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We compare and discuss representations in two cognitive architectures aimed at
representing and processing complex conceptual (sentence-like) structures. First is the
Neural Blackboard Architecture (NBA), which aims to account for representation and
processing of complex and combinatorial conceptual structures in the brain. Second
is IDyOT (Information Dynamics of Thinking), which derivessentence-like structures
by learning statistical sequential regularities over a suitable corpus. Although IDyOT is
designed at a level more abstract than the neural, so it is a model of cognitive function,
rather than neural processing, there are strong similarities between the composite
structures developed in IDyOT and the NBA. We hypothesize that these similarities form
the basis of a combined architecture in which the individualstrengths of each architecture
are integrated. We outline and discuss the characteristicsof this combined architecture,
emphasizing the representation and processing of conceptual structures.

Keywords: cognitive architecture, memory representation, h ebbian learning, compositional learning, incremental
learning, In situ representations

1. INTRODUCTION

The ability to represent and process conceptual structures, asfound in language processing,
reasoning, and in generating conceptual representations from visual and auditory perception, are
key elements of human cognition. They can be studied with theaim to understand human cognition
and its relation to the brain. But they can also be targets forthe development of arti�cial cognitive
systems. These aims can be combined to various degrees, because a cognitive architecture that
provides an understanding of a (neural) cognitive process can also be used in arti�cial systems,
and, conversely, the way in which an arti�cial system processes complex information can reveal
aspects of human processing as well.

Here, we discuss and relate the di�erent representations used in two cognitive architectures,
one neural and one symbolic, in which complex conceptual structures can be represented and
processed. That is, we discuss and illustrate the di�erent waysin which complex conceptual
structures are represented or learned in the two architectures and how these representations could
be related.

In particular, we aim to outline how combined representationscould be developed, for use in
a combined architecture in which aspects of our neural and symbolic architectures are integrated.
We hypothesize that such a combined architecture could serveas a model of human conceptual
processing and its relation to the brain. When implemented, itcould also serve as a new arti�cial
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architecture in which forms of neural (parallel) hardware and
neural and symbolic forms of learning and processing could be
integrated. We are as yet at the beginning of the integrationof
our architectures, which is also a reason why we focus on issues
of representation here.

The neural representation in our integration is that used in
the Neural Blackboard Architecture (NBA), which is aimed to
represent and process conceptual structures in language (e.g.,
van der Velde and de Kamps, 2006, 2010), reasoning and
other cognitive domains (van der Velde, 2016a). The NBA
assumes that conceptual representations in the brain consist
of dedicated network structures, or neural assemblies, that
develop over time and that can be distributed over wide areas
in the brain and cortex. A fundamental characteristic of these
network-like conceptual representations is that they are always
content addressable, whether they are activated in isolation or
whether they are parts of more complex (and even hierarchical)
conceptual structures, such as sentences in language.

The NBA provides “neural blackboards” that a�ord the
representation and processing of complex conceptual structures
based on neural assembly conceptual representations in speci�c
cognitive domains. Examples are neural blackboards for sentence
structures, phonological structures, sequences, and relations
as used in reasoning. In each domain, a dedicated neural
blackboard will provide a range of specialized structural
elements that can bind in a neural manner to the neural
assemblies (e.g., representing “words” in language). The neural
bindings, implemented with neural circuits, allow the creation
and processing of more complex cognitive structures (e.g.,
“sentences”) in a combinatorial manner.

The symbolic representation in our integration is that used
in Information Dynamics of Thinking (IDyOT). IDyOT derives
(e.g., sentence-like) structures by learning statisticalsequential
regularities over a linguistic corpus (Wiggins, 2012b; Wiggins
and Forth, 2015; Forth et al., 2016). IDyOT is unusual as a
machine learning formalism in that it is symbolic in nature,
but it generates and gives explicit semantics to its own symbols,
in a bottom-up learning process, which is optimized by a
general, data-independent principle of information e�ciency,
conceptualized as predictive accuracy. These symbols correspond
with concepts in the semantics of the system. Another unusual
aspect of IDyOT's operation is that both representations and
sequential models are optimized simultaneously with respect
to the prediction accuracy of the models, causing a trade-o�
between over�tting and accuracy that we propose as a model of
the corresponding trade-o� in human cognition. The explanation
of this process is a novel contribution of the current paper.

The representational links between IDyOT and NBA concern
the nature of the dedicated structural elements that allow
processing and representation of complex conceptual structures,
the way these elements could be activated during processing,
and the underlying semantics of the architectures in the
form of conceptual spaces that possess a geometrical structure
(Gärdenfors, 2000, 2014).

In the NBA, the dedicated structural elements form the neural
blackboards. The kinds of elements used and the way they are
activated derive from analyses of the cognitive domains at hand,

as in the sentence NBA (e.g.,van der Velde and de Kamps, 2006,
2010). However, the combination of NBA with IDyOT provides
the possibility to derive these structural elements by learning
from real corpora. Conversely, the NBA could provide a neural
implementation of the more higher-level formal account as
provided by IDyOT. Thus, IDyOT potentially supplies a higher-
level formal account and learning abilities to the operations of
the NBA. Conversely, the NBA provides a route toward a neural
implementation of IDyOT, which could also form the basis of in
parallel operating hardware.

2. THEORETICAL POSITION AND NOVELTY

Our theoretical position here is that the representations usedin
NBA and IDyOT are in fact two di�erent representations of the
same thing, at di�erent levels of abstraction, but with focuson
similar representational a�ordances. In the following sections, we
describe the representations, and the relations between them—
but, as always, to understand the representations it is necessary
also to understand the processes that work over them.

The novelty in the current paper lies in several places,
primarily in the thorough-going comparison between the
representations and corresponding processes in the two
architectures. The entire description of IDyOT memory
construction is also novel, and we present a novel simulation
of neural activity based on the NBA, which allows for a
detailed comparison with brain activity observed in human
(sentence) processing. To the best of our knowledge, such a
detailed potential comparison between human brain activity and
simulated model activity is not available in the case of high-level
cognitive processing, such as sentence comprehension. This also
strongly motivates the integration of our architectures, because
that would endow the NBA with the learning capabilities of
IDyOT, based on real corpora (as outlined below). In turn,
the dynamics and structure of the NBA would then allow
a comparison between the representations and underlying
processing as learned by IDyOT and human brain activity.

The structure of the paper is as follows. In the next two
sections we brie�y describe the representations used in NBA
and IDyOT in turn, also giving detail of processing where
appropriate. In the sections that follow, we discuss a number of
speci�c links between NBA and IDyOT and the potential bene�ts
of their integration.

