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Highlights: 

 High-resolution field data supports dynamic equilibrium theory for tidal flats 

 Empirical Orthogonal Function analysis revealed dynamic equilibrium behaviour 

 Tide-induced bottom shear stress shown to regulate morphology of macrotidal systems 

 Lower sediment input may have induced the observed pattern of erosion 
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Abstract 

Dynamic Equilibrium Theory (DET) has been applied to tidal flats to systematically explain 

intertidal morphological responses to various distributions of bed shear stress (BSS). However, it 

is difficult to verify this theory with field observations because of the discrepancy between the 

idealized conceptions of theory and the complex reality of intertidal dynamics. The core relation 

between intertidal morphodynamics and BSS distribution can be easily masked by noise in 

complex datasets, leading to conclusions of insufficient field evidence to support DET. In the 

current study, hydrodynamic and morphodynamic data were monitored daily for one year on two 

tidal flats with contrasting wave exposures. BSS distribution was obtained by validated numerical 

models. Tidal flat dynamic equilibrium behaviour and BSS were linked via Empirical Orthogonal 

Function (EOF) analysis. We show that the principal morphodynamic modes corresponded well 

with the respective modes of BSS found at both sites. Tide-induced BSS was the dominant force 

at both sites, regardless of the level of wave exposure. The overall erosional and steepening trend 

found at the two flats can be attributed to the prevailing action of tidal forcing and reduced 

sediment supply. Hence, EOF analysis confirmed that tidal flat morphodynamics are consistent 

with DET, providing both field and model evidence to support this theory.  
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Introduction  

Tidal flat morphology is continuously shaped by diverse physical and biological processes, e.g. 

tidal currents, wind waves, variability in sediment supply and bioturbation/bioaggregation (Le Hir 

et al., 2000, 2007; Friedrichs, 2011; Green and Coco, 2007; Talke and Stacey, 2008; Stanev et al., 

2009; Green and Coco, 2014; Hunt et al., 2016; Duran-Matute et al., 2016). The long-term 

dynamics of bare tidal flats is widely recognized as being important in the overall sustainability of 

coastal ecosystems, such as saltmarshes and mangroves (Fagherazzi et al., 2006; van der Wal et 

al., 2008; Mariotti and Fagherazzi, 2010, 2013). Recent studies have also identified the short-term 

dynamics of bed level as a major physical disturbance constraining the establishment of intertidal 

biotas (Bouma et al., 2001, 2016; Nambu et al., 2012; Balke et al., 2013, 2014, 2015). Thus, 

understanding intertidal morphodynamics is key to preserving ecosystems and their various 

services (Barbier et al., 2008; Arkema et al., 2015). 

Dynamic equilibrium theory (DET) has been proposed to systematically explain the 

morphological responses of intertidal systems to tidal and wave-induced forcing over various 

timescales (Friedrichs and Aubrey, 1996; Friedrichs, 2011) (Fig. 1). DET assumes that tidal flat 

morphological equilibrium is achieved when the maximum bed shear stress (BSS) is uniform over 

space, ensuring zero net sediment transport (Friedrichs and Aubrey, 1996; Friedrichs, 2011). 

Based on this assumption, tidal-dominated (convex) or wave-dominated (concave) profiles of 

tidal flat equilibrium can be predicted from corresponding BSS distributions. DET further 

illustrates that under varying BSS, the actual tidal flat profile approximates a dynamic 

equilibrium over long timescales, situated somewhere between the purely tide-dominated and 

wave-dominated extremes. Over shorter timescales, tidal-flat morphology may be attracted to one 

or the other extreme depending on BSS variability (Fig. 1). DET can potentially function as a 

unifying concept in that it systematically illustrates the relation between prevailing mode of 

hydrodynamic forcing (in the form of BSS) and intertidal morphodynamics. Other drivers are also 
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included in the DET framework, such as external sediment supply, bioturbation/ bioaggregation, 

and human interference (Friedrichs, 2011). 

As such, DET is an important theory in understanding and predicting intertidal morphodynamics. 

However, it is usually difficult to link or test DET with field observations because of the clear 

discrepancies between theoretical schematization and the complex reality of intertidal 

morphodynamics. As a result, most of the evidence used to support DET are based on numerical 

modelling, which involves intrinsic abstraction of intertidal sediment dynamics (Liu et al., 2011; 

Pritchard et al., 2002; van der Wegen and Jaffe, 2014; Hu et al., 2015a; Maan et al., 2015), while 

there is much less direct field evidence supporting DET (Wang et al., 1999; Yang et al., 2003; 

Bearman et al., 2010; Ni et al., 2014) . The reason that fewer field studies have addressed this 

topic may be attributed to the difficulties in obtaining data sets taken over a sufficient length of 

time and with adequate spatiotemporal resolution, as well as the difficulty in analysing these 

complex data sets. In the few field studies supporting DET, intertidal profile shape and 

morphodynamic behaviours were examined in detail with extensive observations (Yang et al., 

2003; Bearman et al., 2010). However, the driving force, i.e. BSS, was not quantified in concert 

with intertidal morphological evolution in these studies; thus, the correlation between BSS 

distribution and intertidal bed-level evolution, which sits at the core of DET, remains unverified.  

In this study, we aim to provide combined field and modelling evidence for DET by quantitatively 

linking tidal flat dynamic equilibrium behaviour to BSS distribution. Hydrodynamic and bed-

level monitoring was conducted daily for a year (20-Nov-2013 to 20-Nov-2014) on two tidal flats 

with contrasting wave exposure in the Westerschelde Estuary, the Netherlands (Fig. 2). Newly-

developed SED-sensors (Surface Elevation Dynamic sensors) were installed at 12 stations to 

obtain high-frequency data on bed-level dynamics (Hu et al., 2015b). Wave and tidal current data 

were measured simultaneously and used to quantify BSS. The main components of BSS were 
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identified, as well as the relative importance of tidal and wave forcing at these two sites, using 

Empirical orthogonal function (EOF) analysis. In order to demonstrate the underlying dynamic 

equilibrium behaviour, the main components of bed-level dynamics were also identified via EOF 

and analysed in parallel with BSS. Finally, the effect of lower sediment supply on the overall 

morphological trend at these two tidal flats is discussed.  

