PHYSICAL REVIEW E

VOLUME 52, NUMBER 6

DECEMBER 1995

Smoluchowski approach for three-body reactions in one dimension
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We present an extension of the Smoluchowski approach for the analysis of diffusion-limited three-
body reactions in one-dimensional systems. In terms of this approach we define the evolution of the par-
ticles’ mean concentration over the entire time domain.
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I. INTRODUCTION

Within recent years there has been much interest [1-3]
in the kinetics of n-body diffusion-limited reactions

A+A+ - +4

and particularly in how accurate are descriptions in
terms of the conventional rate equations

dC(t) _
dt

where C(t) denotes the mean concentration of A parti-
cles at time ¢ and k(z) is the corresponding rate
coefficient.

Most effort in this field has been invested in the under-
standing of bimolecular (n=2) reaction kinetics [1-3].
It was realized (see, e.g., Refs. [4] and [5]) that the rate
equation (2) with n=2 yields a qualitatively correct
description of the C(¢) evolution, provided that the rate
coefficient k(t) is calculated in terms of the mean-field
Smoluchowski approach (SA) [6].

The behavior of the Smoluchowski rate coefficient (SR)
turns out to be very sensitive to the spatial dimensionality
d of the system in which the reaction takes place. In
three dimensions (3D) k(¢) tends to a constant value,
proportional to the particles’ diffusion constant D, and
to the reaction radius R. Consequently, at long times in
3D C(t) decreases as an inverse power of D Rt [6]. In
1D the SR follows [3,7] k(¢)x(D ,/t)!/? as t— o and
thus C(¢) < 1/(D 4¢)'/2. The exact solution of the 1D re-
action [7] shows that the SA predicts an adequate quali-
tative dependence on the pertinent parameters, D 4, R,
and ¢, while the prefactors have to be somewhat modified.
Finally, 2D is the marginal case, for which the SR van-
ishes logarithmically, k() =D , /In(D 4t /R?), and hence
C(t) displays logarithmic corrections to the conventional
1/t dependence, C(t) x<In(D 4t /R?)/D 4t [3,8]. Explicit
forms for the SR were found also for bimolecular reac-
tions taking place in fractal systems and in the case of

particles whose motion was not diffusive (see, e.g., Refs.
[1,2]).

(n terms)—0 (1)

—k()C™t), (2)
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For higher-order reaction schemes, e.g., three-body re-
actions (n=3), the case is less transparent. Most work
pertains to complex chemical situations involving three-
body reactions as an elementary step and focuses on the
analysis of bifurcation structures, such as multistable
states, oscillations, chemical waves, and chemical chaos
[9-12]. The kinetics of diffusion-limited three-body reac-
tions has been less studied. The question of the effects of
particle diffusion on the kinetics of three-body reactions
was first addressed in Ref. [13]. This work, and also the
recent Ref. [14], aimed at finding an analog to the SA for
3D three-body reactions. In Ref. [15] several general
statements on the time evolution of n-body reactions
were made using scaling arguments. Thus for n-body re-
actions taking place in d-dimensional systems there
should exist [15] an upper critical dimension
d.(n)=2/(n—1). Aboved (n),d >d (n),C(t) follows

) 1/(n—1)
C(t)x ‘E‘ , (3)

with k being time independent (but as yet an unspecified
function of the pertinent parameters). For d <d (n)
[which is more of conceptual than of physical interest,
since d,(n) does not exceed unity already for three-body
reactions involving diffusive particles], a power-law de-
cay, C(t)xt 9’2, has been predicted. Finally, for the
marginal case d =d_(n) one expects logarithmic correc-
tions to Eq. (3) [15]. Thus for three-body reactions in 1D
one expects k(¢) in Eq. (2) to vanish as 1/In(z) [16], so
that

172
In(¢)

C(t)x 4)

This behavior was meanwhile observed in numerical
simulations [17] of reactions 34— A4 and 34 —24 and
was explained through simple physical arguments [18],
similar to the ideas of Ref. [13], and also through a
renormalization-group analysis [19].

In the present paper we start developing the SA for
diffusion-limited n-body reactions, focusing on three-
body reactions in 1D. We determine here the dependence
of k(¢) and thus of C(¢) on the pertinent parameters for
the whole time regime; we note that previous work con-
sidered mainly the long-time asymptotics of C(¢). As we
proceed to show, Eq. (4) arises naturally in terms of an
appropriate extension of the SA; the origin of the loga-
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rithmic correction in Eq. (4) is essentially the same as
that for the bimolecular reactions in 2D. The formalism
allows us to determine C(z) for 1D three-body reactions
when the reacting particles move subdiffusively. Our
analytical predictions are confirmed by the results of nu-
merical simulations.