3. NEURAL BLACKBOARD
ARCHITECTURE

In our outline of Neural Blackboard Architecture, or NBA for
short, we focus on the representation of concepts (e.g., underlying
words) in the architecture and the representational structures
that are used to integrate concepts in more complex cognitive
structures, such as relations and sentences.

The basis of concept representation in the NBA are “neural
assemblies,” as proposed by DonaldHebb (1949). In the
view of Hebb, these neural assemblies develop over time by
interconnecting the neurons in the brain that are involved
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in processing (sensory) information and generating actions
related to the concept they represent. However, unlike Hebbian
assemblies, conceptual representations in the NBA are not only
associative. Instead, they can (and mostly will) contain relational
structures as well.

Figure 1 illustrates a neural assembly representation ofcat.
It would be distributed over di�erent areas in the cortex and
brain, depending on the kind of information involved, including
networks processing perceptual information about cats and
networks that can produce speci�c actions (e.g., pronouncing the
word “cat”). But also networks representing emotional content or
associations related to cats belong to the assembly, and networks
that instantiate relations, such ascat is pet.

The combination of perception and action in the assembly
structure of a concept entails that both the patterns (and
activation) of “incoming” and “outgoing” connections determine
the meaning of a concept. For example, neurons observed in
the medial temporal cortex responded to a person whether the
person or his or her name was presented (Quian Quiroga, 2012).
These “perception” networks do in fact belong to the assembly
structure of a concept, because without them the concept could
not be activated (or was not learned). But this would capture
only part of the role and (hence) meaning of the conceptual
representation involved. Equally important would be the e�ectof
these neurons on downstream processing (van der Velde, 2015).

The notion that conceptual representations interconnect
sensory information processing and action generation
underscores their role in producing behavior. The ability to
produce behavior is a crucial aspect of cognition (and hence of
every neuro-cognitive model) because the evolution of cognition
depended on the ability to produce behavior. Without advocating
a behavioristic view of cognition (e.g., as the basis of modeling
cognition) we do argue that the prime role of cognition is to
intervene in the re�ex (cf.Shanahan, 2010). In this view, the need
for a connection structure that transfers sensory activityto motor
activity should always be at the background of a neural-cognitive
model.

So, inFigure 1, it is not just the gray oval that represents the
conceptcat, but instead the entire network structure to which it
is connected. The gray oval could play the role of a higher-level
representation of the concept in the sense that it interconnects
the concept to other networks. But it would be wrong to see
this as the “genuine” encoding of the concept. Without the
networks to which it is connected, the gray oval does not encode
anything.

An important feature of conceptual representations given by
neural assemblies is that they are “in situ.” This entails that
they cannot be copied and transported to create more complex
structural representations with them (e.g., as found in language
or reasoning). Instead, the same assembly (or a part thereof)is
always activated when the concept it represents is tokened. One
consequence of this kind of representation is that an assembly can
develop and grow over time, as originally discussed by Hebb.

Another direct consequence of thein situ nature of a neural
assembly is that the concept it represents is content addressable.
This entails that the same assembly (or part thereof) will
be activated when su�cient information about the concept it

FIGURE 1 | Left : Neural assembly representation ofcat. Right : Sentence
structure in the Neural Blackboard Architecture: a sentence neural blackboard
(temporarily) interconnects the “in situ” concept representations (given by
neural assemblies) ofcat, is, on, and mat to form the sentence structurecat is
on mat. The thick line connections represent “conditional connections.” They
can be opened by gating circuits that are either activated bysustained activity
in working memory neural populations (representing binding) or by neural
control circuits (e.g., performing parsing operations). N, noun; P, preposition;
S, sentence; V, verb.

represents is available (e.g., perceived), even when the concept is
part of a (complex) sentence structure.

Huth et al. (2016)give an indication of thein situ nature
of conceptual representation in the brain. They measured brain
activity related to words when people were listening to stories (in
an fMRI scanner). The parts of the cortex that responded to the
words (after statistical analysis) were much larger comparedto
previous studies in which only individual words were presented.
The analysis divided the left hemisphere (LH) into 192 distinct
functional areas, 77 of which were semantically selective.The
right hemisphere was divided into 128 functional areas, 63 of
which were semantically selective (even though the RH is usually
regarded as not being involved in language). Remarkably, the
organization of these areas was quite similar over the di�erent
(7) subjects involved in the study. Furthermore, next to these
semantic areas, other areas also responded to other aspects of
words (e.g., Broca's area).

Because the study was focused on semantic representation, the
words observed in the study were categorized into 12 semantic
domains. These domains tiled the cortex in terms of the 77
areas in the LH and the 63 areas in the RH referred to above.
Inspection of the data reveals that semantic domains are generally
represented in di�erent tiles, distributed over the LH and/or RH
cortex.

The semantic representation as observed byHuth et al. (2016)
seems to be in line with the Hebbian assembly hypothesis, in that
these representations would have arisen over time, and would
(partly) be determined by the context in which the concepts were
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processed. This could explain why, e.g., the same visual concept
(e.g.,colored) activates areas near the visual cortex but also in the
prefrontal cortex. This pattern of activation could re�ect di�erent
parts of the assembly of the concept, and their selective activation
would then be determined by the context (visual processing
vs. motor behavior) in which the concept is used and learned.
The fact that a concept generates activation in di�erent cortical
areas is in line with the assembly representation as illustrated in
Figure 1.

3.1. Neural Blackboards as Connection
Paths
If concepts are represented and distributed asin situ assemblies,
the question arises of how they could be combined to represent
more complex cognitive structures, such as relations or sentences.

The key notion of the NBA is that more complex cognitive
structures are formed by providing (temporal)connection paths
between the assemblies (concepts) they contain, in relationwith
the structure they express. These (temporal) connection pathsare
formed and controlled in “neural blackboards.”

For example, in the case of language, the NBA provides a
connection structure (or connection path) that allows arbitrary
words in a given language to be (temporarily) interconnected
in accordance with the structure of the sentence. The words
in this case are the network structures (neural assemblies)as
described byHuth et al. (2016). The neural blackboards in the
NBA provide a “small world” network structure that would allow
the in situ and distributed concept assemblies (“words”) to be
interconnected using a limited set of intermediary “hubs and
sub-hubs,” given by the structure assemblies and their potential
bindings in the blackboards. Small world networks are foundin
a wide variety of natural and man-made structures because they
allow arbitrary interconnectivity with minimal means. They also
play an important role in the brain (Shanahan, 2010).