 

 

2. Materials and methods 

2.1 Field measurements 

The two studied tidal flats in the Westerschelde Estuary have relatively fine sediment, with a 

median sediment grain size (D50) of 72.1 μm at Zuidgors and 26.8 μm at Baarland. The 

instrument set-up to measure bed level is shown in Fig. 2. This year-long daily bed-level 

monitoring was realized by SED-sensors (Surface Elevation Dynamics sensor), recently 

developed by the Royal Netherlands Institute for Sea Research (NIOZ) (Hu et al., 2015b). The 

precision of the SED-sensor is ±2 mm and was compared with a precise manual measurement 

method (sedimentation erosion bars) in an earlier study, with excellent agreement between these 

two measurements (Hu et al., 2015b). SED-sensors rely on daylight and do not work when 

submerged by turbid water. The measuring windows of SED-sensors thus occur during “dry” 

periods under daylight conditions. In the current study, these sensors generally had 1-2 measuring 

windows per day, depending on the tide level. In each window, one valid data point was recorded 

to track the bed-level. When there were no bed-level data due to sensor failure, we substituted 

Differential GPS data obtained at monthly intervals. The DGPS measurement were surveyed 

manually on these two studied tidal flats. Even though the precision of the DGPS data is lower 

than for SED-sensors, typically in the range of 5-10 mm (Nolte et al., 2013), we used them as the 
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only other option during SED-sensor failure.  

Besides bed-level measurements, pressure sensors (OSSI-010-003C; Ocean Sensor Systems, Inc.) 

were used to simultaneously obtain tidal level and wave height data at the measuring frequency of 

5 Hz. The measuring interval and the measuring period for each interval were 15 minutes and 7 

minutes, respectively. In a measurement interval, time-averaged water depth and bulk wave 

parameters (peak wave period and significant wave height) were derived by a MATLAB routine 

based on the standard calculation methods of Tucker and Pitt (2001). This MATLAB routine is 

available online along with detailed descriptions of the method (at 

http://neumeier.perso.ch/matlab/waves.html). The depth-averaged velocity data were obtained 

using ADCPs (Acoustic Doppler Current Profiler) manufactured by Nortek with 2MHz heads 

(Aquadopp Profilers, http://www.nortek-as.com/lib/brochures/aquadopp-profiler/view). The 

Aquadopp Profilers were deployed in the seabed with their heads near the bed surface to ensure 

upward-facing measurements. The blanking distance was 0.1 m. The measuring cells were 

located 0.1 m apart from each other in the water column, and the total number of cells depends on 

the actual water depth. The measuring frequency and interval were 0.2 Hz and 10 mins, 

respectively. The velocity was measured for two complete spring-neap cycles (19-Dec-2013 to 

16-Jan-2014).  

2.2 Hydrodynamic modelling and BSS quantification  

Hydrodynamic parameters, including cross-shore and long-shore current as well as wave height, 

were quantified by numerical models. The modelling results were subsequently used to quantify 

BSS. The modelling of cross-shore and long-shore current was conducted following the method 

described in Le Hir et al. (2000). We calculated the long-shore tidal current at the seaward 

boundary using a package of MATLAB routines called T_TIDE (Pawlowicz et al., 2002), which 

detects the main tidal constituents in the ADCP velocity data via harmonic analysis and 
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subsequently generates time series of velocity data for given periods. Wave modelling was 

conducted using the 1D SWAN (Simulating WAves Nearshore) model (Booij et al., 1999) at each 

site. The applied tidal current and wave models have been successfully applied to the same study 

area in previous studies (Hu et al., 2015a; 2015c) and were validated again using on-site 

hydrodynamic measurements in the current study. Details of the hydrodynamic model setup and 

their validation are included in Appendix A.  

Tidal and wave-induced BSS ( c  and w ) as well as the maximum combined BSS from current 

and wave ( max ) were quantified following Soulsby (1995). BSS over each tidal cycle is 

represented by the 90th percentile value in the corresponding BSS time series, which has been 

found to be a useful measure for both peak forcing magnitude and its duration (Friedrichs, 2011; 

Hu et al., 2015a).  

2.3 EOF analysis 

In order to facilitate EOF analysis,  the obtained data on the 90th percentile BSS values over each 

tide and bed-level dynamics were interpolated to obtain a constant one-day interval (Miller and 

Dean, 2007). The main advantage of working with interpolated data is that the resulting temporal 

eigenfunctions have a constant interval, which facilitates subsequent mode reconstruction and 

spectral analysis. EOF analysis uses a separation of variables approach to isolate the temporal and 

spatial dependence of the data (Miller and Dean, 2007). The original matrix ( , )y x t  can be 

represented by a series of linear combinations of temporal and spatial functions:  

1

( , ) ( ) ( )
n

k k

k

y x t c t e x


              (1) 

in which ( )kc t  and ( )ke x  are the temporal and spatial eigenfunctions, respectively; k=1 to n, 

where n is the least of the number of temporal ( tn ) and spatial ( xn )samples; and ( ) ( )k kc t e x  is 

the reconstructed kth mode of the original data set. The importance of modes decreases with 
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mode order. The temporal eigenfunctions can be further separated as the following:  

( ) ' ( )k k kc t a c t                        (2)
 

where ' ( )kc t  is the normalized temporal eigenfunctions; and ka is a normalizing factor with 

k k x ta n n , where k  is the eigenvalue associated with the kth eigenfunction, which 

represents the contribution of the kth mode to the total variance. The relative contribution of the 

kth mode is given by the following:  

1

100
n

k k k

k

p  


 
  
 

          (3) 

The obtained kp  of each mode indicates its respective importance. As mentioned above, the first 

few modes typically contain the most signals with high kp .  