II. THE MODEL AND BASIC EQUATIONS

Consider a one-dimensional regular lattice of spacing
a, which is partially, with mean concentration C,, occu-
pied by particles A. Each A particle performs a sym-
metric random walk: being at site x it jumps with proba-
bility 1 to one of the adjacent sites, x —a or x +a. The
time interval between the successive jumps has an ex-
ponential distribution with parameter 7. The hard-core
exclusion between A particles is disregarded and thus the
random walks of the particles are independent of each
other.

The particles undergo chemical reactions: whenever
the positions x, x,,and x;, of any three A particles satis-

fy
|x;,—x,| <R, |x;—x3;|<R, and |x,—x;| <R, (5)

where R is the reaction radius, this triple reacts instantly
and all three particles are removed from the system.

Let C(x,t) be the local concentration of A particles at
site x at time ¢z. Its evolution due to the reaction and to
the random walk is described in the continuous time limit
by

. k,
Clx,t)=—— 3 C(x,t)C(x+A,,1)C(x +Ayt)

3 or)
+LAax)cx,e, ©
2T
where A(x) is the central difference operator,
A(x)=V,(x)—V_(x), with
Vi(x)C(x,t)==x[C(xta,t)—C(x,t)],
so that
A(x)C(x,t)=[C(x —a,t)+C(x +a,t)—2C(x,t)],
(7)

and Q(R) denotes the reaction zone of site x. This in-
cludes all the points in the (A,A,) plane, whose coordi-
nates (A, A,) satisfy the inequalities in Egs. (5); Q(R ) is a
hexagon (see Fig. 1), centered on the line A, =A,.

The property of interest is the mean concentration,

]
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FIG. 1. The reaction zone Q(R ), defined by the inequalities
in Egs. (5).

C(t)=iV§c(x,t), (8)

where V stands for the volume of the system and
C(t=0)=C,. The mean concentration obeys

. k,
Ct)=——= 3 T(A,7y), ©)
Q(R)

where T(A;,A,) denotes the three-particle correlation
function

T(A,Ay)= lV S C(x,t)C(x +A,1)C(x +Ayt) . (10)

The rate coefficient k, in Eqgs. (6) and (9) describes the
probability of an annihilation of a triple of A4 particles,
whose positions are within the same reaction zone; in our
consideration the annihilation of such a triple takes place
with unit probability and in the subsequent calculations
we will set k. — . Finally, the factor 1 in Eqgs. (6) and
(9) is introduced due to the following reasoning. Consid-
er a triple of A4 particles, whose positions are x, x —R /2,
and x +R /2. One may notice that this triple belongs to
the reaction zones of the sites x, x —R /2, and x +R /2,
and thus enters the right-hand side (RHS) of the equa-
tions for the evolution of the local concentrations at these
sites. Consequently, in C(z), Eq. (8), the reaction event in
this triple will be counted three times as an independent
contribution of three different sites. Therefore the factor
1 prevents an overestimating of the total number of reac-
tion events.

Consider now the evolution of the third-order correla-
tions. Taking the time derivative of T(A,,A,) in Eq. (10)
and making use of Eq. (6) we obtain

T(AI,A2)=—21;[T(k1+a,k2+a )+ T(Ay—a,Ay—a)+T(A,+a,A)+ T(A,—a,A,)+T(A, Ay +a)

+T(A, Ay—a)—6T (A, Ay) ] —F(AA,)

(11)

where F(A,A,) stems from the nonlinear reaction terms in Eq. (6) and is given explicitly by
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k.
S 3 Clx,1)Cx +A,1)C(x +Ayt)

F(Ay,Ay)=
- 3I/O,(R) x
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X[C(x +Ap,1)C(x +Ayt)+Clx +24,,8)C(x +Ay+Ayt)
+C(x 424y, )C(x +A,+2y1)], (12)

i.e., F(Aq,A,) is proportional to the fifth power of the par-
ticles’ concentration. Making use of the forward and
backward difference operators in Eq. (7) we can recast
Eq. (11) into the more compact form. Noticing that

T(A+a,Ay+a)+T(A—a,Ay—a)—2T (A, A,)
=[V_(ADV_(A)+V, (A)V (A,)
+ A +AA)IT(A,A,) (13)

we have
T(x,,m:%[;v_(mv_(xz)ﬂvqxl>v+<xz>

+ AR+ AT (A, Ay)— F(ALA,)
(14)