Figure 1illustrates how in the NBA a sentence can be formed
with in situ concepts encoded by neural assemblies. Thein
situ assemblies forcat, is, on, and mat are bound to a “neural
blackboard” to form the sentencecat is on mat.

Figure 1 illustrates the very basic aspects of the neural
blackboards that the NBA uses to encode relations betweenin situ
concept assemblies. In the case of language there are (at least) two
neural blackboards involved. One is a phonological blackboard,
which is not illustrated here. The other is the sentence blackboard
which encodes sentence structures, as illustrated here with the
sentencecat is on mat.

The need for both a phonological and a sentence blackboard
derives from the productivity of natural language. Language
has (at least) a two tier productive structure (Jackendo�, 2002)
in which �rst phonemes form words and then words (or
word-phoneme combinations) form sentences. The combination
of (familiar) phonemes allows the generation of a very large
set of words, which can grow continuously in life. These
words (including novel but phonetically regular words) can
then be combined to give a practically unlimited set of
sentences. Yet, it is important to realize that this two tier
productivity is restricted to the languages we are familiar

with. In the NBA, that means languages for which we have
developed neural blackboards (van der Velde and de Kamps,
2015a).

van der Velde and de Kamps (2006, 2010)explain the structure
and operations of the neural blackboards in detail. Here, we
address a number of main issues, focusing on representational
structures in the sentence blackboard. The composite structural
elements of the sentence blackboard are “structure assemblies,” as
illustrated inFigure 1. They can bind to concept assemblies (or to
“word assemblies” in the phonological blackboard) and they can
bind to each other to generate the structure of the sentence (e.g.,
cat is on mat).

The thick-line connections in the blackboards play a crucial
role in the process of generating and representing a sentence
structure. These connections are “conditional connections,”
consisting of gating circuits. To operate as a connection, the
gates in the connections have to be opened or activated. This
ensures that activation does not �ow without control in the
neural blackboards, that is, the connections in the blackboards
are not associative. The gates can be activated by working
memory (WM) activation, representing a binding, and by control
circuits, which represent (e.g., syntactic) operations in the
architecture. We will discuss these operations in more detail
later on.

So, thein situ assemblycat is bound (via the phonological
blackboard) to a “Noun” structure assemblyNx in the sentence
blackboard. Binding is achieved by working memory activation
that opens the gates between the assemblies involved. To thisend,
the sentence blackboard has a number of Noun assembles which
can all potentially bind to each of the Word assemblies in the
phonological blackboard (via a matrix or tensor-like connection
structure, see below). All bindings in all neural blackboards
are of this kind. A speci�c binding in the “connection matrix”
between assemblies is achieved by activating a speci�c working
memory, which consists of sustained activation in a population
of neurons. Once activated (by the mutual activation of the
assemblies it binds), the population remains active on its own
for a while due to “reverberating” activity (e.g.,Amit, 1989).
So, in this way,cat will bind to Nx. Similarly, is will bind to
the Verb structure assemblyVz, on to the Preposition structure
assemblyPu and mat to Nw (again, via the phonological
blackboard).

Thus, to represent sentences based onin situ words
(concepts), the NBA builds a connection path (structure) in
the sentence (and phonological) blackboard, in accordance
with the syntactic structure of the sentence. These sentences
can be novel sentences based on familiar words (or even
novel words based on familiar phonemes), and they can
include hierarchical structures like (e.g., center) embedding
(van der Velde and de Kamps, 2006, 2010). Once a connection
structure is built it can be used to produce behavior, because
it constitutes a connection path between thein situ concept
assemblies it interconnects. In turn, this entails that it forms
a (temporal) connection path between all perception and
action structures embedded in these concept assemblies, thus
forming a path between perception and action as the basis for
behavior.
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4. IDYOT: THE INFORMATION DYNAMICS
OF THINKING

4.1. Overview
IDyOT (Information Dynamics of Thinking:Wiggins, 2012b;
Wiggins and Forth, 2015; Forth et al., 2016) implements Baars'
Global Workspace Theory (GWT;Baars, 1988), a�ording a
computational model of a hypothetical cognitive architecture.
At the functional level1, a number ofgeneratorssample from
a complex statistical model of sequences (explained below),
performing Markovian prediction from context (Wiggins and
Forth, 2015; Forth et al., 2016). Each generator indexes a string
of symbols, forming achunk, a �nal substring of the overall
memory model, expressed as symbols, whose origin is explained
below. Each indexed string serves as a context for predictionof
the next (as yet unsensed) symbol; predictions are expressed as
distributions over the alphabet used to express the input. A chunk
is integrated into the memory and Global Workspace (which may
be thought of as an AI blackboard:Corkill, 1991) when it meets
a criterion based on information content. The upshot of this
design is that IDyOT's primary cognitive operation is perceptual
chunking.Figure 2gives a functional overview.

IDyOT maintains a cognitive cycle that continually predicts
what is expected next, from a statistical model, expressed in
terms of self-generated symbols that are given semantics by
perceptual experience; it is thus focused on sequence. Perceptual
input is matched against generators' predictions, and where a
match leads to a larger increase in uncertainty than other current
matches, the corresponding generator's chunk is �ushed intothe
Global Workspace, and stored in memory, linked in sequence
with the previous chunk. Chunks that fail to win are forgotten
after a �xed period, the duration of which is question of the
research. The model entails that, for perception to work, at least
some generators must be working in all perceptual modalities
at all times; otherwise no generator would be predicting for
input in a newly active modality to match against. This activity
may account for otherwise unexplained electrical brain activity
that is not directly concomitant with perceived events, and it
may be responsible for spontaneous creativity (Wiggins and
Bhattacharya, 2014).

4.2. Representation, Memory, and
Prediction in IDyOT
Each chunk, having been recorded, is associated with a symbol
in a higher-level model, which adds to the overall predictive
model. Each symbol corresponds with a point in a conceptual
space (Gärdenfors, 2000, 2014) associated with its own layer,
and each such point corresponds with a region or subspace
of the conceptual space of the layer below, de�ned by the
lower-level symbols in the chunk. Thus, there are two parallel
representations: one symbolic and explicitly sequential; and
one continuous and non-sequential, but encoding sequential
information. The former provides evidence from which the latter
is derived, while the latter provides semantics for the former.

1The formal implementation of this functional behavior is somewhat di�erent in
actuality. However, the description given here is easier to understand in isolation.