3. Results 

3.1 Daily bed-level dynamics and BSS 

At both sites, high-frequency bed-level monitoring and BSS modelling showed that there is great 

spatiotemporal complexity in both intertidal bed-level dynamics and hydrodynamic forcing (Fig. 

3). No apparent dynamic equilibrium behaviour was observed. At the upper stations (Z1-Z6 and 

B1-B2) with low BSS, there was no apparent trend of erosion and some stations showed net 

deposition. At the lower stations (Z7-Z9 and B3) with high BSS, net erosion was observed over 

the one-year monitoring period. Furthermore, the BSS at the lower stations (Z8-Z9 and B2-B3) 

generally showed two peaks in a month, which could correspond to spring-neap circles, whereas 

the BSS at upper stations of the exposed site (Z1-Z7) seemed to vary more randomly. 

3.2 Percentage of the total variability represented by the first three eigenfunctions 

Results of the EOF analysis are summarized in Table 1, which shows that the first few 

eigenfunctions explained the majority of variation in bed dynamics and BSS at each site. The first 
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two eigenfunctions of bed-level dynamics described more than 90% of the total variance of the 

respective variables (Table 1). As the remaining eigenfunctions showed no recognizable or 

coherent patterns, they were excluded from all following analyses in order to retain the most 

parsimonious representation of the data.  

3.3 Tidal vs. wave forcing 

The EOF analysis of c , w  and max  showed that c  is the dominating forcing at both sites, 

regardless of differences in wave exposure (Fig. 4). As the 1
st
 eigenfunctions of c , w  and max  

explained more than 88% of their respective total variances (Table 1), only the 1
st
 eigenfunctions 

were analysed and compared. At both sites, the spatial and temporal eigenfunctions of c  were 

very similar to those of max , whereas the eigenfunctions of w  were not similar to those of max  

(Fig. 4). This indicates that c  composed the bulk of max  and that the influence of w  on max  

was minor at both sites, regardless of wave-exposure condition.  

The different wave exposure at the two study sites was however reflected in the temporal 

eigenfunctions of w . At the sheltered Baarland site, the temporal eigenfunctions of w  were 

consistently close to zero, implying negligible wave forcing (Fig. 4d). At the exposed Zuidgors 

site, however, the temporal eigenfunction of w  showed relatively strong wave forcing during the 

first 100 days, corresponding to the winter season with larger incident waves (Fig. 4c). At this 

site, the spatial eigenfunction of  peaked at Z6, where breaking waves were frequent (Fig. 4a).  

3.4 Relation between max  and bed-level dynamics based on EOF analysis 

In order to examine the relation between max  distribution and bed-level dynamics, their spatial 

eigenfunctions were analysed for correlation (Fig. 5). For both sites, the 1
st
 and 2

nd
 spatial 

eigenfunctions of bed-level dynamics showed strong correlations with the corresponding 

eigenfunctions of max . This indicates that the main intertidal morphodynamic trend is closely 

linked to BSS distribution. The correlation coefficients were all negative, supporting the DET 

w
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principle that strong forcing leads to erosional trends and weak forcing leads to depositional 

trends. At the Zuidgors site, the correlations between bed-level dynamics and max  were 

significant for both the 1
st
 (r = -0.90, p = 0.04<0.05) and 2

nd
 (r = -0.97, p = 0.01<0.05) spatial 

eigenfunctions (Fig. 5a, 5c). The original data was subsampled prior to correlation analysis in 

order to avoid spatial autocorrelation (Appendix B).  

At the Baarland site, the correlations between bed-level dynamics and max  were r=-0.99, 

p=0.10>0.05 for the 1
st
 eigenfunctions and r=-0.95, p=0.21>0.05 for the 2

nd
 eigenfunctions, 

respectively (Fig. 5b, 5d). The statistically insignificant correlations (p>0.05) were probably 

related to lack of power due to small sample sizes (n=3). Nonetheless, the obtained high r-values 

show considerable correlation between the spatial eigenfunctions of bed-level dynamics and 

max . Furthermore, it is noted that at both sites, the 1
st
 spatial eigenfunctions of max  and bed-

level dynamics are consistent with the tidal-dominated profiles as described in Fig. 1.  

The temporal eigenfunctions of bed-level dynamics may seem chaotic (e.g. Fig. 4c, 4d and insets 

in Fig. 5), but spectral analysis revealed that the main temporal fluctuations (c1(t) and c2(t)) of 

max  and bed-level dynamics coincided with each other (Fig. 6). For both sites, the peaks in the 

spectrum of the 1st max  temporal eigenfunctions were at frequencies close to zero, which 

corresponds to inter-annual variations (Fig. 6a, 6b). Similar peaks in the spectrum close to zero 

frequency were also observed in the spectrum of the 1st bed-level temporal eigenfunctions (Fig. 

6c, 6d). The similarity in max  and bed-level temporal eigenfunctions indicates that the temporal 

variation in hydrodynamic forcing exerted a strong impact on intertidal morphodynamics, and the 

temporal variations of both hydrodynamic forcing and bed-level had time scales longer than one 

year. Similar correspondence was also found in the spectrum of the 2
nd

 max  and bed-level 

temporal eigenfunctions (Fig. 6). For both sites, the peaks in the spectrums of the 2
nd

 

eigenfunctions were at the frequency 0.00274 cycles/day, corresponding to annual variations. This 
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further confirms the regulating role of max  on bed-level dynamics.  

The spectrum of bed-level dynamics did not correspond to the subordinate peaks in the spectrum 

of max  temporal eigenfunctions (SP1-SP3 in Fig. 6a, 6b). These subordinate peaks can be 

recognized as representing lunar-month cycles, spring-neap cycles and 9.6-day cycles in max . 

This indicates that at our study sites, these relatively short-term variations in hydrodynamic 

forcing have no apparent effect on annual-scale, bed-level dynamics. These subordinate peaks in 

the max  spectrum likely stemmed from tidal constituents detected by T_TIDE (Appendix A).  

