The water footprint of wood for lumber, pulp, paper, fuel and firewood

Joep F. Schynsa,\textdagger, Martijn J. Booija, Arjen Y. Hoekstraa,b

aTwente Water Centre, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands
bInstitute of Water Policy, Lee Kuan Yew School of Public Policy, National University of Singapore, 259770, Singapore

\textbf{A R T I C L E I N F O}

\textbf{Article history:}
Received 10 January 2017
Revised 15 May 2017
Accepted 16 May 2017
Available online xxx

\textbf{Keywords:}
Water consumption
Evapotranspiration
Forestry
Timber
Bioenergy
Ecosystem services

\textbf{A B S T R A C T}

This paper presents the first estimate of global water use in the forestry sector related to roundwood production for lumber, pulp, paper, fuel and firewood. For the period 1961–2010, we estimate forest evaporation at a high spatial resolution level and attribute total water consumption to various forest products, including ecosystem services. Global water consumption for roundwood production increased by 25\% over 50 years to 961 \times 10^8 \text{ m}^3/\text{y} (96\% green; 4\% blue) in 2001–2010. The water footprint per m\(^3\) of wood is significantly smaller in (sub)tropical forests compared to temperate/boreal forests, because (sub)tropical forests host relatively more value next to wood production in the form of other ecosystem services. In terms of economic water productivity and energy yield from bio-ethanol per unit of water, roundwood is rather comparable with major food, feed and energy crops. Recycling of wood products could effectively reduce the water footprint of the forestry sector, thereby leaving more water available for the generation of other ecosystem services. Intensification of wood production can only reduce the water footprint per unit of wood if the additional wood value per ha outweighs the loss of water for other ecosystem services, which is often not the case in (sub)tropical forests. The results of this study contribute to a more complete picture of the human appropriation of water, thus feeding the debate on water for food or feed versus energy and wood.

© 2017 The Authors. Published by Elsevier Ltd.

This is an open access article under the CC BY license. (http://creativecommons.org/licenses/by/4.0/)

\textbf{1. Introduction}

Although precipitation is renewable, it is limited in time and space, and so are its subsequent pathways as green and blue water flows (Schyns et al., 2015; Hoekstra, 2013). There are alternative competing uses for these limited flows, which makes freshwater a scarce resource. This explains the interest in the human appropriation of water (Postel et al., 1996; Rockström et al., 1999; Rockström and Gordon, 2001; Hoekstra and Mekonnen, 2012) in relation to a maximum sustainable level (Hoekstra and Wiedmann, 2014) or planetary boundary (Steffen et al., 2015; Rockström et al., 2009). Freshwater sustains terrestrial and aquatic ecosystems and is used for the production of goods and services. Important water consuming sectors are agriculture, industries, municipalities and forestry. Multiple studies have quantified the global blue and green water consumption for producing crop and livestock products, and for fulfilling industrial and municipal demands (Hoekstra and Mekonnen, 2012; Rost et al., 2008; Hanasaki et al., 2010; Liu and Yang, 2010; Liu et al., 2009; Siebert and Döl, 2010; Mekonnen and Hoekstra, 2011; Wada et al., 2014; Döl et al., 2012).

As recently identified by Vanham (2016), we do not know how much water is used in the forestry sector for the production of wood products such as lumber, pulp and paper, firewood or biofuel.

Forest evaporation accounts for 45–58\% of the total vapour flow from land to atmosphere (Rockström et al., 1999; Rockström and Gordon, 2001; Oki and Kanae, 2006). With the term evaporation we refer to the entire vapour flux from land to atmosphere, including evaporation through the process of plant transpiration (Savenije, 2004). Determining which part of the evaporation is appropriated for the production of roundwood (wood in the rough) is not as straightforward as it is for crops. For crops, all evaporation from the crop field during the growing season is usually attributed to crop production. This makes sense, since crop fields are generally used quite intensively for a distinct purpose (providing food, feed or fibre). Forests on the other hand provide numerous other ecosystem services next to the provision of wood (Costanza et al., 1997), depending on the intensity of forest exploitation. Therefore, forest evaporation is to be attributed to roundwood production based on the relative value of roundwood production compared to the value of other ecosystem services provided by the forest.

There are a few studies that have attributed forest evaporation to wood products. Van Oel and Hoekstra (2012) made a first es-

* Corresponding author.
\textdagger E-mail address: j.f.schyns@utwente.nl (J.F. Schyns).

http://dx.doi.org/10.1016/j.advwatres.2017.05.013
0309-1708/© 2017 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license. (http://creativecommons.org/licenses/by/4.0/)}
timate of the water footprint of paper in the main pulp producing countries. Chiu and Wu (2013) estimated the water footprint of ethanol from wood residues from the southeast United States. Tian and Ke (2012) made estimates of the water footprint of lumber, panels, pulp and paper in China. However, these studies did not account for the value of wood production relative to other forest values (Van Oel and Hoekstra, 2012; Chiu and Wu, 2013; Tian and Ke, 2012). Launiaisen et al. (2014) argue that one should not attribute forest evaporation of rain-fed managed forests to end products at all, based on the argument that the evaporation of these forests is not significantly different than that of natural forests (no net difference). However, for the purpose of measuring the amount of evaporation that is appropriated by roundwood production and therefore not available for other uses we should measure total (not net) water consumption (Hoekstra, 2017).

