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We compare and discuss representations in two cognitive afttectures aimed at
representing and processing complex conceptual (sentencdike) structures. First is the
Neural Blackboard Architecture (NBA), which aims to accounfor representation and
processing of complex and combinatorial conceptual struatres in the brain. Second
is IDyOT (Information Dynamics of Thinking), which derivesentence-like structures
by learning statistical sequential regularities over a sable corpus. Although IDyOT is
designed at a level more abstract than the neural, so it is a noel of cognitive function,
rather than neural processing, there are strong similais between the composite
structures developed in IDyOT and the NBA. We hypothesize &t these similarities form
the basis of a combined architecture in which the individuadtrengths of each architecture
are integrated. We outline and discuss the characteristicef this combined architecture,
emphasizing the representation and processing of conceptal structures.

Keywords: cognitive architecture, memory representation, h
learning, In situ representations

ebbian learning, compositional learning, incremental

1. INTRODUCTION

The ability to represent and process conceptual structurespasd in language processing,
reasoning, and in generating conceptual representatioms frisual and auditory perception, are
key elements of human cognition. They can be studied wittailreto understand human cognition
and its relation to the brain. But they can also be targetstierdevelopment of arti cial cognitive
systems. These aims can be combined to various degreesisbegaognitive architecture that
provides an understanding of a (neural) cognitive process ¢sm lze used in arti cial systems,
and, conversely, the way in which an arti cial system proesssomplex information can reveal
aspects of human processing as well.

Here, we discuss and relate the di erent representations usdda cognitive architectures,
one neural and one symbolic, in which complex conceptual stmest can be represented and
processed. That is, we discuss and illustrate the di erent wayshich complex conceptual
structures are represented or learned in the two architextand how these representations could
be related.

In particular, we aim to outline how combined representatiawsild be developed, for use in
a combined architecture in which aspects of our neural andtsylio architectures are integrated.
We hypothesize that such a combined architecture could sasv@ model of human conceptual
processing and its relation to the brain. When implementedpitild also serve as a new arti cial
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architecture in which forms of neural (parallel) hardwaredan as in the sentence NBA (e.gan der Velde and de Kamps, 2006,
neural and symbolic forms of learning and processing could b201Q. However, the combination of NBA with IDyOT provides
integrated. We are as yet at the beginning of the integratibn the possibility to derive these structural elements by legmyn
our architectures, which is also a reason why we focus oms$ssufrom real corpora. Conversely, the NBA could provide a neural
of representation here. implementation of the more higher-level formal account as
The neural representation in our integration is that used inprovided by IDyOT. Thus, IDyOT potentially supplies a higher-
the Neural Blackboard Architecture (NBA), which is aimed tolevel formal account and learning abilities to the operasiarf
represent and process conceptual structures in language (eitpe NBA. Conversely, the NBA provides a route toward a neural
van der Velde and de Kamps, 2006, 2Qlfeasoning and implementation of IDyOT, which could also form the basis of in
other cognitive domainsvan der Velde, 2016aThe NBA parallel operating hardware.
assumes that conceptual representations in the brain consist

of dedicated network structures, or neural assembliest th THEORETICAL POSITION AND NOVELTY

develop over time and that can be distributed over wide area

in the brain and cortex. A fundamental characteristic ofsae Our theoretical position here is that the representations used

network-like conceptual representations is _that thf_ey _areag_lw NBA and IDyOT are in fact two di erent representations of the
content addressable, whether they are activated in isolair ﬁame thing, at di erent levels of abstraction, but with foaus

whether they are parts of more complex (and even hierarchica, imilar representational a ordances. In the following seas, we

conceptual structures, such as sentences in language. describe the representations, and the relations between-the

The NBA provides net."al blackboards™ that aord the but, as always, to understand the representations it is Sacgs
representation and processing of complex conceptual strustur%lso to understand the processes that work over them.

base.d.on neurgl assembly conceptual representations in gpeci The novelty in the current paper lies in several places,
cognitive domains. Ex'amplesareneural blackboardsfogsmt primarily in the thorough-going comparison between the

structures: phonologlcal structures, sequences, _andloaiat representations and corresponding processes in the two
as used in reasoning. In each domain, a dedicated neur Tchitectures. The entire description of IDyOT memory

blackboard will provide a range of specialized structura onstruction is also novel, and we present a novel simulation

eIements_ that can bind n a“neuraln manner to the neuralye o activity based on the NBA, which allows for a
assemblies (e.g., representing “words

o . . S n language). Tpmhe detailed comparison with brain activity observed in human
bindings, mp_lemented with neural cwcun;,_ allow the ciieat (sentence) processing. To the best of our knowledge, such a
and processing of more complex cognitive structures (€.Ggejleq potential comparison between human brain activitgt a

sentences’) na comblnatorl_al manner. . simulated model activity is not available in the case of Heyrel
The symbolic representation in our integration is that used

i Inf ion D ; £ Thinki IDVOT). IDVOT deri cognitive processing, such as sentence comprehension. Shis al
In Information ynamics ot fhinking ( y )- Y& erves strongly motivates the integration of our architectureschuse
(e.g., sentence-like) structures by learning statissegjuential

o R ) - < that would endow the NBA with the learning capabilities of
regularities over a linguistic corpus\ggins, 2012b; Wiggins IDyOT, based on real corpora (as outlined below). In turn,
and Forth, 2015; Forth et al., 201dDyOT is unusual as a

. . . . 7 o the dynamics and structure of the NBA would then allow
mathne learning formallsm n Fhat Itis ,Symbf’"c In nature, comparison between the representations and underlying
,bUt it generates and gives explicit semgntlc§ to 'ts, own syspbo processing as learned by IDyOT and human brain activity.
in a hottom-up learning process, which is optimized by a The structure of the paper is as follows. In the next two
general, data-independent principle of information e ciency sections we briey describe the representations used in NBA
cqnceptualized_ as predictive accuracy. These symbolsporés 4 IDyOT in turn, also giving detail of processing where
with concepts in the semantics of the system. Another unusu§ppropriate. In the sections that follow, we discuss a number of

aspect of IDyOT's operation is that both representations an eci c links between NBA and IDyOT and the potential bene ts
sequential models are optimized simultaneously with reSpe‘bt?their integration

to the prediction accuracy of the models, causing a trade-o
between over tting and accuracy that we propose as a model of
the corresponding trade-o in human cognition. The explarmti 3. NEURAL BLACKBOARD
of this process is a novel contribution of the current paper. ARCHITECTURE
The representational links between IDyOT and NBA concern
the nature of the dedicated structural elements that allown our outline of Neural Blackboard Architecture, or NBA for
processing and representation of complex conceptual strustureshort, we focus on the representation of concepts (e.g., lyidgr
the way these elements could be activated during processingords) in the architecture and the representational struesu
and the underlying semantics of the architectures in thehat are used to integrate concepts in more complex cognitive
form of conceptual spaces that possess a geometrical structgteuctures, such as relations and sentences.
(Gardenfors, 2000, 2014 The basis of concept representation in the NBA are “neural
In the NBA, the dedicated structural elements form the néuraassemblies,” as proposed by Donattebb (1949) In the
blackboards. The kinds of elements used and the way they aveew of Hebb, these neural assemblies develop over time by
activated derive from analyses of the cognitive domainsatlh interconnecting the neurons in the brain that are involved
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in processing (sensory) information and generating actions
related to the concept they represent. However, unlike Hebbia
assemblies, conceptual representations in the NBA are ngt onl
associative. Instead, they can (and mostly will) contaiatiehal
structures as well.