Combined eigenfunctions (reconstructed modes) were quantified to synthesize the spatiotemporal 

variations of bed-level dynamics and max (Fig. 7). These combined eigenfunctions further show 

that bed-level dynamics at both sites were closely linked to the corresponding modes of BSS. The 

1st modes of bed-level dynamics at both sites showed overall erosion and steepening trends (Fig. 

7a, 7b). The steepening trend at both sites became more apparent towards the end of the 

monitoring period. These morphodynamic trends are consistent with the spatial distribution of the 

reconstructed 1
st
 modes of max , which were stronger at the lower stations and weaker at the 

upper stations (Fig. 7c, 7d). This spatial distribution was maintained over time, despite the 

temporal variation in peak magnitude. This observed linkage in the 1st combined eigenfunctions 

supports the case of the tide-dominated profiles as depicted in Fig. 1. 

The 2
nd

 combined eigenfunctions of bed-level dynamics also corresponded with the matching 

modes at both sites (Fig. 7e-h). Spatially, most of these dynamics occurred around the middle of 

both tidal flats (stations Z5-Z6 and B2). The peaks and troughs of the reconstructed max  were 

also located at these stations. Temporally, the reconstructed bed-level dynamics showed an annual 

cycle, i.e. erosion during ca. the first 200 days and deposition during the rest of the period (Fig. 

7e-7f). Correspondingly, reconstructed max  was generally stronger in the first 200 days and 

weaker during the rest of the monitoring period (Fig. 7g-7h). Thus, both temporal and spatial 
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modes of the reconstructed max  were echoed in the reconstructed bed-level dynamics. The 

reasons for this seasonality will be addressed in the Discussion section. 

4. Discussion 

4.1 Direct field evidence supporting DET 

No prior physical assumptions are made in EOF analysis. Therefore, the resulting modes 

(eigenfunctions) do not have any predefined physical significance. Yet, EOF analysis showed that 

the main temporal and spatial modes of bed-level dynamics correspond well with those of BSS. 

This demonstrates the regulating role of BSS distribution on intertidal morphodynamics, which is 

consistent with DET (Friedrichs and Aubrey, 1996; Friedrichs, 2011; Hu et al., 2015a). At both 

sites, tide-induced BSS was the dominant force, and the resulting bed-level dynamics carried a 

clear signature of tidal dominance, leading to steeper profiles of the tidal flats. Similar steepening 

trends have been found at many offshore tidal flats (i.e. tidal flats surrounded by water) in the 

Westerschelde Estuary (de Vet et al., 2017).  

Importantly, we have expanded upon previous field studies (Yang et al., 2003; Bearman et al., 

2010), and verified that tidal flat dynamic equilibrium behaviour is closely linked to BSS 

distribution, which is the core principle of DET. Primarily explored by numerical modelling 

(Pritchard et al., 2002; Liu et al., 2011; van der Wegen and Jaffe, 2014; Hu et al., 2015a; Maan et 

al., 2015), this correlation has rarely been addressed by field measurements. Thus, the obtained 

data on daily bed-level dynamics and their strong correlation with simulated hydrodynamic 

forcing provide combined field and modelling evidence in support of DET.  

It is often difficult and costly to obtain high-resolution morphodynamic and BSS data. 

Additionally, the obtained raw data are generally complex (e.g. see Fig. 3), which may mask the 

underlying dynamic equilibrium mechanism. In the current study, BSS was calculated using 

validated hydrodynamic models, and the daily bed-level monitoring was achieved through using 
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novel SED-sensors (Hu et al., 2015b). These automatic sensors are relatively low-cost and easy to 

install in field, which makes them suitable for large-scale monitoring programs requiring high 

spatiotemporal resolution. EOF analysis was successfully employed in the current study to filter 

noisy data. It was able to identify the main components in hydrodynamic forcing and intertidal 

morphodynamics, which facilitated subsequent interpretations of the tidal flat dynamic 

equilibrium behaviours.  

The main limitation of the SED-sensors is that they take point measurements. Future studies 

could combine marine radar technology with SED-sensors to explore tidal flat dynamic 

equilibrium behaviours over larger scales while maintaining high monitoring resolution (Bell et 

al., 2016; Bird et al., 2017), and thus lead to improvements in current understanding of DET and 

morphological modelling. 

4.2 Hydrodynamic forcing at two contrasting sites 

The respective roles of tidal and wave forcing on intertidal sediment transport and 

morphodynamics have been frequently discussed in the literature (Allen and Duffy, 1998; 

Friedrichs, 2011; Green and Coco, 2014; Hu et al., 2015a; Maan et al., 2015; Hunt et al., 2016). 

Two tidal flats were monitored in the current study to test if different levels of wave exposure can 

lead to contrasting dynamic equilibrium behaviours. However, despite the dissimilarity in wave 

exposure, tidal current was identified as the driving force in the two investigated macrotidal sites 

(mean tidal range>4 m). The dominance of tidal forcing has been identified by previous studies in 

other macrotidal systems (Allen and Duffy, 1998; Pritchard et al., 2002; Friedrichs, 2011). Wave-

induced erosion was apparent during storms at the exposed site (Hu et al., 2015b), which can 

influence some of the critical ecological processes in the intertidal environments, such as marsh 

seedling establishment (Balke et al., 2014; Bouma et al., 2016). However, the occurrence of 

storms at this site was too low to have a strong impact on the overall morphological equilibrium. 
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This limited influence of storms on long-term morphology was also found in a recent modelling 

study conducted in the same study area (Dam et al., 2016). The 2
nd

 modes of max  at both sites 

showed apparent seasonality. For the exposed Zuidgors site, the seasonality may be partly 

attributed to seasonal wave forcing (Callaghan et al., 2010). For both sites, this seasonality may 

be also related to variations in seasonal tidal forcing (lower two panels of Fig. 4). Similar 

seasonal variations in tidal forcing have been identified in previous studies (Allen and Duffy, 

1998; Harrison et al., 2017).  