FIGURE 2 | Overview of the IDyOT (Information Dynamics of Thinking)
architecture. Generators synchronized to perceptual input sample, given
previous perceptual input (if any), from a �rst-order, multidimensional Markov
model to predict the next symbol in sequence, which is matched with the
input. Predicted symbols that match are grouped in sequenceuntil a chunk is
detected on grounds of its information pro�le. The generatorthen stores the
chunk, as described in §7.1.3 and resets its chunk, which is the sum of the
structured hierarchical memory and a detector that searches for salient
information, shown as “conscious awareness” here. This allows the resulting
chunk of sequence to be stored in the memory, to become part ofthe
statistical model and thence to be used subsequently.

For grounding (or, more precisely,tethering: Sloman and
Chappell, 2005), the lowest-level conceptual spaces area
priori de�ned by the nature of their sensory input (inspired
by human biology: for example, auditory input models the
output of the Organ of Corti); higher-level ones are inferred
from the lower levels using the information in the sequential
model. Structures may be grouped together in categories,
according to similarity in their conceptual space, giving them
semantics in terms of mutual interrelation. Using this, a
consolidation phase allows membership of categories to be
optimized, by local adjustment, in terms of the predictive
accuracy of the overall model. Theoretically, the layering
of models and its associated abstraction into categories can
proceed arbitrary far up the constructed hierarchy (Wiggins,
2012b; Wiggins and Forth, 2015). Forth et al. (2016)provide
an account of the representation of timing in IDyOT;
these aspects, however, are beyond the scope of the current
paper.

In general, the stimuli to which IDyOT will respond are
sequences of atomic percepts. All the dimensions of music,
pitch, timbre, amplitude and time, which also feature in speech,
are used for prediction, as has been demonstrated in IDyOM
(Pearce, 2005; Pearce et al., 2012), as can any other transduced
signal. This demands a more powerful Markov model than is
common in cognitive science language modeling.Conklin and
Witten (1995)proposed aviewpoint-based approach that allows
a set of interacting features, associated by means of sequences
of multi-dimensional symbols, to perform multi-dimensional
prediction. This is the system used in IDyOM and adapted for
multidimensional language models byWiggins (2012a). A key
contribution of the viewpoint idea is the ability to superpose
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distributions from di�erent features with weights determined by
their entropy (Pearce et al., 2005).

Given Conklin's notion of viewpoint (Conklin and Witten,
1995) and the associated mathematics, it becomes possible
also to represent propositional meaning within the statistical
framework: to do this, one incorporates representations of the
meaning (perhaps drawn from another sensory modality, e.g.,
describing in language a scene representation derived from visual
input) in the statistical model (Eshghi et al., 2013). Here, we
presuppose a rich, multisensory input which allows associations
to be constructed between di�erent sensory modalities, on the
basis of co-occurrence.

A key scienti�c advantage of this representations is that its
symbols are (directly or indirectly) explicable in terms of IDyOT's
perceptual input, and a record of that perception is maintained.
Thus, its status as a cognitive model is more easily tested than
in equally powerful, but less semantically transparent, learning
systems, such as deep neural networks.

4.3. Summary: the Principles of IDyOT
In summary, the IDyOT model is based on 6 principles.
Notations used in the current description of IDyOT are presented
in theTable 1.

1. The fundamental function of cognition is to e�ciently process
sensory information so as to predict what is to happen next in
the world.

2. Predictions are made by classifying events (§§6.1.3,7.1.3),
counting likelihoods of short sequences, and building a
literal model of the experience of the organism in these
terms (§6.1.1). Predictions are expressed as distributionsover
alphabets of events.

3. Events are identi�ed by chunking sensory input (§7.1.3).
4. The cognitive system always strives to maintain the optimal

representation of its memory. Optimality is expressed in terms
of the mean number of bits required to represent each symbol
in the memory: smaller is better.

5. Meaning is constructed internally to the cognitive system, and
incrementally, and consists in associations between symbols in
the IDyOT memory (§§6.1.3,7.1.4).

6. Because the model maps directly to experience, it is learned
incrementally (§7.1). This has the following consequences:

a. Meanings attributed to symbols depend on the order of
events that the model learns (§7.1).

b. It is necessary from time to time to re-optimize the model,
after an extended phase of incremental learning. This is
termed memory consolidation. One consequence is that
meanings can change retrospectively as the system learns.

5. NBA AND IDYOT AS COMPLEMENTARY
APPROACHES TO REPRESENTATION

Although the NBA is a neural architecture whereas IDyOT is
primarily a symbolic one, they are functionally and structurally
related.

TABLE 1 | Notation used in the current description of IDyOT.

@(v) The alphabet associated with viewpointv.

Dt,A The distribution that constitutes IDyOT's prediction at time point t over
alphabet A.

H(D) The estimated entropy of distributionD, over alphabetA:
H(D)D �

P

s2A
p(s) log 2 p(s).

h(D, s) The estimated information content of symbols drawn from distributionD
over alphabetA:
h(D,s)D � log 2 p(s).

SA The conceptual space (Gärdenfors, 2000) associated with alphabetA.

RA,s The region ofSA that corresponds with the symbols 2 A.

In particular, chunking plays a key role in this relation between
the two architectures. Perceptual chunking is the key operation
of IDyOT, but it is also the underlying principle of structure
formation in the NBA. The neural blackboards in the NBA not
only interconnect information or provide a workspace in which
information can interact and compete, they also form larger
chunks of the information presented to them. These chunks
arise during information processing and competition and are
represented with the structure assemblies that characterize a
given blackboard.

In this way, the two approaches are strongly mutually
complementary: IDyOT can provide the structural elements that
would be needed in a neural blackboard representation, instead of
deriving them from a laborious and perhaps faulty analyses. The
way in which IDyOT derives these structural elements is much
more direct and secure than the engineering approach in NBA,
because the elements derived by IDyOT are based on learning
mechanisms using real corpora. These learning methods could
also be used to develop the structural elements of a phonological
neural blackboard and for neural blackboards of other languages
than English.

In turn, the NBA provides a direct neural implementation
of the structures as learned by IDyOT. This o�ers the
possibilities for fast hardware implementations combined with
processing abilities based on dynamic competitions in the neural
blackboards. The dynamics in neural blackboards also strengthen
functional processing in the architecture. For example, they can
play a role in sentence processing, in the generation of behavior
(e.g., answering questions) or in ambiguity resolution. They also
reduce the constraints that need to be learned to perform these
tasks.

In the next sections we address a number of relations between
the representations used in the NBA and IDyOT in more detail.

