the upper bound where all nodes have a full battery capacity.
For the scenario with direct transmission approximating the expected lifetime
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Figure 2.4: Lower bounds and simulation of the expected network lifetime for
the scenarios of direct transmission and full routing with uniformly distributed
battery supply

with the lower bound is more suitable than for the scenario with full routing. In-
teresting is the observation that full routing now outperforms direct transmission
for any network size.

Next to the analyzed scenarios, one could also argue that an intermediate
approach may be more suitable, chosing a set number of so-called master nodes
that will relay the transmission for a certain region. In [GO09], the authors
analyze networks with one master node, that receives all transmissions and then
broadcasts them to all other nodes. The optimal choice of the master node is
discussed, as well as randomly chosing a master node, chosing the node with the
highest battery supply and the most centered node. When more master nodes
are used, it makes sense to divide the network into sections, where the master
nodes broadcasts received transmissions to all nodes in it’s section and relays
transmissions to neighbouring nodes as in the full routing scenario. Simulating
networks with a fixed number of masters gives results as depicted in Figure 2.5
and Figure 2.6 for nodes with random and full battery supply.

As can be seen from the figures, the lifetime when using a fixed number
of master nodes hardly depends on the size of the network. This is due to
the fact that the master nodes have the largest distance to bridge and the
most transmissions to send. Adding a (non-master) node hence has hardly any
impact on the number of transmissions the master node can do. Only for a
small network using as little master nodes as possible is optimal. For larger
networks it holds that more master nodes results in a longer network message
lifetime. For comparison, the results for direct transmission and full routing are
included in the figures. Note, however, that the results for these settings assume
a completely uniform distribution of the nodes over the interval [0, 1], whereas



24

2. Routing versus energy optimization in a linear network

Expected Lifetime

—o—0One master —+— Four masters -0 Eight masters —*- Full routing —o- Direct transmission \

50

45

40

35

30

25

20

15 4

7 8 9 10 1 12 13 14 15 16 17 18 19 20
Number of nodes

Figure 2.5: Comparison of the expected lifetime of a linear network with full
battery supply for direct transmission, master node selection and full routing
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Figure 2.6: Comparison of the expected lifetime of a linear network with uniformly
distributed battery supply for direct transmission, master node selection and
full routing

when using multiple masters, the assumption is taken that each section contains
at least one node to be selected as master node. This explains for example why
chosing 8 masters in a 8 node network gives a different result than using full
routing, as the expected maximal distance to be bridged by a node is smaller
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using the assumption that each section contains a node. For a network with 4
nodes, this assumption causes the expected maximal distance to be bridged to
be higher than in a uniform distribution, causing the full routing scenario to
give a better expected lifetime for this setting.

2.6 Conclusion

For two scenario’s, direct transmission and full routing, the distribution of the
network lifetime has been determined. When nodes can be placed on a grid, it
is beneficial to use full routing as the increase in messages to be sent per round
is compensated for by the decrease in the distance that needs to be bridged
by each node. When nodes are uniformly distributed over the interval [0, 1]
however, the network size is of influence. In full routing, each node only needs
to transmit as far as its furthest direct neighbour. However, the number of
times this transmission needs to take place each round is equal to the number of
nodes, opposed to only once in the case of direct transmission. For very small
networks, it therefore is more energy efficient to use direct transmission opposed
to full routing, as in this case the longer distances that may need to be bridged
weigh up against the reduction of messages that need to be sent each round in
comparison to full routing.

By simulation also scenarios with a limited number of relaying (master) nodes
have been analyzed. A similar trend is then visible, that for smaller networks, it
is optimal to use as little relaying nodes as possible, whereas for larger networks,
the optimal choice is to use as many relaying nodes as possible. Possible future
extensions are to analyze two dimensional networks, making the results presented
here a good stepping stone for further generalizations.






CHAPTER 3

Analysis of a polling system modeling
QoS differentiation in WLANSs

This chapter models WLANs with QoS differentiation capability using a polling
system with a random polling scheme, a 1-limited service discipline and determ-
inistic service requirement. The system contains high and low priority queues
that are distinguished via the probability of being served next. We propose a
new iteration algorithm to approximate the waiting time of customers in the
high and low priority queues. As shown by simulation results, our approximation
is accurate for light to moderately loaded networks.

3.1 Introduction

Wireless Local Area Networks (WLANs) have become widely available for
internet access and there is currently a growing demand for the support of other
applications, in particular speech and video. Specific mechanisms then need to
be deployed in order to provide appropriate QoS to the various applications. A
typical approach to provide such QoS differentiation is for example by giving
a larger share of the available capacity to preferred users, or giving priority to
preferred classes. Introduction of such mechanisms requires insight into their
performance. This chapter investigates the influence of prioritization of the
packet delay handling at the Medium Access Control (MAC) layer in WLANS.

In IEEE 802.11 WLAN prioritization appears in the support of different QoS
classes. These QoS classes are implemented via different settings of MAC layer
parameters, like their access time, the maximum and minimum value for their
back-off counter or the number of consecutive packets that may be transmitted,
see [IEE05] for an overview of IEEE 802.11e that incorporates these mechanisms.
QoS provisioning for IEEE 802.11 systems has been investigated mainly via
discrete event simulations. Analytical models yielding robust insight into system
behaviour are scarce. To a large extent, such models are based on the pioneering
work of Bianchi [Bia00], in which a basic 802.11 system with persistent sources,
i.e. sources that always have packets ready to be transmitted, is modeled and
analysed using a Markov chain approach and validated via simulation showing
excellent agreement with actual system behaviour. Extensions to include physical
layer details are given in e.g. [HVS01],[WT02]. The extension to non-persistent
sources is provided in [CBvB05a],[L T 03], where a flow level model is introduced
that is analysed using a Processor Sharing queueing model. Comparison with
discrete event simulation shows that indeed the MAC layer can be adequately
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modeled via the Processor Sharing mechanism. Extensions to multiple traffic
classes with different QoS requirements, as e.g. in 802.11e, are among others
presented in [Xia05],[XMO06], [ZC03].

Although the flow level modeling of [CBvB05a],[L T 03],[Xia05], [XMO06],[ZC03]
captures the resource sharing behaviour of the MAC layer of 802.11 protocols,
the essential behaviour at the packet level is not captured. At that level a flow
consists of a series of packets that are transmitted one by one, where transmis-
sions of different flows are intertwined. Especially for real time applications,
such as speech/telephony, the packet level is of high importance. In [EOs05],
a packet level analysis for non-persistent sources is presented, extending the
Markov model of Bianchi to include the probability of the node going into an
empty backoff state. We take a further step to analyze the packet level by
modeling the MAC layer as a polling model where the server works off packets at
different queues. The essential characteristics of the QoS aware MAC protocol
are incorporated via the frequency at which the server visits the different nodes.
In particular, we give the server a high probability of visiting a node with high
priority packets.

In our polling model, we consider two types of queues, viz. high and low
priority queues, each type with a different probability of the server moving to it.
Upon departure from a queue, either after service of a packet or at the arrival
of a packet to an empty system, the server randomly selects a queue according
to these probabilities, which mimics the behaviour of the MAC layer in 802.11
systems. Note that we do not claim to accurately model the behaviour of the
IEEE 802.11e protocol, but analyse a mathematically interesting model that
provides insight into the effect of prioritization such as used in the IEEE 802.11
MAC layer. In our model, we will take the probability of moving to a high
priority (HP) queue to be « times as high as moving to a low priority (LP)
queue. The service time of a packet is considered to be deterministic as the
packet sizes in the system are equal for all queues and the channel speed is
assumed to be constant at all times. As a queue is only allowed to transmit
one packet when obtaining the channel, the service discipline is 1-limited. This
chapter analyzes the steady state waiting time for this 1-limited polling system
with random polling.

For the 1-limited polling model, general results are available in literature. In
[FC85] Fuhrmann and Cooper derive the well known decomposition result for
queues with server vacations, which is very useful for analyzing polling models.
For symmetric queues, so with identical arrival and service rates at the queue,
and a cyclic polling order, [Fuh85] extends this result to give analytical results
on the average waiting time of packets in the queues. In [BW89], Boxma gives
a pseudoconservation law for the mean waiting time in a polling system with
Markovian polling, that includes random polling. This law provides an exact
expression for a weighted sum of the mean waiting times at all queues, which
need not be symmetrical. However, results for individual queues cannot be
derived from this law when the network is not symmetric.

The main contribution of this chapter is an analysis of the steady state
marginal distribution of the waiting time of packets for different types of queues
in a 1-limited asymmetric polling model. We consider the different queues in
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the system individually and model a particular queue as a queue with server
vacations, where these vacations depend on the state of the other queues.
To obtain the steady state waiting time distribution, we propose an iteration
algorithm. The algorithm computes the marginal steady state distribution of
the number of packets at a tagged queue, assuming a steady state at all other
queues. Iterating this approach over the queues, for various settings, we obtain
the steady state waiting time distribution for packets at the different queues.

The remainder of this chapter is organised as follows. Section 2 describes the
queueing networks under consideration and the analytical approach for deter-
mining the distribution of the waiting time of customers per queue. Numerical
results of the proposed algorithm are compared with simulation in Section 3,
and Section 4 concludes the chapter.

3.2 Model description and Analysis

Consider a polling model consisting of queues @1, ..., Q, with finite buffer B
and a single server S visiting the queues. Customers arrive at a queue Q;
according to a Poisson process with rate \;. The service process at the queues
is deterministic with service time 7 per customer and there is no switchover
time between the queues. The routing policy for the server is random, meaning
there is a probability p; that the server moves to queue @; upon departure from
queue @;, j = 1,...,n. For a high priority queue, this probability is o times
as high as for a low priority queue, that is pgyp = aprp. The service policy
is assumed to be 1-limited, meaning at most one customer is served at each
visit of the server, and customers are served FCFS at each queue. When the
server reaches an empty queue, it will immediately proceed to the next. When
all queues are empty, the server waits at the last queue to instantly move to
the first queue that receives a customer. To ensure stability of the system we
assume that p = > | A7 < 1.

In the following, we derive expressions for the average waiting time of a
packet for both types of queue. We start by considering one high priority queue
surrounded by n low priority queues. The server will move to the HP queue with
probability -2~ and to a certain LP queue with probability ﬁ We present
an algorithm to approximate the waiting time of a packet for both types of
queue. This algorithm considers queues separately as served by a server with
vacations. The length of the vacations depends on the number of customers
at the other queues. Starting with an arbitrary distribution of the number of
customers at the other queues, the steady state of the number of customers in
the considered queue is determined, using the vacation time distribution. This
process is iterated over the different types of queues repeatedly, until convergence
occurs. For specific cases, being that either the HP or LP queues are saturated,
meaning they always have packets ready to be transmitted, exact results are
presented. Exact results are also given for the case where all queues have equal
priority.
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3.2.1 General case

To determine the average waiting time of a packet in the queue, we consider the
queues separately, as if they are in isolation. From the point of view of a queue,
the server is either present and serving a packet, or away while serving an other
queue. We thus can consider a queue as an M/D/1/B queue with vacations (c.f.
[Fuh84],[Kra89],[Lee89]), where the absence of the server while serving other
queues are the vacations. The length of these vacations, which depends on the
number of customers at the other queues, influences the waiting time of the
packets in the queue. For illustratory reasons, we first give the analysis for the
scenario where there are two queues, one high priority and one low priority
queue, which as we show in the subsequent subsection can be extended to any
number of queues.

Two queues

In the two queue scenario, each queue can be considered separately as a queue
with a server that goes on vacation. The duration of a vacation now depends on
the state of the other queue. We approximate the distribution of the length of
the vacation V,, given the number of customers IV, at the other queue (HP or
LP) using the following recursion:

PV, = kr|N,=1i)= (3.1)

(k=1)7INy =j)P(Ay =j—i+1),Vk > 1

b
lM
s
A
I

. 1,i=0

P(Ve = 0N, =1)= { (1-¢),i=1,..,B

where V is the length of the vacation seen by the queue z, Ny, ¢, and A,
are the number of customers at queue y, the probability of the server polling
queue y and the number of arriving customers at queue y during a service time,
respectively. Note that the length of a service period is known to be 7 due to
the 1-limited service discipline, hence we will denote this as a service time. The
variable x can be the HP or LP queue and y is the other type of queue. The
vacation length distribution is then determined using

B
P(V, =kr) =Y _ P(V, = kr|N, =i)P(N, =), k>0 (3.2)
=0

As the steady state distribution P(N, = i), is not known, we start with an arbit-
rary distribution, for example an always empty queue. Using this distribution,
the vacation distribution for the other queue is obtained.

We derive the steady state distribution of the number of customers in the
queue using the vacation time distribution, so that by using Little’s law we
acquire the expected waiting time of a packet. The queue under consideration
can be seen as an M/D/1/B queue with vacations (c.f. [Fuh84],[Kra89],[Lee89]).
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To analyze the steady state of this queue, we first focus on the state of the
system at embedded points, which are after the departure of a customer or the
end of a vacation. The probability p,, that an embedded point is the completion
of a service and the departing customer leaves n customers behind, and the
probability ¢, that an embedded point is a vacation termination with n customers
in the system are related in the following manner

n+1

Pn = > Gn-k1@kn=0,1,.,B—2 (3.3)
k=1

B
PB1 = Y95k (3.4)
k=1

G = O P kPk+hngo,n=0,1,.,B-1 (3.5)
k=0
B-1

g5 = Y h§ ok +hGa (3.6)
k=0

B-1 B
St =1 (3.7)
n=0 n=0

where g; and h; denote the probability of j customers arriving during a service
and vacation time, respectively, gjc and hjC denote the probability of j or more
customers arriving. As these probabilities are known, this set of equations can
be solved, giving the steady state distribution at the end of an interval (either a
service or vacation). To determine the continuous time steady state distribution,
we note that the number of times a departing customer leaves a certain number
of customers behind equals the number of times an arriving customer finds this
number of customers in the system. We have to take into account, however,
that an arriving customer can find B customers in the system in which case the
customer is discarded and leaves. Let Pp denote the probability that an arriving
customer finds the system full. To evaluate this expression, observe that

pp=L"" (3.8)
P
where p = A7, A = )" \; is the offered load and p’ is the carried load,

, (1-0b)r

TWEV +(1-b)r (3.9)

p

where E'V denotes the expected vacation time and b denotes the probability
that an embedded point is a vacation termination point,

B
b= qn. (3.10)
n=0
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Let o denote the multiplicative inverse of the average interval between consecutive
embedded points, that is

o' =bEV + (1 -0b)T (3.11)
then L
Py :1—%. (3.12)
The queue length distribution at arrival epochs, m,, n =0, ..., B is
T, = P(Arrival sees n packets—Arrival is accepted)(1 — Pg) (3.13)
+P(Arrival sees n packets—Arrival not accepted)Pg  (3.14)
= pn(l—PB)—l—PBl(n:B) (315)
where
lifn=10B
l(n=B) = { 0 otherwise (3.16)
Combining these results, we obtain
1-0
Ty = ¥pn,n=o,1,...,3—1 (3.17)
1—-b)o

From PASTA we obtain that the continuous time steady state queue length
distribution is given by m,, n =0, ..., B. Note that (3.17) requires the average
vacation time EV | and (3.2) the distribution of the other queue to determine
the vacation time distribution. We may iterate (3.2) and (3.17) to obtain an
approximation of the steady state queue length distribution.

The algorithm approximates in each iteration the number of customers found
at the other queue to determine the vacation time for the tagged queue. When
this vacation time is underestimated, the server switches back early to the queue
and starts servicing a packet at the considered queue (when available), thus
leaving the server busy. When however the vacation time is overestimated, the
approach leaves the server at the other queue for too long a period, where this
queue might actually have become empty, thus leaving the server idle while it
could process jobs in the tagged (non-empty) queue. The presented approach
hence underestimates the capacity of the server, but equally for both queues. The
average queue length of all customers in the total system, which for larger values
of B approximately can be seen as an M/D/1 queue as it is work conserving, is
known and given by
p(2—p)
2(1-p)
where p = (ALp + Agp)7, the load of the total system. The results obtained
by the iteration give a higher average queue length due to underestimation of
the server capacity. The queue length of each type of customer should hence be

ENiotal = (3.18)
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Algorithm 3.1 Algorithm to calculate the average number of customers at each
queue
Calculation of EN,(It)

1. Initialize
It:=1x:=1,y:=2
P(N, =1i) =+, EN;(0)=0fori=0,...,B
where EN;(j) denotes the average queue length of queue i in iteration j

2. Determine the vacation time distribution at queue x from (3.2), and
EV .= FEV,

3. Determine the queue length distribution P(N, =n) =7m,, n =0, ..., B,
from (3.17) and determine the average queue length EN,(It)

4. Set y := x, x := 3 — y and repeat steps 2 and 3 for this setting

5. 1f ENLPZERIZ < 0.01 for both o = 1,2, then STOP

Else y :=x, x :==3 —y, It := It + 1 Go to Step 2

scaled down, so that the average queue length of all customers in the system is
correct. This leads to an improved estimation of the average queue length of a
customer per type of queue. Using Little’s law, we obtain the average waiting
time for each type of queue.

The algorithm can start with an arbitrarily chosen steady state distribution
for the queue length of the HP queue. From this, a new steady state is computed
for the same queue. Starting from each initial distribution for the HP queue,
Algorithm 3.1 converges to the steady state distribution. Theorem 3.1 below
states that this convergence is monotone starting from either an empty or
full HP queue using stochastic ordering. Let X and Y be random variables
with distribution Fx(.) and Fy(.), respectively. We say that X < Y iff
Fx(z) > Fy(z) for all z > 0 (c.f. [Ros96], p.410).

Theorem 3.1. For each initial distribution, Algorithm 3.1 converges monoton-
ically.

Proof. Let XI¥ and X1¥ denote random variables for the queue length distri-
butions of the HP and LP queue after the ! iteration and let Y;** and Y;#P
denote the random variables for the corresponding vacation length distributions.
From (3.2) it follows that if X P <y XHP also YT <, YL as a higher queue
length for the HP queue leads to a longer vacation length for the LP queue. From
(3.17) it follows that if Y < YiEF also XEP <, X as a longer vacation for
the server of the LP queue leads to a higher number of packets in the LP queue.
Following the same reasoning for the LP node, we have that X&* <. X&F leads
to Y{IP <, YHP and YT <, Yi#F leads to XHT < XIP. Tt thus follows
that XHP <., XHP for any i > 1 as long as X{IF <, X{IP. Similarly we have
that Xé{P > XZ.HP for any ¢ > 1 as long as Xé{P > X{{P.
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From Theorem 3.1, an obvious approach is to start with

P(XHP =n) =

{ 1 forn=0 (3.19)

0 forn>0

since it then holds that X{T¥ <, X for any X with a non-negative distribution.
Let X} denote the random variable following an equilibrium distribution, that
is X7 = X7 ,. We then have that as X{'¥ <, X7, also X/¥ <, X7, so
the iteration process cannot jump past an equilibrium. In every iteration, the
distribution may change, moving closer towards the equilibrium distribution.

Similarly, we can start with the distribution

P(XHP =n) =

{ 1 forn=B (3.20)

0 forn< B

where B is the maximum number of customers in the queue. It then follows that
XHP > X for any X, so that after every step we have that XF >, X7 as
XHP >, X7, In this case every iteration takes a step closer to the equilibrium
from above. Using Algorithm 3.1 starting from both (3.19) and (3.20), we find
our approximation.

Multiple queues

The approach for two queues can easily be extended to multiple queues of any
priority class. The vacation length of a considered queue then depends on the
state of all the other queues, and can be computed by analogy to (3.2). The
vacation length distribution in this case is given by

P(Vy =kr|Ny =iy, y #x) = (3.21)
B
Zy?éz Qy Z P(V£:(k—1)T|szaz,Z7AZ‘)~

r=1,27T,Y

ay=iy—1
I PA: =a.—i.)- P(Ay, =a, —i, +1)
z#x,Yy
P(Vy = 0Ny =iy, y # x) = L

Gz + Zy,iy>0 dy

Here ¢, denotes the probability of the server jumping to queue x. The vacation
length distribution is found using

P(V, = kr)= (3.22)
B
Y. P(Ve = k7N, =iy y#2)P(N, =iyy#z)
iy =0,y#x

where again the steady state queue length distribution of the other queues is
needed. Starting again with a random distribution for all but one queue we
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find the vacation time for this tagged queue and hence the corresponding steady
state queue length distribution of this queue. This distribution can now be used
for all queues of the same class and the other class can be analyzed using the
steps of the algorithm. Note that the proof of convergence remains the same,
as the analysis is done for each type of queue. In the case of multiple queues
with balanced load, that is with identical arrival rates at the queues, the random
variables X/7P XIP YHP and YEF can be used for all queues of the same
type as they are indentical. When arrival rates at the queues are different, the
HP; yLPj yHP; o
’ ()

same reasoning can be used for all separate variables X; s
Pj, where the subscript j denotes a specific queue of the type HP or LP.

vE

3

3.2.2 Special cases

For a high priority queue, it may be needed that a certain average waiting time
can be guaranteed. To obtain the maximal average waiting time in a network
with one HP queue and n LP queues, we give results for the situation with
saturated LP queues. To analyze the impact of prioritizing the high priority
queue on the low priority queues, we compare the average waiting time at the
LP queues without an HP queue in the system, with the case where the HP
queue is saturated. For these special cases, exact results are available, which are
given in this section.

Saturated LP queues

Counsider one high priority queue with Poisson (Agp) packet arrivals and n
saturated low priority queues, i.e. App — c0. Let the probability ¢ of visiting

the high priority queue be
@

q= (3.23)

n+ao
where « denotes the factor of importance given to the high priority queue,
meaning the probability of visiting the HP queue compared to the LP queue
is « times as high. For the HP queue, the vacation length distribution is then
given by the geometric distribution

P(V =kr)=(1-¢q)q (3.24)

as any time the server does not jump to the HP queue, it will service exactly
one packet at an LP queue. As the average time between arrivals of the server
is T and the server only serves one customer at each visit, the HP queue is
stable when ¢ > A7. With the exact distribution of the vacation length known,
we can use the pgf of the number of customers in the queue as given by (3.17)
to determine the average number of customers in the HP queue. The average

waiting time then easily follows from Little’s law.

Empty and saturated HP queue

We now consider the case where the low priority queues are no longer saturated,
but each have an arrival process of rate App and a deterministic service time of
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value 7. Let queue n + 1 be the HP queue, the conservation law (c.f. [Gro90])
then states that

n+1 n+1 (2)
Z Z Aif3;

where EW;! denotes the average waiting time in the queue (not including service)
and p; = App7 for i = 1..n and p,4+1 = AgpT, so that and p = npLp + pyp-
As the service time distribution is deterministic for any queue, we have that
[31-(2) = 72 and the total waiting time of a customer is EW; = EW/ + 7.

Consider the case where there are only n LP queues, so the arrival rate at
the HP queue is set equal to zero. The stability condition is that p = nApp7T < 1
and it immediately follows that

- Sy ALpT?
N pLpEWE, = pEimlfEPT 3.26
— LpP LP 2(1 7/7) ( )
Ewe?, — T 3.27
(2—p)T
EW,p = —_P7 3.98
e = f o (3.25)

Now consider the case where the HP queue is saturated. We have n identical
LP queues, and from the perspective of the LP queues the server incurs a
switchover time when it visits the HP queue. The stability condition for this
system is that (?ig) < 1, where o denotes the mean switchover time, as this
is the number of arriving customers during the average cycle time of a queue.
Let p; denote the probability of jumping to queue i and s; the average time it
takes to switch to queue i. We have a pseudo-conservation law stating that (c.f.

[BW89])

> nil JEW; = (3.29)

i=1 p

i WA o Zps En: s, (3.30)
2(1-p) 1-pZp o Pt o

Where for our model we have that \; = App = A, p; = A1, p = nAr1, 552) =12,
P = n, §; = f”q, 5(2) q(q+;)2T and o = s; as all switchover times are equal.
Here ¢ denotes the probability of the server polling the HP queue. As the LP

queues are statistically identical, the expression simplifies to

nAt> qtl-2qr
a0 t i atomn T 20 ) (3.31)
[1— 23]
(1—q)(1—nA1)

EWrp =

and applying Little’s law the average total number of customers in the queue is
obtained. Note that this approach can easily be extended to a case with multiple
high priority queues, as only the probability of the server being on vacation
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Rates Simulation Algorithm Error (%)
ALp | Amp LP HP LP HP LP HP
0.1 0.1 | 0.1129 | 0.1120 | 0.1125 | 0.1125 | 0.3455 | 0.4437
0.1 0.1 0.1132 | 0.1118 | 0.1166 | 0.1084 | 3.0128 | 2.9663
0.1 0.1 | 0.1133 | 0.1117 | 0.1174 | 0.1076 | 3.6018 | 3.6286
0.2 0.2 | 0.2723 | 0.2609 | 0.2829 | 0.2504 | 3.9085 | 4.0431
0.2 0.2 | 0.2753 | 0.2580 | 0.2911 | 0.2422 | 5.7375 | 6.1312
0.2 0.2 | 0.2771 | 0.2569 | 0.2961 | 0.2373 | 6.8574 | 7.6399
0.3 0.3 | 0.5623 | 0.4888 | 0.5918 | 0.4582 | 5.2475 | 6.2384
0.3 0.3 | 0.5792 | 0.4714 | 0.6253 | 0.4247 | 7.9612 | 9.9101
0.3 0.3 | 0.5881 | 0.4624 | 0.6454 | 0.4046 | 9.7323 | 12.5021

NGV O] IS RUCT I G TN UL Gl )

Table 3.1: Average waiting time in a two node network with balanced load

(2)

changes, so only the values of s; and s;”’ need to be adjusted.