Figure 1 illustrates a neural assembly representatiorcaif
It would be distributed over di erent areas in the cortex and
brain, depending on the kind of information involved, inclindy
networks processing perceptual information about cats and

networks that can produce speci ¢ actions (e.g., pronounciey t
word “cat”). But also networks representing emotional conta é) ‘ ;
associations related to cats belong to the assembly, amiriet @ Cead Con> (mad>
that instantiate relations, such eat is pet
The combination of perception and action in the assembly
structure of a concept entails that both the patterns (and
activation) of “incoming” and “outgoing” connections deteine
the meaning of a concept. For example, neurons observed in
the medial temporal cortex responded to a person whether the !
person or his or her name was presenténli(an Quiroga, 201R
These “perception” networks do in fact belong to the assemblyFIGURE 1 | Left: Neural assembly representation otat. Right : Sentence
structure of a concept, because without them the concept couldstructure in the Neural Blackboard Architecture: a sentene neural blackboard
not be activated (or was not Iearned). But this would capture (temporarily) intlerconnect‘s theih situ” concept representations (given by -
. neural assemblies) otat, is, on, and mat to form the sentence structurecat is
Only part of the role and (hence) meaning of the conceptual on mat. The thick line connections represent “conditional connetions.” They
representation involved. Equally important would be the e @£t | can be opened by gating circuits that are either activated bgustained activity
these neurons on downstream processivg(der Velde, 2005 in working memory neural populations (representing bindg) or by neural
The notion that conceptual representations interconnect control circuits (e.g., performing parsing operations). Nnoun; P, preposition;
sensory information processing and action generation S Sentence: V. verb.
underscores their role in producing behavior. The ability to
produce behavior is a crucial aspect of cognition (and hence of
every neuro-cognitive model) because the evolution of d@gn  represents is available (e.g., perceived), even when thepiisc
depended on the ability to produce behavior. Without advawgiti  part of a (complex) sentence structure.
a behavioristic view of cognition (e.g., as the basis of rioge Huth et al. (2016)give an indication of thein situ nature
cognition) we do argue that the prime role of cognition is to of conceptual representation in the brain. They measuredrbrai
intervene in the re ex (cfShanahan, 20)0n this view, the need activity related to words when people were listening to s&fie
for a connection structure that transfers sensory actitotgnotor  an fMRI scanner). The parts of the cortex that responded to the
activity should always be at the background of a neural-ddbgni  words (after statistical analysis) were much larger comp&oed
model. previous studies in which only individual words were presente
So, inFigure 1, it is not just the gray oval that represents the The analysis divided the left hemisphere (LH) into 192 distinct
conceptcat, but instead the entire network structure to which it functional areas, 77 of which were semantically seleciie.
is connected. The gray oval could play the role of a highertleveight hemisphere was divided into 128 functional areas, 63 of
representation of the concept in the sense that it intercotsmec which were semantically selective (even though the RH is usually
the concept to other networks. But it would be wrong to seaegarded as not being involved in language). Remarkably, the
this as the “genuine” encoding of the concept. Without theorganization of these areas was quite similar over the dnere
networks to which it is connected, the gray oval does not deco (7) subjects involved in the study. Furthermore, next tosthe

Sentence neural blackboard

Structure
assemblies Conditional
connections:

A

In situ
concept
assemblies

anything. semantic areas, other areas also responded to other aspects of
An important feature of conceptual representations given byvords (e.g., Brocas area).
neural assemblies is that they an@ ‘Situ.” This entails that Because the study was focused on semantic representaton, th

they cannot be copied and transported to create more complewords observed in the study were categorized into 12 semanti
structural representations with them (e.g., as found in lzage  domains. These domains tiled the cortex in terms of the 77
or reasoning). Instead, the same assembly (or a part thergof)areas in the LH and the 63 areas in the RH referred to above.
always activated when the concept it represents is tokened. Omspection of the data reveals that semantic domains arergbiye
consequence of this kind of representationis that an assecalnl  represented in di erent tiles, distributed over the LH and/or RH
develop and grow over time, as originally discussed by Hebb. cortex.

Another direct consequence of thie situ nature of a neural The semantic representation as observedibth et al. (2016)
assembly is that the concept it represents is content addskessa seems to be in line with the Hebbian assembly hypothesis, in tha
This entails that the same assembly (or part thereof) wilthese representations would have arisen over time, and would
be activated when su cient information about the concept it (partly) be determined by the context in which the concepts were

Frontiers in Psychology | www.frontiersin.org 3 August 2017 | Volume 8 | Article 1297


http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive

van der Velde et al. Representation and Processing of Conceptual Structures

processed. This could explain why, e.g., the same visual gbncevith. In the NBA, that means languages for which we have
(e.g.coloredlactivates areas near the visual cortex but also in thdeveloped neural blackboardsa der Velde and de Kamps,
prefrontal cortex. This pattern of activation could re ectelient ~ 20153.
parts of the assembly of the concept, and their selectivesictiv van der Velde and de Kamps (2006, 20éxplain the structure
would then be determined by the context (visual processingnd operations of the neural blackboards in detail. Here, we
vs. motor behavior) in which the concept is used and learnedaddress a number of main issues, focusing on representationa
The fact that a concept generates activation in di erent aati  structures in the sentence blackboard. The composite stratt
areas is in line with the assembly representation as illustrat ~ elements of the sentence blackboard are “structure asgsyills
Figure 1 illustrated inFigure 1 They can bind to concept assemblies (or to
“word assemblies” in the phonological blackboard) and thay c
. bind to each other to generate the structure of the senteaag,(
3.1. Neural Blackboards as Connection catis on mat
Paths The thick-line connections in the blackboards play a crucial
If concepts are represented and distributedrasitu assemblies, role in the process of generating and representing a sentence
the question arises of how they could be combined to represestructure. These connections are “conditional connectjon
more complex cognitive structures, such as relations oreg@#s. consisting of gating circuits. To operate as a connection, the
The key notion of the NBA is that more complex cognitive gates in the connections have to be opened or activated. This
structures are formed by providing (temporalpnnection paths ensures that activation does not ow without control in the
between the assemblies (concepts) they contain, in relatitn ~ neural blackboards, that is, the connections in the blaekts
the structure they express. These (temporal) connection @aths are not associative. The gates can be activated by working
formed and controlled in “neural blackboards.” memory (WM) activation, representing a binding, and by comtro
For example, in the case of language, the NBA provides @rcuits, which represent (e.g., syntactic) operations i th
connection structure (or connection path) that allows aréity  architecture. We will discuss these operations in more detalil
words in a given language to be (temporarily) interconnectedater on.
in accordance with the structure of the sentence. The words So, thein situ assemblycat is bound (via the phonological
in this case are the network structures (neural assembdiss) blackboard) to a “Noun” structure assemtx in the sentence
described byHuth et al. (2016) The neural blackboards in the blackboard. Binding is achieved by working memory activati
NBA provide a “small world” network structure that would allo  that opens the gates between the assemblies involved. Temithis
the in situ and distributed concept assemblies (“words”) to bethe sentence blackboard has a number of Noun assembles which
interconnected using a limited set of intermediary “hubsdan can all potentially bind to each of the Word assemblies in the
sub-hubs,” given by the structure assemblies and their gi@en phonological blackboard (via a matrix or tensor-like conneunti
bindings in the blackboards. Small world networks are foimd structure, see below). All bindings in all neural blackhutzar
a wide variety of natural and man-made structures becausg th are of this kind. A speci c binding in the “connection matrix”
allow arbitrary interconnectivity with minimal means. Thalso between assemblies is achieved by activating a speci ¢ mgrki
play an important role in the brainghanahan, 20)0 memory, which consists of sustained activation in a poputatio
Figure lillustrates how in the NBA a sentence can be formedf neurons. Once activated (by the mutual activation of the
with in situ concepts encoded by neural assemblies. The assemblies it binds), the population remains active on its own
situ assemblies focat, is, on, and mat are bound to a “neural for a while due to “reverberating” activity (e.gimit, 1989.
blackboard” to form the sentena@at is on mat So, in this waycat will bind to Nx. Similarly,is will bind to
Figure 1 illustrates the very basic aspects of the neuralhe Verb structure assembWz, onto the Preposition structure
blackboards that the NBA uses to encode relations betivesitu =~ assemblyPu and mat to Nw (again, via the phonological
concept assemblies. In the case of language there are (atweas blackboard).
neural blackboards involved. One is a phonological blackihoar Thus, to represent sentences based ion situ words
which is notillustrated here. The other is the sentencekidaard  (concepts), the NBA builds a connection path (structure) in
which encodes sentence structures, as illustrated herethit the sentence (and phonological) blackboard, in accordance
sentenceat is on mat with the syntactic structure of the sentence. These septenc
The need for both a phonological and a sentence blackboarchn be novel sentences based on familiar words (or even
derives from the productivity of natural language. Languag@ovel words based on familiar phonemes), and they can
has (at least) a two tier productive structuréatkendo , 200p  include hierarchical structures like (e.g., center) entied
in which rst phonemes form words and then words (or (van der Velde and de Kamps, 2006, 2010nce a connection
word-phoneme combinations) form sentences. The combimatio structure is built it can be used to produce behavior, because
of (familiar) phonemes allows the generation of a very larg& constitutes a connection path between the situ concept
set of words, which can grow continuously in life. Theseassemblies it interconnects. In turn, this entails thatatris
words (including novel but phonetically regular words) cana (temporal) connection path between all perception and
then be combined to give a practically unlimited set ofaction structures embedded in these concept assemblies, thu
sentences. Yet, it is important to realize that this two tierforming a path between perception and action as the basis for
productivity is restricted to the languages we are familiabehavior.
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4. IDYOT: THE INFORMATION DYNAMICS