III. MODIFIED SMOLUCHOWSKI APPROACH FOR
THREE-BODY REACTIONS IN 1D

We proceed further by recalling the Collins and Kim-
ball analysis [20] of bimolecular reaction kinetics. It was
shown in Ref. [20] that the Smoluchowski form of the
rate coefficient can be obtained from the hierarchy of
equations obeyed by the correlation functions. The
derivation involves two basic assumptions. The first one
is the truncation of the hierarchy; in the case of bimolec-
ular reactions, when the reaction rate depends on the pair
correlations, the hierarchy was truncated at the level of
third-order correlations. Second, it was assumed that the
pair correlations obey the radiation boundary condition
in the reaction zone. Making use of the Gauss divergence
theorem, one finds [20] then that the reaction rate equals
the flux of particles into the reaction zone. The Smolu-
chowski form of the reaction rate appears naturally in
such considerations when the limit k, — o is taken.

Following the lines of Ref. [20] we assume that in the
case of three-body reactions the hierarchy of correlation
functions can be truncated at the level of fifth-order
correlations, i.e., we set F(A;,A,)=0. Then, Eq. (14) [or
Eq. (11)] becomes closed with respect to T(A;,A,). It
might be useful to note that it describes a random walk of
a particle on a triangular lattice, the distribution of the
time intervals between successive jumps being exponen-
tial, with a mean waiting time of 7/3. Further on, taking

the limit k, — o we have
T(kl’kznxl,xzeam):o ’ (15)

i.e., Smoluchowski’s absorbing boundary condition. The

reaction rate in Eq. (9) is then given by

k. S T(Aury)= 3 hT(A,Azt),

Q(R) I'(R+a)

(16)

where the sum on the RHS extends over all sites of the
perimeter I'(R +a) of the hexagon defined by Egs. (5)
with R replaced by R +a. The weight factor 4 occurs
due to the topology of the triangular lattice; it equals
for the vertex sites and 1 for any other site of the perime-
ter I'(R +a).

Furthermore, Eq. (14) is complemented by two tradi-
tional boundary conditions [6,20]. The first is that at
t =0 the particles are uniformly distributed on the lattice,
ie.,

T(ApA)|,—=C3 . (17)

The second is that at large separations from the reaction
zone the correlations decouple, i.e.,

T(kl,k2)|,\],;\2iw=c3(t) . (18)

Now the system of reaction-diffusion equations
(14)—(18) is closed and to solve it we turn to the
continuous-space limit. Equation (14) then takes the
form

d’ 9? n d’

A2 9a2 | 9AaA,

T(A;,Ay)=2D 4 T(A,Ay) ,

(19)

where D , is the diffusion constant, D, =q2/2r. Equa-
tion (19) is to be solved subject to the boundary and ini-
tial conditions in Egs. (15)—(18). Let us note that in the
discrete-space description the random walk, Eq. (14), and
the boundary condition in Eq. (15) happen to have the
same symmetry. In the continuum we have the elliptic
differential Eq. (19) and to preserve the symmetry be-
tween the differential operator and the shape of the
boundary we approximate the hexagonal trap by the el-
lipse

3(A— A+ (A +A,)*=R2. (20)
We note that the replacement of the piecewise boundary
by the ellipse may, of course, incur some errors in the re-
action rate. We believe, however, that this approxima-
tion affects only the short-time kinetics and has no
influence on the long-time behavior. This is also support-
ed by the recent results of Ref. [21], which show that the
precise form of the trapping boundary plays no role at
large times in 2D, the only relevant parameter being the
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maximal linear extension of the trap. Approximating the
hexagon Egs. (5) by the ellipse Eq. (20) preserves this
property

It is expedlent now to use polar coordinates (p,¢),
such that p=(A2+A}—A1,)"/? and ¢=arctanh[V3(},
—A,)/(A;+A,)]. In these coordinates the ellipse Eq. (20)
transforms into a circle of radius R and Eq. (19) takes the
form of a 2D diffusion equation

2

3 13

T(p) . 30
o pdp| *

T(p)=

The angular part of the diffusion operator is omitted
since now the boundaries, and thus T'(p), are independent
of the variable ¢.