The objective of this paper is to provide the first estimate of the global water consumption related to roundwood production and to subsequently attribute this to various end-uses of wood. Our analysis is at high spatial resolution (30 × 30’) for the period 1961–2010 and includes a number of innovations:

- Global high-resolution estimates of actual evaporation from production forests, distinguishing the contribution of green water (precipitation) and blue water (groundwater through capillary rise).
- Attribution of forest evaporation to roundwood production based on the relative value of roundwood production compared to the value of other ecosystem services provided by the forest.
- Estimates of the green and blue water footprints of wood products, including sawnwood, wood-based panels, wood pulp, paper and wood-based energy carriers.

2. Method and data

2.1. Method

We follow the method of water footprint assessment to estimate the water consumption associated with roundwood production for lumber, pulp, paper, fuel and firewood (Hoekstra et al., 2011). Firstly, we estimate the volume of water consumed that can be attributed to roundwood production per 30 × 30’ grid cell per year over the period 1961–2010 (Section 2.1.1). Secondly, we estimate the period-average water footprint per unit of roundwood produced (Section 2.1.2). Finally, we attribute the water footprint of roundwood production to various end-uses of wood (Section 2.1.3).

Throughout this paper we use the term water footprint to refer to the consumptive part only (green plus blue) and exclude the grey component that expresses water pollution.

2.1.1. Water consumption attributed to roundwood production

The volume of water consumed that can be attributed to roundwood production (WU, in m3/y) in grid cell x in year t is estimated as:

\[WU[x, t] = (E_{act}[x, t] \times A_{rw}[x, t] + P_{act}[x, t] \times f_{water}[x]) \times f_{value, rw}[x, t] \]

(1)

in which \(E_{act} \) is the actual forest evaporation (m/y), \(A_{rw} \) the area used for roundwood production (m²), \(P_{act} \) the actual roundwood harvested (m³/y), \(f_{water} \) the volumetric moisture content of freshly harvested wood (m³ water/m³ wood), and \(f_{value, rw} \) a dimensionless fraction that represents the relative portion of roundwood production compared to the value of other ecosystem services provided by the forest.

Annual actual forest evaporation

\[E_{act}(m/y) \text{ is estimated using the method of Zhang et al. (2001):} \]

\[E_{act}[x, t] = Pr[x, t] \left(\frac{1 + w_{g,x,t}}{1 + w_{g,x,t} + w_{b,x,t}} \right) \]

(2)

in which \(Pr \) is the annual precipitation (m/y), \(w \) a dimensionless coefficient representing plant water availability, and \(E_{act} \) the annual potential forest evaporation (m/y). We apply \(w = 2 \), which is the best fit value for forests based on a study that includes 56 forest catchments around the world (Zhang et al., 1999). We determine \(E_{act} \) based on the mean annual temperature (\(T \), in °C) using the empirical equation derived by Komatsu et al. (2012), which they derived for Zhang’s equation by regressing 829 forest \(E_{act} \) data points:

\[E_{act}[x, t] = \left(0.4887^2[x, t] + 27.57T[x, t] + 412 \right) \times 10^{-3} \]

(3)

The factor 10−3 is to convert mm to m.

2.1.2. Water footprint per unit of roundwood production

Since wood production cycles are commonly multi-decadal (Baulus et al., 2009), we calculate the water footprint per unit of production as a period-average. The water footprint of roundwood production (\(W_{F_{rw}} \), in m³ water/m³ roundwood) for the period of \(m \) years is defined as:

\[W_{F_{rw}}[x] = \frac{\sum_{t=1}^{m} WU[x]}{\sum_{t=1}^{m} P_{act}[x]} \]

(7)

2.1.3. Water footprint per unit of end product

The water footprint per unit of end product \(p \) produced with roundwood from grid cell \(x \) is estimated by multiplying \(W_{F_{rw}} \) with a conversion factor \(f_{conversion} \) (in m³ roundwood/unit of end product):

\[W_{F_{p}}[p, x] = W_{F_{rw}}[x] \times f_{conversion}[p] \]

(8)

Please cite this article as: J.F. Schyns et al., The water footprint of wood for lumber, pulp, paper, fuel and firewood, Advances in Water Resources (2017), http://dx.doi.org/10.1016/j.advwatres.2017.05.013
2.2. Data

2.2.1. Wood harvested area

We obtained wood harvested area maps (as fraction of a grid cell) at 30 x 30’ resolution for each year in the period 1961–2004 from Chini et al. (2014). For 2005–2010, we keep the pattern from 2004. Hurr et al. (2011) estimated the wood harvest pattern with a global land-use model that takes, among others, national wood harvest data as input, constrains wood harvesting by the presence of forests, and gives preference to wood harvesting near existing land-use (proximity to infrastructure or local markets). We took the sum of the five different land types from which wood can be harvested as distinguished by Hurr et al. (2011).