OF THINKING
Generator
4.1. Overview 1
IDyOT (Information Dynamics of Thinking:Wiggins, 2012b; / ; Conscious
Wiggins and Forth, 2015; Forth et al., 2)implements Baars' P awareness
/ X \

Global Workspace Theory (GWTBaars, 1983 aording a
computational model of a hypothetical cognitive architeetur
At the functional levél, a number ofgeneratorsample from N
a complex statistical model of sequences (explained below), \
performing Markovian prediction from context\Wiggins and
Forth, 2015; Forth et al., 20).&Each generator indexes a string
of symbols, forming achunk a nal substring of the overall
memory model, expressed as symbols, whose origin is explainec
below. Each indexed string serves as a context for prediction ) ) , o
the next (as yet unsensed) symbol; predictions are expressed %IGQRE 2 | Overview of the IDyOT (Information Dyn_amlcs of Thml_(lng)
o i X rchitecture. Generators synchronized to perceptual inpusample, given
distributions over the alphabet usedto express the 'npUt- Aghu previous perceptual input (if any), from a rst-order, mulimensional Markov
is integrated into the memory and Global Workspace (which may model to predict the next symbol in sequence, which is matchd with the
be thought of as an Al blackboar@orkill, 199) when it meets input. Predicted symbols that match are grouped in sequencauntil a chunk is

a criterion based on information content. The upshot of this detected on grounds of its information pro le. The generatothen stores the
) chunk, as described in §7.1.3 and resets its chunk, which istie sum of the

deSIQr? 1S th_at lDyOTIS primary pognltlve operatlon is percejptua structured hierarchical memory and a detector that searche for salient
chunking.Figure 2gives a functional overview. information, shown as “conscious awareness” here. This aiivs the resulting
IDyOT maintains a cognitive cycle that continually predicts| chunk of sequence to be stored in the memory, to become part othe
what is expected next, from a statistical model, expressed jrptatistical model and thence to be used subsequently.
terms of self-generated symbols that are given semantics by
perceptual experience; it is thus focused on sequence. Peateptu
input is matched against generators' predictions, and where a For grounding (or, more preciselytethering Sloman and
match leads to a larger increase in uncertainty than otherest ~ Chappell, 200§ the lowest-level conceptual spaces are
matches, the corresponding generator's chunk is ushed th®  priori de ned by the nature of their sensory input (inspired
Global Workspace, and stored in memory, linked in sequencgy human biology: for example, auditory input models the
with the previous chunk. Chunks that fail to win are forgotten output of the Organ of Corti); higher-level ones are inferred
after a xed period, the duration of which is question of the from the lower levels using the information in the sequehtia
research. The model entails that, for perception to work, aste model. Structures may be grouped together in categories,
some generators must be working in all perceptual modalitiegccording to similarity in their conceptual space, givingrthe
at all times; otherwise no generator would be predicting folsemantics in terms of mutual interrelation. Using this, a
input in a newly active modality to match against. This a¢ivi consolidation phase allows membership of categories to be
may account for otherwise unexplained electrical brainvéigti  optimized, by local adjustment, in terms of the predictive
that is not directly concomitant with perceived events, anhd iaccuracy of the overall model. Theoretically, the layering
may be responsible for spontaneous creativityigins and of models and its associated abstraction into categories can

\
’ \
! Gengrator i

!

I
\ ’
S
.

perceptual
input

Associative Memory
with adaptive
representations

Bhattacharya, 20)4 proceed arbitrary far up the constructed hierarchyiggins,
2012b; Wiggins and Forth, 20L5orth et al. (2016)provide

4.2. Representation, Memory, and an account of the representation of timing in IDyOT;

Prediction in IDyOT these aspects, however, are beyond the scope of the current

Each chunk, having been recorded, is associated with a dymHk@per.
in a higher-level model, which adds to the overall predictive In general, the stimuli to which IDyOT will respond are
model. Each symbol corresponds with a point in a conceptugiequences of atomic percepts. All the dimensions of music,
space Gardenfors, 2000, 20)L4ssociated with its own layer, pitch, timbre, amplitude and time, which also feature in speech,
and each such point corresponds with a region or subspacde used for prediction, as has been demonstrated in IDyOM
of the conceptual space of the layer below, de ned by théPearce, 2005; Pearce et al., 30a& can any other transduced
lower-level symbols in the chunk. Thus, there are two parallesignal. This demands a more powerful Markov model than is
representations: one symbolic and explicitly sequential; angiommon in cognitive science language modeliggnklin and
one continuous and non-sequential, but encoding sequéentia/Vitten (1995)proposed aviewpointbased approach that allows
information. The former provides evidence from which theidat @ set of interacting features, associated by means of seesien
is derived, while the latter provides semantics for the farme ~ of multi-dimensional symbols, to perform multi-dimensiona
prediction. This is the system used in IDyOM and adapted for
1The formal implementation of this functional behavior is somewhiagr@nt in multidimensional |anguage models Miggins (2012a)A key
actuality. However, the description given here is easier to widad in isolation.  contribution of the viewpoint idea is the ability to superpose