4.3 Sediment supply and management implications 

Besides hydrodynamic forcing, tidal flat dynamic equilibrium is also closely related to external 

sediment supply (Friedrichs, 2011). A recent study has illustrated that mean sediment 

concentration level determines the uniform BSS of the dynamic equilibrium system (i.e. E  
in 

Fig. 1) (Hu et al., 2015a). Conceptually, E  defines the exact amount of sediment in the water 

column needed to maintain a constant sediment concentration in the system, i.e. without losing 

sediment to the seabed or gaining sediment from the seabed and thus resulting in a morphological 

equilibrium state. Therefore, the mean sediment concentration and the corresponding E  

essentially determine the dynamic equilibrium of a tidal flat over the considered timescale. This is 

logical as the mean sediment concentration level in a study area generally accounts for various 

effects, including local hydrodynamic forcing, sediment supply as well as 

bioturbation/bioaggregation, which can be regarded as a synthetic indicator for intertidal 

equilibrium. When the external sediment supply increases or decreases, E  varies accordingly. 

As shown in Fig. 1, when E  increases or decreases, the trend of deposition or erosion changes 

even though c  or w  is kept constant. Thus, external sediment supply can effectively influence 

tidal flat dynamic equilibrium behaviour (Friedrichs, 2011). It should be noted that idealization of 

E  to reach morphological equilibrium ignores Eulerian (i.e., local, time-dependent) 

asymmetries, e.g. asymmetrical flood/ebb peak velocities. This stems from the compact concept 
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of DET, which neglects Eulerian asymmetries and focuses only on Lagrangian (spatial) 

asymmetries (Friedrichs, 2011). As the aim of our study is to find evidence of DET, we adopted 

the same assumptions as DET.  

At our study sites, sediment supply was probably high in the period 1997-2005, due to transport 

of dredged sediment disposed just west of the Zuidgors site, and this supply is now likely in 

decline. Therefore, even when encountering the same level of forcing, these tidal flats are more 

prone to erosion, which may explain the observed general trend in bed-level dynamics at both 

sites. Bed erosion undermines coastal defence and the ecological values of tidal flats (Callaghan 

et al., 2010; Temmerman et al., 2013; Bouma et al., 2016). Therefore, it is important to maintain a 

sufficient level of sediment supply to prevent long-term erosion. Sediment supply is generally 

determined by larger-scale processes, in which numerous natural and anthropogenic factors play 

roles. For example, sediment supply in the Yangtze River Estuary has decreased dramatically due 

to upstream damming, which poses a great challenge to coastal management (Yang et al., 2006; 

Dai and Liu, 2013; Dai et al., 2014, 2016). As a countermeasure, it may be beneficial to use 

dredged sediment to nourish tidal flats. A pilot project in the Netherlands has shown that tidal flat 

nourishment is effective in mitigating erosion (van der Werf et al., 2015), and this result is worthy 

of further experimentation.  

5. Conclusions  

The current study has expanded upon previous field work and indicates that the observed 

dynamic equilibrium behaviour in these tidal flats is closely linked to modelled BSS distributions. 

Under the prevailing action of tidal forcing, the intertidal morphodynamic trends supported 

predictions by DET on both the monitored tidal flats, thus providing combined field and 

modelling results as evidence. The contrasting wave exposure on the two tidal flats did not result 

in any apparent differences in the overall BSS distribution pattern and bed-level dynamics. This 

ACCEPTED MANUSCRIPT



AC
CEP

TE
D M

AN
USC

RIP
T

17 
 

implies that tide current plays a larger role than waves in the studied macrotidal system. The 

overall erosion and steepening trends at both sites was attributed to the combined effect of 

hydrodynamic forcing and reduced sediment supply. In line with DET, the decline in sediment 

supply leads to lower levels of the conceptual parameter uniform BSS ( E ). Consequently, both 

tidal flats are prone to erosion even if the encountered hydrodynamic forcing is constant. Tidal 

flat nourishment may be an effective measure to prevent erosion and protect these valuable 

intertidal ecosystems.  
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Appendix A. Validation of hydrodynamic models and BSS 

quantification  

Hydrodynamic models were built to provide complete data sets of tidal currents and waves when 

there were no measurements available. Wind-wave propagation was simulated using a spectral 

model, i.e. SWAN (Simulating Waves Nearshore) (Booij et al., 1999). Wave shoaling, breaking, 

and bottom friction processes on tidal flats were explicitly accounted for in this model. At each 

site, a 1-D modelling domain was built along the measuring transect (Fig. 2). The spatial 

resolution of a computation domain is 1 m. Each model domain was forced by incident waves 

with a Joint North Sea Wave Project spectrum at the seaward boundary (default setting in 

SWAN), while the wind-induced wave growth was excluded (Hu et al., 2015a). The bulk 

parameters of the incident waves, i.e. significant wave height and peak wave period, were 

provided by the most seaward station at each site. In the current study, the default model 

parameter setting was applied. For more details, please see http://swanmodel.sourceforge.net.  

In order to evaluate the performance of the wave model, the modelling results were compared to 

the measurements obtained from the 9 wave stations during both stormy (20-Nov-2013 to 14-Jan-

2014) and calm (13-Jun-2014 to 16-Jul-2014) seasons (Fig. A.1). The measuring interval was 15 

minutes. At both sites, the wave modelling results were in good agreement with the obtained 

measurements. The R
2
 value and sampling size (n) at the Zuidgors and Baarland sites were 0.94 

(n=19410) and 0.66 (n=8983), respectively. 

Cross-shore and long-shore tidal currents were also modelled in the current study. Tidal current 

modelling shared the same computation domains of those used in wave modelling. Cross-shore 

current was modelled following water volume conservation, which has been widely used in 

previous studies (Friedrichs and Aubrey, 1996; Le Hir et al., 2000). As the tide rises, the water 

line moves landward, resulting in onshore flows. The volume of water that must pass through the 

vertical long-shore plane at location x must equal the increase of water volume in the landward 
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direction of the long-shore plane (ΔV). The water volume changes can be readily determined by 

tracking the tidal level fluctuation, if we assume tidal levels are always horizontal. Subsequently, 

the cross-shore current (uc(x)) that causes this ΔV in a time interval of Δt can be determined as the 

following:  

( )
( )

( )
c

V x
u x

th x





         (A.1) 

where h(x) is the local water depth. Bed friction is not included in the quantification of uc.  