6. STRUCTURAL ELEMENTS IN NEURAL
BLACKBOARDS OR WORKSPACES

The �rst relation between NBA and IDyOT concerns the role
of neural blackboards or a workspace. In both architectures,
special operators (or neural circuits) process and generate special
forms of information. But to account for the productivity of
human cognition there has to be a way in which the information
processed or generated by special processors is interrelated
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and combined. A neural blackboard or workspace allows these
interactions to occur, with the special processors feeding into
and competing within them. The role of neural blackboards or
workspace in both architectures is also related to the small-world
network structures that would allow di�erent brain processors
(areas) to interconnect with each other in a �exible way.

Blackboards play a role in classical computation (Corkill,
1991), in which they allow the representation of generic forms
of information that can be stored and retrieved at will (in line
with the characteristics of symbolic information processing). In
contrast, the neural blackboards in the NBA are not generic in
this sense. They do not represent arbitrary information which
can be stored and retrieved at will. Instead, the information that
can be stored in a given neural blackboard is determined by the
nature of its composite structural elements, which depends onthe
kind of process the neural blackboard is involved in. For example,
the structural elements of the neural sentence blackboard are
di�erent from those in the phonological neural blackboard:
the sentence neural blackboard has main assemblies and sub
assemblies for speci�c syntactic structural elements (e,g., “clause”
or “preposition”), which are not found in the phonological neural
blackboard. As a consequence, the neural sentence blackboard
cannot (by itself) represent phonological structures. This is why
the blackboards in the NBA are referred to asneuralblackboards,
to emphasize their internal and selective neural structure.

The workspace in IDyOT is symbolic. But the composite
structural elements in the workspace, learned by IDyOT, are
related to the composite structural elements in the neural
blackboards of the NBA.

In the NBA, however, the composite structural elements (or
`structure assemblies') are engineered, derived from an analysis of
the domain (e.g., language) for which the neural blackboards are
used. In contrast, the structural elements in IDyOT that provide
a representation of phonological and sentential structures are
learned from a real corpus.

It would be a huge advantage for an architecture as the NBA
if the structures in neural blackboards could be learned from
real corpora instead of being designed. In return, the NBA could
then o�er a neural (parallel and dynamic) implementation of
the structures as learned by IDyOT. The following subsections
illustrate, for the �rst time, how learning proceeds in IDyOT
and how structural elements as learned in IDyOT can be
implemented in a neural and dynamic manner.

6.1. IDyOT Memory: Encoding Sequential
Structure and Conceptual Meaning
6.1.1. Overview
Because IDyOT's learning process is incremental, as opposed to
the one-shot learning of most statistical learning systems, there is
diachronic development of meaning in its memory. As a result,it
is di�cult to see how the system works from a static, descriptive
perspective. Therefore, we begin with a static description of the
representation and how it is used, so that the reader has a clear
idea of where the incremental process is heading. Related, but
di�erent descriptions are given byWiggins and Forth (2015),
with respect to the dynamics of lexical disambiguation, and by

Forth et al. (2016)with respect to timing in music and language.
First, then, the reader is asked to focus on the data structure
presented, and to postpone the question of how it is constructed
to §7.1. The “viewpoint” terminology used in the following
description was originated byConklin (1990)and Conklin and
Witten (1995).

IDyOT's conceptual representation consists of two
components, both of which are learned. The primary component
is a sequence of events with separable features (viewpoints),
annotated with chunk extents, which themselves form a
sequence, and to which chunking is then applied recursively,
up to a limit which is a parameter of the system (see §7.1.3);
we say that a symbol at leveli subtendsa sequence at level
i � 1; Figure 3 illustrates this. The shortest possible event is a
multidimensional object that describes a simultaneous moment
as sensed by IDyOT, at a sampling rate which is a parameter of
the system, but of which 40 Hz is a preferred value, in terms
of all the sensory modalities available to it. The examples given
here are taken from auditory processing; however, there is no
implication that this should be the only modality available.

6.1.2. Sequence
The sequence memory consists of symbols, beginning at the
lowest representational level, and recorded sequentially in
perceived time, as abstractly illustrated inFigure 3. Higher
layers in the hierarchy constitute abstractions of the sequences
that their symbols subtend, in lower layers. Thus, once the
memory is constructed, there are in general three directions of
possible prediction from any given context: up, with increased
abstraction, down, with decreased abstraction, and forwards in
perceived sequence. The theory does not currently consider
the complicating possibility of reasoning backwards, nor of
subsequent conscious reinterpretation; reinterpretation should
be layered on top of this. The structure so produced, combined
with the contextualized distributions a�orded by the transition
matrices, is similar in nature to a Dynamic Bayesian Network
(Pearl, 1999).

For a concrete example, consider speech input. The lowest-
level representation of this would be spectral and highly granular,
and therefore prohibitively expensive in memory. Since the basic
symbols would, in a full example, be sensory inputs, for a human-
like IDyOT, retention of the very lowest levels of memory should
be �eeting, modeling echoic memory, and therefore our example
is more realistic, beginning, likeWiggins and Forth (2015), at the
somewhat arti�cial level of phonemes, pitch and amplitude: these
constitute ourbasic viewpoints.

Consider the extremely simple example sentence, “John
loves Mary” inFigure 4, which illustrates the idea in multiple
dimensions. For example only, we use emoji to denote the
semantics of the sentence: these are presented at the same time as
the example sentence is being spoken. This could be represented
by viewpoint “emoji” inFigure 4A, which should be thought of
as alongside the other viewpoints, together constituting level 0
in Figure 4B, simulating more complex world experience. We
can consider not just single viewpoints, but also their cross
products (known in Conklin's system as alinked viewpoint),
whose alphabet consists of pairs constructed from the two source
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FIGURE 3 | Simpli�ed illustration of the abstract structure of IDyOT memory. The three generators are working at the level denoted bylabels with upper case L; these
have been derived from the lower case l labels, below, and thegenerators are engaged in working on the next level up, denoted by labels with upper case italic L.
Arrows with empty heads denote abstraction; arrows with solid heads denote concretisation; and arrows with open heads denote temporal sequence, though note
that the diagram shows only sequence, and does not representtime. Recall that each generator's chunk subtends the sequence from its pointer to the end of the
memory. Finally, note that each arrow denotes a range of possible next labels, with an associated distribution, and thatgenerators can work at any and all of these
levels. The diagram is simpli�ed by showing only one of the alternative labels that exist at each level; thus, each of the abstraction and concretisation arrows should be
thought of as a range of choices, governed by a distribution derived from observed likelihood.