Frontiers in Psychology | www.frontiersin.org 5 August 2017 | Volume 8 | Article 1297


http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive

van der Velde et al. Representation and Processing of Conceptual Structures

distributions from di erent features with weights deterned by  TABLE 1 | Notation used in the current description of IDyOT.
their entropy Pearce et al., 20p5
Given Conklin's notion of viewpoint Conklin and Witten,
1995 and the associated mathematics, it becomes possibLPéA
also to represent p_ropositic_mal meaning within the_statiSticaH(D) The estimgted entropy of distibutorD, over alphabetA:
framework: to do this, one incorporates representations @ th H(D)D p(S) 1092 PES).
meaning (perhaps drawn from another sensory modality, e.g., 2A
describing in |anguage ascene representation derived fisnal h(D,s)  The estimated ilnformation content of symbos drawn from distribution D
input) in the st_atistical _model I';’s_hghi et gl., 20)3Here, we ﬁ\(';r;;“ghizzt:'p(s)_
presuppose a rich, multlsensqry input which allows association, The conceptual space (ardenfors, 2000) associated with alphabetA.
to be constructed between di erent sensory modalities, oa th Rae
basis of co-occurrence. '
A key scienti ¢ advantage of this representations is that its
symbols are (directly or indirectly) explicable in terms D#OT's
perceptual input, and a record of that perception is maintained
Thus, its status as a cognitive model is more easily testad th
in equally powerful, but less semantically transparent,rigay
systems, such as deep neural networks.

@y) The alphabet associated with viewpoint.

The distribution that constitutes IDyOT's prediction at tira point t over
alphabet A.

The region of S that corresponds with the symbols 2 A.

In particular, chunking plays a key role in this relation beeme
the two architectures. Perceptual chunking is the key opemati
of IDyOT, but it is also the underlying principle of structure
formation in the NBA. The neural blackboards in the NBA not
only interconnect information or provide a workspace in which
information can interact and compete, they also form larger

4.3. Summary: the Principles of IDyOT chunks of the information presented to them. These chunks
In summary, the IDyOT model is based on 6 principles.arise during information processing and competition and are

Notations used in the current description of IDyOT are preseht epresented with the structure assemblies that charaeteiz
in the Table 1 given blackboard.

In this way, the two approaches are strongly mutually

1. The fundamental function of cognition is to e ciently pr@éss  complementary: IDyOT can provide the structural elements that

sensory information so as to predict what is to happen next iRyould be needed in a neural blackboard representation, iukté

the world. . deriving them from a laborious and perhaps faulty analyses. The
2. Predictions are made by classifying events (886.13),7.1yay in which IDyOT derives these structural elements is much

counting likelihoods of short sequences, and building angre direct and secure than the engineering approach in NBA,

literal model of the experience of the organism in thesgecause the elements derived by IDyOT are based on learning

terms (§6.1.1). Predictions are expressed as distributuss  mechanisms using real corpora. These learning methods could

alphabets of events. also be used to develop the structural elements of a phorzabgi

3. Events are identi ed by chunking sensory input (87.1.3).  peyral blackboard and for neural blackboards of other laamgs
4. The cognitive system always strives to maintain the optimanan English.

representation of its memory. Optimality is expressed interms | tyr, the NBA provides a direct neural implementation
of the mean number of bits required to represent each symbqls the structures as learned by IDyOT. This oers the
in the memory: smaller is better. possibilities for fast hardware implementations combinethwi
5. Meaning is constructed internally to the cognitive systantl  rocessing abilities based on dynamic competitions in thealeu
incrementally, and consists in associations between sigho  y5ckhoards. The dynamics in neural blackboards also stieng
the IDyOT memory (886.1.3,7.1.4). functional processing in the architecture. For example, thay ¢
6. Because the model maps directly to experience, it is Iearn%qjay a role in sentence processing, in the generation of behavi
incrementally (87.1). This has the following consequences (e.g., answering questions) or in ambiguity resolutione¥lalso
a. Meanings attributed to symbols depend on the order of€duce the constraints that need to be learned to performehes
events that the model learns (8§7.1). tasks. . .
b. Itis necessary from time to time to re-optimize the model, !N the next sections we address a number of relations between
after an extended phase of incremental learning. This ithe representations used in the NBA and IDyOT in more detail.
termed memory consolidationOne consequence is that

meanings can change retrospectively as the system learn§. STRUCTURAL ELEMENTS IN NEURAL
BLACKBOARDS OR WORKSPACES

5. NBA AND IDYOT AS COMPLEMENTARY The rst relation between NBA and IDyOT concerns the role
APPROACHES TO REPRESENTATION of neural blackboards or a workspace. In both architectures,
special operators (or neural circuits) process and generatéspec
Although the NBA is a neural architecture whereas IDyOT isforms of information. But to account for the productivity of
primarily a symbolic one, they are functionally and struetlly = human cognition there has to be a way in which the information
related. processed or generated by special processors is interrelated
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and combined. A neural blackboard or workspace allows theseorth et al. (2016yith respect to timing in music and language.
interactions to occur, with the special processors feedirig in First, then, the reader is asked to focus on the data strectur
and competing within them. The role of neural blackboards orpresented, and to postpone the question of how it is constructed
workspace in both architectures is also related to the smafld  to §7.1. The “viewpoint” terminology used in the following
network structures that would allow di erent brain processor description was originated bgonklin (1990)and Conklin and
(areas) to interconnect with each other in a exible way. Witten (1995)

Blackboards play a role in classical computati@goiill, IDyOT's conceptual representation consists of two
1999, in which they allow the representation of generic formscomponents, both of which are learned. The primary component
of information that can be stored and retrieved at will (indin is a sequence of events with separable featwesvpointy,
with the characteristics of symbolic information procegginin  annotated with chunk extents, which themselves form a
contrast, the neural blackboards in the NBA are not genaric i sequence, and to which chunking is then applied recursively,
this sense. They do not represent arbitrary information vhic up to a limit which is a parameter of the system (see §7.1.3);
can be stored and retrieved at will. Instead, the informatioat we say that a symbol at levelsubtendsa sequence at level
can be stored in a given neural blackboard is determined by thi  1; Figure 3 illustrates this. The shortest possible event is a
nature of its composite structural elements, which depend&ien multidimensional object that describes a simultaneous reom
kind of process the neural blackboard is involved in. Forepen  as sensed by IDyOT, at a sampling rate which is a parameter of
the structural elements of the neural sentence blackboaed athe system, but of which 40 Hz is a preferred value, in terms
di erent from those in the phonological neural blackboard: of all the sensory modalities available to it. The examplesngiv
the sentence neural blackboard has main assemblies and dudre are taken from auditory processing; however, there is no
assemblies for speci c syntactic structural elements,(&lguse” implication that this should be the only modality available.
or “preposition”), which are not found in the phonological nelira
blackboard. As a consequence, the neural sentence blackbo&.1.2. Sequence
cannot (by itself) represent phonological structures. Thiwhy The sequence memory consists of symbols, beginning at the
the blackboards in the NBA are referred toresuralblackboards, lowest representational level, and recorded sequentialy i
to emphasize their internal and selective neural structure. perceived time, as abstractly illustrated Figure 3. Higher

The workspace in IDyOT is symbolic. But the compositelayers in the hierarchy constitute abstractions of the saqas
structural elements in the workspace, learned by IDyOT, aréhat their symbols subtend, in lower layers. Thus, once the
related to the composite structural elements in the neuramemory is constructed, there are in general three directioh
blackboards of the NBA. possible prediction from any given context: up, with increased