The long-shore tidal current velocity is derived following the classic method described in Le Hir 

et al., (2000). This approach is commonly applied as a simple method to derive long-shore current 

velocity distribution when long-shore tidal velocity at one particular water depth is known. In our 

case, this one particular location was at the tidal flat seaward boundary. Long-shore tidal velocity 

at the seaward boundary (ul_sea) was predicted by a MATLAB package called T_TIDE 

(Pawlowicz et al., 2002). We firstly used T_TIDE to perform harmonic analysis of the long-shore 

component of the measured current velocity data at the most seaward station. The harmonic 

analysis derives local constituents of tidal current velocity. This is similar to the common 

derivation of tidal constituents using water level data. Then, based on the obtained tidal current 

constituents, T_TIDE can be applied to generate ul_sea time series at any given time. Finally, the 

long-shore tidal current at each location (ul(x)) was quantified by balancing the bed friction 

distributed over the water column and the long-shore water surface slope in depth-averaged 

momentum equation following Le Hir et al., (2000). The bed friction was assumed to be 

proportional to the square of the depth-averaged velocity: 

(g
𝜕𝜂

𝜕𝑦
= −

𝑓𝑐𝑢𝑙(𝑥)2

ℎ(𝑥)
)      (A.2) 

where 𝑓𝑐  is a constant friction factor. We further assumed that the water level gradient is uniform 

on a tidal flat transect, since the tide propagation often has a much larger spatial scale than a 
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typical transect. Then ul(x) can be determined as the following: 

_sea

(x)
( )l l

sea

h
u x u

h
       (A.3)  

where hsea is the water depth at the seaward boundary. The long-shore water levels are assumed to 

be uniform in space, and they are set as the water levels of the most seaward pressure sensor 

stations. The total velocity can be determined as the following: 

2 2

c lu u u                   (A.4)  

The angle between cross-shore and long-shore current is described by the following equation: 

1tan ( )l

c

u

u
 

  

               (A.5) 

The cross-shore velocity at our study sites is in the order of 0.1 m/s, and the long-shore velocity is 

in the order of 1 m/s. The cross-shore velocity is much smaller comparing to the long-shore 

velocity, which is probably due to the small width of the studied tidal flats (40-400 m). At both 

sites, the velocity modelling results were generally consistent with the measurements (Fig. A.2). 

The measurements were conducted from 19-Dec-2013 to 16-Jan-2014 at the stations shown in 

Fig. 2. The measuring interval was 10 minutes. The R
2
 value and sampling size (n) of total 

velocity at Zuidgors and Baarland sites were 0.86 (n=5721) and 0.76 (n=3111), respectively. A 

relative bias (Rel.bias) is defined as the following: 

        (A.6) 

The Rel.bias of the tidal current velocity was -0.147 for the Zuidgors site and -0.187 for the 

Baarland site. Thus, the tidal current models slightly underestimated the tidal current velocity at 

both sites. Since the modelled velocity was generally in good agreement with the measurements, 

neglecting bed friction in uc may not lead to large modelling errors.  

mod1

1

( )
Re .

n i i

el obsi
n i

obsi

l bias 



 







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Based on the wave and tidal current modelling results, we derive the combined BSS from wave 

and current following (Soulsby, 1995). The magnitude of BSS induced by current is defined as 

the following:  

 𝜏𝑐 = 𝜌𝑓𝑐𝑢2        (A.7)   

where ρ is water density, and 𝑓𝑐 = 0.002 is a constant friction factor for currents (Roberts 

et al., 2000). It is noted that the applied 1D tidal velocity model equals depth-averaged 

velocity with the near-bed shear velocity, which may lead to some inaccuracy in BSS 

estimation. However, we think this model can still provide satisfactory enough estimation 

of BSS for analyzing the link between hydrodynamic forcing and tidal flat dynamic 

equilibrium. The same assumption has been applied in a number of previous studies on 

morphodynamic modelling (e.g. Equation 7. of Robert et al., 2000; Equation 15. of 

Callaghan et al., 2010; Equation 3. of Maan et al., 2015; Equation 6. of Hu et al., 2015b). 

The magnitude of wave-induced BSS is defined as the following (Soulsby, 1995):  

          (A.8) 

where  is the root-mean-square value of the maximum orbital motion near the 

bottom. This was part of the output from the SWAN models applied to both sites. The 

parameter fw is a friction factor for waves: 

     (A.9) 

20.5wave w wavef u 

waveu

0.52

1.39
/ 30

w

s

f
k




 
  

 
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in which  is particle excursion amplitude near the bed, which was also part of the 

output from the SWAN models.  

An example of modelled tidal current, wave height as well as 𝜏𝑐 and 𝜏𝑤 is shown in Fig. 

A.3. Stations Z7 and B2 were chosen for demonstration and comparison purposes since 

these two stations have similar elevations (i.e. 0.3–0.45 m NAP for Z7 and 0.2–0.3 m 

NAP for B2). It is clear that the water level fluctuation is similar at both stations. The 

tidal current velocity and associated 𝜏𝑐 are slightly stronger at station Z7 compared with 

station B2, whereas the wave height and 𝜏𝑐 are much larger at station Z7 compared with 

station B2.  