3.3 Validation

In the following we validate our approximation approach by comparison with
simulation results. For a wide variety of settings, varying the load of the system
and the grade of prioritization, the average waiting times of packets at the
individual queues are determined. Note that the approach presented calculates
the distribution of the waiting time, but only the averages are used in the
following for comparison with simulation. Results for the scenario with one high
priority and one or two low priority queues are considered, together with the
special cases.

3.3.1 General case
Two queues

Table 3.1 shows the average waiting time of packets in a queue computed by
the algorithm compared with simulation results for different loads of the system
in the case of two queues, one HP and one LP queue. The table shows the
impact of varying «, the relative importance of the HP queue compared to a
LP queue. The load at the queues is balanced, i.e. each queue has the same
arrival rate of packets. The probability of moving to the HP queue is ¢ = -2,
which is « times as high as for the LP queue and the buffer size is set to 15
for all cases. The impact of the differentiation appears to be higher when the
load of the system increases. For a low load, the queues are often empty, thus
making it possible for the server to attend to packets directly upon arrival.
As the load increases, the queues will be fuller and the waiting time depends
more on the frequency at which the server visits the queues. We observe that
the accuracy of the algorithm deteriorates as the load of the system increases.
For a highly loaded system, the queues will at times be fully loaded, causing
arriving packets to be lost. This effect is not taken into account when using
the pseudoconservation law to scale the obtained results. Simulation however
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Rates Simulation Algorithm Error (%)
ALp | Agp LP HP LP HP LP HP
0.2 0.5 | 0.4724 | 1.0469 | 0.5068 | 1.0098 | 7.2785 3.5384
0.5 0.2 | 1.1693 | 0.3475 | 1.2053 | 0.3113 | 3.0780 | 10.4126
0.1 | 0.01 | 0.1061 | 0.0107 | 0.1061 | 0.0106 | 0.0416 0.5174
0.01 | 0.1 | 0.0106 | 0.1062 | 0.0111 | 0.1057 | 3.9743 0.4905
0.4 0.1 | 0.6120 | 0.1384 | 0.6176 | 0.1324 | 0.9038 4.3436
0.1 0.4 | 0.1554 | 0.5934 | 0.1712 | 0.5788 | 10.1452 | 2.4608
0.1 0.3 | 0.1373 | 0.3966 | 0.1475 | 0.3858 | 7.3913 2.7269
0.3 0.1 | 0.4081 | 0.1286 | 0.4093 | 0.1240 | 0.3084 3.5340

Table 3.2: Average waiting time in a two node network with unbalanced load

shows that the impact of this approximation is limited, as the average number
of packets in the system remains close to a system with infinite queues.

In a similar fashion Table 3.2 shows results for unbalanced arrival rates, with
the probability ¢ = % (a0 = 2) of visiting the HP queue kept constant. For more
unbalanced situations, the results deteriorate, especially for higher loads. For
the node with the lower arrival rate, the error made by the algorithm is bigger,
as the average queue length is smaller. Comparing the impact of increasing the
load of the LP queue on the HP and vice versa shows that the increase in load
of the HP queue has a bigger impact on the average waiting time at the LP
queue than increasing the load of the LP queue has on the HP queue. As an
increase of the load will cause the queue to be non-empty for a larger fraction of
the time, the impact it has on the other queue by causing the server to go on
a vacation becomes larger. As a HP has a higher probability of being visited,
increasing the load of this queue has a bigger impact than increasing the load at
the LP queue.

Three queues

In Table 3.3 we consider the scenario with three queues, one HP queue and two
LP queues. The table shows the average waiting time of packets computed by
the algorithm compared with simulation results for the situation with balanced
load. As for the situation with two nodes, we observe that for higher loads,
the impact of the prioritization increases. Again, the results deteriorate as the
load of the system increases. Comparison with the results of Table 3.1 furhter
shows that the impact of prioritization is higher when more nodes are active
in the network. The decrease in the average waiting time of customers for the
HP queue is stronger relative to the decrease for the two node situation. With
more queues present, the relative increase in probability of being visited is higher
when the value of « is increased. For example, increasing the value of « from 2
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Rates Simulation Algorithm Error

ALp | Agp LP HP LP HP LP HP

0.1 0.1 | 0.1217 | 0.1205 | 0.1245 | 0.1151 | 2.386 | 4.465
0.1 0.1 0.1228 | 0.1188 | 0.1261 | 0.1122 | 2.639 | 5.556
0.1 0.1 | 0.1229 | 0.1185 | 0.1269 | 0.1104 | 3.323 | 6.868
0.2 0.2 | 0.3654 | 0.3202 | 0.3766 | 0.2928 | 3.054 | 7.300
0.2 0.2 | 0.3711 | 0.3072 | 0.3882 | 0.2736 | 4.602 | 10.949
0.2 0.2 | 0.3749 | 0.2986 | 0.3946 | 0.2608 | 5.250 | 12.678
0.3 0.3 | 1.9029 | 0.9133 | 2.0479 | 0.8543 | 7.621 | 6.461
0.3 0.3 | 2.0098 | 0.7526 | 2.1639 | 0.6221 | 7.669 | 17.337
0.3 0.3 | 2.0653 | 0.6844 | 2.2162 | 0.5177 | 7.304 | 24.356

Aol ro| | ol no| | wolpo| ©

Table 3.3: Average waiting time in a three node network with balanced load

to 3 for both situations gives the following relative increase (r.i.):

a=2 a=3 r.i.
2 3
2 nodes ¢= % q= % 12.5% (3.32)
d == = - 2
3 nodes ¢ 5 4= ¢ 0%

For all settings, no more than 15 iterations were needed by the algorithm with
the accuracy set in such a way that the last step gave an improvement less that
1%. Longer runs with higher accuracy did not improve the results significantly.
To run the iterations, the values of P(V, = k7|N, = i) for the two node case
and P(V, = k7|N, = i,y # z) for the three node case had to be computed
once using the iterations given in (3.1) and (3.21), which is time consuming for
large values of the buffer sizes. For highly filled buffers however, the geometric
distribution can be used, as the probability of the vacation having a duration
of k7 is then very close to the probability of first visiting k£ other queues before
visiting the considered queue, as the other queues will not become empty during
the process. The time needed for the iteration itself is very limited, as (3.2) (or
(3.22)) only encompasses the addition over all possible values of queue lenghts
and (3.17) is a small enough system of equations to be solved within seconds.

3.3.2 Special cases
Saturated low priority queues

For a user with important traffic, the QoS differentiation is of high importance.
To get an idea of the impact of the settings for the differentiation, a worst
case scenario can be analysed to see the minimal prioritization that is needed
to obtain a certain average waiting time for the high priority packets. The
worst case scenario is when all other (low priority) queues always have traffic to
transmit. Figure 3.1 (left) shows the average waiting time of a packet in the HP
queue, for different values of n, the number of saturated low priority queues in
the system. The arrival rate at the HP queue is set to Agp = 0.01. The three
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Figure 3.1: Average waiting time for the scenario with saturated LP and saturated
HP queues

lines represent the results of the model for a = 2...4, the grade of prioritization.
It clearly follows from the figure that where for a sparse network (low number of
LP queues) the differentiation has a limited effect and that for a dense network
(high number of LP queues) giving more priority has a much bigger impact.

Empty and saturated high priority queue

The differentiation between users is primarily done to provide better performance
for more important traffic. However, it also has to be taken into account what
the impact is on performance of the less important traffic. If the prioritization
of the high priority queue is too high, the low priority queues might be starved.
To analyse the impact on the low priority queues, we compare the situation
without the HP queue (or an empty HP queue) with the situation that the HP
queue always has packets to transmit. In the latter case, we vary the grade of
prioritization. Figure 3.1 (right) shows the average waiting time of a packet in
an LP queue, for different values of n, for different settings of the HP queue.
The arrival rate App is set to 0.01 for each of the n LP queues. In this case
the HP queue is either absent (or empty) in which case the complete network
behaves as a standard M/D/1 queue where each separate queue has the same
average behaviour or the HP is saturated, with different values for «, the grade
of prioritization. For higher values of « the server will more often be processing
HP packets, leaving less capacity for the LP queues. This shows from the
figure as the waiting time reaches high values already for lower values of n.
When the network is sparse, we see there is already a substantial impact of the
differentiation on the waiting time of the low priority packets.
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3.4 Conclusion

In this chapter we analyzed the impact of QoS differentiation on the delay of
packets for different classes of queues using a 1-limited polling model with a
random scheduling policy and deterministic service times, capturing the random
nature of the MAC layer protocol. The model gives insight in the effect of the
parameter settings on the QoS in a WLAN for the individual classes of queues.
We developed an approximation approach for the packet delay in a network with
high and low priority queues. Comparison with simulation results shows that for
low to moderately loaded systems, the approach works well. Our results provide
a tool for network designers to determine the level priority that is needed to
ensure a certain expected waiting time of a customer.






CHAPTER 4

Bounds for linear performance measures
in a two node network

We consider a queueing network with two nodes in which the servers of these
nodes are coupled in the sense that the service rate of a server is determined
by the presence or absence of packets in the other queue. We present stability
conditions and conditions for which the network has a geometric product-form
stationary distribution. Using a Markov reward approach we establish error
bounds on various steady-state performance measures of this network. The basic
idea is to compare the performance with the performance of a perturbed process
that has a geometric product-form stationary distribution. Additionally, the
impact of the allocation of the service capacity to the nodes is analysed, showing
that it is optimal to allocate all of the capacity to one node.

4.1 Introduction

We consider a queueing network with two nodes in which the servers of these
nodes are coupled in the sense that the service rate of a server is determined
by the presence or absence of packets in the other queue. More precisely, let p}
and p35 denote the service rate at queue 1 and 2, respectively, if the other queue
is empty. If both queues are non-empty these service rates reduce to p; < pj
and ps < p3. The queueing network with two coupled nodes was first studied
in [FIM99] by considering two parallel M/M/1 queues with coupled service rates.
In this paper we generalize this model by allowing for forwarding between these
queues, if a packet completes service at one queue it joins the other queue with
some probability.

Applications of this model arise, for instance, in a wireless network with two
nodes whose transmissions cause mutual interference, reducing the service rate
if both nodes are active. More generally, in a communication network where
several nodes need to share resources, service rates will be reduced if several
nodes are active. The reduction is caused either directly by interference, or by
the overhead introduced by protocols to mitigate this interference. Note that
such protocols leave considerable freedom in how to allocate rates py and po to
the servers. Therefore, part of our interest will be in how to allocate u; and po
to the servers in order to minimize certain steady-state performance measures.

We will model the network as a random walk in the quarter-plane, a model
which has been extensively studied in, for instance, [FIM99, CB83]. The approach
taken in [FIM99, CB83, FI79] is to find an expression for the generating function
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of the stationary distribution of the process by formulating it as the solution of
a boundary value problem. The form of the results that can be obtained using
this approach do not provide the insight that is required to analyze, for instance,
optimal allocation of service rates. This is illustrated by [RO03] in which a
tandem queue with coupled processors (a special case of our model in which
there is forwarding with probability one in one direction only) is analyzed using
this analytical approach, but no additional insights about the system behavior
are reported. Therefore, we follow another path in this paper.

We use the Markov reward approach to establishing error bounds and compar-
ison results as developed by van Dijk [vD11] to develop bounds on performance
as well as to obtain insight into optimal rate allocation strategies. Van Dijk
and Puterman introduced the Markov reward approach in [vDP88, vD88]. The
method was further refined by van Dijk and applied to, for instance, Erlang loss
models in [BvD09]. An overview of this method is presented in [vD11]. The
Markov reward approach compares two queueing networks modeled as Markov
chains, one for which the stationary distribution is not known, and another one,
which is a modification of the first one, for which the stationary distribution is
known. In [GBvO13] an approach is presented to establish error bounds and
comparison results as the solution of a linear program, making use of the Markov
reward approach of van Dijk.

The contributions of this paper are as follows. First, we provide necessary and
sufficient conditions on the arrival rates for which there exists a rate allocation
scheme that results in a stable network. These results are based on existing
stability results for random walks in the quarter-plane [FIM99, Miyl1l]. We
present results that provide significantly more insight for the special case of a
coupled queue with forwarding.

Second, conditions are given for which the network has a geometric product-
form stationary distribution. This extends results of Bayer and Boucherie [BB02]
who consider very specific boundary behavior. A product-form characterization
for random walks in the quarter-plane is given by Latouche and Miyazawa
in [LM14]. We demonstrate that a coupled queue with forwarding has a geometric
product-form distribution if and only if p; = p} and pe = p5. This means that
the Jackson network where the rates at the boundary are equal to the rates in
the interior is the only setting that ensures this product-form. Also it means
that the result of Fayolle et al that pq + po = p] + p3 is sufficient and necessary
if there is no forwarding does not extend to the case with forwarding.

Third, we bound the performance of networks that do not have a geometric
product-form stationary distribution by establishing an error bound with a
slightly perturbed network that does have a geometric product-form stationary
distribution. This provides bounds on several performance measures, where
examples are given for the probability that the system is empty and for the
average number of customers in each queue. Finally, the impact of the allocation
of the service capacity to the nodes is analysed, showing that it is optimal to
allocate all capacity to one node.

Our work is related to [BJLO8] where parallel systems with coupled service
rates are studied (a special case of our model in which there is no forwarding) in
which the service rate is a function of the number of packets in the other queue.
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Sufficient and necessary conditions for the stability are derived and it is shown
that these conditions are sharp when the service rate at each queue is decreasing
in the number of customers in other queues, and has uniform limits as the queue
lengths tend to infinity. Also, in [YH91] a packet radio network with two nodes
is considered and it is analyzed which control structure leads to a geometric
product-form stationary distribution and, therefore, the expected throughput
and the expected packet delay. Yeh [Yeh02] incorporates both network layer and
physical layer issues in his model to find a delay-optimal rate allocation in an
M-user additive Gaussian noise channel. He extends the work of Telatar and
Galager [TG95] by allowing packets to queue at the transmitters and a Poisson
arrival process of packets instead of all packets being present at the start. It
is shown that in the symmetric case, the Longer-Queue-Higher-Rate (LQHR)
allocation is optimal.

The remainder of this paper is organized as follows. In Section 2 we introduce
the model and Section 3 discusses the stability of the network. Next, Section 4
gives examples of useful reference networks that have a product-form stationary
distribution and in Section 5 we use a Markov reward approach to obtain bounds
on performance measures of the network. Section 6 analyses the impact the
allocation of the capacity over the two nodes has on the performance of the
network. Section 7 finally concludes the paper.

4.2 Model and problem statement

Consider a two node wireless queueing network with packets arriving at node
1 = 1,2 according to a Poisson process with rate \;. Both nodes have an infinite
size buffer. If both nodes have packets in their buffer packets are served according
to a first come first served (FCFS) discipline from node ¢ = 1,2 at rate u,. If
only node i has a non-empty buffer it serves at rate pf > p;. All service times
are exponentially distributed. After service completion at node i a packet is
forwarded to the other node with probability p; and it leaves the system with
probability 1 — p;.

We model the network as a continuous time Markov chain on state space
S =1{0,1,...}2, where n = (n1,n2) € S represents the state in which there are
n; packets at node 7. Let e; denote the unit vector with a 1 on position i and for
later use let dy = (—1,1) and dy = (1, —1). The transition rates for this model
are as follows:

n—n+e withrate A forie {1,2},
n—n—e; withrate (1—p;)u; forie {1,2},n; >0 and ny > 0,
n—n—e; +e; withrate p;p; for i # j,n; >0 and ny > 0, (4.1)
n—n—e; withrate (1—p;)u; fori#j,n; >0 and n; =0,
n—n—e; +e; withrate p;u; fori# jn, >0and n; =0.
The transition rates are depicted in Figure 4.1. We refer to this model as the

coupled queue with forwarding R. For future reference, we also introduce a
generalized version of the network as depicted in Figure 4.2 with different rates
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Figure 4.1: Transition rates for the coupled queue with forwarding (R)
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Figure 4.2: Transition rates for the generalized
coupled queue with forwarding (G)

at the boundaries of the network. We will refer to this network as GG. We assume
that all the networks that we consider are aperiodic and irreducible.

In the following we denote the transition rate from state n to n + key + leg
as gg,i(n), k,1 € {—1,0,1} and let 7(n) denote the steady state probability of
the network being in state n. For notational convenience, let v; and 5 denote
the overall arrival rate at nodes 1 and 2, respectively, i.e. y; and v, satisfy

71 = A1+ 72p2, and 2 = A2+ 711 (4.2)

It follows that v3 = (A1 + Aap2)/(1 — p1p2) and vo = (A2 + A1p1)/(1 — p1p2).
Let p. denote the total capacity of the system

g1+ p = fle- (4.3)

We analyse the stability of coupled queue network R and as performance measures
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we are interested in the probability 7(0,0) that the system is empty and the
average number of customers in each queue. To obtain results we will establish
error bounds between R and an appropriately chosen G network. In particular,
we find conditions for G to have a product-form stationary distribution. We also
analyse the impact of the allocation of the capacity p. to the two nodes of R on
the performance measures, i.e. the probability of the system being empty and
the average queue length at each node.

4.3 Stability

In this section we analyze stability of R, the coupled queue with routing. More
precisely, we consider necessary and sufficient conditions under which this process
is positive recurrent. Note that we do not consider stability of the generalized
coupled queue process. We will see in Section 4.4 that stability of the generalized
processes that we will consider will follow from our other results.

Necessary and sufficient stability conditions for R follow from the general
results for random walks in the quarter-plane [FIM99, Miy11]. Before presenting
the result we define (M, M, ), (M, M,) and (M,/, M,/) as the drift in the interior
of the state space, at the horizontal axis and at the vertical axis, respectively.
More precisely, let

My = M + papie — p, M, =\ — pf, M} = X1 + paps,
My = Xy + p1pg — iz, M, = Xy +p1p7, M, = Xy — pi5.

The result below appears in [Miy11].

Theorem 4.1 ([Miyll], Lemma 6.4). R is positive recurrent if and only if
one of the following three conditions holds:

1. M, <0, M, <0, MM, — M,M, <0 and M,M} — M, M/ <0,
2. M, >0, M, <0 and MM, — M,M; <0 and M, <0 for M =0,
3. M, >0, M, <0 and MyM;' — M, M, <0 and M, <0 for M = 0.

Theorem 4.1 extends the results in [FIM99] to include M;' =0 and M, =0 in
the second and third case, respectively.

Our first result deals with stability of R for a given service rate allocation
w1 and po. It is expressed in terms of v and 2, which we recall are defined in
Section 4.2 as the overall arrival rate at node 1 and 2, respectively.

Theorem 4.2. R is positive recurrent if and only if

v <p1 and 7;(1_M2>+’72<1 (4.4)

or

v1>p1 and li + J2 (1 — Ml) < 1. (4.5)
M1 H2
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Proof. First we express the stability conditions of Theorem 4.1 in terms of the
following functions in v; and ~s:

Filv,72) = — 1 — pa(y2 — p2), (4.6)
fa(71,72) =72 — p2 *Pl(’h p1), (4.7)
f3(v1,72) = e (p] — p1) + pa(y1 — p1), (4.8)
fa(yi,72) = v (ps — p2) + pa(v2 — p3)- (4.9)

Theorem 4.1 gives that R is positive recurrent if and only if one of the following
three conditions holds:

C1 f1(71772) < 0> f2(71372) < 07 f3(’71,’72) < 0 and f4(’713’y2) < 07
C2 fi(v1,72) >0, f2(71,72) <0 and f3(y1,72) <0,
C3 fi(v1,72) <0, fa(71,72) = 0 and f4(y1,72) <O,

i.e. positive recurrence is defined in terms of the half spaces induced by f1,..., f1.
In the above conditions we have excluded the cases M’ = 0 and M,, = 0, because
M >0 and M, >0 due to A\; > 0 and Ay > 0, respectively. The result of this
theorem states that the above three conditions reduce to

f3(71,72) < 0if 1 > pg and fa(y1,72) <0if v < (4.10)

and this remains to be shown.
For sufficiency of (4.10) observe that

fi(pn, p2) = fo(pr, pe) = fa(pa, p2) = fa(pr, p2) = 0. (4.11)
f1(0, pio — prpn) = fo <O,M2 - m) = f3 (0, W) = f4(0, pu3) = 0.
D2 My — M1
(4.12)
Furthermore
W5 > pio — pipa > po — p1/pa. (4.13)

It follows that for v1 < p1 and f4(y1,72) < 0 we always satisfy one of the
Conditions C1-C3, see also Figure 4.3. For 1 > p; and f35(71,72) < 0 we satisfy
Condition C2.

To show neccessity of (4.10) let v; < pq and f4(y1,72) > 0. Since fa(y1,72) >
0, Conditions C1 and C3 are not satisfied. Also fa(v1,72) > 0 by (4.11)—(4.13)
and, therefore, Condition C2 is not satisfied. For 1 > py and f3(y1,72) > 0

Conditions C1 and C2 are not satisfied. Also, for v1 > u1, fa(y1,7%) >0 =
fa(71,7v2) = 0 by (4.11)—(4.13) and Condition C2 cannot be satisfied. O

Figure 4.3 shows the arrival rates for which the system is stable for a set
value of the service rates 1 and puo. The numbered sections I,IT and III represent
where Conditions C1, C2 and C3 are met respectively.

Considering all possible values of p1 and po provides the stability range SR,
i.e. the set of all rates for which the system can be stable provided the optimal
service rate allocation is chosen. The stability range is visualised in Figure 4.4.
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72 72 Y2
) T s > pef T
w3 < pre n3 < e 111
111 III
H2 — P1H1 I H2 — P1H1 I H2 — P1H1 I
II - mn II - m II N
p1 = papz pi < e H1 — p2p2 ny > pe H1 — p2p2 ny > pe
Figure 4.3: Set of stable rates for set service rates p; and pg
72 72 72
T T
T Mo 2 Pe
py < fre By < e
- M - N - N
n < pre Bl > e BT > e

Figure 4.4: Set of stable arrival rates

Corollary 4.3. The stability range of the network is given by v1 < pj and
Yo < p3y and

71* +— 72* <1HMX(/”LC*_'“2’O)) < lor (4.14)
max(ui, pre)  min(u3, ) It
—u*.0
_n (l_maX(uc* GE )>+ il < lor (415)
min (g7, pe) 13 max (3, fe)
M2 o1 (416)
Pe  He

Corollary 4.3 follows from Theorem 4.2 in a straightforward fashion when
considering that due to symmetry we can substitute v; < 1 by 72 > po and
v1 > p1 by y2 < pg in (4.4) and (4.5). It obviously follows that ; < pf must
hold for the second part of both inequalities to hold. Conditions (4.14) and (4.15)
follow when considering the extreme allocations for pu; and ps. The extreme
allocations (1, p2) are (0, p.) and (u, 0), but when pf < . it needs to be taken
into account that p; < pf. Assuming that one of the boundary rates is lower
than the system capacity, say pus < p. and pj > p. then the extreme allocations
are (e — 3, 113) and (e, 0). When both boundary rates are lower than the
system capacity the extreme allocations are (u. — ps, p2) and (u3, pe — 13). This
situation calls for the addition of condition (4.16), as (4.14) and (4.15) do not
consider the possible allocations with uq + pa = p for pe — pd < p1 < pf which
show that the rates v1 + v2 < . are feasible as long as v; < pi and v < p3.



50 4. Bounds for linear performance measures in a two node network

4.4 Product-form characterization

For the situation that u; = p;, ¢ = 1,2, network R is a Jackson network, which
has a geometric product-form stationary distribution

Ew

rii (1l —ry), (4.17)

n’l) n’2
i=1

for ry = Zl and r9 = 72 . It is known from [FI79] that if p; = po = 0 network R
has a product-form statlonary distribution if and only if u} + p5 = pu1 + pe. A
natural question is whether such a condition can be generalized to the case that

p1 # 0 or pa # 0.
In this section we generalize this question and investigate necessary and

sufficient conditions for the generalized coupled queue with forwarding G, as
shown in Figure 4.2, to have a geometric product-form stationary distribution.
Recall that at the boundaries of the state space the transition rates are denoted
by ay,; for the horizontal axis, by by, for the vertical axis and by cj; at the
origin. Also, in the G network we have a11 = b11 = ¢1,1 = 0. In [LMI14]
necessary and sufficient conditions are provided for a more general network in
which a; 1 # 0, b1,1 # 0 or ¢11 # 0. In our first results below we derive such
conditions from first principles, because it enables us to obtain these conditions
in the form that is most suitable for follow-up results in this section.