In the NBA, however, the composite structural elements (oabstraction, down, with decreased abstraction, and fod&an
‘structure assemblies’) are engineered, derived from alysis of perceived sequence. The theory does not currently consider
the domain (e.g., language) for which the neural blackbsame® the complicating possibility of reasoning backwards, nor of
used. In contrast, the structural elements in IDyOT that gy  subsequent conscious reinterpretation; reinterpretatiboutd
a representation of phonological and sentential structunes a be layered on top of this. The structure so produced, combined
learned from a real corpus. with the contextualized distributions a orded by the tranisit

It would be a huge advantage for an architecture as the NBfatrices, is similar in nature to a Dynamic Bayesian Network
if the structures in neural blackboards could be learnedrfro (Pearl, 1990
real corpora instead of being designed. In return, the NBAldou  For a concrete example, consider speech input. The lowest-
then o er a neural (parallel and dynamic) implementation of level representation of this would be spectral and highly glanu
the structures as learned by IDyOT. The following subsestionand therefore prohibitively expensive in memory. Since théchas
illustrate, for the rst time, how learning proceeds in IDyOT symbols would, in a full example, be sensory inputs, for a human-
and how structural elements as learned in IDyOT can bdike IDyOT, retention of the very lowest levels of memory slib
implemented in a neural and dynamic manner. be eeting, modeling echoic memory, and therefore our example

is more realistic, beginning, liké&/iggins and Forth (2015gat the
somewhat arti cial level of phonemes, pitch and amplitude séhe

6.1. IDyOT Memory: Encoding Sequential constitute ourbasic viewpoints
Structure and Conceptual Meaning Consider the extremely simple example sentence, “John
6.1.1. Overview loves Mary” inFigure 4, which illustrates the idea in multiple

Because IDyOT's learning process is incremental, as opposeddimensions. For example only, we use emoji to denote the
the one-shot learning of most statistical learning systghere is  semantics of the sentence: these are presented at the saengstim
diachronic development of meaning in its memory. As a result, the example sentence is being spoken. This could be represented
is di cult to see how the system works from a static, descrigti by viewpoint “emoji” inFigure 4A, which should be thought of
perspective. Therefore, we begin with a static descriptiomef t as alongside the other viewpoints, together constitutingllév
representation and how it is used, so that the reader has a cleia Figure 4B, simulating more complex world experience. We
idea of where the incremental process is heading. Related, beein consider not just single viewpoints, but also their cross
di erent descriptions are given byViggins and Forth (2015) products (known in Conklin's system as lmked viewpoint),

with respect to the dynamics of lexical disambiguation, agd bwhose alphabet consists of pairs constructed from the two sourc
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FIGURE 3 | Simpli ed illustration of the abstract structure of IDyOT merry. The three generators are working at the level denoted biabels with upper case L; these
have been derived from the lower case | labels, below, and thgenerators are engaged in working on the next level up, denetl by labels with upper case italic L.

Arrows with empty heads denote abstraction; arrows with sadl heads denote concretisation; and arrows with open heads dnote temporal sequence, though note
that the diagram shows only sequence, and does not representime. Recall that each generator's chunk subtends the sequece from its pointer to the end of the

memory. Finally, note that each arrow denotes a range of posle next labels, with an associated distribution, and thagenerators can work at any and all of these
levels. The diagram is simpli ed by showing only one of the atnative labels that exist at each level; thus, each of the alraction and concretisation arrows should be
thought of as a range of choices, governed by a distribution drived from observed likelihood.

A basic viewpoints of this example B level phoneme viewpoint
phoneme d3 o n | AV z m & r i P5  d3pn Iavz mexri
pitch M P4 dzpon | \‘méfri
amplitude‘\/ﬁ/_\ P3 dzon \‘I A me:ri
emii B B B 9 9 9 O & 2 8 8 P2 d3on: I \ Z—>meri
P1 d3o n—l, zZ—>m: ‘\,
linked viewpoints at level 0 I T T T T T \ T
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emoji B @ g @ @ @ @ 8 5] 5] 5] level emoji viewpoint
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U
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\ +
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time time

FIGURE 4 | Two perspectives on IDyOT memory(A) An illustration of the parallel basic viewpoints for the seance “John loves Mary,” expressed in phonemes with
associated voice pitch and amplitude signals, and semant&represented (for the purposes of example only) by emoji segnces. The top group are thebasic
viewpoints, as directly transduced (again, for the purposeof example); the middle example shows dinked viewpoint at the basic level; and the bottom example
shows a linked viewpoint that encodes the discovered assoaeition between the semantic representations and the spoken wrds; such links can only take be
generated when the two source viewpoints are aligned in timgB) The hiearchical memory structures resulting from sensingfdhe sentence, “John loves Mary,” in
terms of the individual phoneme and emaoiji viewpoints by a fiyl trained IDyOT. Note that this does not correspond with thetandard syntactic parse, and nor is it the
same as a MERGE style parse of the words. Associated with eaclayer of the tree,L, is a continuous, time-variant conceptual space S , (Gardenfors, 2000) of
timbre; this is a complex Hilbert space, whose points are tire-slices in a spectral representation, such as a Fourier trsform. Each stimulus at level 0 corresponds
with a temporal trajectory (of variable length) in that spac while the corresponding structures at level 1 are pointsia different, abstract space.Sjc; is related toS;
by spectral (e.g., Fourier) transformation, followinghella et al. (2007) Then, the sound /dZ/ is represented in full spectral detailtdevel 0, but in summary form, as a
point, at level 1, as are /o/ and /n/. At level 1, further trajectoes connect the more abstract representations, and thus ta temporal detail of the individual sounds is
abstracted, allowing (for example) the same word to be recagzed regardless of how long the vowel takes. Expectationssto timing are generated from the various
examples of each sound in each context in the memoryHorth et al., 2016).

alphabets. This, of course, generates a combinatorial égplos  generated: thus, higher-level, abstract predictions aresotiat

viewpoints. the same time as surface-level ones, and this is how lomg-ter
At each layer, there is a rst-order Markov model, which dependency in language, music, and narrative is managed.