We apply three restrictions to these maps. Firstly, we assumed that roundwood production only takes place in those grid cells that have a forest cover according to the IGBP DISCover land cover database (Loveland et al., 2009). Secondly, we consider grid cells with an average E_{act} over the study period of less than 100 mm/y to be unsuitable for forest growth that enables wood harvesting and hence remove those grid cells from our final map. This threshold is derived from Komatsu et al. (2012), who collected 829 forest E_{act} data points at locations spread over the world, of which only three (0.4%) have an E_{act} smaller than 100 mm/y. Thirdly, we assumed that no wood is harvested from grid cells that are entirely located within a protected area of IUCN category la (strict nature reserves), lb (wilderness areas) or II (national parks) from the year that these areas received this status. The data on protected areas have been obtained from IUCN and UNEP-WCMC (2016).

We made one exception to the above procedure. The People’s Democratic Republic of Ethiopia (1961–1992) had a significant contribution to world roundwood production according to national statistics (FAOSTAT, 2016a). However, the cells where wood harvesting took place in this country according to the map by Chini et al. (2014) have no forest cover according to the IGBP DISCover dataset. To avoid neglect of this roundwood production, we assigned the most common forest type in the region to the cells where wood was harvested: tropical evergreen broadleaf forest. Finally, we scale the wood harvested area maps on the national level to the area used for roundwood production estimated based on the Global Forest Resources Assessment 2015 (Köhl et al., 2015) (see SI).

2.2.2. Actual roundwood production on the grid level

National annual statistics on actual roundwood production from coniferous (C) and non-coniferous (N) forest covering the study period have been obtained from FAOSTAT, 2016a). We downscale these data to the grid level in two steps. Firstly, we estimate the maximum sustainable production in a grid cell by multiplying the wood harvested area with a long-term maximum sustainable wood yield (Section 2.2.3). Therein, we distinguish between C and NC production by assuming that C wood is produced in needleleaf forests and NC wood in broadleaf forests and that mixed forest contributes to both C and NC production (fifty–fifty). For a small number of countries, in some years, reported production concerns C and/or NC wood, while our maps contain no grid cells yielding that type of wood (e.g. only NC production is reported, but all grid cells in the wood harvest map are of the needleleaf type). In these cases, we overwrite the dominant forest type in all affected grid cells for that year to mixed forest. Secondly, we distribute the national annual statistics over all grid cells used for roundwood production in that year, according to the estimated maximum sustainable production for that roundwood type (C or NC).

2.2.3. Long-term maximum sustainable wood yield

The rate of wood production varies over the age of the forest stand following an s-shaped curve that is different for each species, location and type of management (Lutz, 2011). The mean annual increment is the average production rate at any particular age of the forest, calculated as the total growing stock volume divided by the age of the forest stand (Lutz, 2011; Jürgensen et al., 2014; Blanchez, 1997). We obtained minimum and maximum forest plantation yields (in m³/ha/y) for different tree species in various countries around the world from Brown (2000). These yields represent the mean annual increment for the likely rotation length of the forest stand. We assume that forests are of a mixed age, that trees are harvested at their likely rotation length and that natural losses are minimal. Under these circumstances, we consider the yields by Brown (2000) to be a good proxy of the long-term maximum sustainable wood yield (Y_{sus}).

Ultimately, we need an estimate of Y_{sus} for each grid cell in our roundwood production maps. To arrive there, (i) we determine the dominant forest type and climate zone of each grid cell; (ii) we assume characteristic tree species for each forest type; (iii) we determine the dominant climate zone in each country in the dataset by Brown (2000); (iv) from this dataset we calculate the average Y_{sus} of a tree species per climate zone and (v) we assign those Y_{sus} estimates to the grid cells. Details are described in the SI. The following assumptions are made under (ii), which are loosely based on the forest type descriptions of Matthews et al. (2000):

- Evergreen needleleaf forest yields pine (Pinus species) in all climate zones.
- Evergreen broadleaf forest yields eucalyptus (Eucalyptus species) in all climate zones.
- Deciduous needleleaf forest yields larch (Larix species) in all climate zones.
- Deciduous broadleaf forest yields oak (Quercus species) in all climate zones.
- Mixed forest in the tropical and subtropical zone yields a 50–50 mix of pine and eucalyptus.
- Mixed forest in the temperate zone yields a 50–50 mix of pine and oak.
- Mixed forest in the boreal zone yields a 50–50 mix of pine and larch.

The resulting Y_{sus} estimates per forest type and climate zone are presented in Table 1. The climate zones and forest types are mapped in Fig. 1.

2.2.4. Meteorological data

For each 30 x 30’ grid cell and each year in our study period, we estimated the annual precipitation (Pr) and annual mean temperature (T) based on daily data obtained from de Graaf et al. (2014).

2.2.5. Fraction of water use originating from capillary rise

Rooting depths were derived from Canadell et al. (1996) (Table 2). The groundwater table depth per 30 x 30’ grid cell has been estimated by averaging over the 30 x 30’ map by Fan et al. (2013). The maximum height of capillary rise is estimated using an empirical relation based on the soil’s grain size and void ratio (details in SI).

