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Abstract

Granular systems show a pronounced deviation from classical Boltzmann statistics of several
aspects. In particular, we review some +ndings on anomalous velocity distributions. c© 2001
Elsevier Science B.V. All rights reserved.
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1. Introduction

Granular media are dissipative systems. The collisions between the grains are inelas-
tic and therefore, energy is intrinsically lost within the system while it is in motion. In
order to explore some of the fundamental resulting e6ects on the statistical properties
of such systems, let us idealise a granular medium by a set of N spherical particles, all
being identical and having only the exclusive volume hard-core potential as interaction.
In addition, one can imagine the particles to rotate and to be able to transfer angular
momentum from one to the other during the collision. In that case, it is important
to consider also the tangential frictional properties and the tangential dissipation. The
inelastic properties are well described by the restitution coe7cient material constants.
For the time being let us ignore gravity.
Physical realisations of such idealised systems are, for instance, in some sense the

interstellar dust [1] and in two dimensions experiments on air tables. But also exper-
iments [2–7] under less idealised conditions can be performed and have given insight
about the statistics of such dissipative gases. It has been shown by Goldhirsch and
Zanetti [8] that such a dissipative gas undergoes an instability of clustering. The loss
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of homogeneity of the system has been made responsible for anomalous velocity dis-
tributions [9]. It is the issue of this paper to review some of the origins of deviations
from Maxwell distributions, looking in particular at the steady state in the case of the
homogeneously driven system.
Equally puzzling non-Boltzmann distributions are also found in dense granular sys-

tems. These have been experimentally idealised in the two-dimensional experiment by
Behringer and collaborators [10,11]. These systems of sheared disks have also been
simulated numerically con+rming the experimental +ndings [10,12]. We will also re-
view the +ndings of these measurements concerning the velocity distributions.

2. Velocity distributions in the dissipative gas

Let us consider, as described above, a simple system of N equal spheres in a box
with periodic boundary conditions. In Fig. 1 we see such a system of N = 11 000
particles. When two particles collide, the normal component of the relative velocity is
reduced by a factor r, the normal restitution coe7cient which lies between 0 and 1.
r = 1 is the elastic case one encounters in an atomic or molecular gas. The tangential
component of the relative velocity between the two particles is changed by a factor
rt , the tangential restitution coe7cient. This tangential restitution coe7cient contains
two physical e6ects, namely dissipation and Coulomb friction. Typically, each of both
e6ects is described by its own value and rt is chosen to be the minimum of the two.
Rotating particles have as additional degree of freedom the angular velocities. The
relative tangential velocities between two grains at the contact points are then the sum
of the translational and rotational components.

Fig. 1. Initial con+guration: 11 000 particles in a box with periodic boundary conditions.
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Fig. 2. Steady state for � = 1; r = 0:97, see Eq. (4).

There exist a variety of possibilities to simulate such systems, the most e7cient one
being an event driven algorithm using look-up tables. Simulations of such systems have
been performed by many authors [6,8,13–15].
If such a system is initialised with a certain distribution of velocities for the particles

and no further energy is put into the system, then it cools down and the energy
decreases like

E ˙
1
t2

(1)

in time in agreement with the kinetic gas theory [16]. After some time one observes
the appearance of clusters due to the instability mentioned above, similar to those
seen in Fig. 2. Denser regions have more collisions and therefore more dissipation.
Consequently the pressure decreases and a Jux appears from outside into the already
dense region. In this clustering regime [15] the energy decreases in time only like

E ˙
1
t
: (2)

The velocity distribution also changes. Inside the clusters the particles are particularly
slow and between the clusters the mean free path is very long and particles of compar-
atively large velocities can exist. Therefore, as seen in the schematic diagram of Fig. 3,
the distribution of velocities in the clustering regime has a high peak at 0 velocities
and anomalously long tails. These velocity distributions have been measured by sev-
eral authors and agreement exists that anomality is mainly due to having two distinct
species of particles, those in the clusters and those between them.
The cooling of a dissipative gas does not lead to a steady state. One can at best

formulate a scaling law in time and +nd self-similarity. Another way of looking at a
dissipative gas is to produce a real steady state by driving the system injecting into
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Fig. 3. Schematic evolution of the velocity distribution when clustering occurs.

it homogeneously some energy to balance the energy which is dissipated. The driving
can be done in di6erent ways, the most common one being componentwise additive

v(t +Mt) = v(t) + 	v0 (3)

in which at regular intervals Mt each particle gets a change of its velocity by a ran-
domly chosen value. 	 is typically a Gaussian random number, v0 a reference velocity.
Recently, Ca+ero et al. [17] have generalised this driving to

v(t +Mt) = v(t) + 	|v|�v1−�0 ; (4)

where the case �= 1 corresponds to multiplicative driving and �= 0 to Eq. (3).
Finally, also a driving of the rotational degree of freedom has been proposed by

Ca+ero et al. [18]. There, energy is injected not into the translational velocities, but
into the angular velocities of the particles in an additive way

!= !(t) + 	v0 : (5)

The driving through the translational velocity can always lead to clustering, where the
clusters can have quite di6erent shapes according to the values chosen for the restitution
coe7cient. Only in the limit of r very close to unity, the system stays homogeneous and
a recent mean +eld formulation which includes dissipation formulated by Huthmann
and Zippelius [19] gives an expression for the kinetic energy in the steady state as
function of r but only agrees with the numerical data in the region of r su7ciently
close to unity. The velocity distribution in Fig. 4 for the case of �= 1; r = 0:9 shows
very strong deviations from the Gaussian behaviour—and seems to agree much better
with a simple exponential decay. In fact, Ca+ero et al. [17] have made a systematic
analysis of the tails of the velocity distributions as function of r and +tted them to a
stretched exponential of the shape

f0 exp(−B|vx|�) ; (6)

where f0, B, and � are +t parameters. It was found that � = 2 in the limit r → 1;
a Gaussian distribution in the elastic limit, as expected. For small values of r they
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Fig. 4. Velocity distribution for �=1, r=0:9. The dashed line is a Gaussian and the full line has f0 = 7:6,
B = 18:9 and � = 1:05, see Eq. (6).