allows prediction of the next item in sequencé&yiggins

(2012b)explains the importance of this prediction with respect6.1.3. Meaning

to creativity. Predictions, expressed as distributionsrave  IDyOT is unusual as a symbolic learning system because & doe
alphabet of the relevant layer, may be generated for any poimiot use symbols with prede ned meanings. Rather, symbols are
at the leading edge of the hierarchical memory structure & i grounded in perception, and their meaning is determined aithe
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in terms of synchronic relations between sensory modalitce  way, activation can ow from one of the main assemblies to the
in terms of the diachronic sequence chunks that they subtendther, by opening the gates between these main assemblies and
In either case, meaning is placed in context of the conceptudheir sub assemblies.
spacesGardenfors, 2000, 20)Léssociated with the viewpoints  The gating circuits operate by disinhibitiodi§, as illustrated
and the alphabets built above them. To summarize very brie yin Figure 5. WhenN1 is active, it activates a neuron (or neuron
conceptual spaces are low-dimensional geometrical spaces tipapulation) X and an inhibitory neuron (or population). The
aord judgments of similarity or betweenness. An example idatter inhibits X, which blocks the ow of activation. But when
the familiar color spindle, which has regions corresponding itself is inhibited (by neuron or populatiodi), activation can
with colors of the spectrum, in which Euclidean distance ow from N1 (viaX)ton.
models similarity Gardenfors, 2000, 20).4Di erent perceptual Gating circuits can be disinhibited (or “activated”) in one
phenomena exhibit di erent geometries (for example, musicabf two di erent ways. In the case of gating circuits between
pitch is a spiralShepard, 1964and methods for deriving these main assemblies and sub assemblies (the black connections i
properties are a rich area of future resear¢knenbaum et al. Figure 5), the activation results from an external control circuit
(2011) propose various candidate statistical structures. In thehat activates thdi population. This is how syntactical operations
higher layers of IDyOT memory, because a symbol subtendsect binding in the blackboard. A control circuit could have
a sequence of symbols below it, it must be possible to mapracognized thasees catepresent a verb and a theme. It then
trajectory of points or regions in a lower space to a single poinactivates albli populations in the gating circuits between ¥l
in a higher one; this suggests that spectral representati@na a andNj assemblies and theimssemblies. As a result, the acNfre
promising route;Chella et al. (2008and Chella (2015suggest andNj will activate theirt sub assembly.
methods. Gating circuits between sub assemblies and between word and
The conceptual spaces in IDyOT are important, because theyain assemblies (the red connectionsHigure 5) are activated
a ord the similarity measures that categorize chunks togeth by (specic) “working memory” (WM) populations. A WM
the incremental chunking and representation process, whieh wpopulation remains active for a while, after initial activatjon
describe in §7.1. by reverberating activation in the population (e.gmit, 1989.
An active WM population binds the assemblies to which it is
L . connectedFigure 6illustrates how this is achieved in the NBA.
6.2. NBA: binding sequential structures and Figures 6A—Cillustrate the same binding process with increasing
concepts detail. InFigure 6A, the binding between thesub assemblies of
The abstract structure of IDyOT memory, as illustratedVl1(orV1l t)andN2 (N2 t)in Figure 5isrepeatedrigure 6B
in Figure 3 consist of learned components, organized inillustrates that this binding is based on a “connection mgtri
hierarchical layers. They form the link between the leagnin which consists of columns and rows of “connection nodesjtivh
mechanisms of IDyOT and the neural blackboard structures oére illustrated inFigure 6C
the NBA. Each specicVi t and Nj t pair of sub assemblies
Figure 5illustrates these neural blackboard structures in morés interconnected in a speci ¢ connection node, located in a
detail, with the structure the sentencat sees cab compare the connection matrix dedicated to bindingi t andNj t sub
encoding of sequential structures in IDyOT and the NBA. assemblies. In general, when two assembliesdYj (e.g.Vi t
The red and black thick lines in the gure illustrate the andNj t)are concurrently active in the processing of a sentence,
(crucial) conditional connections in the NBA, which cortsi§  they activate a WM population in their connection node by
gating circuits. In the NBA, each concept assembly (e.g., of raeans of a gating circuit, as illustrated Figure 6C In turn,
noun) is connected to a set of structure assemblies of theesarthe active WM population disinhibits a gating circuit by which
kind (all Ni assemblies in the case of a noun) with gating circuitsactivation can ow fromXi to Yj, and another such circuit, not
(In fact, the words need to be represented in a phonologicahow in (c), by which activation can ow fronYj to Xi. As long
blackboard rst, to enhance the productivity of the architei®, as their WM population is activeXi andYj are “bound” because
being able to represent novel but phonologically regular wsord activation will ow from one to the other whenever one of them
and to reduce the number of conditional connections in theis (initially) activated.
architecture.) In turn, each structure assembly consists‘main The NBA allows any noun to bind to any verb in any thematic
assembly,” such a¢1, and (a set of) sub assemblies, suchas role using dedicated connection matrices. Also, the NBA has
t. The connection between a main assembly and a sub assembtyucture assemblies that can bind to other structure asdies)
consists of a gating circuit as well. such asSl in Figure 5 or clause structure assemblies. In this
Structure assemblies of di erent kinds, suchvesandN2, are  way, hierarchical sentence structures can be representell a5
connected by their sub assemblies of the same kind. Herbgiry t relative or complement clauses.
t (theme) sub assemblies, which represents the fact that aaerb
have atheme (object). This connection (red line) also czsingifa  6.2.1. Sentence Structure as Connection Path
gating circuit, which can be activated by a WM neural populationTo form a sentence structure, the structure assemblies twave
This results in the binding of the two connected sub assessbli bind to each other. This process is regulated by control discu
and hence their main assemblies, which last as long as this WMat build a sentence structure in line with the (syntactjcal
population is active. When two sub assemblies are bound in thilations in the sentence/¢n der Velde and de Kamps, 2010
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FIGURE 5 | Left: conditional connections. N, n, noun;i, inhibition; di, dis-inhibition; WM, working memory.Right : Representation ofcat sees catin the sentence
neural blackboard. S, sentence; V, v, verb; t, theme (objejt

FIGURE 6 | (A) Conditional connections. N, noun; V, verb, t, theme (objegt. (B) Connection matrix.(C) Connection node. i, inhibition; di, dis-inhibition; WM, working
memory.

So, withcat sees cat Figure 5, the control circuits will recognize illustrated inFigure 5. However, the concept assemblies remain
catas the subject of the sentence, expressed by the bindiNg of in situ in this way, so words in sentence structures are always
to the “Sentence' structure assentilyandseess the verb of the content addressable and grounded. This example illustraies h
main clause, expressed by bindivid with S1. the NBA solves the “problem of two” posed yckendo (2002)

But then, the control circuits will recognize the second The sentence structures in the NBA (as illustrated in
occurrence ofcat as the object of the sentence. This seems t&igures 1 5) and IDyOT (e.g.John loves Marin Figure 4) are
pose a problem, because that would seem to require a cogyructurally similar. The sentence in IDyOT is derived frata
(di erent token) of catto bind as the object to the verb. Indeed, learning principles, as outlined above, and it can be represknt
symbol manipulation represents the sentenatsees catithtwo  in the NBA in the manner illustrated ifrigure 5.
tokens ofcat But in the NBA, a given concept assembly can bind As we argued, the representational similarities between
to di erent structure assemblies at the same time, allowing t IDyOT and NBA would o er a basis for combining the learning
creation of sentence structures in which words are repeaed, mechanisms of IDyOT, based on real corpora, with the parallel
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and dynamic implementation of the NBA. The dynamics inlearn torecogniz&/here - localizer - noun - Agefuan der Velde,
the neural blackboard can in fact be used to solve forms ct016}).

(e.g., sentence) ambiguitygn der Velde and de Kamps, 20)5b The more elaborate learning mechanism of IDyOT would
which in turn o ers the possibility of further reduction of the thus have to be integrated with the NBA, and eventually be
constraints that would have to be learned to represent andgssc implemented with neural reservoirs that interact with theuna!

complex cognitive structures. blackboard in the NBA. The learning process in IDyOT is
outlined in more detail below, again for the rst time.