2.2.6. Volumetric moisture content of freshly harvested wood

The fraction f_{water} is estimated by multiplying a species wood density with the equilibrium moisture content (t water/t oven dried wood) (derivation in the SI). The wood density for each of the characteristic tree species considered in this study has been estimated from Zanne et al. (2009) (Table 3). The equilibrium moisture content is estimated per grid cell for each year with
the function of Simpson (1998) that takes temperature and relative humidity as inputs. We applied the mean annual temperature (Section 2.2.4) and a climate-average relative humidity per grid cell. The latter is estimated based on the 10 × 10′ grid cell. We took the average of all months and subsequently the average of all 10 × 10′ grid cells within a 30 × 30′ grid cell.

2.2.7. Value fraction of roundwood production

We base our estimate of the value fraction of roundwood production \(f_{\text{value,rw}} \) on Costanza et al. (2014), who estimated the value of 17 ecosystem services (in monetary units/ha) around the year 2011 for (sub)tropical forests and temperate/boreal forests, separately (Fig. 2). We assume that the service labelled ‘raw materials’ by Costanza et al. (2014) primarily refers to roundwood production. Non-wood forest products that are not of interest for this study are included under other services, e.g., food and food additives (‘food production’) and plant and animal parts for pharmaceutical products (‘genetic resources’).

The data in Fig. 2 refer to the entire forest biomes, while we are interested in production forests specifically. Therefore, we first distribute the monetary values per hectare of the services over production and non-production forests for the reference year 2010 (which lies closest to the reporting year by Costanza et al. (2014)). Secondly, we scale the values back in time and disaggregate them spatially over the grid cells. Therein, we distinguish three categories of ecosystem service values:

- The value of roundwood production that varies with the volume of roundwood produced.
- The value of the services pollination, biological control, habitat/refugia, recreation and culture that are inversely proportional to the intensity of forest exploitation, which is defined as the actual wood production over the maximum sustainable wood production.
- The value of the other services given in Fig. 2 that are invariable with the intensity of forest exploitation.

For the year 2010, and averaged per biome, the resulting ecosystem service values are consistent with those reported in Fig. 2. Details and assumptions are described in the SI. Ultimately, we calculate \(f_{\text{value,rw}} \) per grid cell per year using Eq. (SI.10).

2.2.8. Wood to end product conversion factors

Conversion factors for sawnwood, panels, pulp, paper and energy wood products are obtained from UNECE/FAO (2010) and represent averages of reported values by countries in the UNECE region. The energy values represent higher heating values (HHV).
Table 2

<table>
<thead>
<tr>
<th>Climate zone</th>
<th>Evergreen</th>
<th>Deciduous</th>
<th>Mixed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tropics & sub-tropics, summer rainfall</td>
<td>7</td>
<td>4</td>
<td>5.5</td>
</tr>
<tr>
<td>Subtropics, winter rainfall ①</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Temperate</td>
<td>4</td>
<td>3</td>
<td>3.5</td>
</tr>
<tr>
<td>Boreal & arctic</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

① Values for sclerophyllous forest

Table 3

<table>
<thead>
<tr>
<th>Species</th>
<th>Wood density (t/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pinus (Pine)</td>
<td>0.4</td>
</tr>
<tr>
<td>Eucalyptus (Eucalyptus)</td>
<td>0.8</td>
</tr>
<tr>
<td>Larix (Larch)</td>
<td>0.5</td>
</tr>
<tr>
<td>Quercus (Oak)</td>
<td>0.7</td>
</tr>
</tbody>
</table>

Some additional data on the HHV of softwood, hardwood, ethanol and charcoal are obtained from Speight (2010). The water footprint of an A4 (≈1/16 m²) sheet of paper of 80 g/m² in 1 sheet is estimated by multiplying the water footprint of paper in m³/t with a factor 0.005 (≈80/16/1000).

3. Results

3.1. Water consumption attributed to roundwood production

The global water consumption attributed to roundwood production increased by 25% over 50 years, from 768 × 10⁶ m³/y in 1961–1970 to 961 × 10⁶ m³/y in 2001–2010 (for both decades: 96% green; 4% blue). The water consumption equals the evaporated volume attributed to roundwood production, since the share of the water incorporated in the harvested wood is negligible (0.01% on average). Fig. 3 shows the water consumption attributed to roundwood production (WU) and the value fraction of roundwood production (Fvalue, rw) in the biomes (sub)tropical forests and temperate and boreal forests, separately. WU is significantly smaller in the former compared to the latter caused by the difference in Fvalue, rw for those biomes (Fig. 2 and S1). For (sub)tropical forests, an increasing trend in WU is observed, driven by increases in the area used for roundwood production and the volume of roundwood produced (see Fig. SI.2). For temperate and boreal forests, a moderate increasing trend in WU is visible due to an increased area used for roundwood production. Inter-annual variation is larger in this case. Variation in WU is caused by variation in Fvalue, rw, which in turn is mainly driven by variation in the volume of roundwood produced (Fig. SI.2). The latter explains the sudden decline in Fvalue, rw and WU after 1990 when the statistics [FAOSTAT, 2016a] show a drop in roundwood production (in the former USSR). In both forest biomes, varying forest evaporation rates add to the temporal variation in WU (Fig. SI.2).