Theorem 4.4. G has a geometric product-form stationary distribution if and
only if unique 1,19 € (0,1) exist such that

robi,—1 — a1,0 + c1,0 = popara, ( )
ria_1,1 — b1 + €01 = P17, (4.19)
r1a—1,0 + r2bo,—1 — 1,0 — co,1 = 0, (4.20)
rob1,—1 +b1,0 = A1 + popara, (4.21)
ri6_1,1 +aop1 = A2 + puip1ri, (4.22)
T
bo,1 — r2bo,—1 — r2bi,—1 = —ppir1 — ﬁ()\l + popare — par1),  (4.23)
, —
AL+ Ao+ e = (1= p1)ry + pe(l — p2)re

T T 1 1
Fpapr— + pgpa— + A — 4 Ag—. (4.24)
T2 T1 T1 T2

Proof. The balance equations must hold for all states (n1,ns):

Z m(n1,n2)qij(n1,n2) = Z m(n1 —1i,n2 — j)qij(n1,nz2). (4.25)

i,j€{-1,0,1} i,j€{-1,0,1}
We adopt a matrix notation with all new rates in a column vector denoted by x:
— T
x = [a10, ao1, @—11,a—10, b10, bo1, bo—1, b1-1, c10, co1]", (4.26)

and let the rates in the interior be denoted by ¢; ;, omitting the dependency on
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the state n as these rates are equal for all states in the interior. The balance
equations, apart from the one for the interior, are given by

Az =y, (4.27)

where A is given by

0 0 0 0 1 1_% 1—r 1 0 0

1_% 1 1 1-7r O 0 0 0 0 0

0 0 -2 0 1 1 1-p 1 0 -1

1 1 1 1—1mr; 0 0 0 _% _% 0

o 0o 0 0 -1 o0 o B ¢ o

0 - -2 0 0 0 0 0 0 0

0 L -2 o L0 0 -z 0 0

) ) T i

0 0 0 - 0 0 —T2 0 1 1

and y = [y1, ..., ys]” is given by

1

Y1 =1rig—10 + —q-11,
T2
T2

Y2 = 12Q0-1 + —q1-1,
r1

Y3 = riq-io,
Y4 = T240-1,

1 T
ys = (r1 —1)g—10 + (r2 — 1)go—1 + (g —1)qo1 + (é —1)g—11 — q10 — q1-1,
T2 1
Ye = (7"1 - 1)(1—10 + (7’2 - 1)110—1 + (E - 1)(]1—1 + (E - 1)Q1o —qo1 — ¢-11,
yr = (r1 —1)g—10+ (r2 = 1)go—1 — q1—1 — 10 — 901 — G—11,
ys = 0.

Using Gauss-Jordan elimination on the matrix [A]y] for G we obtain (omitting
empty rows and combining a few rows for convenient notation)

10000 0 0 —rp -1 0 | —Hapara
01000 1 0 0 0 -1 | Ao
00100 —% 0 0 0 % | Lipi
00010 0 = 0o -+ —L | 0
00001 0 0 7 0 0 | AL+ p2pars

000 00 -1 7ro 1o 0 0 | mpirs+ 727 (M+ papars — par)

Equations (4.18)-(4.23) now follow from linear combinations of these equations.r

From Theorem 4.4 we can straightforwardly derive a known result from
[FI79] for our coupled queue network R. We prove only that the conditions are
neccessary. It is shown in [FI79] that these conditions are also sufficient.
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Theorem 4.5. For the coupled queue network R without forwarding of packets,
i.e. p1 = p2 = 0, a necessary condition to have a product-form stationary
distribution is

= o+ g (4.28)

Proof. Recall that for R we have by definition that a10 = b1,0 = c1,0 = A1 and
ap,1 = bo,1 = co,1 = A2. When no forwarding of packets occurs, i.e. p1 = ps =0,
we have that a_1; = by,—1 = 0, a_10 = pf and bg—1 = p3. Equations
(4.18),(4.19),(4.21) and (4.22) automatically hold. For the network to be of
geometric product-form, the service rates at the boundary have to be chosen
such that

7“1/[{ + TQ/L; = A + Ao, (429)

as is given by Equation (4.20). We combine this equation with the balance
equations at both boundaries

* >\ *
M+ +pu] = 71 + pir1 + parse, (4.30)
1
A
AL+ Ag 4 ps = 72 + pare + par, (4.31)
2
which gives
* * /\1 >‘2
,ul—I—,LLQ=?+7+M1T1+M2T2—>\1—/\2. (432)
1 2

Finally, considering the balance equation (4.24) of the interior, the right hand
side of (4.32) can be simplified to u; + po completing the proof. d

Our next result deals with the case that there is forwarding between the
nodes, i.e. we have p; # 0 or py # 0. Our results states that a R network has a
product-form stationary distribution if and only if puj = 1 and ps = pe. This
means that the Jackson network is the only R network that has a product-form
stationary distribution. The result shows that generalizations to, for instance
i+ ph = p1 + ua, are not possible as soon as p; # 0 or pa # 0.

Theorem 4.6. The coupled queue R with forwarding of packets, i.e. py # 0 or
p2 # 0, has a product-form stationary distribution if and only if

pi =g and pg = pia. (4.33)

Proof. Without loss of generality, assume that p; # 0. Equation (4.22) shows
that with arrival rate ag,; = A2 the rate a_; 1 = pip1 must equal pyp;. This
shows that the rate at the boundary must equal the rate at the interior, i.e.
@i = 1. We now use a similar approach as for the case without forwarding of
packets, starting from Equation (4.20):

ripn + rapy = A+ Ao (4.34)
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Combining (4.34) with the balance equation at the vertical boundary

LA . r
A+ Ao 4 ph = 72 + psre + pari (1 —pr) + rlmm (4.35)
2 2
gives
1 = 22 [ipire + flmpy (4.36)
T2 T2

Using balance equation (4.24) of the interior this equals
" A1
Mo = A1+ Ao+ pg + p2 — oo T HaTL T Hara (4.37)
1
Finally the balance equation at the horizontal boundary
A1
AL+ Ao+ = - + p1ry + por2 (4.38)
1

shows that the right hand side of (4.37) equals ps, completing the proof. O

In the next section we will analyze R with p} > p;, p1 > 0 and py = 0,
which by Theorem 4.6 does not have a product-form stationary distribution.
Our approach will be to bound the performance in terms of a perturbed network
that is obtained by changing some of the rates at the boundary of the state
space. These changes will be made such that the resulting perturbed network
has a product-form stationary distribution with known parameters. The details
of the performance bounding method will be given in the next section. Here we
present the two perturbed networks, denoted by G; and G5 that will be used.
The transition rates of the perturbed networks will be denoted with a bar.

G1 The first perturbed network is an R network in which we take i} = 1 and
15 = po. Recall from above that this is an instance of a Jackson network

with r; = 71/,Lt1 and ro = ’Y2/M2~

G2 The second perturbed network generalizes to a G network. We don’t perturb
the rates of R at the origin and the vertical boundary, i.e. 51,0 =C1,0 = A1,
bo1 = C0.1 = Ao, b—1 = 0 (recall that p» = 0) and by _; = pj. On the
horizontal axis (verifying that we satisfy Equations (4.18)—(4.22)) we take

_ _ _ _ A1+ Ag — par
a1o=A1, @1 =A2, a-11=pp1 and a_jg= %uzz’
1
(4.39)
where 71 and 73 are the solution in (0, 1) of
A 3ro — A
" \ cand m = 2RI (4.40)

o+ (r2 — 1) (3 — p2) (15 — p2)re + pap1
The network G; always exists, i.e. we can always construct rates uj = p1
and 15 = pe. and obtain a positive recurrent R network with r1 = ~1/u1
and 19 = v2/ue. We have no guarantee that the G2 network can always be
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constructed. We will show in the next section that there are examples of R
networks for which the Gy network does not exist. Sufficient conditions for
existence of Gy in an explicit form do not seem to follow straightforwardly
from (4.39) and (4.40).

The network G is obtained by only perturbing the horizontal axis. One
could also consider perturbing only the vertical axis. However, it follows from
(4.22) that this is only possible when pf = pp and this will, therefore, not be
considered in the remainder.

4.5 Markov reward approach and bounds

In the previous section we provided necessary and sufficient conditions under
which an R network has a product-form stationary distribution. Our approach
to analyzing networks that do not have a product-form stationary distribution
is to establish upper and lower bounds on the various performance measures like
the probability that the system is empty or the expected number of packets in a
node. The bounds will be established by comparing the network of interest with
a perturbed network with a product-form stationary distribution. We follow the
Markov reward approach to establishing error bounds as developed by van Dijk.
An overview of this method is presented in [vD11]. More precisely, we use the
method presented in [GBvO13] to establish error bounds as the solution of a
linear program.

The Markov reward approach compares two queueing networks modeled as
Markov chains, one for which the stationary distribution is not known, and
another one, which is a modification of the first one, for which the stationary
distribution is known. The key element of the approach is to analyze steady state
performance measures by means of a cumulative reward structure. In particular,
we express our performance measure of interest as 7 = > 7(n)F(n), where 7(n)
is the (unknown) stationary distribution and F'(n) is a reward function. We adapt
F(n) to the desired performance measure: If F'(n) = ny, then F corresponds to
the expected number of packets in the first node; if F(n) = 1{n = 0}, then F
corresponds to the probability that the system is empty. We present the Markov
reward approach in terms of a general function F'(n) of the form

fio+ fiina, if n e Cy,
if C!
F(n) — f2,0+f2,2n23 1 n e 2, (441)
JEXE if n € Cs,
fa,0+ fainy + faong, ifn e Cy,
where f,, , are the constants that define the function and C4,...,C4 denote

the horizontal axis, the vertical axis, the origin and the interior of the state
space, respectively. Our functions F(n) are linear in each of the components of
the state space. For notational convenience, let N denote the set of possible
transitions from a state in Cy, k = 1,..,4. Moreover, let k(n) denote the index
of the component of the state space that state n is in. To illustrate: k((3,0)) =
and k((4,6)) = 4. Finally, let ¢; ;(n) and g; ;(n) denote the transition rate from
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n to n+ (4,7) in the original and in the perturbed network, respectively.

Since we are interested in steady state behavior only we can uniformize
our network to obtain a discrete-time Markov chain for which the stationary
distribution is the same as for our continuous-time network. The Markov reward
approach is most conveniently presented in terms of this discrete-time equivalent.
More precisely, we assume that both the original and the perturbed network can
be uniformized with the same uniformization constant w, i.e. we let

w > max { max Z gi,j(n), max Z gij(n) p. (4.42)
i,j€{-1,0,1} i,5€{-1,0,1}

Let pr(n),u and py(n),., denote the probability of making a transition from a state
n in Ci(n) to n + u in the original and in the perturbed network, respectively.
The uniformization of both networks gives

¢i,;(n _ gi,j(n)
Pr(n),u = JU.E )7 and Pr(n),u = fug y (443)
for u # 0 and
Pk(n),0 = 1- Z Pr(n),u> and ﬁk(n),o =1- Z ﬁk(n),u' (444)
u€E N} u€E Ny

Define the difference in transition probabilities to be given by

5k’(n),u = ﬁk(n),u — Pk(n),u- (445)

The starting point for the Markov reward approach is to consider F*(n), the
expected cumulative reward at time ¢ when the network starts in state n at time
0, for which

F o FT N+ u), ift >0,
Fi(n) = {o () + Lone Ny PR, (n+u) :ft . (4.46)

Note that F = limy_,o Y, F*(n)/m(n). The key idea is that bounds on terms of
the form F*(n+u) — F*(n) can be used to bound F in terms of 7(n). Therefore,

we introduce
D! (n) = F'(n +u) — F'(n) (4.47)

and refer to D! (n) as bias terms.

Theorem 4.7 ([vD11], Result 9.3.5). Let F : S — [0,00) and G : S —
[0,00) satisfy

[F(n) = F(n)+ Y Skmy.uDi(n)] < G(n), (4.48)
UE Ni(n)
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k U Clk,ju

11 Ny DP1u

2 1 {di,e1,dz} Dau

2 1 €2 Paey — P2,dy +C1,2,1,d,

2 1 0 P4,0 — D2,e; T C1,2,1,e4

2 1 —es P4-eo — P2,dy T C1,2,1,ds
2 2 0 DPd,-ds — P2,es T C1,2,1,¢0
2 2 —e2 P4-e; —P2,0 FC1,2,20+C1,2,1,0
3 ]. {61, dl} pl,u

3 1 €2 Di,es — P3,d; T C1,3,1,d,

3 1 0 P1,0 — P3,e1 T €131,

3 2 0 Dl-dy — P3,es T C1,3,1,e0
4 1 Ny Dau

ko j u €2,k ju

1 2 {dy,eq,-da} Diu

1 2 €1 Pd,e; — Pl,dy T €2.1,2,dy

1 2 0 D40 — Ples +C2,1,2,e0

1 2 —e1 Pd-e; — Plr-ds +C2,1,2-ds
11 0 Pa,dy — Ple; T C2,1,2,e1
11 —eq D4,-es —P1,0 +C2,1,1,0 T C2,1,2,0
2 2 Ny DP2,u

3 2 {dy,ea} D2,

3 2 el D2,e1 — P3,d1 T €2,3.2,d;

3 2 0 D2,0 — DP3,es + €2.3,2,¢0

3 1 0 D2,d; — P3,e; +C2,3,2,¢,

4 2 Ny Dy

Table 4.1: Values for constants c; j ;-

foralln € S andt > 0 then

appropriate function G(n).

nes

nes

(4.49)

The difficulty in applying Theorem 4.7 is that it is meticulous to find an
In [GBvO13] a linear programming approach is

presented that provides a general optimization problem that establishes an error
bound between any two random walks and can bound the difference which has
Ok, and T as input parameters and a lower (or upper) bound as output. This
linear programming approach will be used in this section to establish performance
bounds for our R network. We will not provide all details of the approach, but
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we will present its main ideas. The key result in [GBvO13] is the following.

Lemma 4.8 ([GBvO13], Lemma 3). Let constants ¢; i ju, ©,j = 1,2, k =
4, u e {—1,0,1}? take the values given in Table 4.1. If A; : S — [0,00)
and B; : S — [0,00), i = 1,2 satisfy

F(n+e;) — F(n)+ Z Z max{—c; k. judj(n+u), ¢k uBj(n+u)} < Bi(n),
J=1,2uEN,

F(n)— F(n+e;) Z Z max{—c; i juBj(n+u), ¢k jud;n+u)} < A;i(n),

J=1,2 u€Ny,
where k = k(n), for alln € S and i = 1,2, then
_ Ai(n) < D, (n) < Bi(n), (4.50)
forallt >0, ne S andi=1,2.

The intuition behind this result is that it can be shown that for the values of
Cik,j,u given in Table 4.1 we have

Dt (n) = F(n+e;) — + Y Y CikmyguDinu).  (4.51)

J=1,2u€N(n)

The result of Lemma 4.8 then follows by induction. Lemma 4.8 establishes
bounds on the bias terms D! (n) and D! (n), i.e. on the bias terms in the
unit directions. It is shown in [GBvO13] that these bounds can be extended to
provide bounds in the other (diagonal) directions and that linear constraints
can be formulated that capture the requirements on G(n) itself. Finally, it is
shown in [GBvO13] that it is possible to reduce the resulting linear program to
a program with a finite number of variables and constraints.

We first compare the R network with the product-form network G; where
pf = p;. Using the results of Section 4.4 we also compare with network G,
where we set the rates of the vertical axis and the origin equal to R, having
calculated the remaining rates at the vertical boundary by solving the equations
of Theorem 4.4. The rates are presented in Table 4.2 (where the rates equal to
R are omitted from the table for readability).

As a first performance measure we consider 7(0,0), the probability that the
system is empty, i.e. fz o =1in (4.41) while all other values are 0. The bounds
and simulated values are presented in Figure 4.5. The comparison of R and G
provides an upper bound that is close to the simulated values, yet the lower
bound does not increase for higher values of pf. The comparison of R and G2
does not provide an improvement of the bounds.

As a second performance measure, we provide bounds on FN; and ENs,
the expected number of customers at queue 1 and 2 respecitvely, i.e. f;1 =1
or f; o =1 for all 4, as presented in Figure 4.6. For EN;, bounds obtained by
comparing R and G5 again do not give an improvement. However, for ENy
we see an improvement on the upper bound for the lower values of uf. For
future research this shows that it would be interesting to find more product-form
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M5 | @10 | Go1 | G—10 | G—11 T o

0.4 0.1 0.1 0.28 0.12 0.25 0.325
0.45 | 0.1 0.1 0.23 0.12 | 0.2738 | 0.3045
0.5 0.1 0.1 0.18 0.12 | 0.3039 | 0.2906
0.55 | 0.1 0.1 0.13 0.12 0.3420 | 0.2828
0.6 0.1 0.1 0.08 0.12 | 0.3902 | 0.2813
0.65 | 0.1 0.1 0.03 0.12 | 0.4510 | 0.2869

Table 4.2: Rates for which network G5 has a product-form stationary
distribution for various values of b with Ay = Ao = 0.1,
w1 = pe =0.4 and p; =0.3

0.7 b
ool // |
=
S}
& 0.5 b
0.4+ b
| | | | | |

—— Lower bound (G;) —— Lower bound (G2) —e— Simulation
Upper bound (G1) —+— Upper bound (G2)

Figure 4.5: Probability 7(0,0) for R for various values of u} with
Ai=0.1,u;, =04 and p; = 0.3

networks to compare with, possibly improving the bounds.

The Markov reward approach starts from the performance measure of the
perturbed network and provides the bounds by adding (subtracting) the error
bounds of equation (4.48) to obtain the upper (lower) bound, as can be seen in
(4.49). This causes that for an increasing performance measure as the probability
of the system being empty that the lower bound does not increase. For the
decreasing value of the expected number of customers in the queue the upper
bound doesn’t decrease, but even increases. This explains why for the probability
of the state being empty the upper bound is close to the simulation, whereas
the lower bounds are closer for the expected of number of customers in a queue.

4.6 Optimal rate allocation

The previous section provides bounds on the perfomance measures, but we are
also interested in the impact of allocating capacity to each server in R. Recall
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Figure 4.6: Expected number of customers in each queue
for various values of pf with A\; = 0.1, 4; = 0.4 and p; = 0.3

that the system capacity is given by p. = p1 + po and the service rates at the
boundary are higher than in the interior, i.e. u¥ > u,;. Van Dijk [vD11] provides
a means to compare networks which differ only in transition probabilities.

Theorem 4.9. (¢f. [vD11]) Let F: S — [0,00) and F : S — [0,00) satisfy
F(n)=F(n)+ > OkmuDi(n) <0, (452)

U€Nk(n)

foralln € S andt > 0 then

Zﬁ(n)ﬁ(n) < ZF(TL)?T(TL) (4.53)

In the following we compare two R networks with different service rates in the
interior and show that in this case only one bias term is relevant in Theorem 4.9.
We provide recursive expressions for this bias term and use proof by induction
to show the sign of the bias term is negative under certain conditions, proving it
is optimal to allocate all system capacity to one of the nodes.

Theorem 4.10. Assume that pui < p. and ub > p., then the steady state
probability 7(0,0) for the system R without forwarding, i.e. p1 = ps = 0, is
minimized by allocating

t1 = e and po = 0. (4.54)

Proof. We compare an R network with service rates (u1, pi2) in the interior with
and R network wiith rates (u; — €, po + €) = (41, fi2), where both nodes do not
forward their packets to the other one, i.e. p; = po = 0. We uniformize both
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networks using the uniformization constant as given in (4.42), which in this case
is equal to w = Ay + Ao + pf + pd. As is shown in [vD11], this constant can be
omitted from the equations and for ease of notation we will denote the transition
probabilities by the transition rates. The difference d,,, between the transition
probabilities of the systems that are being compared is given by

—e, ifneCyu=—e,
Oku = 9 € ifneCyu= —eo, (4.55)

0 otherwise.

and the same reward functions are used for both networks, so that F'(n) = F(n).
Recalling that da = (1,—1), the left hand side of Equation (4.52) of Theorem
4.9 is given by

—eD', LT 6D262 =
—€(F'(n —e1) — F*(n)) + e(F'(n — 62) — F'(n)) =
e(F'(n—e3) — F'(n—e1)) = (4.56)

e(F'(n—e1+dg) — F'(n—e1)) =
€D}y, (n —e1).

To show that Dfi2 (n —e1) < 0 so that Theorem 4.9 can be applied, we use the
recurrence relations for Df (n). As an example we give this recurrence relation
for one value of n with u = dy. First note the definition of the bias term

D} (n) = F'(n+ds) — F*(n).

Starting from state (0,1) and considering that the step da would lead to state
(1,0), the definition and the possible transitions as given in (4.46) from each of
these states gives

DitY(0,1) = F"'(1,0) - F*(0,1)

= F(1,0) — F(0,1) + A\ F*(2,0) + X\ F'(1,1)
+uiFH0,0) + s F(1,0) — A FH(1,1) — A2 F*(0,2)
—piFH0,1) = u5 F*(0,0)

= F(1,0) — F(0,1) + A\{ (F'(2,0) — F'(1,1))
+A2(F*(1,1) = F*(0,2)) + pi(F*(0,0) — F*(0,1)) (4.57)
+15(F*(1,0) — F*(0,0))

= F(1,0) — F(0,1) + A1 Dg,(1,1) + A\2Dg4,(0,2)
+uiD_,(0,1) + p3Dq, (0,1) — p3D_c,(0,1)

= F(1,0) — F(0,1) + A1 Dg,(1,1) + X\aDg, (0, 2)
+(p7 = p3)D—e, (0,1) + p5Da, (0, 1).

Similarly, all other expressions can be derived.

We now prove that the assumptions pi < p. and p3 > u. are sufficient for
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the bias term be (n — e1) to be non-positive. Let v = uf + u — p1 — po then it
can be verified that the recursion of the bias terms can be expressed as

F(1,0) — F(0,1) + A D!, (1,1) + A, D", (0,2)

3 D8 (0, 1) + (4 — iDL, (0,1), it = (0, 1)
F(n+1,0) = F(n,1) + A\ D}y (n+ 1,1) + oD}y (n, 2)

Dl (n— 1,1) + DS (0, 1)

+(pi — g1 — p2) DL, (1, 1), if k= (n,1)
Dyft(k) = { F(1,m — 1) = F(0,m) + \ D}, (1,m) + Ao D, (0,m + 1)

+ua DY (0,m — 1) + vD} (0,m)

+(p1 4 p2 — p3) DL, (0, m) if k= (0,m)
F(n+1,m—1)— F(n,m)+ A D} (n+1,m)

+A2 DYy (n,m + 1) + 1 DG (n —1,m)

+ua DYy, (n,m — 1) + vD} (n,m), if k= (n,m)
(4.58)
and
F(0,0) = F(0,1) + M D, (1,1)
XDt (0,2) + pi Dt (0,1) it k= (0,1)
F(n,0) — F(n,1) + \D_ (n+1,1)
+)\2th€2< ) +M1Dieg( -1 1)
Dtjrei (k) — +(/.L1 Ml)DZQ( -1 1) + VDt—EQ( ) if k= (’I’L, 1)

F(0,m — 1)~ F(0,m) + \iDL,.(1,m)

+A2 DL, (0,m +1) + pi DL, (0,m) + 3Dt (0,m — 1) if k= (0,m)

F(n,m—1)— F(n,m)+ XD (n+1,m)

+X Dt (n,m+1)+ D", (n—1,m)

+H2D—e2 (Tl, m — 1) + VDt—eg (n7 m)7 if k= (’I’L, m)
(4.59)

The remainder of the proof is by use of induction. First note that F(0,0) =1
and F(n,m) = 0 for all other values when considering the probability that
the system is empty and that puj — p5 < 0, which follows immediately from
the assumptions. As a base for the recursion we have that DQEZ (k)=02>0
and Dgg(k‘) = 0 < 0. For the inductive step, note that as A;, s, 4 and v are
positive, it follows from (4.59) that as p1 — p} is negative, D't (k) is positive
when D' _ (k) is positive, as long as D}y, (k) is negative. From (4.58) it follows
that Dtjl(k) is negative when D} (k) is negative, D_62 (k) is positive and the
assumptions hold, as this ensures that the expressions pj — 3, puj — pu1 — po and
p1 + po — ph become negative. Together with the base this completes the proof.

Concluding, we have that D} (n — e;) is non positive and F(n) = F(n), so
that .
F(n) — F(n)+ €D} (n—e) <0. (4.60)

It follows from Theorem 4.9 that the network performs better without adjusting



62 4. Bounds for linear performance measures in a two node network

I I
sl [—e—EM 0.75 |- —— 70,
| |—e— EN, —— 4,0
0.7 -
1 | -]
0.65
0.6 |-
0.5 [~ —
! ! ! ! ! !
0 0.5 1 0 0.5 1
p1 (p2 =1—p1) w1 (p2 =1—p1)

Figure 4.7: Performance measures for p. = 1, u7 = p5 =3, A1 = 0.5 and Ay =04

the service rates. Starting with the premise that all capacity is allocated to node
1, this analysis holds, proving that it is suboptimal to move capacity to node 2.
Hence an optimal situation is acquired, completing the proof. O

The line of proof followed here does not apply for other values of ;i compared
to p. as the signs of the expressions pj — pb, pi — p1 — pe and py + pe — u3
become positive. This prohibits the use of induction on the signs of ngl(k) and

thé(/{) For the values of p} not included in Theorem 4.10, we postulate that
it is still optimal to allocate all the capacity to one node, even when considering
other performance measures. The node to which all capacity should be allocated
depends on the arrival rate at each of the nodes. In the following we provide
simulation results to support our postulation.