Fig. 5. Steady state for r = 0:1 and rotational driving.

observed good agreement with a mean +eld prediction �=(3−2�)=2 [17,20,21]. Again
one would physically argue that the deviations from the Gauss distribution are mainly
due to clustering. The mean +eld theory predicts � = 3

2 for additive driving and this
has been recently measured by Losert et al. [5] in vibrated layers of glass beads.
The picture is quite di6erent for the case of rotational driving. There, Ca+ero et al.

[18] found that the system shows no clustering instability. Fig. 5 shows an image for
r=0:1. Thus, the system appears homogeneous at least at large scales. The mean +eld
theory of Huthmann and Zippelius [19] works very well for all values of r, see Fig. 6.
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Fig. 6. Simulation (points) and mean +eld theory (full line) for the ratio between rotational and translational
energy.

Fig. 7. Translational velocity distribution for r=0:1 and rotational driving. The solid line is a Gaussian and
the dashed line has the form of Eq. (6), with � = 1:41.

The distribution of angular velocities agrees quite well with a Gaussian. But the
distribution of translational velocities is anomalous; the data are shown in Fig. 7. The
line through the data points is a +t of the stretched exponential with � = 1:41. This
is a very interesting result because it shows that one can +nd important substantial
deviations from the Boltzmann behaviour without having clustering and being in a
steady state with a Gaussian driving with one degree of freedom (rotation). The sole
transfer from rotational to translational motion in an inelastic way is responsible for
the anomaly.
Summarising, we have described the status of a dissipative gas. The anomalous

velocity distributions are not necessarily due to clustering. The dissipative gas acts as
a noise transformer which transfers Gaussian into non-Gaussian distributions by going
from one degree of freedom to the other without conserving energy. This observation
still has to be understood.
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3. Distributions in dense granular packings

Behringer and collaborators [10,11,22,23] performed experiments in two-dimensional
Couette-cells +lled with about 3000 photoelastic disks and monitored in detail veloci-
ties and rotations of each individual disk during shearing in steady state. This shearing
was imposed by rotating the inner wheel of the cell and keeping the outer wheel at
rest. The force distributions were visualised and the density, tangential velocity and
average spin were measured as functions of R, the distance from the inner wheel.
Also the probability distributions for the tangential velocities were determined. Nu-
merical simulations [10,12] have tried to reproduce as faithfully as possible the ex-
perimental conditions and obtained agreement with the experiments in all the average
properties.
The result of this combination, experiments and simulations, concerning the velocity

distributions is shown in Fig. 8 close to the outer ring which is at rest. There the ve-
locities are very small since the granular packing does nearly not move. As seen in the
+gure, the distributions are not Gaussian, but have rather exponential tails. One also
recognises the good agreement between experiment and simulation. For the case of such
dense systems, one can actually argue in favour of such an exponential distribution.
Since one can suppose that the particles are equidistant, one can consider the collision
rate be a +xed number without important Juctuations. Let us say that the particles col-
lide at regular intervals and diminish each time their velocity by a factor of r. Supposing
one is in steady state, one has the scaling behaviour P(v)=P(rv) which is solved by a
stretched exponential of the form e−av

�
. Since one can expect that the average velocity

also rescales by a multiplication with r, one concludes � = 1 which is the searched
result.
Velocity distributions measured at the inner ring are typically bimodal with one peak

at zero velocity [11,22,23]. Such distributions were also found in MD simulations of
vibrated systems [10].

Fig. 8. Tangential velocity distribution close to the +xed boundary.
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4. Conclusions

In this short paper we have reviewed the empirical situation of velocity distribu-
tions in granular media. Clearly, deviation from Boltzmann statistics is observed. In
the case of clustering an anomalous behaviour can be explained by the appearance of
two types of particles, the slow ones inside of the cluster and the faster ones between
the clusters. In the case of dense systems the lack of Juctuations in distances between
particles produces exponential tails due to the multiplicative nature of dissipation. The
dilute case in which a system is driven through rotations ful+lls the conditions of
homogeneity, molecular chaos and Gaussian distribution in the driven degrees of free-
dom. Nevertheless, does the dissipative transfer from one degree of freedom to the
other generate velocity distributions with tails which numerically agree with stretched
exponentials and an exponent that varies from the mean +eld values at low restitution
to the Gaussian behaviour in the elastic limit. This last case of anomaly has no physical
explanation up to date.
It would certainly be interesting to try on the one hand to derive the long tail

behaviour through driven Boltzmann-like equations by inserting not as usual Gaussian
noise to get a more consistent understanding of the foundations of these distributions.
It would also be interesting to see if a more generalised statistics like the one proposed
by Tsallis [24] is an adequate tool to treat these systems.
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