The mean BSS in a wave cycle under combined waves and currents is calculated as the 

following (Soulsby, 1995): 

  

           

(A.10) 

The maximum BSS in a wave cycle is calculated as the following (Soulsby, 1995): 

         (A.11) 

 

Appendix B. Spatial autocorrelation check 

In the current study, correlation analysis between the spatial eigenfunctions of max  and bed level 

dynamics was conducted to reveal the relation between BSS and intertidal morphodynamics. As 

any statistical analysis requires independent data sets, we performed spatial autocorrelation 

analysis of the obtained spatial eigenfunctions prior to correlation analysis. The spatial 


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1 1.2 wave
m cur

cur wave


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autocorrelation level was measured by Moran’s I (i.e. I(d)), which is a function of distance (d) 

between the monitoring station sequence (Fortin and Dale, 2005).  
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
    (B.1) 

where xi and xj are the spatial eigenfunction values at station i and j, respectively; x
 
is the spatial 

mean value of all the n stations; Wij = 1, when the distance between xi and xj is d; Wij = 0, for all 

other cases; W is the sum of the Wij matrix. If d=1, the examined data set is the original data set. If 

d=2, the examined data set is the data from every other station in the original data set. Based on 

Equation (B.1), the spatial autocorrelation level of the spatial eigenfunctions of max  and bed 

level dynamics was obtained (Table B.1). 

If an original dataset has a Moran’s I higher than 1/e or lower than -1/e, it needs to be subsampled 

to obtain an independent data set with a lower spatial autocorrelation level. At the Baarland site, 

the absolute values of Moran’s I in both spatial eigenfunctions of max  and bed level dynamics 

were smaller than the 1/e threshold. This indicates the original datasets (with distance equal to 1) 

have a low level of autocorrelation(Fortin and Dale, 2005). Thus, these spatial eigenfunctions can 

be regarded as independent datasets ready for correlation analysis. For the Zuidgors site, however, 

the absolute values of Moran’s I of the original spatial eigenfunctions were higher than the 1/e 

threshold. Therefore, these datasets were autocorrelated, and needed subsampling to generate 

independent data. Table B1 further shows that when the sampling distance increased to 2, the 

absolute values of Moran’s I dropped below the 1/e threshold. Therefore, we used a subsampling 

distance of 2 to obtain independent datasets for the spatial eigenfunctions for correlation analysis 

at this site.  

  

ACCEPTED MANUSCRIPT



AC
CEP

TE
D M

AN
USC

RIP
T

28 
 

Figure and table Captions 

 

Fig. 1. Conceptual diagram of the Dynamic Equilibrium Theory (DET) of tidal flats, as proposed 

by Friedrichs (2011). The patterns in bed shear stress (BSS) induced by tidal currents (τc) and 

waves (τw) result in contrasting spatial distributions of sediment across flats. Where bed shear 

stress is higher than the uniform BSS associated with tidal flat equilibrium (τE), erosion tends to 

occur. Where BSS is lower than τE, deposition tends to occur. The sediment distributions resulting 

from tidal and wave forcing lead to corresponding tide-dominated (convex) and wave-dominated 

(concave) profile shapes. With constantly changing BSS, an actual tidal flat typically lies 

somewhere between tide-dominated and wave-dominated profiles, and is driven towards one or 

the other extreme depending on the prevailing mode of hydrodynamic forcing.  

 

Fig. 2. (a) Study sites in the Westerschelde estuary, southwestern Netherlands. (b) Suspended 

sediment concentration data in the estuary were collected at the Terneuzen SPM (Suspended 

Particulate Matter) station. (c) The Zuidgors site is exposed to waves, whereas the Baarland site is 

sheltered from waves because of the blockage of a seaward shoal. (d & e) Monitoring profiles at 

Zuidgors and Baarland are shown. The shown elevation was adjusted to the NAP (Normal 

Amsterdam Peil) reference. Note the 10-fold difference in the x-axis scale between panels d and 

e. The sticks inserted in the bed represent SED-sensors. Filled squares and open stars represent 

pressure sensors for wave measurement and ADCP for velocity measurement, respectively. 

Stations with open squares did not have pressure sensors installed.  
 

Fig. 3. Bed-level position (blue dots and open circles) and combined maximum BSS due to tidal 

current and waves (τmax, red lines) at the Zuidgors (exposed) and Baarland (sheltered) stations. 

The bed-level position of each station was set as zero at the beginning of the measurements. Blue 

dots represent the data measured by SED-sensors. When there were data gaps due to SED-sensor 

failure, monthly DGPS surveys (blue circles) were used as complementary data. 

 

Fig. 4. (a & b) The 1
st
 spatial eigenfunctions (e1) of τc, τw and τmax at the exposed Zuidgors and 

sheltered Baarland sites, respectively. The variable e1 represents the primary component of the 

spatial variation in these forces. (c & d) The 1
st
 temporal eigenfunctions (c1) of τc, τw and τmax at 

the two sites, respectively; c1 represents the corresponding temporal components of e1 in these 

forces. 

 

Fig. 5. (a & b) Comparisons between the 1
st
 spatial eigenfunctions (e1) of τmax and bed-level 

dynamics at the Zuidgors and the Baarland sites, respectively. (c & d) Comparisons between the 

2
nd

 spatial eigenfunctions (e2) of τmax and bed-level dynamics at the Zuidgors and the Baarland 

sites, respectively. The parameters e1 and e2 represent the two most important eigenfunctions 

describing spatial variation.   

 
Fig. 6. Spectrum distribution of the temporal eigenfunctions of τmax (a & b) and bed-level 

dynamics (c & d). Both the 1
st
 and 2

nd
 temporal eigenfunctions (c1(t) and c2(t)) are shown. SP1-

SP3 in (a) and (b) represent subordinate peaks in the spectrums.  
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Fig. 7. Reconstructed 1
st
 modes (i.e. 1st combined eigenfunctions) of bed-level changes and τmax 

at both sites (a-d), and reconstructed 2
nd

 modes (i.e. 2
nd

 combined eigenfunctions) of the bed-level 

changes and τmax at both sites (e-h). The reconstructed 1
st
 and 2

nd
 modes represent the dominant 

meaningful signals of a data set. The percentage of variance explained by each mode is indicated 

in each panel. Please note the differing colour scales in each panel, and that for demonstration 

purposes, data points were interpolated between two stations. 

 

Fig. A1. Comparison between the modelled and measured significant wave height (Hs). The 

shown data were obtained from all 9 wave stations at both sites (see Fig. 2 for station locations). 

 

Fig. A2. Comparison between the modelled and measured velocity. The velocity data were 

obtained at 6 ADCP stations shown in Fig.2.  