As Figure 4.7 shows, allocating all capacity to one of the nodes provides
better results than allocating the capacity evenly as on average less packets
remain at both nodes. Due to the lower arrival rate at node 2, it is better to
allocate all capacity to this node, as this increases the probability of reaching a
state at the boundary, so that the much higher service rate can be used.

When the arrival rates for each node are more unbalanced, as shown in
Figure 4.8, the best choice is clearly to allocate all capacity to the node with the
lowest arrival rate, in this case node 2. This now even holds for the performance
measures of node 1 itself. If 90% of the capacity would be allocated to node 1,
the system would even become unstable. Note that even though A\; + Ay > pe,
the system is stable when the capacity is allocated in a correct manner, in
accordance to our findings in Section 4.3.

4.7 Conclusion

This paper analysed a two node network where the two nodes interfere, causing
a lower service rate when both nodes are active. Starting with the stability
of the system, it was shown that increasing the rate at the edge of the state
space expands the stability region. Conditions were given for which the system
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has a product-form stationary distribution, providing networks for comparison
with the network under consideration using a Markov reward approach. For
any performance measure that is linear in each of the components of the state
space an approach is given to provide bounds. Examples have been provided
for the average number of customers in each queue and the probability of the
system being empty, showing that some of the provided bounds are close to
simulated results. This gives a promising start to further investigate the strength
of the Markov reward approach to obtain results for a network, for which it
is well known that analytical results are hard to obtain. We also analysed the
impact of the allocation of the capacity to each of the nodes when they both
are busy, showing that allocating all the capacity to one of the nodes provides
better results than evenly distributing the available capacity. The node with the
lowest arrival should receive all capacity, as this way the probability of reaching
a state at the boundary, with a higher service rate, is highest. As our examples
point out, this may even be beneficial to the node that does not receive any of
the capacity.






CHAPTER 5

Upper bounds on multi-hop
multi-channel wireless network
performance

Given a placement of wireless nodes in space and a traffic demand between
pairs of nodes, can these traffic demands be supported by the resulting network?
A key issue in answering this question is interference between nodes. This
chapter presents a generic model for sustainable network load in a multi-hop
wireless network under interference constraints, and recasts this model into
a multicommodity flow problem with interference constraints. Using Farkas’
Lemma, we obtain a necessary and sufficient condition for feasibility of this
multicommodity flow problem, leading to a tight upper bound on network
throughput. The results are illustrated by examples such as a serial network and
a network taken from literature.

5.1 Introduction

Interference is an important aspect of wireless networks that seriously affects the
capacity of the network. This is especially so in a wireless multi-hop network,
where a transmission on one link interferes with transmissions on links in the
vicinity. On a multi-hop path self-interference may result in substantial degrad-
ation of end-to-end network performance. In this respect, due to interaction
among hops, multi-hop wireless networks differ considerably from wired networks
thus calling for new modelling and analysis techniques that take into account
interference constraints.

In the absence of interference, but including capacity constraints on the
transmission rate of nodes, feasibility of a set of traffic demands between pairs
of nodes can be determined by considering the flow allocation in the network
as a multicommodity flow problem. The network is modelled as a graph, with
the vertices representing the nodes where traffic is originated, terminated or
forwarded. There is an edge between vertices if the corresponding nodes are
within each others transmission range. Each edge has a capacity, representing the
throughput that is possible over that edge. The multicommodity flow problem
then addresses the question whether there exists a set of paths and real numbers
(fractions) so that: (1) for each traffic demand, there is a set of paths from
the traffic source to the destination; (2) fractions of the traffic demand can be
allocated to each path so that for each source-destination pair the total traffic
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demand is realized and (3) the capacity constraints are taken into account.

This chapter considers a generic wireless network configuration specified via
parameters such as nodes, transmission and interference ranges, as well as a traffic
matrix indicating the demands between source nodes and sink nodes. We make
no assumptions about the homogeneity of nodes with regard to transmission
range or interference range, nor the capacity of the links. This is in contrast to
previous work [GK00] that has focussed on asymptotic bounds under assumptions
such as node homogeneity and random communication patterns. In [J*03] a
conflict graph is used to address the problem of finding a feasible flow allocation
to realize demands between pairs of nodes. While the conflict graph provides
a more comprehensive modelling of the scheduling problem, it is also more
complicated to deal with. A detailed discussion on the relation of our work with
[JT03] is presented in Section 5.4, showing that we obtain a tight upper bound
for an example provided in [JT03]. In [JT04] the question of a routing algorithm
to find paths satisfying the traffic demands in a distributed setting is addressed.
For an LP relaxation of the interference problem, [KN03] presents necessary
conditions for link flow feasibility. This yields an upper bound similar to that of
[JT03]. In addition, [KNO3] introduces an edge colouring problem in which each
colour at an edge represents a time slot for transmission. This problem is solved
using a FPTAS, yielding a lower bound for the link flow allocation. In [KNO05]
this work is extended to multi-radio and multi-channel networks. Our work does
not solve any LP’s, but provides a good characterization for the feasibility of
the fractional multiflow problem with interference constraints which provides a
fast way of finding upper bounds for a slightly different interference constraint
setting.

In this chapter we introduce a new approach to model interference in a carrier
sensing multi-hop wireless network. To this end, we transform the sustainable
load problem into a multicommodity flow problem that we extend with interfer-
ence constraints. The main theorem of this chapter states a condition for the
feasibility of the multicommodity flow problem with interference constraints,
given the demands between source and destination nodes. Using this theorem,
we compute the maximal throughput between a single source and a single des-
tination. We consider the following elements to be the key contribution of our
work:

e The use of polyhedral combinatorics (Farkas’ Lemma) to obtain a struc-
tural expression for feasibility of the multicommodity flow problem with
interference constraints, in terms of a ‘generalized cut condition’ analogous
to the ‘max-flow min-cut’ theorem of Ford and Fulkerson [FF56].

e The generality of our framework which incorporates the following realistic
effects: the transmission range is not necessarily equal to the interference
range, the network may consist of mixed wired and wireless connections
and wireless links have different capacities depending on distance, obstacles
or transmission power.

The remainder of this chapter is organized as follows. In Section 2 we
introduce interference constraints to model the wireless parts of the network
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while taking the impact of the capacity of the links into account. Our main
theorem is stated in Section 3, followed by examples and applications in Section
4. Section 5 extends the network to include multiple channels. In Section 6 we
introduce interference constraints to model the wireless parts of the network while
taking the impact of the capacity of the links and the now included available
radios and channels into account. Our main theorem for this setting is stated in
Section 7, followed by examples in Section 8. Section 9 concludes the chapter
and indicates how the results can be used for a channel allocating algorithm.

5.2 Ad hoc interference model

Ad-hoc networks use transmissions over a wireless channel to communicate
between users. However, if multiple transmissions take place at the same time
over the same wireless channel, transmissions may collide and the data will be
lost. This interference limits the throughput of ad-hoc networks. Adopting the
model of [HBOO0G6], we will model the interference constraints. To do so, we define
the transmission range and the interference range of a node. When nodes in a
wireless network want to communicate, they need to be close enough to receive
each others signals. The transmission range of a node is the maximum distance
from that node to where its received signal strength is sufficient for maintaining
communications. Even though a signal may be too weak to be received correctly
outside the transmission range, the signal can still cause interference preventing
nodes from receiving other signals correctly. The interference range is the
maximum distance from a node to where it prohibits other nodes to maintain
communications. Note that in general the transmission and interference range
are not equal. In the following we adopt a graph representation (see e.g.
[GMWO04],[J%03]) in which these ranges will be represented by arcs.

Let V denote the set of nodes, A the set of arcs and let 67 (u) denote the
arcs leaving node u. In a carrier sensing network, nodes within each others
interference range will avoid transmitting at the same time. We will model this
as follows: Let R(v) denote the set of nodes within the interference range of
node v (which includes v itself), that is: if one of the nodes in R(v)\{v} is
transmitting, then v cannot receive other transmissions, nor can v transmit. Let
p(u) denote the fraction of time that a node w is transmitting, then

Y plw) < f) (5.1)

u€R(v)

where f(v) denotes the interference capacity of the node. The interference
capacity denotes the amount of interference a node can handle and still transmit
data itself. For a wired network one could set f(v) = oo, whereas f(v) = 1
ensures that no two nodes within each others interference range transmit at the
same time.

Consider the set I(v) of all arcs leaving v, entering v and leaving the nodes
that are in v’s interference range:

I(v) = {ala € §"(u),u € R(v)}. (5.2)
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Figure 5.1: I(v) and J(a)

It follows that for all the arcs that are within I(v) the interference capacity f(v)
may not be exceeded. In particular, if f(v) = 1, simultaneous transmissions
cannot take place over arcs aj,as € I(v) . For later use, we also introduce here
a dual notion of I(v), viz. J(a) , the set of vertices that experience interference
by a transmission over arc a:

J(a)={veVl|aellv)} (5.3)

Consider node v € V. The interference arc set I(v) is denoted using bold arcs in
Figure 5.1(a) and the set of nodes J(a) affected by arc a by the grey nodes in
Figure 5.1(b).

To each arc a a capacity b(a) > 0 is assigned. In actual networks, due to
e.g. unequal distances among nodes or external disturbances such as noise, the
link capacities may be different. Consider a set of source and destination pairs
(r1,51), oy (Tk, Sk). When the net amount of flow between a source node r; and
a destination node s; is d;, we say that the value of the (r;, s;) flow is d;. For
an allocation, let x;(a) denote the amount of traffic for source destination pair
(rs, 8i) over link a. We will call this the flow of commodity ¢ over arc a. To take
the link capacities into account, we use the following interference constraints:

k
> ”Z((;)) < fv) Woev, (5.4)

i=1 acl(v)

Note that the interference constraints indicate whether a node can receive
correctly and that we assume that collisions are fatal. However, as we impose
condition (5.4) on all nodes, for a transmission over link (u,v) to be successful,
we have that (5.4) must hold for both u and v, so both sender and receiver must
be free of interference. This closely resembles the behaviour of IEEE 802.11
under RTS-CTS, where both sender and receiver must be free of interference,
see e.g. [LT04]. For a successful communication, the sender must be able to
hear the link layer acknowledgement transmitted by the receiver.
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5.3 Multicommodity flow problem with interference con-
straints

The multicommodity flow problem (MCFP) describes the problem of finding
an allocation of flows over links such that all flows are transferred from their
source to their destination, without exceeding the capacity of the links. The
multicommodity flow problem with interference constraints is as follows.

Given a graph G(V, A), with link capacities b : A — R™, interference ca-
pacities f : V — RT and source and destination pairs (r1, s1), ..., (7k, Sx) with
demands di, ...,d; € R, find for each i = 1,....k an (r;,s;) flow z; € lel of
value d;, where z;(a) is the amount of traffic of commodity ¢ sent via arc a,
and so that for each arc a € A and vertex v € V the capacity and interfer-
ence constraints are met. Let 67 (U) = {a = (u,v) € Alu € U,v ¢ U} and
0~ (U) ={a=(u,v) € Alu ¢ U,v € U} so that " (v) and 6~ (v) denote the arcs
leaving and entering node v respectively. Our multicommodity flow problem
with interference constraints has the following feasibility constraints:

k
Zazi(a) <bla), Vac A (5.5)
i=1
Z xi(a) = Z zi(a), YweVv#r,s (5.6)
a€dt(v) a€d— (v)
Z x;(a) — Z xi(a) =d;, Vi (5.7)
a€dt(r;) a€d—(r;)
Z x;(a) — Z xi(a) = —d;, Vi (5.8)
a€dt(s;) a€d(s;)
oy i)
Z Z < fw), YweV (5.9)
_ b(a)
i=1 a€l(v)

Equation (5.5) shows the capacity constraints on the arcs, equation (5.6) assures
flow conservation, i.e. for each node the flow in must equal the flow out, and
(5.7) and (5.8) define that the demands leaving the source and entering the
destination. Note that (5.8) is redundant as it follows from (5.6) and (5.7), but
is included here for completeness. Equation (5.9) is our interference constraint.
Equations (5.5)-(5.8) define the multicommodity flow problem in its standard
form, that is included in our formulation by setting the interference capacities of
all nodes to infinity, that is f(v) = oo for all v € V.

We now formulate a generalized cut condition for the multicommodity flow
problem with interference constraints, so including (5.9). To this end, define
length functions [ : A — RT on all arcs and interference functions w: V — RT
on all nodes.

For a given length function [ : A — R and interference function w : V. — RT,
let dist; ., (7, s;) denote the distance function that incorporates both the length
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and interference, where the distance of a path is built up of the distance q; ,(a)
of the arcs in the path as follows

w(t)

aw(a) =la)+ Y o) (5.10)
teJ(a)
Qw(P) = aru(a) (5.11)
a€P
dist; (1, s) = Pm}ign q,w(P). (5.12)

T,

with J(a) as in (5.3) and P, ,; the set of all paths from r to s.

Theorem 5.1. The multicommodity flow problem with interference constraints
is feasible, if and only if for all length functions | : A — RT and node interference
functions w : V — R it holds that

k

Z didisty (s, 85) < Z l(a)b(a) + Z w(v) f(v). (5.13)

i=1 a€cA veV

Proof. Given a directed graph G(V, A), arc capacities b : A — Q7, node inter-
ference constraints f : V — QT, disjoint pairs (ry, s1)...(rk, sx) and demands
dy...d, € QT, the multicommodity flow problem with interference constraints
can be written as an LP problem as follows:

Find z = (z1,...,x;) where z; : A — Q% denotes the values of flow r; — s;
assigned to an arc a s.t.

Az < b (5.14)
Cz = d (5.15)
Ex < f (5.16)

for A =m x mk, C =nk x mk, E =n x mk where m = |A| and n = |V|, with
b =m x 1 denoting the capacity constraints, d = (dy, ...,dr) = nk x 1 denoting
the flow constraints and f = n x 1 denoting the interference constraints with:

A = [Ln Iy L] (5.17)
M 0 0

c = |0 0 (5.18)
0 0 M

where M is an n X m matrix defined by

1 when a leaves v
My, = —1 when a enters v (5.19)
0 otherwise
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d; when vis r;

d;(v) = —d; when v is s; (5.20)
0 otherwise
E = 155,..,95] (5.21)
with S an n X m matrix defined by
—~ when a € I(v)
= o ¥ . 22
Sva { 0 otherwise (5:22)

According to Farkas’ Lemma there exists a solution x > 0 satisfying (5.5)-(5.9)
if and only if for all vectors y,w > 0 and z, with y € R™, w = (wq, ..., w,) € R®
and z = (21, ..., 21,) € nR*" where z; : V — R" :

yA+zC+wEZO:>yb—|—z&\+waO (5.23)

From the definitions of A,C, E we find

yA = [y (5.24)
2C = [s1M, 2o M, ..., zi, M] (5.25)
wE = [wS,ws,...,wSs], (5.26)
where z; M is given by
zM = Z z2i(V)My.o = [zi(u1) — 2i(V1), oy 2i (Um) — 2i (V)] (5.27)

veV

with (uj,v;) denoting the starting and ending node of an arc a;, and where the
element of wS corresponding to arc a is given by

(wS)e = > w(®)Spa= > 1;’((;’)). (5.28)
eV alé?/v)

As a consequence, (5.23) reads for all y > 0,w > 0 and z; € R™

zi(v) — zi(u) < yla) + Z Z)(S)), Vi=1.kVa=(u,v) e A=  (5.29)
teJ(a)

k

S dilz(s:) — 7)) < 3 yla)bla) + 3 w(o) f(v).

i=1 acA veV

We now show that there exists a feasible solution x > 0 if and only if for all
length functions ! : @ — Q% and node interference functions w : V. — Rt it
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holds that

k

Z d;disty ,(7;, $;) Z l(a)b(a) + Z w(v) f(v). (5.30)

i=1 a€A veV

Suppose there is a feasible solution, then (5.30) holds, now choose I(a) = y(a) as
the length function, and (for all ¢) z;(s) — z;(r) as the distance between r and s,
yielding

k

> didisty o (ri, i) = Zd (zi(s5) — zi(r3)) (5.31)
i=1
Z a)b(a) + Y w(v)f(v) (5.32)

acA veV

IN

Next suppose that (5.30) holds, we will now show that also (5.30) holds. Let the
minimizing path use the arcs (a1, ..., ap), then
k

Z l(a)b(a) + Z w(v) f(v) Z d;disty ., (74, $;) (5.33)

acA veV i=1

k P
= ZdiZQI,w(aj)
P2 w(t)
SO E
i=1  j=1

teJ(a]‘)

v

Let z; : V. — R be so that z(v) — zi(u) < y(a) + Xy Z’( t)’ which in
combination with I(a) = y(a) gives that

k p P
Zdi(Zl(a]‘) + Z ;1()5;))) > Zd’ZZ’ — z;i(uy) (5.34)

teJ(aj)

where a; = (uj,v;) and u; = r;, v; = uj4+1 and v, = s; so that the right hand
side of the expression simplifies to

k P k
Dodiyzi(vy) = ziluy) = Y dilzi(si) — zi(r)) (5.35)
i1 =1 ‘

which taken together with (5.33) gives

k
> l(a)b(a) + > w(v)f( Z (zi(s:) — zi(r3)) (5.36)

a€A veV

completing the proof. O
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The interference function w(v) is a dual variable that can be interpreted as
the price paid for the interference capacity of a node v, which gives a weighted
cut of the nodes (as the length function /(@) can be interpreted as the price paid
for the capacity of an arc a, which also gives a weighted cut of the arcs). The
distance of an arc is the price paid for the capacity of that arc, together with the
price paid for the interference capacity used by that arc. Note that our theorem is
an extension of the cut condition for the multicommodity flow problem (without
interference). This can be seen as follows. Setting all interference capacities to a
very large value the condition of Theorem 5.1 reduces to

k
> didisty(ri,5) < Y (a)b(a) (5.37)

acA

as the inequality only makes sense for w = 0. The cut condition by setting a
length of 1 to all arcs in a cut and zero otherwise for the multicommodity flow

problem states that
> oba)= D di (5.38)

a€st(U) ri€U
SiiU

This cut condition is necessary for the existence of a solution, but not sufficient.
The max-flow min-cut theorem states that for the specific case that k = 1, for
every network, there exists a flow (max-flow) for which the amount is equal to
the total capacity of the smallest cut in the network (min-cut), see Ford and
Fulkerson [FF56].

A direct consequence of Theorem 5.1 is that when there is only one commodity,
a bound on the throughput d of the network can be determined by

Laeat@)b(a) + 3 ey w(v)f(v)

disty (7, s)

d— (5.39)

When there are multiple commodities with demands d;, ...,dx, Theorem 5.1
can determine the maximal value 0 < A < 1 such that for all commodities a
throughput of Ad; can be achieved using

2aeal@)b(@) + 3 yey w(v) f(v)

A= -
Zi:l dz-clistl,w(ri, Si)

(5.40)

5.4 Examples

We can consider the network as depicted in Figure 5.2 as nodes in a network,
connected by links using 802.11b with a maximum transmission rate of 11 Mbit /s,
but with link 3 having a bad connection, due to distance or a disturbance, only
reaching the minimal transmission rate of 5.5 Mbit/s.

We want to transmit data from node 1 to node 5. If we solve for the best
solution without considering interference, it is clear that we can send at a speed
of 5.5 Mbit/s, as this is limited by the slowest link. The interference constraints



74 5. Upper bounds on multi-hop multi-channel wireless network performance

b=11 b=11 ° b=5.5 ° b=11 o

Figure 5.2: Series of nodes with capacity constraints

for the network with identical slowest link capacities would imply that all links
can be used one third of the time, leading to an overall throughput of 1.83
Mbit/s when considering the constraints separately.

For the example of Figure 5.2 we have the interference constraints

z(1)  x(2) x(3) <
11 11 5.5 T
x(2)  x(@3)  z(4)
11 5.5 11—

1 (5.41)

1. (5.42)

From a direct solution of (5.5)-(5.9) it follows that z(a) = 2.75 is a feasible
solution, higher than the earlier claimed 1.83 Mbit/s. Using Theorem 5.1, we
find that

d (L) +1(2)+1(3) +1(4) +

2w(1) + 4w(2) + 4w(3) + 3w(4) + w(5)
11

110(1) + 111(2) + 5.51(3) + 111(4) +

w(l) +w(2) + w(3) + w(4) +w(5)

) < (5.43)

which gives by taking the cut w(3) = 1 and all other values (including I(7)) equal
to zero

4
—d; <1. 5.44
L < (5.41)

So x(a) = 2.75 is also the optimal solution. The value now found for z(a) can be
interpreted as the fraction of time a link is in use multiplied by the transmission
rate of the link. This shows that links one, two and four get ith of the time,
whereas link three gets % of the time. So when considering four slots, link one,
two and four each get one slot (where link one and four use the same slot!) and
link three the other two. This way we have an accurate representation of the
network incorporating both the capacity and interference constraints, together
with the flow conservation laws.

We now consider the more sophisticated network used in [J*03] as depicted in
Figure 5.3, where all arcs have capacity 1. The upper bound on the throughput
from node 0 to node 8 for this network obtained in [JT03] is 0.667, opposed to
the optimal 0.5, even though their algorithm has discovered all possible cliques
in the conflict graph. Using Theorem 1 and taking the cut wy = wg = 1 or
wy = 1 gives the lowest upper bound that can be achieved, resulting in d; < 0.5,
which is tight. The reason we obtain a different result than in [JT03] is that we
use constraints for all nodes, so that considering for example node 0 we have



5.4. Examples 75

Figure 5.3: A 3x3 grid

that ©(3) + z(9) < 1, as signals transmitted from node 1 and 3 reach node 0. In
the approach of Jain et al., arcs 3 and 9 are not connected in the conflict graph,
as a simultaneous transmission over both arcs is possible.

There is an interesting relation between the approach presented in this chapter
and the results of [JT03]. Jain et al. use a conflict graph to determine lower
and upper bounds for the throughput of the network. The conflict graph C
has vertices corresponding to the arcs in the transmission graph, where there
is an edge between two arcs if and only if the arcs are not allowed to transmit
simultaneously. In our approach, C' has as vertex set A, where there is an
edge between a; and a; (for some 1 < 4,5 < |A]) if and only if v € V s.t.
a;,a; € I(v). Note that I(v) defines a clique in C for each v in V. In fact, our
interference model adopted here resembles the protocol model of [JT03], but it
is ‘stricter’ in the sense that for the same network, we have more interference
constraints (edges in the conflict graph) than [JT03].

In [JT03] it is shown that a vector z; : A — RT (corresponding to a flow
i), can be scheduled without interference conflicts if and only if z; lies in the
stable set polytope of C. (The stable set polytope is the convex hull of the
incidence vectors of the stable sets in the graph). It is well-known that the stable
set polytope is contained in the fractional stable set polytope. (The fractional
stable set polytope is defined by all constraints indicating that the total flow in
a maximal clique in the conflict graph is at most 1.)
In this chapter, instead of first defining the conflict graph C' and then discovering
its cliques, we directly formulate inequalities corresponding to the cliques I(v)
for all v € V. The polytope defined by these inequalities will therefore contain
the fractional stable set polytope. As a result, the upper bound obtained here
cannot always be achieved using a flow allocation without interference conflicts.
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5.5 Extension to multi-channel

We now extend the problem taking into consideration the availability of multiple
radios, so that different channels can be used for simultaneous transmissions that
do not interfere with each other. As such, this part of the chapter presents a
generic model for sustainable network load in a multi-hop multi-channel setting
by again recasting the model in a multicommodity flow problem with interference
constraints and stating a theorem which gives a necessary and sufficient condition
for the feasibility of this multicommodity flow problem. From this theorem an
upper bound is derived for the throughput that can be achieved by the network,
which is illustrated by examples. We indicate how the results can be used as a
basis for a channel allocating algorithm.

One way to overcome the loss in capacity due to interference is the use
of different channels. This use of different channels requires the nodes of the
network to be equipped with multiple radios. To optimize the performance of
the network, an allocation of the channels to these radios needs to be found that
maximizes the throughput, the main performance measure of the network under
consideration. These aspects call for a model that takes into consideration the
interference and the channel allocation in a multi-hop multi-channel wireless
network.

In this part we provide a theorem that can be used to show bounds similar
to those in [GKO00] and the extension to multi-channel networks as presented in
[KV05]. For completeness and autonomicity, we repeat some of the definitions.
We consider a generic wireless network configuration and traffic load specified
via parameters such as nodes, radios, channels, transmission and interference
ranges, as well as the traffic matrix indicating the demands between source and
sink nodes. We make no assumptions about the homogeneity of nodes with
regard to transmission range, interference range or number of radios, nor the
capacity of the links. By introducing interference capacity as a parameter, we
model the impact of interference. The choice of this parameter can in some
degree model different mechanisms such as TDMA and CSMA. In the current
setting, we assume transmissions can follow each other instantly, thus lying close
to TDMA. Less efficient mechanisms or mechanisms with collision avoidance
such as CSMA can be modeled to some extent as well, but this lies outside the
scope of this chapter.