3.2. Water footprint per unit of roundwood production

The study period average water footprint per unit of roundwood production (WF rw) is presented in Fig. 4. Besides the differences between the (sub)tropical and temperate/boreal zones (Section 3.1), spatial variation in WF rw is mostly explained by varying forest evaporation rates (Table SI.2). The decade average WF rw increased with about ten percent over the study period in temperate and boreal zones, while it varied within five percent in the (sub)tropical zones.
Fig. 3. Water consumption attributed to roundwood production. Period: 1961–2010.

Each area with a capillary rise contribution of more than 50% are mostly found in Russia and Canada. Blue water constitutes a significant part of the total water consumption attributed to roundwood production in countries like the Bahamas (32%), Gambia (28%), the Netherlands (24%) and Somalia (23%). Variations in the capillary rise contribution are mainly explained by the groundwater depth. Miller et al. (2010) found for a semi-arid oak savanna in the period 2005–2008 (average E_{act}/Pr ratio of 0.7), that the average contribution of capillary rise to the evaporation over the year was about 22%. For grid cells with a capillary rise contribution to evaporation and an E_{act}/Pr ratio of at least 0.7, we found this contribution to be 18% on average.

Fig. 4 shows the average WF_{rw} for each of the main roundwood producing countries. There is a clear distinction between countries with production forests in mainly (sub)tropical versus temperate regimes.

Please cite this article as: J.F. Schyns et al., The water footprint of wood for lumber, pulp, paper, fuel and firewood, Advances in Water Resources (2017), http://dx.doi.org/10.1016/j.advwatres.2017.05.013
ate/boreal zones. Among the main roundwood producing countries, Japan has on average the largest WF_{rw}, resulting from a combination of a relatively high forest evaporation rate with a relatively low wood yield.

Although pronounced spatial variations in WF_{rw} occur, one should be cautious in evaluating these differences in terms of better or worse. The relevance of the data presented rather lies in the fact that they can form a basis for further study into the alternative uses of the same water to produce more or different goods and services in the same area (see Section 4.3).

3.3. Water footprint per unit of end product

The water footprints of various end products derived from roundwood, based on global averages, are given in Table 4. The values vary depending on the origin of the roundwood, since the
Table 4
The water footprint of various end products derived from roundwood (rw) in m³ water per unit of end product. Based on global average water footprint of roundwood weighted by production: 390 m³/m³[1] coniferous rw; 231 m³/m³ non-coniferous rw; 293 m³/m³ rw on average. Conversion factors are derived from UNECE/FAO (2010). Additional data sources required to determine the conversion factors for energy wood products are indicated in the Table notes.

<table>
<thead>
<tr>
<th>FAOSTAT code</th>
<th>Product name</th>
<th>Wood type</th>
<th>Conversion factor</th>
<th>Water footprint</th>
</tr>
</thead>
<tbody>
<tr>
<td>1632</td>
<td>Sawnwood</td>
<td>coniferous</td>
<td>1.86 m³ rw/m³</td>
<td>726 m³/m³ sawnwood</td>
</tr>
<tr>
<td>1633</td>
<td>Sawnwood</td>
<td>non-coniferous</td>
<td>1.88 m³ rw/m³</td>
<td>433 m³/m³ sawnwood</td>
</tr>
<tr>
<td>1634</td>
<td>Veneer sheets</td>
<td>–</td>
<td>2.21 m³ rw/m³</td>
<td>648 m³/m³ sheets</td>
</tr>
<tr>
<td>1635</td>
<td>Plywood</td>
<td>–</td>
<td>2.97 m³ rw/m³</td>
<td>785 m³/m³ panels</td>
</tr>
<tr>
<td>1636</td>
<td>Plywood</td>
<td>–</td>
<td>2.13 m³ rw/m³</td>
<td>491 m³/m³ panels</td>
</tr>
</tbody>
</table>

Wood panels from wood particles:

1646	Particle board	–	2.76 m³ rw/m³	809 m³/m³ panels
1647	Hardboard	–	3.56 m³ rw/m³	1044 m³/m³ panels
1648	MDF	–	3.07 m³ rw/m³	708 m³/m³ panels
1650	Insulating board	–	1.46 m³ rw/m³	428 m³/m³ panels
1651	Insulating board	–	1.39 m³ rw/m³	543 m³/m³ panels
1652	Insulating board	–	1.52 m³ rw/m³	350 m³/m³ panels

Wood pulp:

1654	Mechanical wood pulp	–	2.50 m³ rw/t pulp	733 m³/t pulp
1655	Semi-chemical wood pulp	–	2.67 m³ rw/t pulp	783 m³/t pulp
1656	Chemical wood pulp	–	4.49 m³ rw/t pulp	1316 m³/t pulp
1657	Unbleached sulphite pulp	–	4.64 m³ rw/t pulp	1360 m³/t pulp
1658	Bleached sulphite pulp	–	4.95 m³ rw/t pulp	1451 m³/t pulp
1659	Unbleached sulphate pulp	–	4.45 m³ rw/t pulp	1305 m³/t pulp
1660	Bleached sulphate pulp	–	4.55 m³ rw/t pulp	1334 m³/t pulp
1661	Dissolving wood pulp	–	5.65 m³ rw/t pulp	1656 m³/t pulp