 

Fig. A3. Water level, tidal current velocity, significant wave height (Hs) as well as BSS induced 

by currents and waves at station Z7 of the Zuidgors site and station B2 of the Baarland site, in 

which tidal current velocity, Hs and BSS were derived by modelling. The locations of Z7 and B2 

station are shown in Fig.2. 

 

Table 1. Relative contribution of mode k to the total variability (pk) 

Table B1. Moran’s I values of the spatial eigenfunctions of max  and bed level dynamics at both 

sites. 
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Fig. 1. Conceptual diagram of the Dynamic Equilibrium Theory (DET) of tidal flats, as proposed by 

Friedrichs (2011). The patterns in bed shear stress (BSS) induced by tidal currents (τc) and waves (τw ) 

result in contrasting spatial distributions of sediment across flats. Where bed shear stress is higher than the 

uniform BSS associated with tidal flat equilibrium (τE), erosion tends to occur. Where BSS is lower than 

τE , deposition tends to occur. The sediment distributions resulting from tidal and wave forcing lead to 

corresponding tide-dominated (convex) and wave-dominated (concave) profile shapes. With constantly 

changing BSS, an actual tidal flat typically lies somewhere between tide-dominated and wave-dominated 

profiles, and is driven towards one or the other extreme depending on the prevailing mode of 

hydrodynamic forcing.  
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Fig. 2. (a) Study sites in the Westerschelde estuary, southwestern Netherlands. (b) Suspended sediment 

concentration data in the estuary were collected at the Terneuzen SPM (Suspended Particulate Matter) 

station. (c) The Zuidgors site is exposed to waves, whereas the Baarland site is sheltered from waves 

because of the blockage of a seaward shoal. (d & e) Monitoring profiles at Zuidgors and Baarland are 

shown. The shown elevation was adjusted to the NAP (Normal Amsterdam Peil) reference. Note the 10-

fold difference in the x-axis scale between panels d and e. The sticks inserted in the bed represent SED-

sensors. Filled squares and open stars represent pressure sensors for wave measurement and ADCP for 

velocity measurement, respectively. Stations with open squares did not have pressure sensors installed.  
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Fig. 3. Bed-level position (blue dots and open circles) and combined maximum BSS due to tidal current 

and waves (τmax, red lines) at the Zuidgors (exposed) and Baarland (sheltered) stations. The bed-level 

position of each station was set as zero at the beginning of the measurements. Blue dots represent the 

data measured by SED-sensors. When there were data gaps due to SED-sensor failure, monthly DGPS 

surveys (blue circles) were used as complementary data. 
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Fig. 4. (a & b) The 1st spatial eigenfunctions (e1) of τc, τw and τmax  at the exposed 

Zuidgors and sheltered Baarland sites, respectively. The variable e1 represents the 

primary component of the spatial variation in these forces. (c & d) The 1st 

temporal eigenfunctions (c1) of τc, τw and τmax at the two sites, respectively; c1 

represents the corresponding temporal components of e1 in these forces. 
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Fig. 5. (a & b) Comparisons between the 1st spatial eigenfunctions (e1) of τmax  and bed-level 

dynamics at the Zuidgors and the Baarland sites, respectively. (c & d) Comparisons between 

the 2nd spatial eigenfunctions (e2) of τmax and bed-level dynamics at the Zuidgors and the 

Baarland sites, respectively. The parameters e1 and e2 represent the two most important 

eigenfunctions describing spatial variation.   
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Fig. 6. Spectrum distribution of the τmax temporal eigenfunctions (a & b) and bed-level 

dynamics temporal eigenfunctions (c & d). Both the 1st and 2nd temporal eigenfunctions 

(c1(t) and c2(t)) are shown. SP1-SP3 in (a) and (b) represent subordinate peaks in the τmax   
spectrum.  
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Fig. 7. Reconstructed 1st modes (i.e. 1st combined eigenfunctions) of bed-level changes and τmax  at both 

sites (a-d), and reconstructed 2nd modes (i.e. 2nd combined eigenfunctions) of the bed-level changes and 

τmax  at both sites (e-h). The reconstructed 1st and 2nd modes represent the dominant meaningful signals 

of a data set. The percentage of variance explained by each mode is indicated in each panel. Please note 

the differing colour scales in each panel, and that for demonstration purposes, data points were 

interpolated between two stations. 
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Fig. A1. Comparison between the modelled and measured significant wave height (Hs). 

The shown data were obtained from all 9 wave stations at both sites (see Fig. 2 for station 

locations). 
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Fig. A2. Comparison between the modelled and measured velocity. The velocity data were 

obtained at 6 ADCP stations shown in Fig.2.  
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Fig. A3. Water level, tidal current velocity, significant wave height (Hs) as well as BSS induced 

by currents and waves at station Z7 of the Zuidgors site and station B2 of the Baarland site, in 

which tidal current velocity, Hs and BSS were derived by modelling. The locations of Z7 and B2 

station are shown in Fig.2. 
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Table 1. Relative contribution of mode k to the total variability (pk) 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Data set 
Percent variance explained (pk) 

e1(x) e2(x) e3(x) Remaining 

Zuidgors, bed  dynamics 83.21% 10.83% 2.35% 3.61% 

Zuidgors, max  95.21% 3.21% 1.01% 0.57% 

Zuidgors, c  98.12% 1.46% 0.33% 0.09% 

Zuidgors, w  88.37% 8.56% 1.41% 1.66% 

Baarland, bed  dynamics 94.89% 3.28% 1.83% - 

Baarland, max  97.67% 2.19% 0.14% - 

Baarland , c  97.66% 2.18% 0.16% - 

Baarland, w  89.76% 9.34% 0.90% - 
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Item Zuidgors Baarland 

Distance (d) 
 

1 2 1 

max  0.4791 0.1391 -0.0756 

Bed-level dynamics 0.3911 0.1315 -0.1044 

Table B1. Moran’s I values of the spatial eigenfunctions of 

max  and bed level dynamics at both sites. 
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