We use the same definitions of the transmission range and interference range
as for the case with one channel, which now holds for each separate channel.
Also, the graph representation with these ranges represented by arcs is adopted.
We let V' denote the set of nodes, A the set of arcs, G the set of available
channels, and K the set of commodities, that is the pairs of nodes that want to
communicate.

In a carrier sensing network, nodes within each others interference range
will avoid transmitting at the same time. We will model this similar to the one
channel case, but include the different channels: Let I9(v) denote the set of arcs
which use will prevent node v from transmitting on the same channel g, that
is: if one of the arcs in I9(v) is in use for a transmission on channel g, then v
cannot receive any other transmissions, nor can v transmit on the same channel.
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Let p9(a) denote the fraction of time that an arc a is transmitting over channel
g, then
Y. M) < fiv) VgeG (5.45)

acl9(v)

where f9(v) denotes the interference capacity of the node for a channel g. The
interference capacity denotes the amount of interference a node can handle and
still transmit data itself. For a wired network one could set f9(v) = oo. The
constraint for f9(v) =1 can be derived from the fact that no two arcs in I9(v)
can be simultaneously used on the same channel for transmission. For later use,
we also introduce here a dual notion of I9(v), viz. J9(a), the set of vertices that
experience interference by a transmission over arc a using channel g:

J9(a) ={veVl]aeI(v)}. (5.46)

This situation is equal to the situation depicted in Figure 5.1.

In literature, different interference models are used, e.g. the protocol model
in [GK00] where a transmission from node u to node v is successful if and only if
|w —wv| > (14 A)ju —v| for any other node w transmitting on the same channel
at the same time, where the quantity A models a guard zone preventing other
nodes from transmitting at the same time over the same channel and |u — v|
is the distance between nodes u and v. So all arcs starting within a distance
of (14 A)ju — v| around node v are included in I9(v), whereas in J9(a) all
nodes within distance (1 4+ A)|u — v| of u are included. In [GK00] a node can
use an arbitrary transmission power, thus influencing the interference range, we
however assume that the set I9(v) only depends on v and not on the node it is
receiving from, which is the case when all nodes transmit at the same power. As
then there is no dependence upon the distance between the nodes, this setting is
easily modelled.

To each arc a a capacity b?(a) > 0 is assigned for all channels g € G, which
can only be used if both endnodes have radios set to this channel. In actual
networks, due to e.g. unequal distances among nodes or external disturbances
such as noise, the link capacities may be different.

Consider a set of source and destination pairs (r,s1), ..., ("k, Sx). When
the net amount of flow between a source node r, and a destination node sj, is
dy, we say that the value of the (ry, si) flow is dj. For an allocation, let 2 (a)
denote the amount of traffic for source-destination pair (ry, si) over link a, using
channel g. We will call this the flow of commodity k over arc a using channel g.
To take both the link capacities and interference capacities into account, we use
the following interference constraints:

> 2 i L fIv) Vg, VveV, (5.47)

keK acl(v) bg(a)

Note that the interference constraints indicate whether a node can receive
correctly and that we assume that collisions are fatal. However, as we impose
condition (5.47) on all nodes, for a transmission over arc a = (u,v) to be



78 5. Upper bounds on multi-hop multi-channel wireless network performance

successful, we have that (5.47) must hold for both u and v, so both sender and
receiver must be free of interference. This closely resembles the behaviour of
IEEE 802.11 under RTS-CTS, where both sender and receiver must be free of
interference. For a successful communication, the sender must be able to hear
the link layer acknowledgement transmitted by the receiver.

5.6 Multi-channel multicommodity flow problem with in-
terference constraints

In the first part of the chapter, we assumed that only one channel is available so
that all transmissions interfere with each other (within the interference range).
Here we assume there are multiple channels available over which transmissions
can take place and that these channels are such that no interference occurs
between transmissions on different channels. All nodes have a number of radios
that can each be set to a different channel and can all be active at the same time,
either sending or receiving a transmission. The constraints for the feasibility of a
flow through a network are now extended taking into account the use of multiple
channels. To this end, we introduce the variables 19(v) € {0, 1} to denote whether
a node has one of its radios set to channel g. Likewise, we define 19(a) € {0, 1}
to denote whether both endpoints of an arc have radios set to channel g. The
flow variables are given by zf(a) > 0, the amount of flow for commodity &
sent over link a using channel g. Each link ¢ has a capacity b9(a) when using
channel g. Adopting the notation of [KNO05], a node v has x(v) radios available
and has an interference capacity f9(v) for channel g. The problem of finding
an allocation z{(a) satisfying demand dj, then has the following constraints for
feasibility (using §(v) for all arcs connected to node v, and 6T (v) and 6~ (v) for
the out- and ingoing arcs respectively)

D 19(w) <k(v)  YweV (5.48)
geG
Z 19(a) < 6(v)19(v) YveV,Vge G (5.49)
a€d(v)
> af(a) <¥(a)1%a) VYac ANVgeG (5.50)
keK
Z( Z zi(a) — Z z3(a)) =0 Yo ¢ {ry,sp},Vke K (5.51)
9€G acdt(v) a€d— (v)
Z( Z zf(a) — Z zi(a)) = dy Vk e K (5.52)
9€G a€dt(ry) a€d—(ry)
NS aflta)— D afle)=-d VkEK (5.53)
9g€G a€cdt(sy) a€d—(sk)

> X 3

keEK a€ld(v)

<fiv) VgeGVweV (5.54)
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Constraints (5.48) and (5.49) respectively assure that a node does not exceed
the number of radios it has available and that an arc can only use a certain
channel if both endnodes have a radio set to this channel. Constraint (5.50) is
the capacity constraint, which also incorporates the constraint that if a channel
is not used for a certain arc, there will be no flow on this channel over the
arc. Constraints (5.51)-(5.53) are the flow conservation constraints and make
sure the demanded flow leaves the source nodes and enters the sink nodes for
all commodities. Note that flows entering an intermediate node over a certain
channel may leave this node over a different channel, hence the summation
over all channels. Finally, (5.54) gives the interference constraints, where all
channels are considered independently as they do not interfere with each other.
Important to note is that we assume that all different radios at the same node
can transmit at the same time (as long as there are enough links available for
these channels), so multiple transmissions from the same node do not interfere if
the used channels are different. This approach can be used as it is our intention
to derive an upper bound on the network throughput.

The problem stated is a mixed integer programming problem and is in general
hard to solve. In this problem, we need to assign channels to the radios of all
the nodes and find a flow value for all the arcs. When the channel allocation is
given, the problem reduces considerably in complexity, as it becomes a linear
programming problem. In the remainder of this chapter, we assume that the
allocation of channels to radios for all nodes is such that constraints (5.48) and
(5.49) hold, so that the remaining constraints are (5.50)-(5.54) where the only
unknown variables are the z(a)’s.

To formulate a generalized cut condition as in [FF56], we define length
functions y = [y', ..., %] with 9 : A — R* on all arcs for each separate channel
and interference functions w = [w!,...,w%] with w9 : V. — RT on all vertices.
Let dist, ., (7, s) be the distance between two nodes r and s, taking into account

both the length and interference functions, defined as

Qywla) = Igréig(yg(a) + Z 1:5((;}))) (5.55)
veJI(a)
Qy,w(P) = Z y,w(a) (5.56)
acP
dist, ., (r,s) = Prg}i)r; Qy,w(P) (5.57)

The distance of a path is built up of the distances of it’s arcs, defining the total
distance between two nodes r and s by the path with the smallest distance of
all paths P, s between r and s. We now arrive at our main theorem:

Theorem 5.2. The MCFP problem with interference constraints and given
channel allocation has a solution iff for all length functions y9 : A — RT and
node interference functions w9 : V. — RT it holds that

Z dkdist%w(rk, Sk) < (558)
keK
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>_(Q_v(@b(@1’(a) + 3, w(v)

geG acA veV

Proof. We define the vector x as

T = [x%(al)v ~"7xi(am)’$%(al)a ~~~ax?(a1)a ax?((am)} (559)

where m = |A|. According to Farkas’ Lemma (c.f. [Sch03]) there exists a solution
x > 0 satisfying (5.50)-(5.54) iff for all vectors y € RE™ y >0, w € RE™ w >0
and z € RE™ it holds that:

(@) + o) — )+ S L)

veJI(a) b9 (a)

VgeG a€A Vke K=

acAgeG keK

+ZZw9(v)f9(v) > 0.

geGveV

>0 (5.60)

where we use that a = (p,q). Assume that (5.58) holds, we will now show that
there exists a solution to the MCFP. Suppose that a path of minimal distance
for commodity k uses the arcs (a},...,al’), then

SO v )+ ) wi(v (5.61)

geG acA veEV
P .
> Y 0> dnla])

keK  j=1
w9 (v
S I I IICIRED Py
kek =17 veJa(al) (a3.)

Let the first part of the condition in Farkas’ Lemma hold, we have to show that
also the right hand side of the implication in (5.60) holds. As the first part holds

(by assumption) we have that zx(h) — z(9) < y9(a) + X, e jo(a) % for all
g€ G,a€ A, and k € K. This implies that for any arc a = (p, q)

w(v)

b9 (a)

2(q) — 21(p) < min(yf(a) + Y ) (5.62)

geG
veJI(a)

so then

3 d me + Y ;”g(”.))) (5.63)

kek =17 vEJ9(a})
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P
> > > dila(a)) — w(p)

kEK j=1

= Z di (zk(sk) — zi(rk))

keK

taking together (5.61) and (5.63) gives

SO v (@ (a)19(a) + Y wi(v)f9(v)) (5.64)
geG acA veV

> Z di (2 (sk) — 21(Tk))
ke

showing the right hand side of Farkas’ Lemma holds whenever the left hand side
holds, proving the existence of a solution.

We have shown that if (5.58) holds, a solution exists, we now prove the reverse.
Assuming that a solution exists and so (5.60) holds, we show that (5.58) holds.
Hence, we have that if

() + zk(p) — 2r(e) + Y wI(v) >0, (5.65)

veJI(a) bg(a)

Vge G, ac A, Vk € K,

then also
> dilzk(sk) — 2i(re)) (5.66)
keK
< YO v @b (a)1?(a) + > w(v)fI(v))
geG acA veV

Now we define z;(v) := disty (7%, v), so that the right hand side of (5.60)
reduces to

> di(disty (7, sx) — disty (g, 7)) (5.67)
keK
= Z dkdist%w(Tk, Sk>
keK
< D O v (a)9(a) + > w(v) f4(v))
geG a€A veV

which shows that (5.58) holds, if the left hand side of (5.60) is satisfied. To show
that this is the case, consider the distance between two nodes (p, q), which are
connected by the arc a. We then have that

disty, . (75, p) + qyw(a) > disty . (rx, q) (5.68)

as the distance is defined by the minimizing path which for node r; does not



82 5. Upper bounds on multi-hop multi-channel wireless network performance

necessarily lead through node ¢. It now follows that
Qyw(a) > disty (1, q) — disty ., (1%, p) (5.69)
= 2(q) — z(p)
Using the definition of g, .,(a) this leads to

w(v)

b9(a)

min(y’(a) + ) ) = 2k(q) — 2k (p)- (5.70)

geG
veJI(a)

As the inequality holds for the minimum over g, it will hold for any g € G, so
we have shown that

v+ X > a) - o) 5.7
veJI(a)

Vg € G,a€cA VkeK,
being the left hand side of (5.60), holds, thus completing the proof. O

Any choice for the length function y and interference function w, which
together we call a cut, defines a bound on the possible throughput. In absence
of interference constraints, for a single commodity this theorem states that there
exists a flow (max-flow) for which the amount is equal to the total capacity of
the smallest cut in the network (min-cut), c.f. [FF56],[FF62].

5.7 Examples

Consider again the simple situation where there is one path from source node
1 to destination node 5 as depicted in Figure 5.2 and each node, irrespective
which channel is in use, can hear transmissions from its direct neighbours so that
I9(v) = {ala € T (u),u € N(v)}, where N(v) is the set of all neighbours of v.
We assume that each node has two radios, there are three available channels and
b9(a) =1 for all arcs and channels. At first, we set all radios to use channel one
as if its a single channel problem. An achievable throughput for this setting is
dy = 3, using each arc for a third of the time, that is z}(a) = % for all arcs. The
constraint given by the theorem (c.f. [CdGBO07]) becomes (ignoring the other
channels)

d1(y1 + Yo + Y3 + Y4 + 2wy —|—3w2—|—3w3—|—2w4—|—w5) (572)
< 14 yYy2+ys+ys+wp +we +ws 4wy + ws

which has as optimal cut wy =1 or ws = 1 and all other values set to 0, leading
to an upper bound for the throughput d; of % This proves immediately that
this is also the optimal throughput that can be achieved by this network. To try
to increase the throughput, we choose to set link 2 to channel two, meaning that
radios at node 2 and 3 are set to channel 2, as it interferes with both node 2 and
3 (but we could have chosen link 3 as well). This seems an obvious choice as the
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cut showed that this is where the 'bottleneck’ is situated. For the new situation,
a possible allocation is z{(a1) = 2%(az2) = 2{(az) = x{(as) = 3 obtaining a
throughput of d; = % The constraint given by the theorem becomes

1 1 1 1 1 1 1
. Y1 + wy +ws . Yo + wy + wy + ws
1 1 1 1 1 1 1 1
. Y3 +wy + w3 +wy ; Yz + w3 +wy + ws
*mm{y%w%wng R (B SR Y Iy
<yl +ys + 5+ 3+ s+ wi +ws
+w§+wi+wé+wf+w§+w§+wi+w§

which has as an optimal cut wi = wi = y? = y3 = 1, y2 = 2 and all other
values 0, giving an upper bound of dy < %, again proving this to be the optimal
throughput. Now we set link 3 to channel 3 (as this appears to be the bottleneck
point) by changing the radios at node 3 and 4 from channel 1 to 3. An obvious
allocation now is

z1(a1) = 23 (a2) = 3 (a3) = wi(as) = 1 (5.74)

giving a throughput of di = 1. The constraint given by the theorem (now
including all possible channels) is

yi +wp +wy Yz +wp +wy +wy
di(min{ v} +w? + w3 +min{ Y3+ w? + wi + w} (5.75)
vy + wi + w3 ys + wi 4+ w3 + wj
Y3 +wy + wy +wy yi +wy +wp +wy
+min{ y3 + w3 +wi +wi +min yI+ w3 +wi+w? )
Y3 + w3 + wi + wi Y3 + wi + wi + wi

<yl +u3+ 5 +yi +wi +wy +wi +wi + w}
2,92 o2 2 2 3 3 3 3 3
twi +w; + w3 +wy + ws + Wy +wy +ws + wy + W

with optimal cut y¢ = 1 for all arcs and channels and wj = 0 for all nodes
and channels, giving an upper bound and thus, as this is also an achievable
throughput, optimal throughput of d; = 1. It turns out that for this setting
with three channels and two radios, no higher throughput can be obtained, so
the assignment of channel 1 to link 1 and 4, channel 2 to link 2 and channel 3
to link 3, is (one of) the optimal channel allocations. Note however that we do
assume that the network transmits over link 1 and 4 over the same channel at
the exact same time. Whether a protocol can assure this to be the case in a real
network remains open, but the found value anyway holds as an upper bound for
the achievable throughput.

Another example, based on the approach of Gupta and Kumar [GK00] for
which they obtain their well known upper bound on the capacity of wireless
networks, is a network consisting of n nodes that all transmit at a rate A to
a neighbouring node. In our model, when considering only one channel, we
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hence set the number of commodities K equal to n, the number of nodes, and
all capacities b(a) to one. The demand for each commodity dy equals A and
the source-destination pairs are neighbouring nodes. First consider the one
dimensional case with one channel where nodes are distributed over a line. For
any arc a and a fixed transmission range r, the set J(a) can be seen as all the
nodes within a distance ® = (1 + A)r of the startnode vt of the arc, which is
an interval around the node. Now we can use the following approach to find an
upper bound on the throughput: Divide the line of length L into equal parts of
length ®. In each part, select one node v (when a node is available) for which
the value w(v) is set to =, whereas we keep the value of all y(a) at 0. As any
other node within the same part has a distance less than ® to a chosen node, it
is always within the interference range of the chosen node and corresponding
arc. For each commodity, which only uses one arc a as all transmissions are to
a neighbour, we thus have chosen at least one node v in J(a) to be set to X,
showing that the left hand side of (5.58) is larger than A. As the number of
nodes for which the value of w(v) has been set to % is smaller than or equal to
é, the theorem states that
L

A< o (5.76)
giving an upper bound on the possible throughput per node A\. However, in
the work of Gupta and Kumar, it is not just the rate A\ that is optimized, but
the distance covered is taken into account as well. As the average distance L
between nodes is given by %, and each node transmits at rate A, we have for the
total throughput of the network T' = AnL that

L2
T< o (5.77)

In the two dimensional case, again the interference set J(a) can be seen as
all the nodes within a distance ® of the startnode v™ of the arc, being a circle
around the node. We assume that the total area A under consideration is a
square with side v/A. We divide this area into small squares with side %, and
when available, choose a node in each of these squares for which we set the value
of w(v) to % Again it holds that any other node also contained in a square is
covered by the chosen node, as the maximum distance between two nodes in a
square is ®, so within interference range. The number of chosen nodes is limited
by i—‘;‘, and taking the average distance over which a transmission takes place

into account we get from the theorem that

2A -
T< @L. (5.78)
Comparing to the setting used in Gupta and Kumar, consider the situation

where all nodes are ordered in a grid, with equal distances between all nodes. In

this case, the distance travelled by a transmission is equal to L = ‘/—\/% and the

radius of the circles around the sending nodes is given by ® = (1 + A)L, as in
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[GKO00] this depends on the transmission distance. We hence obtain

T < 24 EZZ\/Z\/E

~ ((1+A)L)? (1+A)2 (5.79)

showing, apart from a constant value, the same results as obtained in Gupta
and Kumar. For multiple channels, it is shown that when each node has as
many radios as there are channels, the same bound holds. This can easily be
seen as each channel can be considered separately with a capacity that is éth of
the total capacity and then adding the throughput for all G channels together.
Results in [KV05] show similar bounds for multichannel networks, stating that
when there are less radios than channels available, there is a degradation in the
capacity of the network, depending on the ratio of channels versus radios. The
bound presented using our model for the single channel case can be obtained
for each channel g separately, choosing in each interval/square one node to set
its value w¥(v) to L. As the nodes are now divided into groups by the channels
they have their radios set to, it more often will occur that an interval/square
does not contain a node set to the channel under consideration. This will lower
the bound, but so far no exact results have been obtained as were found in
[KV05]. Practical application of channel allocation settings are presented in
i.e.[L101],[Ste07] using a simulation program, showing similar results as obtained
in the analytical papers of [GKO00] and [KVO05].

5.8 Conclusion

In this chapter we consider multi-hop multi-channel wireless networks, for which
we have stated a theorem giving a necessary and sufficient condition for the
existence of a solution for the multicommodity flow problem with interference
constraints, given a required throughput between nodes of the network. The use
of the theorem is illustrated by examples and similar bounds are obtained as
presented in the well known paper by Gupta and Kumar. The applicability of
this work for wireless multi-hop multi-channel networks can for example be seen
when designing a network that must be able to support a certain throughput for
each user. Also, the theorem provides insight in the bottleneck in the network,
the location where the interference suffered is at its limit or the capacity of the
link is fully used. This information gives a basis for developing an algorithm
that allocates the channels to the available radios at the nodes. Starting with
a network where all radios are set to the same channel, the bottleneck can be
determined using the theorem, and the channel allocation can be adjusted at
this location. Due to the general nature of the theorem, any type of network
with heterogeneous users and protocols can be modelled.






CHAPTER 6

A flow level model for wireless multihop
ad hoc network throughput

A flow level model for multihop wireless ad hoc networks is presented in this
chapter. Considering different scenarios, a multihop WLAN and a path with a
TCP-like flow control protocol, we investigate how capacity is allocated between
the users of a network. This leads us to two different Processor Sharing models,
BPS and DPS, which are discussed and compared. Simulation is used to validate
the proposed models. The flow level view leads to new insights into the impact
of interference on the capacity of ad hoc networks, where we show that the
different queueing models provide good approximations for the troughput that a
network can achieve.

6.1 Introduction

The multihop property and the interference this creates in wireless ad hoc
networks presents new challenges to make this type of network effective. A
commonly used MAC protocol to deal with these challenges is the IEEE 802.11
MAC protocol, which uses Carrier Sense Multiple Access with Collision Avoidance
(CSMA/CA).

The specific characteristics of multihop ad hoc networks calls for new models
to analyze the performance. In this chapter important performance measures,
like the system throughput and the transfer time of flows, are investigated. The
allocation of the capacity over the different network nodes plays an important
role in this.

We extend the successful approach for analyzing flow transfer times in (single
hop) WLANSs as presented in [LT03] to multihop networks. Two different
network scenarios are considered. In the first scenario flows may have different
path lengths (in terms of number of hops), but follow disjunct routes. The
other scenario deals with a path, which we denote as a serial network, in which
multiple flows may travel through a particular node. Considering the capacity
allocation in both scenarios, we propose two processor-sharing (PS) models for
describing the behaviour of the network at flow level. The first model, called
Batch Processor Sharing (BPS), deals with a queueing system where batches
of jobs arrive. All jobs in the BPS model are served at the same time and are
given an equal share of the capacity of the server. In the second model, called
Discriminatory Processor Sharing (DPS), jobs arrive one by one and all jobs
in the queue are served at the same time, but some jobs get a bigger share of
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the capacity of the server than others. The batch sizes in the BPS model and
the capacity shares in the DPS model reflect the different path lengths of the
flows in the ad hoc network scenarios. The modeling results are compared with
results obtained by simulation.

The rest of this chapter is constructed as follows. In the remaining part of
this section, we will give a review of related literature on the subject. Next, in
Section 2 the IEEE 802.11 protocol is described. Section 3 presents the two main
ad hoc network scenarios under consideration, and investigates the distribution
of the capacity over the users in the network. The resulting processor-sharing
models for analyzing flow transfer times are shown in Section 4. These models
are validated by simulation in Section 5. Finally, Section 6 summarizes and
concludes the chapter.

6.1.1 Literature review

Many papers have been devoted to the capacity and throughput of wireless
(multihop) networks. Most of them use results from simulation to describe the
characteristics of ad hoc networks, whereas analytical studies are scarce. The
impact of MAC layer interference on the capacity of ad hoc networks as addressed
in this chapter has been studied in several settings. For instance [LT01] uses
simulation to show that capacity can be very low in ad hoc networks. Scaling
appears only to be possible if the distance between the source and destination
remains small as the network grows. An analytical approach for determining
the capacity is presented in [GK00], where it is shown how the throughput
depends on the number of nodes in the network (when this number becomes
large). A paper that focuses more on the multihop property of ad hoc networks
is [GV02], which gives asymptotic results for a wireless network under a relay
traffic pattern, whereas [JS03] considers mesh networks, slightly different from
ad hoc networks. Both focus on the throughput of a chain of users processing
flows in one direction over multiple hops. A bottleneck is found which determines
the throughput that the network can achieve.

In the work of Litjens et al. [LT03], an integrated packet/flow level approach is
used to analyze flow transfer times in a single hop WLAN scenario. Considering,
the system throughput at the packet level, and taking the system dynamics at
flow level into account, leads to a processor-sharing (PS) type of queueing model
for the flow level. This PS model captures the equal allocation of transmission
capacity among the active flows. Using known results for this PS model an
approximation for the mean flow transfer time is proposed. Simulation results
show that the approximation is very accurate.

Modeling bandwidth sharing in fixed communication networks by PS systems
has been done by amongst others Bonald and Nunez-Queija. In the papers
of Bonald [BP02],[BP03], the main notion is that modeling the network with
processor-sharing can lead to balanced fairness, which means that each user in
the network receives an equal share of the available network resources. This type
of PS network is analyzed by considering the bottleneck node and distributing
the capacity there first. All nodes servicing the same flow adjust their capacity
allocation accordingly, avoiding congestion. The capacity allocated to each flow
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is determined analytically. In his dissertation, Nunez-Queija discusses many
different PS models for integrated services networks [NnQO0].

Batch arrival processor-sharing models have been investigated extensively in
the past. It was Kleinrock who started with this approach. In his paper with
Muntz and Rodemich [KMR71] a start was made in giving a complete analytical
approach to determine the throughput of a PS network. A discriminatory
processor-sharing model has also been used for modeling networks. Kleinrock
[K1e67] already started with this in 1967 which created much interest in this type
of network. In 1980, Fayolle, Mitrani and Tasnogorodski [FMI80] built on the work
of Kleinrock. New results have been obtained in [CBvB05a],[CBvB05b] where
the queue length distribution and sojourn times for PS models are determined.
The results presented hold for general service requirements and are used to
analyze WLANs with Quality of Service support [C105].