7. PROCESSING OF SEQUENTIAL 7.1. The IDyOT Incremental Learning

STRUCTURES Process

7.1.1. Initial State
A second link between the NBA and IDyOT concerns theypitially, IDyOT has no memory, no symbols, and only inputs.
processing of Sequential information. Based on its |earninghpu[ is in terms of percepts Conceptuanzed as symb0|s
mechanism, IDyOT derives probabilistic choices betweegepresenting continuous real-world phenomena at whatewesile

structural interpretations of the processed information,the  of abstract is chosen: here, phonemes, pitch, amplitude, and
form of transition matrices. Based on learning, predicti@a®  opserved meaning (emoji).

be made that in uence further processing of the input sequence
The NBA uses similar kinds of information to train control 7.1.2. Chunks and Labels
circuits that selectively activate the neural blackboards Given alow-level, prede ned conceptual spageyvhich initially
illustrated inFigure 5. Control circuits have been implemented has no geometry, but learns it as more data is received) gfchi e
with feedforward networksv@an der Velde and de Kamps, 2010 low-level viewpointy, IDyOT labels the mutually discriminable
and, more recently, with reservoirslgeger and Haas, 2004 points in S, with symbols, building an alphabet@v), and,
consisting of “sequence nodesaf der Velde, 2019a separately, builds a chain of these symbols as the input seguenc
Similar to the connection nodes iRigure 6, each sequence proceeds; this may be thought of as the chaiinl Figure 3
node has a column structure with gating circuits that comtro Simultaneously, IDyOT builds a rst order transition matrix
the activation of the node. This activation depends on thre®f the chain; this will allow the construction of successive
sources: previously activated sequence nodes (hence igranin distributions over@v), Dt @), as timef, proceeds. Each symbol
chain of nodes in the reservoir, representing sequentiaégrd is considered in relation to the symbols already createtkrims
external activation generated by the (ongoing) input seqaen of their corresponding points: a quasi-Euclidean distamzeif),
and activation already generated in the neural blackbodh® in S, may be computed between them. At the same time, the
latter includes the predictions generated in the neuralkil@ard  space is progressively partitioned into regions whose points are
in the course of processing an input sequence, as in the résolut nearest to each pointin the sequence, as in a Voronoi Tegsalla
of ambiguity (/an der Velde and de Kamps, 20)5b (Aurenhammer, 199\ This tessellation, possibly modi ed by a
The reservoir can, for example, learn to answer the questioparameter which creates a gap between the regibiwife 7),
Where is catwith the sentenceCat is on matin Figurel  forms the basis of similarity comparison. Points in (non-2ero
The reservoir can learn to do this by recognizing the seqaenagap regions form new seeds. This process will, of course, peodu
Where - localizer - noun - Ageritlere, the sequenc@/here - initially inaccurate predictions and labelings, but as sient
localizer - nounis based on transforming the questictthere data is processed, these early errors fade into statisticaliolys
is cat?in a more general form (withis D localizerand cat propelled by the memory consolidation process described below.
D noun). The Agentin the sequence is derived from the  However, this simple mechanism would not account for the
activation of the neural blackboard representationcaf is on human propensity to perceive what is expected, bec&usthe
mat, becausecat in the questionWhere is cat@ctivates its conceptual space associated withis static. The distribution,
in situ neural assemblyFjgure 1) and thus the part of the Dggy), describes IDyOT's expectation at this point; it is derived
neural blackboard representation cét is on mato which the from the transition matrix forv. Each regionRys, wheres 2
assemblycat is bound. In this way, the reservoir can learn to @v) in the Voronoi tessellation ofS, is now expanded or
reactivate the sentence representationcaf is on matin the contracted, by changing the position of each plane dividing the
neural blackboard, to generate the answat (van der Velde, space, in proportion to the relative likelihood of the symbols
2016Hh. corresponding with the points to whose connecting line the plane
But, for example, the transformation of the questid¢here is perpendicular. A parameter, whose value is the subject ofstud
is cat?into the more general formWVhere - localizer - noun? determines the degree of variation; an interesting possibil
learned by the reservoir in the NBA, is based on an analysiss that this value is related to entropy of the distribution, as
In contrast, the learning mechanism of IDyOT can provide thewas found empirically to be case in a related application of
information to train the reservoir in the NBA, based on real distributions in IDyOM (Pearce et al., 20))awhere distributions
corpora. Conversely, the distinction between structuredrak  containing more information in uence the outcome more. Tou
blackboards and the control reservoirs in the NBA can stigng the less expected a phonemsds, the smaller it&, s temporarily
reduce the number of contingencies that have to be learned ovbecomes, and so a phoneme that is both imprecisely articulated
time, as illustrated with the ease with which the reservain ¢ and unexpected may be misidentied as one near it, which
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FIGURE 7 | Modulating conceptual regions according to expectedness(A) The unmodi ed Voronoi tessellation of the conceptual space bphonemes, Sg , showing
the boundary betweenRs, @and Rsy p. (B) The modi ed tessellation; note that the distances from the laeled points to the boundary have changed in proportion to
the relative likelihoods irDg g . (C) The tessellation with a non-zero gap(D) Schematic partial representation of the distributionDg g showing (imaginary) proportions
for /@and /D.

is more likely in the distribution Figure 7). IDyOT behaves cognition (e.g.,Sproat et al., 1994; Brent, 1999; Pearce et al.,
like a human in this context: it commits to memory incorrect 2010; Rohrmeier et al., 201t each time step, IDyOT's agents

perceptions, as if they were correct. compete for global workspace access, the largest positiveehang
) N being the winner. If no agent registers an increase in entropy,

7.1.3. Chunking: Competition and Boundary Entropy there is no winner, and no change in the memory; IDyOT

Each new Symb0|, |ndeX|ng a p0|nt |ﬁ/, is available to all proceeds to the next input stimulus.

generators associated with this viewpoint (d&gure 3. As Thus, IDyOT achieves hierarchical perceptual chunking.

the transition matrix is populated, predictions can be made

of likelihood, and as IDyOT's memory develops, progressively.1.4. Layer Formation and Abstraction

more informed predictions may be made using the probabilistid-ollowing the identi cation of a chunk in memory, IDyOT must
network a orded by the layered memory. Thus, the entire coite decide whether to generate a new label or to label this chunk
will in uence Dy g, it any time pointt. Again, initially, these with an existing symbol, on grounds of similarity. In the foer
predictions will not be particularly accurate; as more data icase, a new label is generated, at leyeh LFigure 3, and it is
received they will improve. As each new label appears, therefoadded to memory, along with pointers to the lower level chunk
a new distribution is generated, and its entropy(Dic1qv) that it subtends; also, the transition matrix for the upperday
can be calculated and compared with(Dy gy)). On the basis is updated. A further transition matrix, of which one exists fo
of empirical evidence from computational linguistics and eus each pair of contiguous levels, is also updated with the new
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symbol and transition. In this connection, a higher-leveinbol  representations underling the combined IDyOT-NBA

is deemed to connect down to any symbol in its chunk, while anwarchitecture. Furthermore, the geometrical nature of this

lower level symbol is deemed to connect to any symbol in whoseonceptual space and the neural blackboard mechanisms of

chunk it appears. It is implicit in this process that each symbothe IDyOT-NBA architecture provide the possibilities of new

in an IDyOT memory chain may be subtended by more than ondorms of hardware implementations that can circumvent the

symbol at the immediately higher level, and it may subtendeno limitations of the Von Neumann Architecture, on which

than one symbol below. Transition matrices for these upwardgymbolic computation is standardly based.

connections, too, must be maintained.

