Variations of Model Checking

David N. Jansen
FMOODS 2002 Poster

1 Combining Actions And Real-Time

This work is finished and published [7]. A reviewed version of this article will appear shortly.

The logic ATCTL is a convenient logic to specify properties with actions and real-time. It
is intended as a property language for Lightweight UML models [12], which consist mainly of
simplified class diagrams and statecharts.

ATCTL combines two known extensions of CTL, namely ACTL and TCTL. The reason to
extend CTL with both actions and real time is that in LUML state-transition diagrams, we
specify states, actions and real time, and our properties refer to all of these elements. The analyst
therefore needs a property language that contains constructs for all these elements.

ATCTL can be reduced to ACTL as well as to TCTL, and therefore also to CTL. This gives
us a choice of tools for model checking; we have used is Kronos [13], a TCTL model checker.

ATCTL [8]
A ™~
ACTL [4] TCTL [1]
™~ et
CTL [5]

1.1 Example: Internal Travel Office

Imagine an internal travel office in a large firm, e.g. a university. Employees of the firm book
business trips via the office. To do this, the office needs a travel permit and a payment allowance.

As an extra service, also private trips can be booked. The cost of a private trip is deducted
from the employee’s salary, and no payment allowance is needed.

The office proposes a trip schedule to the employee; as soon as he accepts it, the office tries
to book a trip and a hotel for the appropriate period. If this succeeds, the employee is invited to
come along and to pick up the necessary documents. If the booking fails, the employee is informed
and the trip is cancelled; however, the employee is allowed to restart the procedure. The financial
department handles the payments and, if applicable, the deduction from the salary.

We plan to introduce a workflow system that controls this process. We would like to ensure
that no payment is made without allowance, and model checking is the method we use.

The example is adapted from Verbeek et al. [11].

The model consists of the lightweight class diagram in figure 1. The two classes’ behaviour is
shown in the statecharts of figures 2 and 3. The system consists of two parts, corresponding to
the two departments.

The prototype translator translated these diagrams first to a CLKS, according to the semantics
defined by Eshuis and Wieringa [6]: state names are translated to proposition symbols; actions
become labels on the transitions.

Then, a second phase of the translator generated a Kronos input file. We have checked the
following properties using Kronos:

schedule found

Trip booking

got permit

cancel trip

schedule found
employee accepts
employee rejects
tickets confirmed
tickets sold out

hotel confirmed

hotel sold out
employee comes along

Trip finance

ready to pay

business
private
allowed

1 | forbidden

got final claim
cancel

got intermediary claim

Figure 1: Lightweight class diagram for the ITO system.

ITO: trip booking

i

wait for permit

cancel trip

4

got permit

schedule trip

cancel trip

A

employee rejects

propose to employee

Y

wait for

cancel trip

employee reaction

employee accepts
[ready to pay]

book tickets
4

wait for ticket
confirmation

tickets sold out

inform employee

tickets confirmed

intermediary claim
book hotel

wait for hotel
confirmation

hotel sold out

cancel tickets
inform employee

hotel confirmed

final claim
inform employee

employee comes along

documents ready

hand over information

abandoned

Figure 2: The ITO’s process for a trip.

finished

Finance Department: Trip finance
got intermediary claim

pay
deduct from salary
private
private pay
> ready to pay

A

choose payment

got intermediary claim

business
pay —
[ﬁ allowed 4 I
i [; ot final claim
wait for claims check allowance private jgottinalclaim
ready to pay pay
got final claim forbidden deduct from salary
pay inform employee (
settled employee — settled
may cancel
cancel
cancel_trip
abandoned

Figure 3: The financial department’s process for a trip.

e “The system is non-Zeno” or, more exactly, “in every state, time may pass at least one
second.” (This technical property is needed because the model checker Kronos does not
ensure it automatically.) This can be formalised in ATCTL as:

init — YO3T anyid=! T]

e “No payment without allowance.” We should state this more precise, saying “without al-
lowance, all payments are deducted from the salary.” This is formalised in ATCTL as:

-3 (T —allowedupay&—deduct T)

e “No payment without statement of expenses.”