6.2 IEEE 802.11 MAC Layer Protocol

As signals transmitted by a user will not only be heard by the receiver, but
also by all other nodes in the vicinity of the sender, this interference limits the
capacity of the network. When multiple signals reach a node at the same time,
a collision occurs and the signals cannot be received correctly and packets are
lost. To reduce the number of transmissions that fail and the impact this has
on the throughput of the network, IEEE 802.11 uses Carrier Sense Multiple
Access with Collision Avoidance (CSMA/CA). IEEE 802.11 can function in
infrastructure or ad hoc mode, depending if an access point is being used. This
has no implications on the MAC layer.

When a node wants to transmit, it will first listen to find out if other nodes
are already transmitting: carrier sensing. If other nodes are transmitting,
the node will not transmit. When the network becomes available, the node
waits for a certain time (DIFS) and if the network is then still free, a timer is
started to avoid collisions. This timer is paused as soon as the node senses a
transmission from another node. When the network becomes free again and stays
free for a DIFS, the timer continues. When the timer ends, transmission starts.
This approach does not make it completely sure that collisions will not occur.
Therefore, instead of sending the packets of the data immediately, a node first
transmits a request-to-send (RTS). The receiver replies to this RTS by sending
a clear-to-send message (CTS). The time between these transmissions (SIFS)
is smaller than DIFS. After receiving the CTS, transmission of the data starts.
This approach is used so that in case of a collision, only the RTS is lost, and not
a much bigger packet containing data. This way the impact of a collision on the
throughput of the network is reduced. When a collision occurs, a timer starts
again but is set to a time taken from a window that is twice as big as before.
When the transmission was succesful, the procedure repeats as long as there still
are packets that need to be transmitted. The operation of CSMA /CA is shown
in Figure 6.1.

Under CSMA/CA, all nodes that want to transmit compete for network
resources. In the multihop wireless ad hoc network we are considering, packets
from a multihop flow are present at multiple nodes. Such a flow is competing for
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Figure 6.1: CSMA/CA with RTS-CTS

the network resources through multiple nodes at the same time. Hence even if
there is only one multihop flow in the network, there is interference between the
different nodes that are involved in the transmission. All flows in the network
will have to share the MAC layer capacity, and the capacity allocation over these
flows will influence the throughput of the network.

6.3 Scenarios

In this section, first, the analysis of the single hop WLAN considered in [L 03]
is shortly reviewed, after which two multihop scenarios are described. For the
analysis of these scenarios we use a similar approach as used for the WLAN in
[LT03], extending the approach to inlude the multihop aspects involved in these
scenarios.

6.3.1 Single hop WLAN scenario

In [LY03] a single hop WLAN is considered, in which new flow transmissions
are initiated according to a Poisson process. Flow sizes are random variables
with general distributions. The network operates under the IEEE 802.11 MAC
protocol as described in Section 6.2. First an analysis is made on the packet level
of the aggregate system throughput that can be reached in a WLAN with a fixed
number of persistent flows. Using Markov-chain analysis, the probability that a
node is transmitting is computed, as well as the probability that a transmission
fails. From this, the aggregate system throughput is derived, including the
influence of the headers and control packets. Simulation validates the result that
the average system throughput is about 87% of the total capacity on the MAC
layer, and slightly dependent on the number of present flows. Next, using the
results from the first step, the transfer time is analyzed, taking the flow level
dynamics into account. The assumption is made that the service rate per flow
is found by giving each flow an equal share of the aggregate data throughput
computed for the persistent number of flows in the network. This leads to
a processor-sharing (PS) model with state dependent service rates which is
analytically tractable. Simulation shows that the results attained through this
approach are very accurate.
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Figure 6.2: A multihop ad hoc scenario

6.3.2 Multihop Ad Hoc scenario

The model presented in [LT03] only considers single hop flows. This model is
expanded by also allowing multihop flows. Where at first a flow was completed if
the packets were sent from a node to the access point or vice versa, now there is
the possibility that all packets are forwarded to another node before completing
the transfer.

A transmission of any of the nodes in the cell can be heard by all other nodes
in the cell. This means that no two transmissions can take place at the same
time, since the data will be lost due to a collision. The situation in Figure 6.2
is a WLAN cell in ad hoc mode with connections of only one or two hops. A
second hop is then used to connect to a user outside the cell. Whenever a node
is relaying a flow, this node will only compete for the network resources if there
are packets available that need to be sent. If at one point there are no packets
available, the node will remain idle until new packets arrive that need to be
forwarded.

Following the approach presented in [LT03], we first determine the aggregate
system throughput of the network. The number of persistent users is taken to
be the number of nodes active in sending the flows. This means that a flow over
two hops, which needs two nodes, is counted as two users. However, there might
be moments that the relaying nodes are not competing for the network since
there are no packets available. This differs from the single hop WLAN situation
described above where each node always has packets that need to be transmitted.
Through simulation the aggregate system throughput of the multihop network
is determined.

To take the flow level dynamics into account, the capacity allocation needs
to be known. As in the WLAN model, we assume that every node receives
an equal share of the aggregate system throughput. In general this is the case
since all nodes behave according to the IEEE 802.11 protocol. For the flow level
dynamics, we assume that flows are big enough to have packets available at
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all nodes they are going through, for most of the time. Then these nodes are
continuously competing for the network and all nodes get an equal share of the
capacity. A flow over two hops will get a share of the capacity for both the
nodes it uses. Hence the capacity allocated to a flow over two hops will be twice
the amount of the capacity allocated to a flow over one hop, but note that each
packet has to be sent twice. Just as for the WLAN model, this approach leads
to a processor-sharing type of model which will be discussed in Section 6.4.

6.3.3 Multihop serial network scenario

A different scenario is where nodes can serve more than one flow at the same
time. Assuming that a flow will at most need two hops to reach its destination,
such a network can be modeled as a network consisting of three nodes, with two
connecting links. This network is represented by the model shown in Figure 6.3.

The flows through the wireless medium (the links), represented by the arrows
through the tubes, will compete for the channel. There are three types of flows.
Flows of type 0 will go over both links (as depicted by the lower arrow going
through both tubes); flows of type 1 (2) will only use link 1 (2) (the upper left
(right) arrow going through the left (right) tube). All flows consist of packets
which first arrive in a buffer before being sent over the wireless medium. Because
of interference, the links have to share the MAC layer resources.

Assume that the arrival process of the flows is according to a Poisson distri-
bution and the flows consist of many packets, so that flows over multiple hops
will again usually have packets in the queue of every node it passes. The packets
of all flows join the same queue at a node. With all flows arriving simultaneously,
the packets will be in the queue in a mixed order and are serviced according to
a FCFS discipline. Hence all flows are serviced, packet by packet, in a more or
less random order, as shown in Figure 6.4.

This way of servicing is approximated by a processor-sharing (PS) service
discipline for the flows, where each link is assumed to have the same capacity. Just
as in the previous scenarios, the aggregate throughput needs to be determined,
which is done through simulation.

An important aspect regarding the throughput of the different types of flows
in the network is how the capacity is allocated among them. This depends on the
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flow control protocol used in the network. A commonly used transport protocol
in (wired) networks is TCP. This protocol tries to avoid congestion by fairly
sharing the available resources among active flows. A similar protocol can be
used in wireless networks. Suppose that in the reference model there are ny,
ny1 and ny flows of type 0,1 and 2 respectively. At first, the available capacity
will be shared in a fair way over both nodes, each node receives half of the total
capacity. Both nodes will then use this capacity to process the flows that are in
their queues. This is assumed to be done so that each flow gets an equal share,
which is called egalitarian processor-sharing. Now the situation can occur that
flows of type 0 get a different amount of the capacity over the first link than
over the second link, as will be discussed later. If the capacity at the first link is
higher, the queue at the second server will build up, since it cannot serve the
flow as fast as it arrives. If the capacity at the first link is lower, then the queue
at node two will often not contain any packets of the flow of type 0, since these
are processed faster than the rate at which they arrive. These are unwanted
situations, and so the flow control protocol will notify the sources to transmit
at different rates for the flows that are causing the congestion. We assume a
TCP-like flow control protocol to be active, which alters the use of capacity in
case of queues building up or being empty most of the time. The flow control
protocol resembles TCP, but assumes a perfect version with instantaneous rate
adaptation, so it will be e.g. independent of the round trip times (RTT) of the
flows.

In our model there can be a loss of packets due to a build up in the queue of
node 2. This happens if the flows of type 0 get more capacity in node 1 than in
node 2 for a long time. This is for example the case when there are flows of type
2, while there are no flows of type 1 in the system and both links get half of the
total capacity. If the flows of type 0 keep being processed at this rate, packets
will be lost. However, the flow control protocol will make sure that the rate at
which packets are transmitted over link 1 is lowered. The rate to lower it to is
the rate at which the flow is processed at node 2. The capacity used by node
1 hence drops due to the lowering of the transmission rate. This capacity can
then be used by node 2.
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Theorem 6.1. The capacity a flow receives at a link is equal for any type of
flow at any link, namely m when there are only flows of type 0 and one
other type (i).

Proof. Consider the network where only flows of type 0 and 1 are present. Let
there be ng (n1) flows of type 0 (1). If both links get half of the total capacity,
which we set to be one, then the capacity allocated to a flow at node 1 will

be equal to L 27 +n . At node 2, the flows of type 0 will receive a capacity of

2 o . If this situation persists, the queue at node 2 will often be empty, since
the ﬂows of type 0 are processed faster than the rate at which they arrive. The
flow control protocol therefore lowers the rate at node 2 and sets the capacity
of a flow to 2 37 +n . Node 1 can now use the residual capacity and a flow will
get a capacity of no_lml (1- %noﬁ’nl ). This rate however is higher than the rate
at node 2 and so the buffer will fill. The rate at node 2 is adjusted by the flow
control protocol to noim (1-3 no’_fn ), which leaves a capacity for a flow at node
1 of n0+n1 (1—ne-(1- %norjfnl )). This process continues (where each step is
instantaneous by assumption) and it can easily be seen that this converges to a
capacity allocatlon of 5—— for each flow on any link. In total, a flow of type

0 will receive T +n of the capamty, whereas a flow of type 1 will get 2117
o+ny

The proof for the situation with only type 0 and type 2 flows follows in the same

manner. O

If however there are flows of both type 1 and type 2 in the system, this
situation will not occur. Supposing that there are more flows of type 2 than
of type 1, a flow of type 0 will get a rate of at node 2, but receives a

n—i—n

higher rate of at node 1. The protocol will hence lower the rate for all

nl

type 0 flows to g at node 1. The capacity that now becomes available is
not given to node 2, but the flows of type 1 will claim this extra capacity since
the node has the rlght to use half of the total capacity. This is a different and
interesting situation for further research, but we will not consider it any further
in the analysis in this chapter.

We see that in the first situation the flow control protocol leads to the
situation in which all flows get the same share of capacity per link. Hence of
the total capacity, a flow over two links will get twice as much capacity as a
flow over one link. This is equivalent to what we found for the two-hop WLAN
model. Hence we need to analyze the same situation, which as noted before
leads to a processor-sharing model, which will be discussed in the next section.

The analogy between the scenario as shown in Figure 6.2 and the scenario of
Figure 6.3 can be seen as follows. A flow over two hops coincides with a flow
of type 0 and flows over one hop coincide with a flow of type 1 or 2 (but not
both), which is arbitrary. In the serial network, just as in the two-hop WLAN
scenario when a node relays, a flow taking the second hop will only compete for
the network resources if it has packets available to be sent. If at one point no
such packets are available in the buffer, no capacity is allocated to this flow at
that node.
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6.4 Flow level models

This section presents models that approximate the flow level dynamics of the
multihop scenarios presented in the previous section. For the multihop ad hoc
scenario, the equal share given to each of the nodes determines the capacity
allocation. For the serial scenario, the transmission control protocol determines
the capacity allocation at the MAC layer. This section presents two analytical
models that capture the flow level dynamics of both scenarios. The two models
take the capacity allocation into account by either varying the amount of jobs
in an egalitarian processor-sharing queue or the priority and size of jobs in a
discriminatory processor-sharing queue.

6.4.1 Batch Arrival Processor Sharing model

We can consider the network as a server with one queue, where all flows enter
the queue, independent of the link(s) they have to be transmitted over. Since all
flows are processed at the same time, we can consider the flows to be processed
according to a processor-sharing discipline. As a flow over two hops gets the
double amount of capacity, we can consider a flow over two hops as asking for
capacity twice. Hence we can see the arrival of a flow over two hops as the arrival
of two flows at the same time. A flow over two hops will be at both servers at
the same time, so it will ask for capacity as if it were two different flows, which
is captured in this abstract view. We thus arrive at a batch arrival processor-
sharing model (BPS) with egalitarian processor-sharing, since the capacity for a
flow is equal at every hop. A flow over a single hop is then equivalent to a single
arrival, whereas an arriving flow over two hops is equivalent to two jobs arriving
as a batch. It is important to note here is that we do need to consider that all
jobs in a batch should not only have the same arrival time but also the same
departure time, i.e. jobs in a single batch have the same service demand, since
they represent only one flow.

Consider the M*X /G/1 PS queue where X is the batch arrival rate, a is the
average batch size, b is the average number of jobs that arrive in addition to the
tagged job and F(z) is the complementary distribution function of the job size.
The conditional response time of a job with service requirement x, T'(x), has to
satisfy the system of differential equations ([KMRT71]):

o0 x
T (x) = Aa/ T (y)F(x + y)dy + /\a/ T (y)F(z — y)dy + bF(xz) + 1 (6.1)
0 0
The load in the system is given by:
p = AaE[X]. (6.2)

When flows have an exponential service requirement, solutions can be found
([AABO03]). For the MX /M/1 PS queue, this leads to:

x b(2 — p)E[X] — (o)

T =1, =i o (1=

) (6.3)
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and bounds are given by:

x . b+1 x b(2 — p)E[X]
<T(x) < 4
ST <min(p s o PETARED ey
_ 2-p)E[X]

where the bounds coincide when z* = (1)
In these models, the departure moments of jobs inside a batch will not be the
same. Only when the service times are deterministic, is this model applicable.

Therefore, we also propose a more appropriate model.

6.4.2 Discriminatory Processor Sharing model

A flow over two hops receives more capacity than a flow over one hop, hence
we can instead consider the processor-sharing not to be egalitarian. The jobs
are then processed at the same time, but not all jobs get an equal share. As a
flow over two hops takes twice the amount of capacity, it can be seen as being
serviced twice as fast as a single hop flow. A flow over two hops however has an
expected service requirement that is twice the expected service requirement of
a single hop flow. We thus arrive at a discriminatory processor-sharing model
(DPS). In this type of model, all jobs get processed at the same time, but not
all jobs get the same amount of service. Customers are given a certain weight
which shows how much more service they receive in comparison to other users.
In our case, a job that represents a two-hop flow will get a weight twice as high
as a job representing a single-hop flow.

Consider the M/G/1 DPS queue where \; denotes the arrival intensity of
class j jobs, g; denotes the 'weight’ of class j customers and F;(z) the distribution
of the required service with mean 1/4; and a total of M classes. The conditional
response time of a job of class k, given its size t, Wj(t), satisfies the system of
differential equations ([Kle67]):

M /
< Ng:Wi(u -t
Wity = 1 +Z/ M(l — Fj(u+ gi))dujt (6.5)
=170 gk 9k

t M
/ Wi(u) Y Aagi (L= Fy(9,(E = w)/9e)) g g 4 ag,
0 =1 9k

For the M /M /1 DPS queue, we know that (for the derivation see [FMI80]):

m

t a; +d; _
Wilt) = 1 +Z%(1 — emout/on), (6.6)
j=1 i

- cro M Ng
where the as are the distinct roots of 1 — ¥*(s) =1—3 .7, ats =0and ¢

and d; are given by:

H;::I(gkﬂk - aj) (6.7)
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Since each flow is represented by only one job in the system, the departure of
a job is equivalent to the departure of a flow from the network. Therefore, this
approach gives a better approximation of the situation that we want to model.
When considering deterministic service requirements, we see that both models
give equivalent results.

6.5 Numerical results

To verify that the proposed model is an accurate approximation of the network
under consideration, a simulation model has been constructed to obtain data
on the sojourn time of a flow in the network. The simulation model mimics
the transmissions as they occur in the scenario depicted in Figure 6.2. The
simulation model uses the following standard settings for the parameters:

parameter value parameter value parameter  value
PHY 192 bit Payload size 12 kbit SIF'S 10 ps
MAC 272 bit Tnet 1 Mbit/s DIFS SIFS + 27
RTS PHY+160 bit 1npax 100 CWmin / max ~ 31/1023
CTS PHY+112 bit 4§ 1 ps r* 5

ACK PHY+112 bit 7 20 ps I'max 6

Here r,.; is the rate at which the network can transmit data, nm.x is the
maximum number of users, PHY, MAC, RTS, CTS and ACK give the sizes
of the headers and interframe spaces, J is the propagation delay, 7 is the slot
duration, cw are the values for the contention windows, r* is the maximum
number of times the contention window may be doubled and 7.« is the maximum
number of retransmissions for one packet. The payload size is set at 12 kbit,
the maximum amount of data that can be sent within a packet. The probability
that a flow is over two hops is given as input to the simulator. All flows are
either single or double hop flows. Files arrive at the system according to a
Poisson process, where users try to transmit the packets according to the IEEE
802.11 protocol discussed earlier. When the first packet of a double hop flow
has been sent over the first hop, a free user is assigned as the relaying node
and this user will also start transmitting the packets that it receives from the
first user. When the second user has no packets in its queue to relay, it will
go into waiting, meaning that he will not compete for the channel. The DCF
function of IEEE 802.11 is incorporated in the simulation, where collisions are
considered to be fatal, meaning that all packets involved in the collision are lost
and retransmitted after backing of.

The results of the simulation and the M~ /M/1 BPS and M/M/1 DPS
model are compared, we hence are considering Poisson arrivals and exponentially
distributed file sizes. The model considers the network in a situation that the
full capacity of the network can be used for the files, which is not the case for
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Figure 6.5: Aggregate system throughput

the simulation program. Here headers are added to all the packets and the
number of active users influence the aggregate system throughput as described in
[LT03]. Following their approach, the aggregate throughput for persistent flows
is determined. For the determination of this aggregate throughput the amount
of double hop flows can be of influence. The interference that the flow causes for
itself deteriorates the throughput of the network. However, the second node in a
double hop flow may not always have packets to transmit, at which point it will
not cause interference. Simulation is used to compare the results of single and
double hop flows. In Figure 6.5, the aggregate system throughput is computed
for single hop flows, and compared with the aggregate system throughput of
double hop flows, where the number of persistent flows is taken to be twice
the amount of double hop flows. Figure 6.5 clearly shows that the aggregate
throughput is hardly influenced by double or single hop flows. This shows that
we can use the results for single hops, but counting the double hop flows as if
there are two users in the system.

Under the RTS/CTS mode, the aggregate throughput is roughly constant
as was also found for the WLAN situation in [LT03]. As can be read from the
figure only about 88% of the capacity can really be used. This is taken into
account in the calculation of the average transfer time in the models. First we
compare the average transfer time of a job in the system with the results from
the BPS model. A drawback of this model is that it is not possible to make a
distinction between the single and double hop flows in this model. Results are
shown in Figure 6.6 for the situation where 30% and 70% of all the flows are
double hop flows and the file sizes are exponentially distributed with a mean of
150 kbytes.

Figure 6.6 shows that for a lower amount of double hop flows, the approxim-
ation is better. When 70% of all the flows are double hop flows, the difference
becomes bigger. Next, the comparison is made between simulation and the DPS
model, where we can distinguish between the different type of flows, which is
shown in Figure 6.7.

The approximations are accurate, independent of the amount of double hop
flows in the system. It can be seen that for a higher load the approximation is
slightly worse. Interesting is to see that the model overestimates the transfer
time for single hop flows, whereas is underestimates the transfer time of double
hop flows. This is due to the fact that the assumption that a double hop flow
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receives twice the capacity of a single hop flow is not exact, since packets are
not always available at all the different nodes on a multihop path. Therefore the
capacity allocated to double hop flows is slightly less than the double of single
hop flows, resulting in the differences seen in the figures.

6.6 Conclusion

Using a flow level approach for modeling an ad hoc network, many difficulties
might be avoided that would occur when using a packet level view. Results
from the past have shown that simulation is often the only possible approach
to get results and for analytical approaches to be possible many assumptions
have to be made. However, the flow level view has a promising future, even for
analytical approaches.

This chapter discusses the network from a flow level point of view, with two
types of models for approximating the throughput of such a network, namely the
BPS and DPS models. The M* /G /1 PS and M/G/1 DPS queues can be used,
since these models take the allocation of the capacity over the different flows in
the network into account. Much work on these types of models has already been
done, and some analytical results have been presented. When considering the
network as a BPS queue, the problem arises that all flows inside a batch should
have the same service requirement, which is not the case for the M* /G /1 PS
queue, making it impossible to distinguish between different classes of flows.
Therefore, it is more accurate to use the M/G/1 DPS queue for modeling the
ad hoc network.
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The flow level view as presented in the chapter opens new opportunities for
modeling ad hoc networks, taking into account interference at the MAC layer,
especially self-interference within a flow. Through simulation the model has been
validated, showing that the results obtained using the M /M /1 DPS queue gives
a good approximation of the transfer time in an ad hoc network using IEEE
802.11 in RTS/CTS mode, independent of whether many or few flows are double
hop flows.



CHAPTER 7

Bottlenecks and stability in networks
with contending nodes

Motivated by interference, this chapter considers a new class of queueing network
models, where nodes have to contend with each other to serve their customers.
In each time slot, a node with a non-empty queue either serves a customer or
is blocked by a node in its vicinity. The focus of our study is on analyzing the
throughput and identifying bottleneck nodes in such networks. Our modeling
and analysis approach consists of two steps. First, considering the slotted model
on a longer timescale, the behaviour is described by a continuous time Markov
chain with state dependent service rates. In the second step, the state dependent
service rates are replaced by their long run averages resulting in an approximate
product form network. This enables us to determine the bottleneck nodes and the
stability condition of the system. Numerical results show that our approximation
approach provides very accurate results with respect to the maximum throughput
a network can support. It also reveals a surprising effect regarding the location
of bottlenecks in the network when the offered load is increased.

7.1 Introduction

Inspired by wireless ad hoc networks where interference prohibits neighbouring
nodes to simultaneously transmit packets, this chapter considers a class of open
queueing network models in which servers contend for service slots. In each
time slot nodes that have packets available for transmission try to obtain the
channel to transmit their packets. As nodes within each others interference
range cannot transmit at the same time, an allocation mechanism, i.e. a medium
access control protocol, is used to decide which nodes get the opportunity to
transmit, i.e. to serve a packet. Once a server in a node is allowed to transmit a
packet, it blocks the servers in a specified set of other nodes corresponding to
an interference neighbourhood. Upon service completion, a packet either moves
to a next node for further service, or leaves the network. The network is called
stable when for each node the average service rate exceeds the average arrival
rate of packets. When multiple or large flows pass through a node, the service
rate of the node may not suffice, making this node a bottleneck. This chapter
investigates the stability range, the arrival rates of flows at which nodes become
bottlenecks, and the throughput of the network.

The behaviour of the system under consideration can be described by a
state dependent discrete time Markov chain as we assume that in each slot
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the contention between nodes takes place independent of previous outcomes.
Inspired by results obtained for loss-networks, we make a two step approximation
to analyze this network, see Figure 7.1. As a first step, we consider the long
term average behaviour, which neglects the effect of the slotted time and leads
to a continuous time Markov chain. However, with the transition rates of this
chain still being state dependent, analysis remains cumbersome and a further
approximation is needed. Using a long term average service rate, we introduce a
product form network approximation which enables us to find the bottlenecks in
networks of arbitrary size and topology and determine the maximal throughput.
Interestingly, it turns out that when the load of the network is increased,
a bottleneck node can become stable again as a different node becomes the
bottleneck. This surprising behaviour is predicted correctly by our product form
model.

The remainder of the chapter is organized as follows. First, Section 2 gives
a literature overview, after which Section 3 introduces the discrete model and
contention process. Section 4 describes the first approximation step resulting
in the continuous time model with state dependent service rates, followed by
the second approximation step in Section 5. Section 6 gives the results for the
stability analysis and Section 7 presents results from simulation to illustrate the
accuracy of the model presented in this chapter. Finally, Section 8 concludes
the chapter.

7.2 Literature and contribution

The stability of networks, as considered in this chapter, has received considerable
interest in literature. Inspired by wireless networks, [RE88] analyzes a discrete
time slotted ALOHA system. Bounds on the stability region are found using the
concept of dominance. A different approach is presented in [JvdMvdWO07] where
the rate stability and output rates are calculated for shared resource networks.
Stability conditions for separate nodes are derived for general allocation functions
under mild assumptions. The model discussed in this chapter however does not
fall under the set of allocation functions, as the overall capacity of the network is
not constant due to interference. For a network of parallel servers with coupled
service rates, necessary and sufficient conditions for stability are derived in
[BJLOS]. Stability and performance of networks where the service rate depends
on the network state is also analyzed in [VLKO1], where transmissions over links
with a fixed capacity are considered. Opposed to the work presented in these
papers, the rate allocated to a server does not depend on the number of packets
present in the queue, but on the number of nodes competing.
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Similar assumptions regarding the contention between nodes are made in
[DT08], where alive nodes block other nodes as discussed in this chapter. The
throughput in a multihop tandem network is considered both under saturation,
where each node generates its own traffic and under a single flow over all nodes.
The authors conjecture that a random access scheme severely degrades the
throughput of the network.