Returning to the example: the higher level sequence has a

transition matrix, and so its entropy can be determined, spinb  8.2. Brain and Computation

wise, as above, and therefore the same boundary test as@ove As referred to in our introduction, the processing of concegdtu

be applied. If a new chunk at this level is detected, then theesanstructures can be studied with the aim to understand human

process applies, and so on up the layers of the network, usirggpgnition and its relation to the brain. Or they can be tagydr

the same principle of similarity measurement as above. This r the development of arti cial cognitive systems. We argue that

generates levél in Figure 3, and then on beyond the scope of combined IDyOT-NBA architecture can address both aims.

that simple example. Because learning in IDyOT is based on information found

This recursive process constructs a tree from the very lowest real corpora, it derives structures and processes based on

level of representation up to the highest possible abstractiomuman information processing and generation. In this way,

as shown for our concrete example, kigure 4. Although this  the NBA structures and processes derived from IDyOT will be

simple example has focused on only one aspect of the stimulusased on human information processing as well. The neural

it is important to recall that, in a fully implemented IDyOT, implementation of the NBA then allows a comparison between

all modalities of perception would be active simultaneouslythe structures and processes of the combined architectutte wi

and synchronized Korth et al., 201p6in such a way as to those observed in brain research.

interrelate simultaneous stimuli. Thus, the associatietween, An example of how the combined architecture can be related

for example, the word “orange”, the soundsrfnZ], and toneuro-cognitive processing is presentedrigure 8 The gure

appropriate representations of the corresponding color, fpofp  illustrates a novel simulation of NBA activity, with the presing

star and politics, could be learned, as illustrateérigure 4. of the sentencBill-Gates has met two very tired dancers in Dallas
with Bill-Gatesas one noun (BG). Activation of “main assemblies”
(MA), “sub assemblies” (SA) and binding in working memory

8. FURTHER RELATIONS BETWEEN NBA (WM) are shown, because they determine the representation

AND IDYOT structure of the sentence in the sentence neural blackboérd
the NBA (van der Velde and de Kamps, 200Also shown is the
8.1. Conceptual spaces overall activation of all assemblies and circuits, consistfimgore

The semantics underlying the IDyOT and NBA representationshan 300 neural populations in all (marked “Total”; red line).
are derived from the conceptual spaces with which they interacThe neural populations are simulated with Wilson and Cowan
In turn, the conceptual spaces play a role in processing ipopulation dynamics\(Vilson and Cowan, 1972
both architectures. For IDyOT, the role of conceptual spases i Using intracranial measurementsyelson et al. (2014)
illustrated inFigure 4. In the NBA, representations of conceptual observed that binding of words and phrases produces an
structures (relations, propositions, sentences) are based dncrease and then decrease of activity (e.g., becausenbindi
content addressable concept representations, which diraatl  related activation will reduce after binding). The NBA aetion
selectively activate conceptual structures in neural laakds. simulates this e ect, and also indicates why it occurs, i.@ickw
Also, conceptual domains and relations are needed to in wencstructures and processes are related to this e ect. In padicul
sequential processing in the control reservoirs of the NBAotal neural activity rstincreases when a new word is presen
(van der Velde, 2016a (as illustrated by the increase of total activity at the laraof
McGregor et al. (2015putline a basis for a geometrical the black vertical bars, that indicate the presentation 8rakthe
conceptual space, with interpretable spaces and dimensiomsrds). But then, total activity drops, due to the binding bt
derived from observed co-occurrence statistics in a laogpus.  presented word to previously presented words and phrases in the
Conceptual relations and domains can be obtained by thdeveloping sentence structure in the sentence neural bteckib
techniques described bycGregor et al. (2013nd by the metric  of the NBA. Occasionally, activity does not decline, as \Bith
based on a semantic map as deriveddy der Velde et al. (2015) hasor very tired which results from the fact thaill is the rst
This semantic map also consists of a co-occurrence matrixyord, which cannot bind to other words yet, anérydoes not
derived from human categorizations. The metric provided abind to the previous wordwo.
similar concept-cluster structure as derived from reductio Hence, the simulation illustrates the close relation betwee
techniques. But it also revealed the possibility of derilirigges  neural dynamics and the representation structures undeglyi
between conceptual domains based on metric violations. processed sentences in the NBA. The aim of the integration of
The geometrical nature of such a conceptual space providedNBA with IDyOT is to develop these representation structures
natural representation for the content addressable concefiity learning from real corpora. In this way, machine learning
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FIGURE 8 | (A): NBA structure of Bill-Gates has met two very tired dancers in Dallasvith B(ill)-Gatesas one noun. Aux, va, auxiliary verb; Adj, na, adjective; Adad,
adverb; N, n, noun; Num, nm, numerator; PP, pv, pn, prepositin; S, sentence; V, v, verb.(B): Neural activity in the NBA wherBill-Gates has met two very tired
dancers in Dallasis processed. BG, Bill Gates; d'ers, dancers; MA, main assellies; SA, sub assemblies; WM, working memory. “Total' (redctivity ) is the sum of the
activation of all neural populations in the NBA structure dhis sentence (over 300 populations), simulated with WilseCowan population dynamics. The words of the
sentence are presented at the times indicated with the vextal bars. The last bar signals the end of input activation.

could be related to brain activity observed in human cogmiti fully as a system operating in parallel, based on dynamic
processing. interactions. Of course, processing will be sequential when

Furthermore, the NBA predicts the existence of “connection’input is presented in a sequential manner. Also, the dynamic
elds (or matrices) with special roles, such as “agent” am@fthe” interactions will proceed in time as well. But each of the
(object) in which bindings between (e.g.,) arbitrary veey®l components (e.g., connection nodes in the connection mes)ic
nouns as (agent or theme) arguments can occur. Recent fMRill operate in parallel with all other components, and their
observations indicated the existence of (agent and themeg)sa interactions are based on direct dynamical activation and
in the cortex that are selectively activated when nounstiong  competition. When implemented in hardware, this allows the
respectively, as agents or themes of veffbar(kland and Greene, system to operate at minimal levels of power, with fast proogssi
2015. The activation patterns in these areas also concur witspeeds.
the activation patterns produced in the NBA. These areas could
form a neural substrate for (parts of) a Global Workspace, in
which competitions between neural structural representetio 9, CONCLUSION
could occur.

The combined IDyOT-NBA architecture also targetsWe have presented two knowledge representations, used in
the development of articial cognitive systems. Recentlyfwo cognitive architectures, the NBA and IDyOT, that both
Lake et al. (2016)argued that, despite recent successesjim to account for conceptual representation and processing
Deep Learning does not capture essential characteristids productive forms of cognition. Although the architectsre
of human learning and processing. One of the diculties dier in that the NBA is neural and IDyOT is symbolic, they
for Deep Learning concerns compositional (combinatorial)are also similar in many ways. Both assume that conceptual
processing, in which structured information is processedepresentations consist of structures in which all aspects
in terms of already familiar constituents and partialrelated to a concept are interconnected. Both assume that
structures. processing with representations occur in blackboards or a

A crucial feature of compositional processing is the inteimact  workspace, in which these representations can interact and ca
between specialized processors and domains in which thebe (re)combined. And both rely on the principles of chunking
processors, and the information they process, can interactp generate higher-level structural representations basethe
compete, and be combined. This is what the neural blackboardsore elementary ones.
and the workspace in NBA and IDyOT are about. Because the Finally, the relations between both architectures comtdine
combined architecture can develop and activate thesetsiree ~ with their di erent bases provide unique opportunities for a
based on learning from real corpora, it can address key featurcomplementary integration. The NBA could provide a neural
of human cognitive processing. implementation of the processing and representation of higher

The combined architecture can also address new demandvel conceptual representations and IDyOT could provide
on computing power because the NBA can be implementethe learning mechanisms by which the more elementary
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