NATO ASI Series
Advanced Science Institutes Series

A series presenting the results of activities sponsored by the NATO Science Committee, which aims at the dissemination of advanced scientific and technological knowledge, with a view to strengthening links between scientific communities.

The Series is published by an international board of publishers in conjunction with the NATO Scientific Affairs Division

A Life Sciences
B Physics
C Mathematical and Physical Sciences
D Behavioural and Social Sciences
E Applied Sciences
F Computer and Systems Sciences
G Ecological Sciences
H Cell Biology
I Global Environmental Change

NATO-PCO DATABASE

The electronic index to the NATO ASI Series provides full bibliographical references (with keywords and/or abstracts) to more than 30000 contributions from international scientists published in all sections of the NATO ASI Series. Access to the NATO-PCO DATABASE compiled by the NATO Publication Coordination Office is possible in two ways:

- via online FILE 128 (NATO-PCO DATABASE) hosted by ESRIN, Via Galileo Galilei, I-00044 Frascati, Italy.
- via CD-ROM "NATO-PCO DATABASE" with user-friendly retrieval software in English, French and German (© WTV GmbH and DATAWARE Technologies Inc. 1989).

The CD-ROM can be ordered through any member of the Board of Publishers or through NATO-PCO, Overijse, Belgium.
This book contains the proceedings of a NATO Advanced Research Workshop held within the activities of the NATO Special Programme on Advanced Educational Technology, running from 1988 to 1993 under the auspices of the NATO Science Committee.

The books published so far as a result of the activities of the Special Programme are:

Cognitive Tools for Learning

Edited by
Piet A. M. Kommers
Department of Education
Twente University
P.O. Box 217
7500 AE Enschede, The Netherlands

David H. Jonassen
School of Education
University of Colorado
P.O. Box 173364
Campus Box 106
Denver, CO 80217-3364, USA

J. Terry Mayes
Institute for Computer-Based Learning
Heriot-Watt University
Edinburgh EH14 4AS, UK

With special assistance from
Alcindo Ferreira

Springer-Verlag
Berlin Heidelberg New York London Paris Tokyo
Hong Kong Barcelona Budapest
Published in cooperation with NATO Scientific Affairs Division

CR Subject Classification (1991): K.3.1, I.2.6, J.4

DOI: 10.1007/978-3-642-77222-1

Library of Congress Cataloging-in-Publication Data
Includes bibliographical references and index.

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are liable for prosecution under the German Copyright Law.

© Springer-Verlag Berlin Heidelberg 1992
Softcover reprint of the hardcover 1st edition 1992

Typesetting: camera ready by authors
45/3140-543210 – Printed on acid-free-paper
Preface

Cognitive Tools:
Prospects for Exploratory Learning Environments

There were several reasons to address the theme of cognitive tools as discussed in this book and in the corresponding NATO Advanced Research Workshop held in July 1990.

Discussions about the educational impact of hypertext and hypermedia began at conferences in the USA and Europe from 1987 to 1990. They introduced the idea that open learning resources permit students to grasp those elements which are essentially missing in their own knowledge. This idea of ‘pick your own concepts’ was appealing to those educators who could not accommodate the monolithic tradition of programmed instruction, computer-based tutoring in the prescriptive cultures of behaviorism and task analyses. Beside the potential to navigate through hypermedia resources, educators stressed the merit of ‘creating your own ideas’ in a flexible information environment. Consuming the ideas of others in combination with reconstructing your own prior concepts about the key issues in a new domain could generate new and powerful learning effects. This led to an interest in flexible, personalized information tools and was the main reason that ‘cognitive tools’ became a topic of interest for learning.

The second reason was our awareness that it was not only hypermedia that provided the potential of open exploratory learning environments. In fact many diverse approaches can claim the same potential. Allowing the student to reflect on his/her personal knowledge or the information presented during instruction allows for cognitive amplification. Some tools that provide this are:

Semantic networking. The goal of semantic networking tools is to supply the student with a graphical (spatial) arena in which concepts and relations between them can be visualised. This type of activity is often referred to as concept mapping. It stimulates the user to make decisions about mental perspectives. Mapping makes it easy to derive the overall shape of a semantic structure.

Expert systems created by the students elicit tacit knowledge from learners as they attempt to integrate new knowledge in different contexts, and relate those new concepts into already existing schemes. This approach is promising, because computers can readily execute declarative assertions like rules and facts. Knowledge engineering is a rapidly developing discipline. We as educators may learn a lot from this new discipline. Much attention has been paid to the logical aspects of knowledge, presumably because of the implementation languages such as PROLOG. Expert system shells provide a ‘knowledge workbench’ for students in complex domains like multivariate processes, diagnosis and fault finding, decision making, and logic for problem-solving tasks.
Hypermedia can also be used as cognitive tools. Not only can users benefit from the flexibility of consulting information, but also the mental effects of creating personal annotations, reflections and actions, are very engaging. Some of the learning outcomes from using hypermedia overlap those of semantic networking, expert systems and micro worlds.

Cooperative Learning Environments are facilities for multiple-user interactions. We foresee that many of the currently individual man-machine tasks, like writing texts, designing products, creating and consulting databases, making computer-based tools for decision making and computer-based learning, will become communicative and cooperative in the next five years. Timbuktu and Gossip, as cognitive tools, open the discussion about the type of problems that must be solved in designing cooperative environments. As we experienced in the Gossip and Timbuktu sessions during the conference, a key problem to explore is the complexity of parallel thoughts, which need to be synchronized and reformulated into superordinate phrases in order to facilitate further cooperation.