_El(—l— 7g0tclaimu T)

pay

Note the different formalisation of “payment” in this property and the one before.

Kronos reported that the property holds in all three cases.

2 Combining Statecharts And Probability

This work is still in progress. A first important result has been submitted as a joint article with
Holger Hermanns and Joost-Pieter Katoen.

P-Statecharts: A simple extension of statecharts to describe probabilistic systems. We extend
statecharts by P-pseudonodes (F) which denote a non-trivial probability distribution. From the
P-pseudonode, several arrows emanate, each with a probability and an action set. Further, the
same drawing conventions as for statecharts hold.

Fig. 4 depicts a P-statechart which shows the behaviour of a fair, but unreliable coin: the event
“flip” may or may not be ignored. If the system reacts, it outputs “heads” or “tails”, each with
50 % chance. It is unspecified how (un)reliable the system is.

flip

ignore
playing

Figure 4: Example P-statechart.

win
Y2 / heads

Y2 [tails
loose

2.1 Semantics

The extension of P-statecharts is independent from the semantics one uses. We have chosen, as
a representative, the object-oriented semantics of Eshuis and Wieringa [6]. One could define a
similar extension for other semantics, too.

Intuitive semantics for a single P-statechart. The intuitive behaviour of a P-statechart can
be described as follows. The statechart is always in some state (which consists of one or several
nodes). A P-edge is taken if the P-statechart is in the source node(s), the event of the edge happens
and its guard holds. Then, the system chooses one of the possible results (probabilistically and
nondeterministically); it leaves the source nodes, executes the chosen action and enters the chosen
target nodes of the P-edge. More than one edge may be taken simultaneously.

Markov decision processes. The formal semantics of a collection of communicating P-statecharts
is a Markov decision process (MDP).
An MDP is a quadruple (S, Distr, L, so) where:

e S is a finite, non-empty set of states.

e Distr assigns to each state a finite, non-empty set of distributions on S.
e [: S —P(AP) assigns to each state a set of atomic propositions.

e sg € S is the initial state.

In state s, the atomic propositions in L(s) hold. Informally speaking, an MDP exhibits the
following behaviour. Whenever the system is in state s, a probability distribution p € Distr(s) is
chosen nondeterministically. Then, the system chooses probabilistically the next state according
to the selected distribution p.

To illustrate how P-statecharts are mapped onto MDPs, we consider the “unreliable coin”
P-statechart from Fig. 4. The MDP semantics of this P-statechart is illustrated in Fig. 5. The
inscriptions in circle-shaped states consist of a configuration (a set of nodes) and a set of input
events (to which the system will react next). The inscriptions in rectangular states consist of a
configuration and a set of edges (of which a maximal consistent subset is executed next). The
names used for edges are shown in italics in Fig. 4.

2.2 Model Checking P-Statecharts

We express desired properties of a P-statechart using PBTL [2], a probabilistic branching time
logic interpreted over MDPs. It allows one to express properties such as “the probability that
a given system crashes within 13 steps without ever visiting certain states is at most 1075, In
order to decide these properties, the non-determinism is resolved by means of schedulers.

PRISM [9] is a model checker that checks whether an MDP satisfies some property expressed
in PBTL. A typical output of the model checker is: “the probability in the initial state is actually
0,..., so the formula is true/false.”

{idle}
{ignore,

win} {heads} &
{idle}
{Hlip}

{idle} {losty

{won} {won}

{ignore, {tails,
loose} flip}

Figure 5: MDP semantics of the P-statechart of Fig. 4

loose / get -1
give up

stat [~ fighting

idl
dle win/get5

loose / get -3

Figure 6: Statechart of a contestant in the hawk—dove-game.