Therefore the definition of the reaction rate in our
case, apart from the renormalization of the diffusion con-
stant, becomes identical to the definition of the SR for bi-
molecular reactions in 2D. The formal solution thus fol-
lows (see Ref. [22])

3D ,tz?
2R?
y Jo(z)Yy(pz /R)—Jo(pz /R )Y (2)
J§(z)+Y3(z)

3 -]
2C (t)f dz

Tlp)= T 0o z

(22)

where J(z) and Y(z) denote the Bessel functions of the
first and the second kind, respectively.

Now from Egs. (9) and (16) we find that the mean con-
centration C(¢) obeys Eq. (2) with n =3 and with k(z)
defined by

8D, fwdz exp(—3D 4tz2/2R?)

t =
= T3 Jiz)+Y3(z)

(23)

Equation (23) determines the evolution of k(z) over the
entire time domain. From the analysis of Ref. [8] it fol-
lows that k(z) in Eq. (23) is a slowly varying function and

it suffices to consider its asymptotic behavior only. The
large-t expansion of the integral in Eq. (23) was presented
in Refs. [8] and [22] and yields for the rate coefficient in
our case

47D A

k —
() V3y(t)

v _(ae—yE)
y (1) (1) '

(24)

In Eq. (24), y=0.577... is Euler’s constant and
y(t)=In(6D 4t /R*)—2y. From Eq. (2) we have

—1/2
c(t)=C, 1+2c3f0’dt'k<t'>] , 25)
where for 7 large
D
fdt k(t)= D4t
3y(e)
— — a2 2
1Jrl Y _ 2y—1)—y“+w°/6
y (1) yAt)
+ - (26)

For t — o the logarithmic corrections in the brackets
in Eq. (26) can be neglected. Thus at long times the lead-
ing behavior of C(¢) is

In(BD 4t /R*)—2y
aD 4t

C(t)x { , (27)

with a=87/v'3 and B=6. Equation (27) obeys the
asymptotic form of Eq. (4). We note, however, that the
numerical factors in Eq. (27) differ from the earlier re-
ported values =87, =2 [18] and a=47V 3, B=1[19].
Motivated by this discrepancy, we have performed nu-
merical simulations of three-body reactions on a 1D lat-
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_ 001 I g . o data for C,=0.3. The lines give our analytical
5t » . o g ,;*/F results, Egs. (25) and (26), for C,=0.6 (solid
> o +* line) and Cy,=0.3 (dashed line). The inset
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displays  the deviation R(z)=[C,(t)
4 —Chum(2)]1/C,,(2), where C,,(¢) denotes the
analytical result of Eqgs. (25) and (26) and
CLum(?) the simulation results.
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FIG. 3. Evidence for logarithmic corrections. Here we
display a log-log plot of S(¢)=aD 4tC*(t) as a function of time.
The diamonds are the simulation results for (a) C,=0.3 and (b)
Cy=0.6. Here S(t) is plotted as a dashed line with C(¢) given
by Egs. (25) and (26) and as a solid line with C(¢) given by Eq.
27).

tice with 5X 10 sites and periodic boundary conditions.
For a given mean concentration C, the particles were ini-
tially placed at random positions on the lattice, subject to
the constraint that each site supports at most double oc-
cupancy. The simulation algorithm followed the analyti-
cal model closely. In each simulation step we chose one
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particle at random and let this particle jump with proba-
bility  either to the right or to the left, regardless of the
occupancy of the adjacent site. We let 7 be the mean time
between successive jumps of the particle and a the step
length. After each jump we increase the time by
At=1/N, where N is the number of particles present in
the system; thus during ¢ =1 every particle, on average,
performs one step, and, taking @ =7=1, the diffusion
coefficient D , =a?/27 is 1. The reaction occurs immedi-
ately when a particle jumps onto a doubly occupied site;
then all three particles involved are removed from the
system. In Figs. 2 and 3 we present the results of simula-
tions for two different initial concentrations, C,=0.6 and
Cy=0.3, respectively. In our plot we set D, =3 and
have taken R =exp(—y)/V'8. This choice of R, as
shown in Refs. [23] and [24], is the effective radius of a
single adsorbing site of a 2D lattice in the continuum. It
is instructive to note that for such a value of R Eq. (26)
coincides with the result of Ref. [23] for the number of
distinct sites visited by a random walker on a triangular
lattice. The inset in Fig. 2 shows the deviation between
our analytical and numerical results, which never exceeds
2%. This comparison of the numerical data with the
analytical results demonstrates thus that the Smolu-
chowski approach, as extended here, provides a fair
description of three-body diffusion-limited reactions.
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