Paper and paperboard:

1662	Uncoated mechanical	–	3.32 m³ rw/paper	973 m³/paper
1663	Coated papers	–	3.70 m³ rw/paper	1085 m³/paper
1664	Case materials	–	3.88 m³ rw/paper	1137 m³/paper
1665	Folding boxboard	–	3.75 m³ rw/paper	1099 m³/paper
1666	Wrapping papers	–	3.62 m³ rw/paper	1120 m³/paper
1667	Other papers packaging	–	3.75 m³ rw/paper	1099 m³/paper
1668	Newsprint	–	2.87 m³ rw/paper	841 m³/paper
1669	Printing + writing paper	–	3.51 m³ rw/paper	1029 m³/paper
1670	Other paper + paperboard	–	3.29 m³ rw/paper	965 m³/paper
1671	Household + sanitary paper	–	4.35 m³ rw/paper	1275 m³/paper
1672	Wbang + packaging + board	–	3.25 m³ rw/paper	953 m³/paper
1673	Paper + paperboard not else specified	–	3.29 m³ rw/paper	965 m³/paper

Energy wood products:

–	Firewood	coniferous	0.12 m³ rw/GJ b	47 m³/GJ
–	Firewood	non-coniferous	0.09 m³ rw/GJ	21 m³/GJ
–	Pellets	–	0.14 m³ rw/GJ	41 m³/GJ
–	Pressed logs and briquettes	–	0.23 m³ rw/GJ	67 m³/GJ
–	Bark and chipped fuel	–	0.10 m³ rw/GJ	29 m³/GJ
–	Wood-based ethanol	–	0.33 m³ rw/GJ d	97 m³/GJ
–	Wood-based ethanol	–	7.31 m³ rw/m³ ethanol	2280 m³/m³ ethanol
1630	Wood charcoal	–	0.20 m³ rw/GJ e	59 m³/GJ

Notes:
1. For wood panels from wood particles, we assume that particles are produced from green/rough sawnwood without losses and that 1 m³ of green sawnwood has a solid wood equivalent of 1 m³ (UNECE/FAO, 2010).
2. Higher heating value of softwood = 20.9 GJ/t softwood (Speight, 2010); wood basic density of coniferous fuelwood logs = 0.42 dry t/green m³ (UNECE/FAO, 2010).
3. Higher heating value of hardwood = 20.0 GJ/t hardwood (Speight, 2010); wood basic density of non-coniferous fuelwood logs = 0.54 dry t/green m³ (UNECE/FAO, 2010).
4. Higher heating value of ethanol = 29.7 GJ/t ethanol (Speight, 2010); ethanol density = 0.789 t/m³.
5. Higher heating value of charcoal = 29.5 GJ/t charcoal (Speight, 2010).

4. Discussion

4.1. Comparison with previous estimates

A rough comparison can be made between our estimates of the water footprint of roundwood and those by Van Oel and Hoekstra (2012) for the main pulp producing countries. Our estimates...
of actual evaporation rates are about 30% higher, while our wood yields are about 45% lower. We specifically estimate the evaporation of forests, while Van Oel and Hoekstra (2012) used a general actual evaporation map (which probably underestimates forest evaporation). Where Van Oel and Hoekstra (2012) use rough wood yield estimates per country/region, wood yields in our study are derived from national production and area statistics that were downscaled to the grid level. Moreover, we use different underlying maps of which grid cells are used for roundwood production, which contributes to different spatial average estimates of evaporation rates and water footprints. Without application of the value fraction of roundwood production, our water footprint of roundwood estimates for the main pulp producing countries are significantly higher than those by Van Oel and Hoekstra (2012). After applying the value fractions \(f_{\text{value, rw}} \), our estimates are roughly 20% and 140% of those by Van Oel and Hoekstra (2012) for tropical and temperate/boreal zones, respectively. We used the same wood to paper conversion factor as Van Oel and Hoekstra (2012), so differences in the water footprint of paper (assuming a recovery rate of zero) are also explained by the above.

When we compare the water footprint of seven wood products in China, we find that our estimates are 5–29% of those by Tian and Ke (2012). We used different methods and data, but the largest difference is probably explained by the fact that we apply a value fraction.

For the southeastern United States, Chiu and Wu (2013) found that the green water footprint of ethanol from forest wood residue is about 400–443 l/l and that the blue water footprint in the forestry stage is minimal. Our estimated water footprint per unit of roundwood in this region is about 70 l/l (Fig. 4). With a roundwood to bio-ethanol conversion factor of 6.8 for the United States (UNECE/FAO, 2010), this translates into a quite similar water footprint of 476 l/l. Where we applied a value fraction to attribute forest evaporation to roundwood production followed by a roundwood to bio-ethanol conversion factor, Chiu and Wu (2013) allocated forest evaporation to bio-ethanol production based on an estimated weight fraction of harvested wood residue for bio-ethanol in the total above-ground wood mass, which also greatly reduces the amount of evaporation attributed to the bio-ethanol.