2.3 Example: Hawk—Dove-Game

In theoretical biology, conflicts between animals are often analysed using simulation techniques.
We consider the following variant of the hawk-dove-game [3, 10]. In a population of animals,
individuals combat for some advantage (such as food, dominance, or mates), their success being
measured in points. Individuals may fight using several strategies. In particular, we consider

Hawk strategy: Hawk-like individuals will fight with great effort, until they win the contest (45
points) or are severely injured (—3 points).

Dove strategy: Dove-like individuals will fight with limited effort, until they win the contest (45
points) or give up after some fight (—1 point). When facing a hawk, they immediately give
up (£0 points).

We consider a small scenario with three individuals and an arbiter. In every round, the arbiter
chooses nondeterministically a pair of individuals; they will be opponents in the next contest. The
two individuals select probabilistically the hawk or dove strategy. The arbiter decides who wins.
Fig. 6 and 7 show the P-statechart for one individual and the arbiter, respectively. The players
all start off with 17 points and the individual scores may float in the interval [0, 55] (otherwise
they stop). Applying the MDP semantics together with some further optimisations (leaving out
trivial intermediary states, encoding the configuration efficiently) leads to a system of 3,147,947
reachable states. The size of the state space is mainly dominated by the integer variables storing
the scores. Different scenarios were checked with the model checker PRisM [9] where each scenario
consisted of different types of animals. These types were generated by taking different values for
p, the probability to behave like a dove. Formulas are checked for the initial state. The three
considered scenarios are the following.

One daring and two careful players. This is a scenario with two individuals (¢; and ¢3) for
which p = 0.75 and one individual (d) with p = 0.5. The probability that any individual dies (its

Y2 /i1.win, i3.loose Y2 /i1.win, i2.loose

Y2 /i1.loose, i3.win Y2 /i1.loose, i2.win
[(i1.hawk and i3.hawk) [(i1.hawk and i2.hawk)
or (i1.dove and i3.dove)] or (i1.dove and i2.dove)]

[ready] / i1.start, i3.start [ready] / i1.start, i2.start
fighting [i1.hawk and i3.dove] idle [i1.hawk and i2.dove] fighting
(|1 ,|3) /i1.win, i3.giveup /i1.win, i2.giveup (|1 ,|2)
[i1.dove and i3.hawk] N [i1.dove and i2.hawk]

/i1.giveup, i3.win /i1.giveup, i2.win

[ready] /
i2.start, i3.start

Y

fighting
(i2,i3)

Figure 7: Statechart of the arbiter in the hawk-dove-game. We have omitted some edge labels
from and to node fighting(i2,i3), which are analogous the other fighting nodes.

points drop below 0) turns out to be very small, with the daring individual running a higher risk
of being killed, since
P<io-7[(—dead(c1) A ~dead(d)) U dead(cz)]

is refuted (and likewise with ¢; and ¢y reversed), but
P<io-7[(—dead(c1) A ~dead(c2)) U dead(d))

holds. The actual probability of d dying first is at most (depending on the scheduler) 7.206- 1077,
while the probability of the careful one dying first is at most 5.923 - 10~% (each). On the other
hand, the daring individual is likely to outperform the others on accumulating a certain number
of points, say 37. This follows from verifying:

P<o.sl(points,., < 37 A points, < 37) U points,, > 37] which is valid, and
P<o.75](points,., < 37 A points,, < 37) U points, > 37| which is invalid.

Three aggressive players. In this scenario each animal (dy, da, d3) plays hawk with probability
0.9 (i.e., p =0.1). The probability that some of the individuals dies is relatively high, e.g.,

P<o.01[(—dead(d1) A —dead(ds)) U dead(ds)]

is refuted (and likewise for the permutations of the d;). So, there are schedulers which will lead to
ds dying first with more than 1% chance. The probability that one of the individuals gets more
than 37 points within 100 steps is always less than 0.75, as

Peo.75[0=1 (points,, > 37)] holds.