Micro Worlds are the most prominent and traditional members of the family of cognitive tools. Computer-based microworld programs may allow students to intervene in a microcosmic reality in complex but well defined ways.

Developing new educational cognitive tools is a provocative new approach in the context of instructional design. The learning goals which should be reached become clear only after having explored the different ways of using the tools, while traditional instructional design starts with clear objectives. This is one of the reasons why there are only a few settings which allow educators to think freely about new metaphors for learning environments. May this book be one of them.
Acknowledgements

NATO has funded the workshop from which this book is an offspring. We thank the NATO ARW Committee for their support and positive attitude towards the theme of cognitive tools.

As always, many people contributed to the success of the workshop and to the potential success of this book. For her patience, humour, organisational skills, and indomitable spirit, we thank Margriet Simmerling. For his computer skills and ideas and his willingness to share them, and most certainly for his tireless work on the manuscript, we thank Alcindo Ferreira.

Further, to all the participants and the ideas they shared during the conference and in this book, we are truly thankful.

Finally, the major editing of this book was kindly supported by the IST Vakgroep and ISM Vakgroep, Toegepaste Onderwijskunde at Twente University, The Netherlands.
Contents

Preface Cognitive Tools: Prospects for Exploratory Learning Environments V
Piet A.M. Kommers

Introduction
1. What are Cognitive Tools? ... 1
 David H. Jonassen
2. Cognitive Tools: A Suitable Case for Learning 7
 J. Terry Mayes

Part I Semantic Networking as Cognitive Tools 19
David H. Jonassen
3. Constructing Knowledge with Learning Tool 23
 Robert B. Kozma
4. TextVision and the Visualisation of Knowledge:
 School-based Evaluation of its Acceptance at two Levels of Schooling 33
 Piet A.M. Kommers, Sjoerd A. de Vries
5. SemNet: A Tool for Personal Knowledge Construction 63
 Kathleen M. Fisher
6. Cognitive Tools: The Experience of CASP, NoteCards, SemNet............... 77
 Ray McAleese
7. Flexibility of Expressiveness:
 Elske Heeren, Piet A.M. Kommers

Part II Expert Systems as Cognitive Tools 103
David H. Jonassen
8. Building Knowledge Bases:
 An Environment for Making Cognitive Connections 105
 Stanley H. Trollip, Renate C. Lippert, Anthony M. Starfield, Karl A. Smith
9. Levels of Processing in Building Expert Systems 125
 David H. Jonassen, R. Scott Grabinger
10. Computers and Exploratory Learning in the Real World 139
 Richard Ennals

Part III Hypertext as Cognitive Tools ... 147
David H. Jonassen
11. Tailoring Hypertext for the Learner ... 149
 Nick Hammond
<table>
<thead>
<tr>
<th></th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.</td>
<td>Heuristics for Cognitive Tools</td>
<td>161</td>
</tr>
<tr>
<td></td>
<td>Harold Thimbleby</td>
<td></td>
</tr>
<tr>
<td>13.</td>
<td>Gloves for the Mind</td>
<td>169</td>
</tr>
<tr>
<td></td>
<td>Stephen W. Draper</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Part IV Collaborative Communication Tools</td>
<td>183</td>
</tr>
<tr>
<td></td>
<td>Piet A.M. Kommers</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Paulus H. Vossen, Josephine Hofmann</td>
<td></td>
</tr>
<tr>
<td>15.</td>
<td>Gossip as a Collaborative Communication Tool</td>
<td>193</td>
</tr>
<tr>
<td></td>
<td>Alcindo Ferreira</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Part V Microworlds: Content Dependent Cognitive Tools</td>
<td>197</td>
</tr>
<tr>
<td></td>
<td>Piet A.M. Kommers</td>
<td></td>
</tr>
<tr>
<td>16.</td>
<td>Learning Elementary Mathematics: A Discussion of Microworlds</td>
<td>199</td>
</tr>
<tr>
<td></td>
<td>Joost Klep</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The Development of “Scriptor” as a Computer Tool for Writing</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Joost Lowyck, Lieve Vanmaele</td>
<td></td>
</tr>
<tr>
<td>18.</td>
<td>Structure of Learning Environments and Individual Differences as Predictors of Learning</td>
<td>227</td>
</tr>
<tr>
<td></td>
<td>Marcel V.I. Veenman, Jan J. Elshout, Dick J. Bierman</td>
<td></td>
</tr>
<tr>
<td>19.</td>
<td>Learning Environments for Cognitive Apprenticeship:</td>
<td>241</td>
</tr>
<tr>
<td></td>
<td>From Experience to Expertise</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Jules M. Pieters, Henneke F.M. de Bruijn</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Part VI Implementing Cognitive Tools</td>
<td>249</td>
</tr>
<tr>
<td></td>
<td>David H. Jonassen</td>
<td></td>
</tr>
<tr>
<td>20.</td>
<td>Consequences of Moving from a Traditional Cybernetic Approach to a Open Exploratory Learning Environment</td>
<td>251</td>
</tr>
<tr>
<td></td>
<td>Richard N. Tucker, John Whiting</td>
<td></td>
</tr>
</tbody>
</table>

Addresses and Biographies of Lecturers .. 263

Index .. 269