4.2. Uncertainties regarding method and data

4.2.1. Moisture recycling

Precipitation on land relies on terrestrial evaporation (moisture recycling) to a varying extent around the globe (Van der Ent et al., 2010) and forests play an important role in this (Ellison et al., 2012). When attributing forest evaporation to forestry products, one could argue to reduce total forest evaporation by the portion of evaporation that returns as precipitation (in the same area), based on the idea that this returning water can be used again and therefore is not really consumed (Launiainen et al., 2014). However, green forest evaporation stems from the precipitation amount that already includes the recycled moisture. Reducing the attributed evaporation by the recycled part would wrongly suggest that the recycled water is left for use for other purposes. It is not additional water that can be additionally allocated. As mentioned in the introduction, we are interested in this question of water allocation: which part of the available flow is being appropriated for roundwood production? Therefore, we deliberately attribute the total forest evaporation (that is reduced based on a value fraction) to roundwood production, whatever rate of moisture recycling.

4.2.2. Uncertainties regarding data

The estimates of the water footprint of roundwood production provided in this study are subject to a number of uncertainties. Since the fraction of water in the harvested wood turned out to be negligible (Section 3.1), the main variables governing the end result are the forest evaporation \(E_{\text{act}} \), the area used for roundwood production \(A_{\text{rw}} \), the volume of roundwood produced \(P_{\text{act}} \) and the value fraction of roundwood production \(f_{\text{value, rw}} \).

Out of these, we expect the least uncertainty in \(E_{\text{act}} \) and \(P_{\text{act}} \). The estimate of \(E_{\text{act}} \) is relatively straightforward and bound by annual precipitation and potential evaporation. \(P_{\text{act}} \) is based on downscaled national statistics covering the entire study period, although the downsampling to the grid level involved coarse data on long-term maximum sustainable wood yields. The current data limitations regarding \(A_{\text{rw}} \) (Kuemmerle et al., 2013) makes our estimate of \(A_{\text{rw}} \) rather uncertain, since it is based on a modeled wood harvest pattern that was scaled to an estimated area used for roundwood production based on national statistics available from 1990 onwards. The estimated relative value of ecosystem services from which we derived \(f_{\text{value, rw}} \) is associated with some limitations as elaborately described by Costanza et al. (1997) and Costanza et al. (2014). The estimates are based on a limited number of valuation studies that reflect the state at a certain point in time (Costanza et al., 2014). Besides, uncertainties are associated with willingness-to-pay estimates and aggregation of values at specific locations to larger spatial and temporal scales (Costanza et al., 2014). Furthermore, we needed to make a number of assumptions for disaggregating the value of ecosystem services in time and space as outlined in the SI.

4.3. Sustainability of the water footprint

This study has provided spatially-explicit estimates of the water footprint of roundwood production and various forest products. One should be cautious in evaluating differences in the water footprints of a similar product from two different regions in terms of better or worse. The relevance of the data presented rather lies in the fact that they can form a basis for further study into the alternative uses of the same water to produce more or different goods and services.

To judge the sustainability of the water footprint of roundwood production (volume/time), one would need to place the green and blue water components in the context of maximum sustainable levels of green and blue water consumption and consider the competition for the limited green and blue water resources between different demands. This assessment was out of the scope of this study, since maximum sustainable levels are currently not known for green water (Schyns et al., 2015; Hoekstra and Wiedmann, 2014), the major component of the water footprint of roundwood production. Besides, for understanding competing demands for water and the potential conflict between (green) water use for roundwood production and (green) water use for other purposes like crops for food, feed or bioenergy, a broader study would be required. Nevertheless, we can roughly contextualize the water footprint of roundwood production based on previous work.

4.3.1. Addition of the forestry sector to the water footprint of humanity

We can place the global water consumption attributed to roundwood production in the context of the global water footprint for the period 1996–2005 as estimated by Hoekstra and Mekonnen (2012), who considered the following five sectors: crop production, pasture, water supply in animal raising, industrial production, and domestic water supply. Addition of the forestry sector raises the global consumptive (green plus blue) water footprint of production for the period 1996–2005 by 12%.

4.3.2. Trade-offs between water for food, feed, energy and wood

The estimated water footprints of roundwood represent the volume of water that is allocated to wood production, albeit implic-
ity through land-use decisions (Rockström and Gordon, 2001). Alternatively, this water could be used for the generation of other terrestrial ecosystem services or crop production (Rockström et al., 1999; Rockström and Gordon, 2001). We made a rough comparison between the value of water for roundwood and three major food/feed crops (Table 5) as well as the water footprint of bio-ethanol per unit of energy from these four sources (Table 6). Both regarding economic water productivity and the water footprint of bio-ethanol, roundwood is comparable with maize, ranking somewhat better compared to wheat and worse compared to sugar beet. It should be noted that the water footprint of second-generation bio-ethanol obtained from crop residues is smaller than the water footprint of first-generation bio-ethanol from these crops (Mathioudakis et al., 2017).