Three careful players. In the opposite situation (the three individuals play dove with proba-
bility 0.9), the individuals (c1, c2, c3) are less likely to die and more likely to get a reward fast.
The probability that any of the individuals dies is rather low as, e.g.,

P<io-10[(—dead(c1) A ~dead(c2)) U dead(c3)] holds.

So, for any scheduler, the probability of c3 dying first never exceeds 107!°. The probability that
one of the individuals gets more than 37 points within 100 steps turns out to be greater than 0.8,
since

P<0.s[0=1 (points,, > 37)] is refuted.

Conclusion. As a general conclusion of the experiments we may state that it is good for a
population as a whole if the animals are careful; but an individual may be at an advantage if it is
more daring than the others.

3 A Language For Stochastic Time

We plan to look at similar extensions of statecharts for stochastic models. In a stochastic model,
the duration of certain actions or time intervals is distributed according to a probability distri-
bution. A simple example is radioactive decay: the time between “now” and the moment that a
nucleus decays is distributed according to the exponential probability distribution. We want to
give a language similar to P-statecharts, which is easy to use, for stochastic systems.

There are also model checkers for stochastic systems. So, we want to use these model checkers
in a similar way to check properties of systems described by our language.

All this work is intended to spread probabilistic and stochastic model checking further. These
newer variants of model checking have been developed the past years and should now be presented
in a form which is similar to known techniques, to make it easier to apply them in real cases.

References

[1] Rajeev Alur, Costas Courcoubetis, and David Dill. Model-checking in dense real-time. In-
formation and computation, 104:2-34, 1993.

[2] Christel Baier and Marta Kwiatkowska. Model checking for a probabilistic branching time
logic with fairness. Distributed Computing, 11:125-155, 1998.

[3] Philip H. Crowley. Hawks, doves, and mixed-symmetry games. Journal of Theoretical Biology,
204(4):543-563, June 21 2000.

[4] Rocco De Nicola and Frits Vaandrager. Action versus state based logics for transition systems.
In I. Guessarian, editor, Semantics of systems of concurrent processes: ... Proceedings, volume
469 of LNCS, pages 407-419, Berlin, 1990. Springer.

[5] E. Allen Emerson and Edmund M. Clarke. Using branching time temporal logic to synthezise
synchronisation skeletons. Science of Computer Programming, 2:241-266, 1982.

[6] Rik Eshuis and Roel Wieringa. Requirements-level semantics for UML statecharts. In Scott F.
Smith and Carolyn L. Talcott, editors, Formal Methods for Open Object-Based Distributed
Systems IV : ... FMOODS, pages 121-140, Boston, 2000. Kluwer Academic Publishers.

[7] David N. Jansen and Roel Wieringa. Extending ctl with actions and real-time. In Interna-
tional Conference on Temporal Logic, Leipzig, 2000.

[8] David N. Jansen and Roel Wieringa. Reducing the extensions of CTL with actions and real
time. Technical report, Universiteit Twente, Enschede, December 2000. TR-CTIT-00-27.

[9] M. Kwiatkowska, G. Norman, and D. Parker. Prism: Probabilistic symbolic model checker.
In Joost-Pieter Katoen and P. Stevens, editors, [Proceedings of TACAS 2002], volume 2280
of LNCS, pages 51-65, Berlin, 2002. Springer.

[10] J. Maynard Smith and G. R. Price. The logic of animal conflict. Nature, 246, November 1973.

[11] H. W. M. Verbeek, T. Basten, and W. M. P. van der Aalst. Diagnosing workflow processes
using Woflan. Technical Report 99/02, Technische Universiteit, Eindhoven, 1999.

[12] Roel Wieringa and Jan Broersen. A minimal transition system semantics for lightweight class-
and behavior diagrams. In ICSE9S8 Workshop on Precise Semantics for Software Modeling
Techniques, pages 129-151, Miinchen, 1998. Technische Universitat. Report TUM-19803.

[13] Sergio Yovine. Kronos: A verification tool for real-time systems. Springer international
Journal of software tools for technology transfer, 1(1/2), 1997.