FIGURE 4 | Two perspectives on IDyOT memory.(A) An illustration of the parallel basic viewpoints for the sentence “John loves Mary,” expressed in phonemes with
associated voice pitch and amplitude signals, and semantics represented (for the purposes of example only) by emoji sequences. The top group are thebasic
viewpoints, as directly transduced (again, for the purposes of example); the middle example shows alinkedviewpoint at the basic level; and the bottom example
shows a linked viewpoint that encodes the discovered association between the semantic representations and the spoken words; such links can only take be
generated when the two source viewpoints are aligned in time. (B) The hiearchical memory structures resulting from sensing of the sentence, “John loves Mary,” in
terms of the individual phoneme and emoji viewpoints by a fully trained IDyOT. Note that this does not correspond with the standard syntactic parse, and nor is it the
same as a MERGE style parse of the words. Associated with eachlayer of the tree,L, is a continuous, time-variant conceptual space,SL, (Gärdenfors, 2000) of
timbre; this is a complex Hilbert space, whose points are time-slices in a spectral representation, such as a Fourier transform. Each stimulus at level 0 corresponds
with a temporal trajectory (of variable length) in that space, while the corresponding structures at level 1 are points in a different, abstract space.SiC1 is related toSi
by spectral (e.g., Fourier) transformation, followingChella et al. (2007). Then, the sound /dZ/ is represented in full spectral detail at level 0, but in summary form, as a
point, at level 1, as are /o/ and /n/. At level 1, further trajectories connect the more abstract representations, and thus the temporal detail of the individual sounds is
abstracted, allowing (for example) the same word to be recognized regardless of how long the vowel takes. Expectations as to timing are generated from the various
examples of each sound in each context in the memory (Forth et al., 2016).

alphabets. This, of course, generates a combinatorial explosion of
viewpoints.

At each layer, there is a �rst-order Markov model, which
allows prediction of the next item in sequence;Wiggins
(2012b)explains the importance of this prediction with respect
to creativity. Predictions, expressed as distributions over the
alphabet of the relevant layer, may be generated for any point
at the leading edge of the hierarchical memory structure as it is

generated: thus, higher-level, abstract predictions are current at
the same time as surface-level ones, and this is how long-term
dependency in language, music, and narrative is managed.

6.1.3. Meaning
IDyOT is unusual as a symbolic learning system because it does
not use symbols with prede�ned meanings. Rather, symbols are
grounded in perception, and their meaning is determined either
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in terms of synchronic relations between sensory modalities, or
in terms of the diachronic sequence chunks that they subtend.
In either case, meaning is placed in context of the conceptual
spaces (Gärdenfors, 2000, 2014) associated with the viewpoints
and the alphabets built above them. To summarize very brie�y,
conceptual spaces are low-dimensional geometrical spaces that
a�ord judgments of similarity or betweenness. An example is
the familiar color spindle, which has regions corresponding
with colors of the spectrum, in which Euclidean distance
models similarity (Gärdenfors, 2000, 2014). Di�erent perceptual
phenomena exhibit di�erent geometries (for example, musical
pitch is a spiral,Shepard, 1964), and methods for deriving these
properties are a rich area of future research;Tenenbaum et al.
(2011) propose various candidate statistical structures. In the
higher layers of IDyOT memory, because a symbol subtends
a sequence of symbols below it, it must be possible to map a
trajectory of points or regions in a lower space to a single point
in a higher one; this suggests that spectral representations are a
promising route;Chella et al. (2008)and Chella (2015)suggest
methods.

The conceptual spaces in IDyOT are important, because they
a�ord the similarity measures that categorize chunks together in
the incremental chunking and representation process, which we
describe in §7.1.

6.2. NBA: binding sequential structures and
concepts
The abstract structure of IDyOT memory, as illustrated
in Figure 3, consist of learned components, organized in
hierarchical layers. They form the link between the learning
mechanisms of IDyOT and the neural blackboard structures of
the NBA.

Figure 5illustrates these neural blackboard structures in more
detail, with the structure the sentencecat sees cat, to compare the
encoding of sequential structures in IDyOT and the NBA.

The red and black thick lines in the �gure illustrate the
(crucial) conditional connections in the NBA, which consist of
gating circuits. In the NBA, each concept assembly (e.g., of a
noun) is connected to a set of structure assemblies of the same
kind (all Ni assemblies in the case of a noun) with gating circuits.
(In fact, the words need to be represented in a phonological
blackboard �rst, to enhance the productivity of the architecture,
being able to represent novel but phonologically regular words,
and to reduce the number of conditional connections in the
architecture.) In turn, each structure assembly consists of a “main
assembly,” such asN1, and (a set of) sub assemblies, such asn or
t. The connection between a main assembly and a sub assembly
consists of a gating circuit as well.

Structure assemblies of di�erent kinds, such asV1 andN2, are
connected by their sub assemblies of the same kind. Here, by their
t (theme) sub assemblies, which represents the fact that a verbcan
have a theme (object). This connection (red line) also consists of a
gating circuit, which can be activated by a WM neural population.
This results in the binding of the two connected sub assemblies
and hence their main assemblies, which last as long as this WM
population is active. When two sub assemblies are bound in this

way, activation can �ow from one of the main assemblies to the
other, by opening the gates between these main assemblies and
their sub assemblies.

The gating circuits operate by disinhibition (di), as illustrated
in Figure 5. WhenN1 is active, it activates a neuron (or neuron
population) X and an inhibitory neuron (or population)i. The
latter inhibits X, which blocks the �ow of activation. But when
i itself is inhibited (by neuron or populationdi), activation can
�ow from N1 (viaX) to n.

Gating circuits can be disinhibited (or “activated”) in one
of two di�erent ways. In the case of gating circuits between
main assemblies and sub assemblies (the black connections in
Figure 5), the activation results from an external control circuit
that activates thedi population. This is how syntactical operations
a�ect binding in the blackboard. A control circuit could have
recognized thatsees catrepresent a verb and a theme. It then
activates alldi populations in the gating circuits between allVi
andNj assemblies and theirt assemblies. As a result, the activeVi
andNj will activate theirt sub assembly.