Analytic results for a multihop network with two contending queues are
presented in [RO03]. Using the theory of Riemann-Hilbert boundary value
problems, the generating function of the stationary distribution is obtained. In
[LRO6] some performance measures of this system are analyzed, focussing on the
computational issues that occur. Even for such a small network as considered
in these papers, a complex analysis is needed to obtain analytical results. The
approach we present is applicable for general size networks, however we do not
obtain results on the stationary distribution, but on stability and throughput.

The optimal throughput a network can support, often referred to as the
capacity of the network, is discussed in [GK00], which however does not focus on
multi-hop networks. This aspect is addressed in [GV02], where for a single multi-
hop flow a new capacity limit is derived. These results are limiting results for
large networks. More detailed models are discussed in [NLO02] for a tandem and
lattice network with saturated nodes. They calculate the optimal offered load,
preventing packet loss in a network with hidden nodes. This work is extended for
multiple crossing flows in [F06]. Instead of focussing on the specific parameters
of the MAC protocol, as presented in these papers, we take a higher level view,
providing valuable insights on bottleneck locations for general networks.

Next to limiting the capacity of a network, contention between nodes has an
impact on the fairness of protocols, as in the equality in rate allocated to nodes or
the throughput of flows. In [DDT08] the authors describe the border effects in a
CSMA /CA network and its impact on fairness. The stability and throughput for
a weighted fair queueing model with saturated nodes is discussed in [EKEAQ7]
showing that the throughput, while taking into account the topology, routing and
random access in the MAC layer, does not depend on the load in the intermediate
nodes as long as the network is stable.

Different aspects of importance for the stability and throughput of net-
works have also received much attention. Focussing on the impact of routing,
[KEAAOQS] investigates the stability and throughput of static wireless networks
with slotted time. The authors show that routing has a large impact on the
stability properties and that as long as the intermediate queues in a network
are stable, the throughput does not depend on the traffic generated at these
intermediate nodes. In [HvMO04] the focus is on the calculation of the interference
to noise ratio and show the influence of the network size and the data rate on
this ratio and link this to the throughput of the network.

The contribution of this chapter is that we provide a comprehensible model
that accurately predicts the bottlenecks and maximal throughput of a network,
which also is applicable for networks with unstable nodes. The results provide
insight in the impact that contention between nodes has on the performance of
the network, without the need of a complex analysis.
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7.3 Discrete time model

7.3.1 General model

Consider a network consisting of n queues with infinite buffers. Due to contention
between nodes not all nodes can transmit their packets at the same time. We
define the contention set 1(i),i=1,...,n, of a node i as the set of nodes blocked
from transmission when node i is transmitting. A typical example is the set of
nodes within a certain interference range. However, for the model there need
not be a relation between the network structure and the contention set. The
way contention between nodes takes place will be elaborated upon below. A
set of J traffic flows f(¢;), j = 1,...,J, travel over multihop paths, denoted
by the ordered sets ¢;, from node t;(1) to t;(m;), where we assume that no
loops are made within a path, i.e. paths are simple and packets automatically
follow their path. Traffic consists of equally sized packets that are transmitted
one packet per time slot. An example of such a network is depicted in Figure
7.2. In this example a network of 8 nodes is depicted. In the figure there are
three flows: f(¢;) from node 1 through node 2 to node 3 (i.e. we have that
t1 = {1,2,3}), f(t2) from node 1 through nodes 4 and 6 to node 8 and f(¢3)
from node 7 through nodes 6 and 5 to node 3.

Packets arrive at the origin nodes t;(1) (i.e. nodes 1 and 7 in Figure 7.2)
according to a Poisson process with rate A; for flow j and are served first come
first served. A node is called stable when its average service rate exceeds the
average arrival rate of packets at the node, and a network is called stable when
all its nodes are. A node that is unstable is called a bottleneck node. The average
number of packets of a flow that reach the destination node per time unit is the
throughput of this flow, which is limited by the service rate of the bottleneck
nodes of the network. The main interest in this chapter is the throughput of the
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flows and the identification of bottleneck nodes.

A node is called alive when it has packets to transmit and thus participates
in the contention. In each time slot, all alive nodes contend to be allowed to
transmit a packet. The probability of a node being allowed to transmit depends
on the set of nodes contending. We focus on this aspect in the following section.
In each time slot a node is either not contending, blocked or allowed to transmit.
In each time slot this process is repeated, where we assume the selection of nodes
being allowed to transmit to be independent between time slots.

Let p; denote the probability that node ¢ is alive and let @ be a liveliness
vector, such that m; = 1 if node i is alive and m; = 0 otherwise. The set of all
2™ possible liveliness vectors is denoted by II. The probability that a liveliness
vector 7 occurs is denoted by ¢.. The probability that node ¢ transmits under
liveliness vector 7 is denoted by 7; . The network can be represented by a
discrete time Markov chain with the queue lengths at each node as the state of
the system. Actually, as packets are forwarded to a next node depending on the
flow they belong to, also the type of the packets, stating the flow they belong
to, in the queue needs to be included in the state description. However, in our
steady state description these types will not play a role and are therefore omitted
from the state description. The transition probabilities depend on the state of
the system via the liveliness vector only, i.e. the number or type of packets in a
queue does not affect the probability of a node transmitting in a slot, unless it
is empty.

7.3.2 Contention

Multiple nodes can only be transmitting simultaneously in the same time slot
when they are outside of each others contention set. If multiple nodes within
each others contention set are alive, the contention protocol decides which nodes
may transmit. The probability that a node is allowed to transmit a packet in the
following slot can be determined when the contention sets, the protocol in use
and the competing nodes are known. We assume an ideal contention protocol,
where no collisions will occur and hence no packets will be lost.

As we are not interested in the details of the contention protocol but only the
corresponding probabilities for nodes to transmit, we will use a simple protocol
giving each node an initial equal probability of winning a contention. For other
protocols, transmission probabilities can also be calculated. Using

| = Z% (7.1)
=1

i.e. |r| equals the number of alive nodes and (taking e,, as the unit vector of
length n, with all zeros except a 1 on location m),

(k) =m— Z em (7.2)

mel(k):mm,=1

as the liveliness vector remaining after a node k blocks all nodes in its contention
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set (as it won the contention), the probability r; » that a node ¢ may transmit a
packet under liveliness vector 7 can be calculated using the following recursion:

0 for m; =0
i = - (7.3)
(1 =+ Zk?éi:ﬂ_k:l 'ri)ﬁ-(k))/|ﬂ" fOI‘ ™ = 1

with r; ¢ = 0, where 0 denotes a liveliness vector with no alive nodes. This can
be seen as follows: With equal probability of ﬁ any non-empty node (so node 4

itself or any other alive node k) wins the direct contention. Assuming node &
wins the contention, it blocks all nodes in its contention region, reducing the
liveliness state to 7(k), after which all remaining nodes contend again. Any
node that did not win the contention, but was not blocked hence can compete
again and might win the new contention, with probability ﬁ This process
continues until all non-empty nodes either are allowed to transmit or are blocked.

As an example, consider the network as depicted in Figure 7.2 with contention
sets chosen such that nearby nodes contend: (1) ={2,4}, I(2) = {1}, I(4) =
{1,5,6}, I(5) = {4,6}, I(6) = {4,5,7}, I(7) = {6}. Assume that all 6 nodes
have packets to transmit (as nodes 3 and 8 do not transmit packets they are never
alive), so that 7 = (1,1,0,1,1,1,1,0). The probability r4 » that node 4 will be
allowed to transmit by directly winning the contention is ﬁ = %. If for example
node 1 wins the contention, node 4 is blocked, as it is in its contention set. As
7(1) = (0,0,0,0,1,1,1,0), we get r4 7(1) = 0 as 74(1) = 0. The same holds if
node 5 or 6 wins the contention, as ry z5) = 0 and r4 7 = 0. If node 2 or 7
wins the contention, node 4 still could be allowed to transmit. The probability
that node 4 wins contention after node 2 has won the contention is given by
T4,7(2), Where 7(2) = (0,0,0,1,1,1,1,0). This probability can be calculated
by calculating 74 ., but with # = (0,0,0,1,1,1,1,0), showing the recursion.
As after each step, but with the new value of 7, the number of zeroes in the
liveliness vector increases, the recursion will stop when 7 = (0,0,0,0,0,0,0,0).
For this example, the probability the nodes are allowed to transmit are given by
[%7 %7 0, %7 %, %7 %, 0]. We further analyze this network in Section 7.7.2.

Note that the overall probability of being allowed to transmit is not equal for
all nodes. A similar analysis to obtain r; » can be done for any network, with
any contention sets and protocol. More extensive calculations will be needed
for larger networks with different topologies, but the principle will not change.
In the remainder of this chapter, we will assume that the contention regions
and protocol are known, such that all conditional rates r; » of the nodes can be
calculated.

7.4 Approximation step 1: Continuous time

We are interested in the long term average behaviour of the network, especially
the throughput and stability issues. Considering the system on a higher level
and a larger time scale, the discrete character due to the time slots fades and the
model can be seen as a continuous time Markov process. The state of the system
consists of the number and type of packets at each queue, but as the state of the
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system only influences the transition rates through the liveliness of the network,
we do not focus on the queue lengths. The flow a packet being served belongs
to determines the direction in which it will be forwarded. We incorporate this
into the model as described below. In the following we will denote parameters
used for the continuous time approximation by adding a hat to the equivalent
parameter in the original discrete time model.

When a queue has packets available and the liveliness is given by , the
probability of a packet being sent is given by r; .. On average, the number
of packets sent per slot under state m hence is r; .. For the continuous time
Markov chain, we approximate the service rate under state 7 of the node using
the exponential distribution with rate #; = r; . The probability of a node
being alive or not depends on the arrival rate of packets and the service rate at
the node. We first focus on the arrival rate of packets.

Whenever the nodes on a multihop path ¢; preceding a node ¢;(¢) are stable,
the arrival rate from this flow will be A;, the external arrival rate of the flow.
The total arrival rate of traffic a; at node ¢ is given by

ai= Y X(i) (7.4)

VRIS 7

where A;(¢) is the arrival rate at node ¢ for flow f(¢;). When the network is
stable, this simplifies to a; = Zj:ietj A;. When there are unstable nodes in the
network, the arrival rate of packets at each queue can be determined as follows.
Due to the multihop feed forward structure of the network we have that the
arrival rate A;(¢) is determined by its preceding nodes. If one or more of the
preceding nodes are unstable, the average arrival rate for the nodes after the
bottleneck on this path will depend on the service rate of the unstable nodes.
The probability p; ;1)) that a served packet at node t; (i — 1) continues to
node t;(), the packet is of flow f(¢;), is given by

Ai(ti(i—1))
Pti(i—-1)t;(5) = ja:ﬁ (7.5)

The arrival rate A;(¢;(¢)) from flow f(¢;) at node t;(¢) is given by

Aj (tj (1)) = mln()\ (t (i — 1))7ptj(i*l)tj(i)f‘t]‘(ifl))7 (7.6)

where A;(¢;(1)) = Aj, the external arrival rate of packets at the first node
in path ¢;. This can be seen as follows: either the preceding node can serve
all its incoming traffic, or its service rate is too low. In the latter case, the
fraction of the service rate of node ¢;(i — 1) that is used for flow f(¢;), equal
0 Py, (i—1)t, (i), determines the arrlval rate at the next node for this ﬂow Here
7t;(i—1) denotes the average state independent service rate of node ¢; (i —1),
Wthh will be determined in the next section. Assuming this rate is known,
equations (7.5) and (7.6) give a system of equations that can easily be solved,
giving the arrival rate per flow at each node. We use these arrival rates in the
analysis of the liveliness of the system, which influences the service rate of the
nodes.
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7.5 Approximation step 2: Product form network

The Markov chain with state dependent service rates is not amenible for analysis.
For a network with only two queues in tandem, this equals the model presented
in [RO03] under deterministic service times. Even for such a small network, a
complex analysis is needed to obtain analytical results. Therefore, for an arbitrary
network, we approximate the continuous time approximation by obtaining an
appropriate state independent service rate for each node to analyze the behaviour
of the network.

The state independent service rate 7; is obtained by considering the long
term average percentage of time the system is in a state with liveliness vector .
The probability of node i being alive is given by

bi = min(%, 1). (7.7)

For the final approximation step, let ¢, denote the steady state probability
that the liveliness vector is m (to be calculated later) and assume the state
independent average service rate of a node i in the network to be given by,

=y Dl (7.8)

mell pi

We obtain equation (7.8) by considering a large time scale and weighing the
service rate over the possible liveliness of the system, i.e. by unconditioning on
the liveliness, but conditioning on the node being alive. The state independent
service rate 7; can be seen as the average rate at which a node services packets,
given that it is alive.

Theorem 7.1. The steady state probability ¢, that the system s in a state with
liveliness vector m is given by

n

Gx = (0 = pi) 7 p7. (7.9)
i=1

Proof. Summarizing the above, we have the following assumptions for the state
independent continuous time approximation:
1. The external arrival process of traffic at queues is a Poisson process.

2. There is infinite waiting space at all the queues.

3. The service time at the queues has an exponential distribution and is
independent of the state of the system and arrival process.

4. After completion of service at queue ¢ a packet instantaneously moves
to the next queue k with probability p;x, K = 1,...,n, for additional
service or with probability p;o the packet completes service and leaves the
system, where we have that ZZ:O pir = 1. The routing probabilities are
independent of the history of the system.
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A network for which the assumptions 1) to 4) hold is a product form network
(c.f. [Kel79]). Hence, the probability of a certain state of the system occuring is
the product of the probabilities of nodes containing a certain number of packets.
As the state of the system directly implies a certain liveliness, also the liveliness
vector can be found as the product of the liveliness of separate nodes, showing
(7.9) holds. O

We will now use equations (7.4)-(7.9) as an approximation for the discrete
time model. This rather coarse approximation will provide quite accurate results,
as we are interested in the influence of the load on average behaviour of the
network.

7.6  Stability

The average service rate #; at which each node operates determines the load
under which the network is stable. As presented earlier, the average service rate
of a node 7 is given by (7.8) and the probability that a node is alive by (7.7).
Writing out the expression for ¢, and inserting (7.7) into (7.8), we obtain n
equations, with 2n unknowns, which are the a; and the #;. Assuming that all
nodes are stable, that is when all a; < 7;, the arrival rate at each node is known.
The values for 7; can hence be calculated for a stable system. However, it is still
to be determined for which values of A; (and thus a;) the network is stable.

As presented in Section 7.4, the arrival rate for a certain flow j at node ¢;(¢)
is given by (7.6) and the total arrival rate by (7.4). Using the n equations (7.4)
for a;, it is possible to solve the system of 2n unknown variables, which entails
solving polynomials of degrees that increase exponentially with the network size.
Solutions can be obtained numerically, however, using for instance the Algorithm
7.1 to obtain the values of 7;.

To analyze the convergence of Algorithm 7.1, we consider the separate steps
and the recursion. The initial value of #; = 1 corresponds to a network without
contention, immediately giving an indication whether the network is stable or
not. To calculate all \;(k)’s in step 2), the equations (7.6), (7.4) and (7.5) need
to be combined, giving Jm equations with equally many unknown variables
which can be solved. From these values, obviously steps 3) through 6) can be
calculated, leading to the recursion.

Let g(r) denote the function that calculates the new value of r using the
steps described. The function g(.) : R — R” is a continuous function on the
convex compact subset [0,1]". Following Brouwers fixed point theorem (c.f.
[Ist81]), we consider the equation g(r) = r, which has a solution, which we need
to show to be the unique fixed point. To achieve this, we use the Contraction
Mapping Theorem (CMT, c.f. [Ist81]), saying that the equation g(r) = r has a
unique solution if and only if

e The function g(.) maps [0,1]™ to [0,1]"

e There is a constant G < 1 such that ||g(x) — g(y)|| < G||x — y|| for all
z,y € [0,1)"
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Algorithm 7.1 Algorithm to calculate the service rate of all nodes

Calculation of 7;,1 =1,...,n
1. Set all values #; to 1, i=1,...,n

2. Calculate \j(k), j=1,...,J
and k = tj<1), ce ,tj(mk)

3. Calculate a; = Zj:ietj (i), i=1,...,n
4. Calculate p; = min(%:,1),i=1,...,n

5. Calculate ¢ = [, (1 — ﬁi)(l_m)ﬁ?iv mell

f'i,ﬂ'(jrr

6. Calculate new 7; = > = i=1,...,n
7. Calculate the difference €; = 7;(new) — #;(old), i =1,...,n

8. Repeat step 2 till 7 until convergence occurs, that is |e| < § for an appro-
priate value of 4.

First, the algorithm needs to be shown to map any starting value for r to
another value of r that is within the possible range of [0,1]™. For this to be the
case, we need that

0 S Zfiﬂr(j‘n' S ﬁz

The first inequality is obvious, for the second one we note that #; , =0 for all ™
such that m; = 0 and that 7; < 1. This gives that

Y himde <Y dn
T

mimy=1
n
Y [a-im
mmi=1j=1
= By [[a =)' 8} = b,
iy =1 j#£i

where the last equality holds as we sum over all possible liveliness states for
the network without node ¢, proving the first part of the contraction mapping
theorem.

The second part is more involved. We provide a complete proof for a two
node network and indicate why the second condition is conjectured to hold
for larger networks. When following the steps of the algorithm for a two node
tandem network, we have that

a(l) = A1) =Xand a(2) = A(2) = min(\, 71)
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A in(\, 7

p1 = min(—,1) and ps = min(m, 1)
T1 2

o= - ipyandis =1 1p

= 22?2 and rg = 22?1-

Note that as 0 < p; < 1 we have that 7; € [%, 1]. First assuming we are dealing
with a stable network, the arrival rate at both nodes equals A. By substituting
p;, we obtain the functional vector

A A
= (1 21— ).
9= (- F1 = o)
This gives, for z = (z1,...,z,),
_ 2 _ 20 \2
lot@) =9I = (G2 = )
o P — )
Qxlyl 1 1) >
and for this to be smaller than ||z — y||> we need to have that (5247 )2 < 1. As

we assumed a stable network, we have that A < z;, so that

A 1
< <1
2x2y2  2y;

since y; € [%, 1] and so indeed the second condition holds proving that for a

stable system the algorithm converges. If the system would be unstable, we have

that
min (M, 1) min (AA, 1)
1— - 1— o

2 ’ 2 ’

g(f) =

where the following situations can occur: A > 71 or 79 < A < 71. In the first
case we have that ) R )
A . T1
7)=(1— -min(—,1), =
o(7) = (1= 3 min(,1). 5)
which within two steps of the algorithm leads to g(#) = (3, 5) and thus converges
to this unique solution. In the second case we have that

o) = (3:1= ).
o) = 91 = (52—~ )

and (2xi\y1 )2 < 1 as shown earlier, completing the proof that the algorithm

converges for this two node network.

Considering a three node network, we obtain the following function (ommiting
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the hat in the notation):

min(*20 1)
g(r)=(1- 5
. min(A,r . min(min(A,ry),r
+mln(%7 1) mln(w7 1)
6 )
min(%, 1) min(%j’”)”)’ 1)
_ 5 _ .
3 : min(min(\,r1),r2
+m1n(%, 1) mln(%) 1)
3 9
min(™A0) 1) min(2, 1) min( MO0 1)

1-— i .

2 + 6 )
As we have that g(p) = (1 -5 4-22P2 1 -5 — B8 - P1ps ] B2 4 Pab2) starting
in ([3,1],[3,1],[3.1]), g(.) will also project on this range. For the CMT to hold,
we first consider the stable system again, so that A < r;. In this case we have
that

1A 1) 1A 1Xx 1 )

g(r) = -5+ e T T
27"2 6T2T3 2’["1 27“3 37"17“3
1A 1 )2

Checking whether ||g(z) — g(y)|| < ||z — y|| proves to be cumbersome, even
for such a small network. Therefore we numerically analyzed the function
h(z,y) = ||lg(x) — g(v)||(]|z — y||)~* which proved to be smaller than one for
all values of z and y. As in the two node network, it is easy to show that for
an instable network, either there is an obvious direct convergence to the rates
(%, %, %) or convergence is proven by using parts of the approach for the stable
case. We postulate that for any network a similar analysis will show that the
algorithm constitutes a contraction, and thus converges.

We have numerically established that Algorithm 7.1 converges to a unique
solution 7; for any values of A\;, j =1,...,J. Using Algorithm 7.1, the service
rate of all nodes can be calculated for any set of flows through the network.
The corresponding arrival rates at the destination nodes of the flows give the
throughput of the network. Whenever the network is stable, the total throughput
will equal > j Aj. For a general network, the calculation of the throughput,
independent of the topology of the network, involves solving n equations in n
unknowns. Using Algorithm 7.1, the arrival rate(s) can be chosen arbitrarily.
To determine the stability range of the network, we separately consider each
flow in the network. Fixing the arrival rates of all but one flow (such that the
system with these flows is stable), there exists a value A, for the remaining
flow such that ay = 7 for at least one k € 1, ..., n, which provides the maximal
throughput A,,; of this flow. Node k is then the bottleneck of the network. In
this manner the stability range of the network can be calculated (examples are
shown in the following section).
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7.7 Examples and validation

7.7.1 Multihop tandem network

In the following we analyze a multihop tandem network. When considering a
general network, the analysis of the stability region involves considering flows
separately. First, we show how for a specific contention protocol the transmission
probabilities r; . can be calculated in this network, which corresponds to a single
multihop transmission in a network. Next, we use simulation to validate results
obtained by our algorithm for different sizes of the network. Some surprising
results are obtained, which are correctly predicted by our model.

Consider a tandem network of size n. The average service rate at which a
node transmits depends on the position in the tandem network. As indirectly all
nodes in the network influence each other, the total length of the network has
an impact. This impact when all nodes are alive is shown, using a contention
protocol selecting a node to transmit with equal probability among all alive
nodes.

Consider the tandem network such that nodes cannot transmit and receive
at the same time. A node that is allowed to transmit hence blocks its direct
neighbour(s). When all n nodes are alive, each node has a probability % of
obtaining the channel directly and blocking its neighbour(s). The remaining
nodes continue contending for the channel until they are either blocked or allowed
to transmit. The rate r; 1(n) for a node at position 7 in a fully alive tandem
network of length n can be calculated using

1—2
1
7’@1(71) = 7[2 ri_k_Ll(n — k- 1)
n k=1
+14 Y ra(k—2)). (7.10)
k=i+4+2

The right hand side of (7.10) follows from the node winning the contention: If
the first node in the network wins the contention, it blocks the second node and
the remaining n — 2 nodes compete, with node ¢ now at position ¢ —2. Otherwise,
in a similar manner, a node before (but not a neighbouring) node ¢ wins the
contention, node ¢ wins the contention itself, either of node i’s neighbours wins
the contention or a node k behind node ¢ wins the contention. Each of these
events occurs with a probability of %, together giving the recursive formula.

Note that a multihop tandem network (in this setting) with nodes that are
not alive can be decomposed into many smaller multihop networks. For a fully
alive tandem network where nodes cannot transmit and receive at the same time,
Table 7.1 shows the rates for different lengths of the network.

Theorem 7.2. For the multihop tandem network with all alive nodes, the rate
allocated to the modes converges when the network size increases, where in

particular
1 1
lim r11(n)=1— - and lim ryq1(n) = —. (7.11)
n— 00 e n—00 (&
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Size Node 1 2 3 4 5 6 7 8 9 10 11 12
1 1 - - - - - - - - - - -
2 0.5 0.5 - - - - - - - - - -
3 0.6666 | 0.3333 | 0.666 - - - - - - - - -
4 0.625 | 0.375 | 0.375 | 0.625 - - - - - - - -
5 0.6333 | 0.3667 | 0.4667 | 0.3667 | 0.6333 - - - - - - -
6 0.6319 | 0.3681 | 0.4444 | 0.4444 | 0.3681 | 0.6319 - - - - - -
7 0.6321 | 0.3679 | 0.4488 | 0.4262 | 0.4488 | 0.3679 | 0.6321 - - - - -
8 0.6321 | 0.3679 | 0.4481 | 0.4297 | 0.4297 | 0.4481 | 0.3679 | 0.6321 - - - -
9 0.6321 | 0.3679 | 0.4482 | 0.4291 | 0.4334 | 0.4291 | 0.4482 | 0.3679 | 0.6321 - - -
10 0.6321 | 0.3679 | 0.4482 | 0.4292 | 0.4328 | 0.4328 | 0.4292 | 0.4482 | 0.3679 | 0.6321 - -
11 0.6321 | 0.3679 | 0.4482 | 0.4292 | 0.4329 | 0.4322 | 0.4329 | 0.4292 | 0.4482 | 0.3679 | 0.6321 -
12 0.6321 | 0.3679 | 0.4482 | 0.4292 | 0.4329 | 0.4323 | 0.4323 | 0.4392 | 0.4292 | 0.4482 | 0.3679 | 0.6321

Table 7.1: Transmission probability for a fully alive tandem network

Proof. The formula for the rate 7; 1(n) of a node on position ¢ in an n node
network that is fully alive is given by

i—2 n—2
77/7'7;’1(77,) = Zri,k,l,l(n — k — ].) + 1 + Z 7"1'71(]{) (712)
k=1 k=i

as described in the paper. Due to symmetry of the network we also have that
ri1(n) = rn_iy1,1(n) i=1,...,n.

