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Abstract: The occurrence of artifacts is a major challenge in photoacoustic imaging. The 
artifacts negatively affect the quality and reliability of the images. An approach using multi-
wavelength excitation has previously been reported for in-plane artifact identification. Yet, 
out-of-plane artifacts cannot be tackled with this method. Here we propose a new method 
using ultrasound transducer array displacement. By displacing the ultrasound transducer array 
axially, we can de-correlate out-of-plane artifacts with in-plane image features and thus 
remove them. Combining this new method with the previous one allows us to remove 
potentially completely both in-plane and out-of-plane artifacts in photoacoustic imaging. We 
experimentally demonstrate this with experiments in phantoms as well as in vivo. 

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

Recent research has shown numerous potential clinical applications of photoacoustic imaging 
(PAI) [1–3]. This imaging technique is based on the photoacoustic (PA) effect. Samples are 
illuminated using short pulsed laser light. The local absorption of light generates ultrasound 
(US) waves which are then detected by a US transducer. PA images are reconstructed from 
the detected signals providing localized information about optical absorption properties of the 
samples. In clinical applications, the obtained information of endogenous chromophores such 
as hemoglobin helps diagnosing early stages of various diseases [2,4–6]. 

A typical PAI system basically consists of a light source and US transducer array. The 
transducer array can be classified as one-dimensional or two-dimensional [7]. While the two-
dimensional transducer array provides 3D images, it requires significant users’ effort and 
experience for acquiring and interpreting these 3D images [8]. Additionally, two-dimensional 
transducer arrays and the associated scanners are unaffordable for many clinical applications 
[8]. One-dimensional transducer arrays, in contrast, are widely used for clinical studies [9,10], 
so from the point of view of clinical translation the incorporation of PAI in a one-dimensional 
array is preferred. 

Several compact and low-cost PAI systems for clinical use have been developed. 
Integrating a laser source into a handheld US probe stands out among the approaches [9–12]. 
However, the occurrence of artifacts related to acoustic inhomogeneity of the tissue (clutter) 
is a major drawback of using a linear US transducer array. The artifacts aimed in this work 
include in-plane artifacts (IPAs), also called reflection artifacts, and out-of-plane artifacts 
(OPAs). While IPAs are caused by signals being reflected inside the imaging plane, OPAs are 
caused by absorbers located outside the imaging plane of the transducer array [13,14]. These 
artifacts appear as real image features, such as blood vessels, in the acquired image leading to 
misinterpretation. Therefore, correcting artifacts in PAI is of importance. 

Previously, we proposed a method, photoacoustic-guided focused ultrasound 
(PAFUSion), to reduce IPAs [13,15]. This method has several limitations: a large number of 
US images are needed; the imaging plane has to be perpendicular to the PA sources; it is 
limited to reflectors within the angular aperture of the US probe. We then proposed another 
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