Gating circuits between sub assemblies and between word and
main assemblies (the red connections inFigure 5) are activated
by (speci�c) “working memory” (WM) populations. A WM
population remains active for a while, after initial activation,
by reverberating activation in the population (e.g.,Amit, 1989).
An active WM population binds the assemblies to which it is
connected.Figure 6 illustrates how this is achieved in the NBA.
Figures 6A–Cillustrate the same binding process with increasing
detail. InFigure 6A, the binding between thet sub assemblies of
V1 (orV1� t) andN2 (N2� t) in Figure 5is repeated.Figure 6B
illustrates that this binding is based on a “connection matrix,”
which consists of columns and rows of “connection nodes,” which
are illustrated inFigure 6C.

Each speci�cVi � t and Nj � t pair of sub assemblies
is interconnected in a speci�c connection node, located in a
connection matrix dedicated to bindingVi � t and Nj � t sub
assemblies. In general, when two assembliesXi andYj (e.g.,Vi � t
andNj� t) are concurrently active in the processing of a sentence,
they activate a WM population in their connection node by
means of a gating circuit, as illustrated inFigure 6C. In turn,
the active WM population disinhibits a gating circuit by which
activation can �ow fromXi to Yj, and another such circuit, not
show in (c), by which activation can �ow fromYj to Xi. As long
as their WM population is active,Xi andYj are “bound” because
activation will �ow from one to the other whenever one of them
is (initially) activated.

The NBA allows any noun to bind to any verb in any thematic
role using dedicated connection matrices. Also, the NBA has
structure assemblies that can bind to other structure assemblies,
such asS1 in Figure 5 or clause structure assemblies. In this
way, hierarchical sentence structures can be represented, such as
relative or complement clauses.

6.2.1. Sentence Structure as Connection Path
To form a sentence structure, the structure assemblies haveto
bind to each other. This process is regulated by control circuits
that build a sentence structure in line with the (syntactical)
relations in the sentence (van der Velde and de Kamps, 2010).

Frontiers in Psychology | www.frontiersin.org 9 August 2017 | Volume 8 | Article 1297

http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive


van der Velde et al. Representation and Processing of Conceptual Structures

FIGURE 5 | Left : conditional connections. N, n, noun;i, inhibition;di, dis-inhibition; WM, working memory.Right : Representation ofcat sees cat in the sentence
neural blackboard. S, sentence; V, v, verb; t, theme (object).

FIGURE 6 | (A) Conditional connections. N, noun; V, verb, t, theme (object) . (B) Connection matrix.(C) Connection node. i, inhibition;di, dis-inhibition; WM, working
memory.

So, withcat sees catin Figure 5, the control circuits will recognize
catas the subject of the sentence, expressed by the binding ofN1
to the `Sentence' structure assemblyS1, andseesas the verb of the
main clause, expressed by bindingV1 with S1.

But then, the control circuits will recognize the second
occurrence ofcat as the object of the sentence. This seems to
pose a problem, because that would seem to require a copy
(di�erent token) of cat to bind as the object to the verb. Indeed,
symbol manipulation represents the sentencecat sees catwith two
tokens ofcat. But in the NBA, a given concept assembly can bind
to di�erent structure assemblies at the same time, allowing the
creation of sentence structures in which words are repeated,as

illustrated inFigure 5. However, the concept assemblies remain
in situ in this way, so words in sentence structures are always
content addressable and grounded. This example illustrates how
the NBA solves the “problem of two” posed byJackendo� (2002).

The sentence structures in the NBA (as illustrated in
Figures 1, 5) and IDyOT (e.g.,John loves Maryin Figure 4) are
structurally similar. The sentence in IDyOT is derived fromits
learning principles, as outlined above, and it can be represented
in the NBA in the manner illustrated inFigure 5.

As we argued, the representational similarities between
IDyOT and NBA would o�er a basis for combining the learning
mechanisms of IDyOT, based on real corpora, with the parallel
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and dynamic implementation of the NBA. The dynamics in
the neural blackboard can in fact be used to solve forms of
(e.g., sentence) ambiguity (van der Velde and de Kamps, 2015b),
which in turn o�ers the possibility of further reduction of the
constraints that would have to be learned to represent and process
complex cognitive structures.

7. PROCESSING OF SEQUENTIAL
STRUCTURES

A second link between the NBA and IDyOT concerns the
processing of sequential information. Based on its learning
mechanism, IDyOT derives probabilistic choices between
structural interpretations of the processed information, inthe
form of transition matrices. Based on learning, predictionscan
be made that in�uence further processing of the input sequence.

The NBA uses similar kinds of information to train control
circuits that selectively activate the neural blackboards, as
illustrated inFigure 5. Control circuits have been implemented
with feedforward networks (van der Velde and de Kamps, 2010)
and, more recently, with reservoirs (Jaeger and Haas, 2004)
consisting of “sequence nodes” (van der Velde, 2016a).

Similar to the connection nodes inFigure 6, each sequence
node has a column structure with gating circuits that control
the activation of the node. This activation depends on three
sources: previously activated sequence nodes (hence forming a
chain of nodes in the reservoir, representing sequential order),
external activation generated by the (ongoing) input sequence,
and activation already generated in the neural blackboard.The
latter includes the predictions generated in the neural blackboard
in the course of processing an input sequence, as in the resolution
of ambiguity (van der Velde and de Kamps, 2015b).

The reservoir can, for example, learn to answer the question
Where is cat?with the sentenceCat is on matin Figure 1.
The reservoir can learn to do this by recognizing the sequence
Where - localizer - noun - Agent. Here, the sequenceWhere -
localizer - nounis based on transforming the questionWhere
is cat?in a more general form (withis D localizerand cat
D noun). The Agent in the sequence is derived from the
activation of the neural blackboard representation ofcat is on
mat, becausecat in the questionWhere is cat?activates its
in situ neural assembly (Figure 1) and thus the part of the
neural blackboard representation ofcat is on matto which the
assemblycat is bound. In this way, the reservoir can learn to
reactivate the sentence representation ofcat is on matin the
neural blackboard, to generate the answermat (van der Velde,
2016b).

But, for example, the transformation of the questionWhere
is cat?into the more general formWhere - localizer - noun?,
learned by the reservoir in the NBA, is based on an analysis.
In contrast, the learning mechanism of IDyOT can provide the
information to train the reservoir in the NBA, based on real
corpora. Conversely, the distinction between structured neural
blackboards and the control reservoirs in the NBA can strongly
reduce the number of contingencies that have to be learned over
time, as illustrated with the ease with which the reservoir can

learn to recognizeWhere - localizer - noun - Agent(van der Velde,
2016b).

The more elaborate learning mechanism of IDyOT would
thus have to be integrated with the NBA, and eventually be
implemented with neural reservoirs that interact with the neural
blackboard in the NBA. The learning process in IDyOT is
outlined in more detail below, again for the �rst time.