The rate of a node can never exceed one, but will be one if the node is the only
alive node within its interference region, i.e. its neighbours are not alive. The
minimal rate of a node is % as with this probability it wins the contention over
all other nodes.

In the following we omit the 1 denoting the fully alive network. To find an
expression for r;(n), note that

nri(n) — (n—Dri(n—1) =r;(n+2)
i—2
+3 ik —k = 1) = rip_1(n — k — 2)]
k=1
and letting ¢;(n) = r;(n) — r;(n — 1) this gives

1—2

ci(n) = =Y _cxln+k—i)—ci(n—1)].

k=1

S

As —1 < ¢;(n) <1 for any value of i and n, we have that

ci(n) < =[(i=2)—ci(n -1 < —(i-1)

3=

1
n
so that for each ¢ we have that lim,,_,. ¢;(n) = 0, proving that r;(n) converges
for n — oo.
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For 7 = 1 this leads to

c1(n) = —ﬁcl(n -1
which gives
1 n—1 n -1 i—1

Similarly, we have that

3

(=D"

—1)
co(n) = o , To(n) = ‘ ( i!) .
=1
Taking the limit shows that
nh_)ngo ri(n)=1-— ~ nh_)n;o ro(n) = -

Unfortunately, for larger values of 4, no nice expressions are found for ¢;(n) or
r;(n), but the limiting values can be calculated using the same approach. The
results are presented in Table 7.1. (]

Other limits are observed in Table 7.1, showing that the border effects fade
for the middle nodes as the length of the network increases, in accordance with
[DDTO08]. This border effect already starts to fade for networks of size 12.

We note that the calculation of the rates r; , for the linear setting has the
pleasant property that the rate of a certain node ¢ under liveliness 7 is only
dependent on the number of nodes that are alive and directly connected to
each other. When considering different contention sets and protocol or network
layout, this property however may no longer be present.

To validate the results presented in this chapter, a simulation model has
been constructed that mimics the behaviour of the discrete time network under
consideration. The arrival and processing of the packets is modeled, with a
simulation for each parameter setting lasting one million simulated time slots
after a warm up period of 100.000 slots. The results are compared with the
stability ranges and the throughput of the network calculated with the state
independent continuous time approximation, using the provided algorithm. For
some settings, we provide the exact derivation of the results.

Consider the multihop tandem network for n = 3. The average service rates
at which the nodes operate are given by (using (7.8) and (7.9))

N . 1. R 2
1= (1—p2)+ 5172(1 —p3) + §p2p3 (7.13)
) . . 1, .
fo = (1—=p1)(1—ps3)+ §p1(1 —P3)

1 1

_ 1_ ~ A AN

+2( P1)p3 + 3P1Ps

. R 1 o 2
f3 = (1—=p2) + (1 —p1)p2 + 3p1D2.

2 3
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Figure 7.3: Simulated average queue length in a 3 hop network with the instability
rates calculated by the model

Obviously, the second node will be the bottleneck of the network as 75 is
smaller than 7, and 73, as it is the only node contending with two neighbours.
When node 2 is unstable, we have that p, = 1. To determine at what arrival
rate A this will occur, we use that A = a; = 72, so that

]31 = 7:*2 and ]53 = Q (714)

71 73

Combining the equations (7.13) and (7.14) with po = 1 we find that p; = p3 =
9_2@, resulting in the critical arrival rate of A =79 = 8 — v/57. From this value
of A on the second node will be unstable. If we increase the arrival rate even
more, the first node will also become unstable. The third node however will
always remain stable, as its service rate will always be higher than the service
rate at the second node, which determines the arrival rate at the third node. To
find from which value of A on the first node will also be unstable, we substitute
p1 = p2 = 1 in (7.13) which leads to p3 = 0.6, and the rate at which node 1
becomes unstable equals A = 7; = 0.6. Also note that the rate of the second
node has now fallen to a value of 73 = 0.4, so that the throughput of the network
has decreased.

For the three node tandem network, Figure 7.3 shows the average queue
length at the three nodes for increasing load of the system and Figure 7.4 shows
the throughput of the system. The calculated values of arrival rates for which
queues become unstable are depicted as dotted vertical lines in the figures.

As can be seen in Figs. 7.3 and 7.4, the arrival rates at which the first and
second node become unstable coincide with the calculated values. Additional
simulations for the arrival rates near the ones causing instability of nodes were
performed to confirm the results, but are not shown in the figures to maintain
readability. The throughput, which reaches a maximum of 8 — /57 ~ 0.4501
when the second node becomes unstable, decreases after this value. This decrease
in throughput is caused by the decrease in service rate at the second node, as
the first node becomes more highly loaded. This causes the first queue to be
alive a larger fraction of the time, blocking the second node. The throughput
settles at 0.4 after the first node has become unstable at an arrival rate of 0.6,
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Figure 7.4: Simulated and calculated throughput of a 3 hop network with the
instability rates calculated by the model

which is in agreement with the values calculated.

Next, considering a larger network with 5 hops, one might expect that it is
the second node that becomes the bottleneck. Using the presented model and
setting po = 1 however shows that no real valued solution exists, meaning that
node 2 cannot be the node to become unstable first. It actually is the third
node that becomes the bottleneck first at an arrival rate of 0.4323, which is the
maximum throughput of the network. Increasing the arrival rate to 0.4448 causes
the second node to become unstable as well. Increasing the arrival rate further,
the third node becomes stable again. The presented model also determines the
arrival rate at which this occurs by making a small adjustment to the equations.
As the third queue will become stable as soon as its average service rate is
lower than the second queue’s rate, we now set 7o = 7. As both queues are
still unstable we have that p» = ps = 1 and that p, = :,—Z and ps = :—f . Using
the standard equations for the #;’s and setting p, = %, we solve the system to
obtain A = 0.4803 and 75 = 73 = 0.4306. Finally increasing the arrival rate to
0.6108 causes the first node to become unstable, resulting in a throughput of
0.3892. Simulation of the network under consideration provided the results as
presented in Figures 7.5 and 7.6 where the vertical lines show the calculated
values for which nodes become (un)stable.

That node 3 is the first node to become unstable can be called surprising.
When all queues are alive, the average service rate of queue 2 is lower than
that of queue 3. However, when queue 1 and/or queue 5 are empty, the third
queue has the lowest rate (see Table 7.1 for a 3 to 5 node network). As can
be seen in Figure 7.5, the average queue length at nodes 1 and 5 are low for
the load when queue 2 and 3 are already reaching instability. This indicates
that they frequently will not be alive, which is in the disadvantage of the third
node, making it the bottleneck node. However, as the arrival rate increases,
nodes 1 and 5 will be alive more often, which is beneficial for node 3, resulting
in the queue becoming stable again. Surprising as this behaviour may be, it is
predicted correctly by the model.
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Figure 7.5: Simulated average queue length in a 5 hop network with the instability
rates calculated by the model
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Figure 7.6: Simulated and calculated throughput of a 5 hop network with the
instability rates calculated by the model

7.7.2 General eight node network

Consider the network as depicted in Figure 7.2. Note that any set of interfering
nodes can be used, mimicking the behaviour of any acces control protocol, i.e. to
mimic an RTS/CTS protocol all nodes within transmission range of the sending
and receiving node can be used as the contention set. To avoid trivial results
we set the interference ranges for this example to be (only showing the nodes
that need to transmit) I(1) = {2,4}, I(2) = {1}, I(4) = {1, 5,6}, I(5) = {4, 6},
I(6) = {4,5,7}, I(7) = {6}. First flow f(¢1) is set up, with rate A\ = 0.1.
Obviously the network can handle this flow. Second, flow f(¢3) is set up, with
rate A3 = 0.1 as well. Again, the network remains stable (note that even though
both flows have node 3 as endpoint, this does not cause problems as we assume
perfect reception of all transmissions). Now flow f(¢2) is initiated and the open
question is which rate can be achieved for this flow. The arrival rates of traffic
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Figure 7.7: Simulated and calculated throughput of a 8 node network with the
instability rates calculated by the model

at the nodes, as long as the network is stable, is given by

Node 1 2 3 4
Arrival rate A2 +0.1 0.1 0.2 Mg
Node 5 6 7 8
Arrival rate 0.1 A +01 01 Ao

and the probabilities g, of all possible liveliness vectors can easily be calculated.
Using these values in equations (7.7) and (7.8) gives a set of 8 equations with
9 unknowns (all the #; and A2), which can be solved when it is known which
node becomes the bottleneck. Using Ay = 7; for ¢ = 1,4,6 and solving shows
that it is node 4 that becomes the bottleneck at an arrival rate of Ay = 0.3789.
Increasing the arrival rate Ao further causes node 1 to become unstable as well,
influencing the throughput of the first flow. Using the model, this is calculated
to happen at an arrival rate of Ay = 0.5092. Figure 7.7 shows the throughput
of the separate flows for an increasing arrival rate of the second flow. Both the
values calculated by the model and the simulation results are shown.

Numerical evaluation shows that the model gives very accurate predictions
of the throughput, where the error at each calculated point stays below 1%. The
load at which node 1 and 4 become unstable can be recognised as the points
where the slope of the graph changes, where the simulation again shows that
this is at the point predicted by the model.

7.8 Conclusion

As interference limits the capacity of wireless ad hoc networks, networks with
contending nodes are analyzed in this chapter. Each time slot, nodes compete
to transmit a packet from their queue, where a winning node blocks other nodes
in its neighbourhood. The time slot system is approximated in two steps. First,
by considering the long run average behaviour of the discrete time system,
a continuous time model is obtained. As the second step, appropriate state
independent service rates for the nodes in the network are determined. Combining
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relations between the arrival and service rates of the nodes, bottleneck nodes are
identified which determine the throughput of a multihop wireless network. Using
the two rather coarse approximation steps, we propose a product form network
approximation. Taking advantage of the properties of product form networks,
equations for the liveliness vector (whether nodes have packets in their queues
or not) and the average service rates of the nodes are derived and solved using a
simple algorithm. Surprisingly, the continuous approximation for the long term
average behaviour turns out to give accurate results concerning the stability and
throughput of the network. Other performance measures, as the queue length
and waiting time, have not been considered.

Our approach provides very accurate results for the lowest arrival rate of
a flow at which one of the nodes becomes unstable, thus giving the maximal
throughput for this flow. Also, increasing the arrival rate further, instability
of the rest of the nodes is analyzed. Our model correctly predicts surprising
behaviour in a multihop tandem network, where a queue at first turning out
to be the bottleneck, returned to stability again after increasing the arrival
rate. The approach presented is applicable for general networks, with various
contention settings and protocols. Using simulations of the discrete time system,
results were compared with the continuous time model, showing that the model
provides very accurate results.
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Summary

It’s impossible to picture the world without the vast amount of wireless networks
used by society nowadays. People are using their smartphones not only to
communicate with eachother, but also to control many devices in their home
environment, from the heating and lighting in their homes to the volume and
program on their TVs. It’s not just people with a smartphone or a laptop that are
making use of wireless connections. Sensor networks are used for the monitoring
of geographical areas, for example for security reasons or environmental data
collection. Vehicular networks communicate to warn for upcoming congestions on
the road due to accidents and military forces communicate over secure networks
that need to be deployed from scratch in warzones. In the latter case, but often
also in sensor networks, no centralized control is possible or available. The
network that is deployed needs to configure itself for the situation at hand, which
is why these networks are denoted as ad hoc networks.

The wireless nature of ad hoc networks poses multiple challenges that need
to be faced for the network to operate properly. One of the main challenges
is the problem of interference, which is the effect that when multiple signals
are received at the same time, they collide and prohibit correct reception of
the signals. This thesis focusses on the impact that interference has on ad hoc
networks, in particular on the capacity, lifetime and throughput of the network
and the congestion and delay in the network.

Chapter 2 analyses the lifetime of a network, which is defined as the time
it takes until the battery of the first node is depleted. Two situations are
considered: Direct transmissions between the source and destination or full
routing where neighbouring nodes relay the traffic for each communication.
For these settings the distribution of the network lifetime is determined. The
trade-off between the number of transmissions and the distance bridged by each
transmission is analysed. The nodes of the network are considered to be on
a one dimensional grid or are uniformly distributed. We show that for nodes
on a grid it is beneficial to use full routing. For uniformly distributed nodes,
the number of nodes in the network determines which approach is better. For
small networks, direct transmission outperforms the full routing approach. In
this case, the longer distance that needs to be bridged weighs up against the
increased number of transmissions that are needed. An intermediate approach,
choosing master nodes that forward data to other master nodes is simulated.
Models for the expected lifetime are provided that give approximations which
are close to the simulated results.

Chapter 3 models the delay in a wireless ad hoc network using a polling model
to take into account QoS differentiation in ad hoc networks. Traffic can have
either high or low priority, determining the probability that a node is serving a
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packet. The delay experienced by packets of each class is analysed by considering
each queue separately as being served by a server that takes holidays. The length
of these holidays depends on the state of the system, making it hard to analyze
them. An iteration algorithm, which is proven to monotonically converge, is
presented to compute the waiting time distribution of a queue that uses the
steady state for all other queues. Iterating over all queues provides de delay for
packets at all queues, which gives accurate results for low to moderately loaded
networks.

Chapter 4 combines results on product-form networks with a Markov reward
approach to find bounds on any performance measure that is linear in each of
the components of the state space. A two node network is considered where
traffic can be forwarded from the first to the second node. When both nodes are
active, the interference causes a lower service rate than when only one node is
active. The stability range of the system is analysed, showing that increasing
the rate at the boundaries of the system expands the stability range. Conditions
for a geometric product-from solution are given which are used for comparison
with the network under consideration. The Markov reward approach provides
bounds for several performance measures, where we show that the choice of the
product-form network to compare with obtains different bounds.

Chapter 5 analyses whether a network with a given traffic demand, capacities
on each links and ranges of interference between the nodes can accommodate all
the traffic demand. In the first part only one channel is available, so interference
plays a large role in determining the throughput of the network. The network is
modeled using a multi commodity flow problem and a theorem is stated that
gives sufficient and necessary conditions for the problem to be solvable. For a
single source and destination pair the maximal throughput is computed. The
second part expands the results of the first part by including the option of using
different channels. The theorem is expanded to include these channels, giving a
basis for an algorithm for channel allocation in wireless networks.

Chapter 6 considers the throughput of ad hoc networks, taking into account
the parameters involved in the CSMA/CA protocol with RT'S-CTS in a wireless
network. Setting different priorities to flows over a different number of hops takes
into account these parameters. First, considering the packet level details, the
aggregate system throughput is determined. Next, taking the flow level dynamics
into account, the throughput is divided over all flows, taking into account the
impact of multiple hops used in flows. This leads to two Processor Sharing
models: Batch arrival processor sharing (BPS) and Discriminatory processor
sharing (DPS). Simulation shows that the models provide an accurate estimation
of the throughput for small networks.

Chapter 7 considers the impact on the throughput of the contention that
happens between nodes in an ad hoc network. During each time slot the nodes of
the network contend for the channel, depending on the protocol in use. Starting
with a discrete time Markov chain we model the behaviour in the slotted time.
Using long term average behaviour, we then model this discrete time Markov
chain as a continuous time Markov chain, taking into account that certain nodes
may be bottleneck nodes. The transition rates in this chain are state dependent
so that further approximation is needed to obtain results on the throughput of
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the network. Now considering a long term average service rate, we approximate
the continuous time Markov chain by a product-form network. This enables
us to find the bottlenecks for a wireless network of any size and topology and
to approximate its throughput. As the main result, an algorithm is provided
that incorporates all these steps and gives very accurate results for the maximal
throughput of the network. For a multihop tandem network a limiting result
is obtained for the rate allocated to the first nodes of a fully alive network.
Additionally, a surprising effect is observed where the location of the bottleneck
changes as the load of the network increases, which is correctly predicted by the
algorithm.






Samenvatting

Het is onmogelijk om de wereld voor te stellen zonder het enorma aantal draadloze
netwerken dat hedendaags gebruikt wordt. Mensen gebruiken hun smartphone
niet alleen om met elkaar te communiceren, maar ook om meerdere apparaten
te besturen, van de verwarming en belichting in hun huis tot het volume en het
kanaal op de TV. Het zijn niet alleen mensen met hun smartphone of laptop die
gebruik maken van draadloze verbindingen. Sensor netwerken worden gebruikt
voor het monitoren van geografische gebieden, bijvoorbeeld voor beveiliging of
het verzamelen van ecologische data. In voertuignetwerken wordt gecommuni-
ceerd om waarschuwingen af te geven voor aankomende files door ongelukken en
militaire troepen communiceren over beveiligde netwerken die ter plekke van de
grond af opgebouwd moeten worden. In het laatste geval, maar ook in sensornet-
werken, is geen gecentralizeerde controle mogelijk of beschikbaar. Het netwerk
dat wordt opgezet moet zichzelf configureren voor de situatie die voorhanden is,
waardoor deze netwerken als ad hoc netwerken bestempeld worden.

De draadloze aard van ad hoc netwerken brengt een aantal uitdagingen
met zich mee die aangepakt moeten worden om het netwerk goed te laten
opereren. Een van de grootste uitdagingen is het probleem van interferentie,
het effect dat wanneer meerdere signalen tegelijkertijd ontvangen worden, er een
botsing ontstaat en een correcte ontvangst van de signalen verstoord wordt. Dit
proefschrift focust op de invloed die interferentie heeft op ad hoc netwerken, in het
bijzonder op de capaciteit en de levensduur van het netwerk en de doorstroom,
ophoping en vertraging in het netwerk.

Hoofdstuk 2 analyseert de levensduur van een ad hoc netwerk, wat gedefinieert
wordt als de tijd die nodig is totdat de eerste batterij in het netwerk leeg is. T'wee
verschillende situaties worden bekeken: directe verzending tussen de bron en
bestemming en volledige routering waarbij aangrenzende knopen data doorsturen
voor elke communicatie. Voor deze configuraties wordt de verdeling van de
netwerklevensduur bepaald. De wisselwerking tussen het aantal transmissies en
de afstand die overbrugd wordt per transmissie wordt geanalyseerd. De knopen
van het netwerk liggen op een één-dimensionale grid of zijn uniform verdeeld. We
laten zien dat voor knopen op een grid het gunstiger is om volledige routering te
gebruiken. Voor uniform verdeelde knopen is het aantal knopen in het netwerk
van invloed op de optimale keuze. Voor kleine netwerken werkt directe transmissie
beter dan volledige routering. In dit geval weegt de grotere afstand die overbrugd
moet worden op tegen de toename van het aantal transmissies dat nodig is.
Een tussenliggende aanpak, waarbij hoofdknopen aangewezen worden die data
doorsturen via de andere hoofdknopen wordt gesimuleerd. Modellen voor de
verwachte levensduur worden gegeven en de benaderingen die ze opleveren liggen
dicht bij de gesimuleerde waarden.
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Hoofdstuk 3 modelleert de vertraging in een draadloos ad hoc netwerk door
gebruik te maken van een polling model. Hierbij wordt het onderscheid in QoS
tussen de verschillende knopen in het netwerk meegenomen. Verkeer in het
netwerk kan een hoge of een lage prioriteit krijgen, wat bepaalt wat de kans
is dat een knoop een pakket mag verzenden. De vertraging die ervaren wordt
door pakketten van elke klasse wordt geanalyseerd door elke wachtrij apart te
zien alsof die geholpen wordt door een server die vakanties neemt. De lente
van de vakanties hangt af van de staat waarin het systeem zich bevindt, wat
het moeilijk maakt om dit model te analyseren. Door een iteratief algoritme,
waarvan bewezen wordt dat deze monotoon convergeert, wordt gepresenteerd
om de verdeling van de wachttijd in een wachtrij te berekenen. Hierbij wordt
gebruik gemaakt van de evenwichtsverdeling van de andere wachtrijen. Door te
itereren over alle wachtrijen wordt de vertraging voor de pakketten van iedere
wachtrij bepaald, wat een nauwkeurig resultaat oplevert voor wachtrijen met
een lichte tot matige belasting.

Hoofdstuk 4 combineert resultaten over productvorm netwerken met een
Markov beloning aanpak om grenzen te vinden voor de prestatie van een ad
hoc netwerk. Een netwerk bestaande uit twee knopen wordt bekeken waarbij
paketten doorgestuurd kunnen worden van de eerste naar de tweede knoop.
Wanneer beide knopen tegelijk actief zijn, zorgt de interferentie voor een lager
tempo waarin de pakketten verzonden kunnen worden dan wanneer er slechts
één actief is. Het domein waarbinnen het netwerk stabiel is wordt bepaald,
wat laat zien dat bij een hoger tempo van de knopen als ze alleen actief zijn
het domein vergroot. Voorwaarden waarbinnen het netwerk een geometrische
productvorm evenwichtsverdeling heeft worden gegeven en worden gebruikt om te
vergelijken met het netwerk dat onderzocht wordt. De Markov beloning aanpak
geeft grenzen aan voor verschillende prestatiematen, waarbij we laten zien dat
de keuze van het productvorm netwerk waarmee vergeleken wordt verschillende
grenzen oplevert.

Hoofdstuk 5 analyseert of een netwerk met een gegeven vraag, capaciteit van
elke link en het bereik van interferentie tussen de knooppunten aan de complete
vraag kan voldoen. In het eerste deel wordt een netwerk met één kanaal bekeken,
zodat interferentie een grote rol speelt op de doorstroom van het netwerk. Het
netwerk wordt gemodelleerd door een multi commodity flow problem en een
stelling wordt geformuleerd die voldoende en noodzakelijke voorwaarden geeft
waaronder het probleem oplosbaar is. Voor een enkele bron en bestemming
wordt de maximale doorvoer berekend. Het tweede deel van het hoofdstuk breidt
het resultaat uit van het eerste deel door meerdere kanalen waarover data kan
worden verzonden mee te nemen. De stelling wordt uitgebreid om deze kanalen
mee te nemen, wat een basis verschaft voor een algoritme om kanalen toe te
kennen in een draadloos ad hoc netwerk.

Hoofdstuk 6 bekijkt de doorstroom in ad hoc netwerken, rekening houdend
met de parameters van het CSMA /CA protocol met RT'S-CTS in een ad hoc
netwerk. Door verschillende prioriteiten in te stellen voor transmissies over
meerdere hops worden de parameters gemodelleerd. In eerste instantie wordt het
netwerk op packet niveau bekeken en wordt de gemiddelde doorstroom van het
netwerk bepaald. Hierna wordt het netwerk op flow niveau bekeken en wordt de
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doorstroom verdeeld over alle flows, waarbij de impact van de meerdere hops
meegenomen wordt. De leidt tot twee Processor Sharing modellen: Batch arrival
processor sharing (BPS) en Discriminatory processor sharing (DPS). Simulatie
laat zien dat de modellen een nauwkeurige schatting van de doorstroom opleveren
voor kleine netwerken.

Hoofdstuk 7 bekijkt de invloed op de doorstroom van de strijd die tussen de
knopen van het ad hoc netwerk plaatsvindt om het recht te krijgen een signaal
te verzenden. Tijdens elk tijdslot strijden de knopen om het kanaal te mogen
gebruiken, athankelijk van het protocol dat gebruikt wordt. Beginnend met een
Markov keten in discrete tijd modelleren we het gedrag in de tijd die opgedeeld
wordt in tijdsloten. Door gebruik te maken van lange termijn gemiddeld gedrag
zetten we het discrete model om in een Markov keten met continue tijd. Hierbij
wordt er rekening mee gehouden dat sommige knopen als knelpunt op kunnen
treden. De overgangssnelheden in deze keten zijn afhankelijk van de staat
van het systeem zodat verdere benaderingen nodig zijn om resultaten over de
doorstroom te verkrijgen. Door de lange termijn gemiddelde behandeltijd te
gebruiken benaderen we de Markov keten in continue tijd als een productvorm
netwerk. Dit brengt ons in staat om de knelpunten van een ad hoc netwerk
van willekeurige grootte en indeling te vinden de doorstroom te benaderen.
As hoofdresultaat wordt een algoritme gegeven dat al de benaderingsstappen
bevat en zeer nauwkeurige resultaten geeft over de maximale doorstroom dat
een netwerk aankan. Voor een mutlihop tandem netwerk is een limiet resultaat
gevonden voor de capaciteit van het netwerk dat aan de eerste knopen toegekend
wordt in een volledig actief netwerk. Verder wordt een verrassend effect, waar
de locatie van een knelpunt verandert door de toename van de drukte op het
netwerk, correct voorspeld door het algoritme.
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