Mekonnen et al. (2015) compared the water footprint of heat from various energy sources, including that from firewood based on Van Oel and Hoekstra (2012). Although our estimates of the water footprint of heat from wood (i.e. firewood, pellets, briquettes, bark, chips, charcoal) are different (Section 4.1), they remain orders of magnitude larger than the water footprint from other energy sources such as coal, lignite, oil, gas and nuclear (Mekonnen et al., 2015). From this perspective, burning wood for the generation of heat and electricity still is not recommended (Mekonnen et al., 2015).

4.4. Reduction of the water footprint

4.4.1. Intensification vs. extensification of wood production

Intensification of wood production has two counteracting effects on the water footprint per unit of roundwood produced (WF$_{rw}$, Eq. 7). Effect A is that the value of wood production increases, partially at the expense of other ecosystem service values (v$_{value,rw}$ increases), such that the water consumption attributed to roundwood production increases. Effect B is that more wood is produced per ha with the same amount of water. Intensification of wood production can only reduce WF$_{rw}$ if the additional wood value per ha (effect B) outweighs the loss of value of other ecosystem services (effect A).

The relationship between v$_{value,rw}$ and the intensity of forest exploitation (see SI) determines whether effect A is stronger than effect B or vice versa and hence whether WF$_{rw}$ increases (when effect A > effect B) or decreases (when effect A < effect B) with intensified production. This relationship is different in (sub)tropical forests compared to temperate/boreal forests, and furthermore depends on the long-term maximum sustainable yield (Y$_{sus}$): the higher Y$_{sus}$ the larger the theoretical potential to obtain a high value of wood production from the forest.

For (sub)tropical forests we found that intensification leads to an increase in WF$_{rw}$ for Y$_{sus}$ < 25 m3/ha (which is always the case in our study; see Table 1). For temperate/boreal forests we found that intensification results in an increase in WF$_{rw}$ for Y$_{sus}$ < 4.5 m3/ha, but a decrease in WF$_{rw}$ for higher Y$_{sus}$. Although we recognize that further research is needed into the value of forests and their maximum sustainable yields – with more spatiotemporal detail than was available for this study – the following general rule seems to apply: in forests with a relatively high Y$_{sus}$, intensification can be beneficial in terms of water use efficiency, since the positive effect of intensification (effect B) can outweigh the loss of value of other ecosystem services (effect A).

4.4.2. Recycling

The water footprint of roundwood can effectively be reduced through recycling. The use of recycled wood nullifies the attributed evaporation to roundwood production, since no new wood is produced. In this study, recovery rates were not considered. Hence, water footprint estimates refer to newly produced products.

Please cite this article as: J.F. Schyns et al., The water footprint of wood for lumber, pulp, paper, fuel and firewood, Advances in Water Resources (2017), http://dx.doi.org/10.1016/j.advwatres.2017.05.013
Van Oel and Hoekstra, (2012) already concluded that increasing paper recovery rates is a powerful way to reduce the water footprint of paper. Other wood products can also be recycled in various ways. Wooden pallets or furniture can be reused or be remanufactured from recovered wood, just like particle board (Falk and McKeever, 2004). In construction, wood recovered during demolition is potentially suitable for reuse or remanufacture, particularly into flooring (Falk and McKeever, 2004). Chipped or shredded wood can be used as basis for fuel, landscaping mulch, composting bulk agent, sewage sludge bulking medium, or animal bedding (Falk and McKeever, 2004). Ideally, the cascading use principle is applied, in which wood is used, recycled and reused as long as possible before ultimately being used as an energy source (Dammer et al., 2016). It is obvious that reduced consumption of end products from wood will eventually reduce the total water consumption related to roundwood production.

5. Conclusion

The global water consumption attributed to roundwood production for lumber, pulp, paper, fuel and firewood has risen from $768 \times 10^3 \text{m}^3/\text{y}$ in 1961–1970 to $961 \times 10^3 \text{m}^3/\text{y}$ in 2001–2010. Recycling of wood products could effectively reduce this volume, thereby leaving more water available for the generation of other ecosystem services. Intensification of wood production can only reduce the water footprint per unit of wood if the additional water value per ha outweighs the loss of value of other ecosystem services, which is often not the case in (sub)tropical forests. Alternatively using the water for crop production is generally not beneficial (even apart from the negative effects of converting forest to cropland), since roundwood is rather comparable with major food, feed and energy crops in terms of economic water productivity and energy yield from bio-ethanol per unit of water. The results of this study contribute to a more complete picture of the human appropriation of water and feed into the debate on water for food, feed, energy and wood.

Acknowledgments

The present work was (partially) developed within the framework of the Panta Rhei Research Initiative of the International Association of Hydrological Sciences (IAHS) and has been made possible by grants from the Water Footprint Network and Deltares. We thank the reviewers of an earlier version of the manuscript for their constructive comments.

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.advwatres.2017.05.013.

References

Chini, LP, Hurtt, GC, Frolking, S., 2014. Harmonized Global Land Use for Years 1500–2100, V1. ORNL Distributed Active Archive Center.