7.1. The IDyOT Incremental Learning
Process
7.1.1. Initial State
Initially, IDyOT has no memory, no symbols, and only inputs.
Input is in terms of percepts conceptualized as symbols
representing continuous real-world phenomena at whatever level
of abstract is chosen: here, phonemes, pitch, amplitude, and
observed meaning (emoji).

7.1.2. Chunks and Labels
Given a low-level, prede�ned conceptual space,Sv (which initially
has no geometry, but learns it as more data is received), for each
low-level viewpoint,v, IDyOT labels the mutually discriminable
points in Sv with symbols, building an alphabet,@(v), and,
separately, builds a chain of these symbols as the input sequence
proceeds; this may be thought of as the chain li in Figure 3.
Simultaneously, IDyOT builds a �rst order transition matrix
of the chain; this will allow the construction of successive
distributions over@(v), Dt,@(v), as time,t, proceeds. Each symbol
is considered in relation to the symbols already created, interms
of their corresponding points: a quasi-Euclidean distance (norm),
in Sv, may be computed between them. At the same time, the
space is progressively partitioned into regions whose points are
nearest to each point in the sequence, as in a Voronoi Tessellation
(Aurenhammer, 1991). This tessellation, possibly modi�ed by a
parameter which creates a gap between the regions (Figure 7),
forms the basis of similarity comparison. Points in (non-zero)
gap regions form new seeds. This process will, of course, produce
initially inaccurate predictions and labelings, but as su�cient
data is processed, these early errors fade into statistical obscurity,
propelled by the memory consolidation process described below.

However, this simple mechanism would not account for the
human propensity to perceive what is expected, becauseSv, the
conceptual space associated withv, is static. The distribution,
D0,@(v), describes IDyOT's expectation at this point; it is derived
from the transition matrix forv. Each region,Rv,s, wheres 2
@(v) in the Voronoi tessellation ofSv is now expanded or
contracted, by changing the position of each plane dividing the
space, in proportion to the relative likelihood of the symbols
corresponding with the points to whose connecting line the plane
is perpendicular. A parameter, whose value is the subject of study,
determines the degree of variation; an interesting possibility
is that this value is related to entropy of the distribution, as
was found empirically to be case in a related application of
distributions in IDyOM (Pearce et al., 2005), where distributions
containing more information in�uence the outcome more. Thus,
the less expected a phoneme,s, is, the smaller itsRv,s temporarily
becomes, and so a phoneme that is both imprecisely articulated
and unexpected may be misidenti�ed as one near it, which
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FIGURE 7 | Modulating conceptual regions according to expectedness.(A) The unmodi�ed Voronoi tessellation of the conceptual space of phonemes, S8 , showing
the boundary betweenRS8 ,@and RS8 ,D. (B) The modi�ed tessellation; note that the distances from the labeled points to the boundary have changed in proportion to
the relative likelihoods inD0,8 . (C) The tessellation with a non-zero gap.(D) Schematic partial representation of the distribution,D0,8 showing (imaginary) proportions
for /@/ and /D/.

is more likely in the distribution (Figure 7). IDyOT behaves
like a human in this context: it commits to memory incorrect
perceptions, as if they were correct.

7.1.3. Chunking: Competition and Boundary Entropy
Each new symbol, indexing a point inSv, is available to all
generators associated with this viewpoint (seeFigure 3). As
the transition matrix is populated, predictions can be made
of likelihood, and as IDyOT's memory develops, progressively
more informed predictions may be made using the probabilistic
network a�orded by the layered memory. Thus, the entire context
will in�uence Dt,@(v) it any time point t. Again, initially, these
predictions will not be particularly accurate; as more data is
received they will improve. As each new label appears, therefore,
a new distribution is generated, and its entropy,H(DtC1,@(v))
can be calculated and compared withH(Dt,@(v)). On the basis
of empirical evidence from computational linguistics and music

cognition (e.g.,Sproat et al., 1994; Brent, 1999; Pearce et al.,
2010; Rohrmeier et al., 2015), at each time step, IDyOT's agents
compete for global workspace access, the largest positive change
being the winner. If no agent registers an increase in entropy,
there is no winner, and no change in the memory; IDyOT
proceeds to the next input stimulus.

Thus, IDyOT achieves hierarchical perceptual chunking.

7.1.4. Layer Formation and Abstraction
Following the identi�cation of a chunk in memory, IDyOT must
decide whether to generate a new label or to label this chunk
with an existing symbol, on grounds of similarity. In the former
case, a new label is generated, at level Li in Figure 3, and it is
added to memory, along with pointers to the lower level chunk
that it subtends; also, the transition matrix for the upper layer
is updated. A further transition matrix, of which one exists for
each pair of contiguous levels, is also updated with the new
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symbol and transition. In this connection, a higher-level symbol
is deemed to connect down to any symbol in its chunk, while any
lower level symbol is deemed to connect to any symbol in whose
chunk it appears. It is implicit in this process that each symbol
in an IDyOT memory chain may be subtended by more than one
symbol at the immediately higher level, and it may subtend more
than one symbol below. Transition matrices for these upward
connections, too, must be maintained.

Returning to the example: the higher level sequence has a
transition matrix, and so its entropy can be determined, symbol-
wise, as above, and therefore the same boundary test as abovecan
be applied. If a new chunk at this level is detected, then the same
process applies, and so on up the layers of the network, using
the same principle of similarity measurement as above. This �rst
generates levelLi in Figure 3, and then on beyond the scope of
that simple example.

This recursive process constructs a tree from the very lowest
level of representation up to the highest possible abstraction,
as shown for our concrete example, inFigure 4. Although this
simple example has focused on only one aspect of the stimulus,
it is important to recall that, in a fully implemented IDyOT,
all modalities of perception would be active simultaneously,
and synchronized (Forth et al., 2016) in such a way as to
interrelate simultaneous stimuli. Thus, the association between,
for example, the word “orange”, the sound [6rInZ], and
appropriate representations of the corresponding color, fruit,pop
star and politics, could be learned, as illustrated inFigure 4.

8. FURTHER RELATIONS BETWEEN NBA
AND IDYOT

8.1. Conceptual spaces
The semantics underlying the IDyOT and NBA representations
are derived from the conceptual spaces with which they interact.
In turn, the conceptual spaces play a role in processing in
both architectures. For IDyOT, the role of conceptual spaces is
illustrated inFigure 4. In the NBA, representations of conceptual
structures (relations, propositions, sentences) are based on
content addressable concept representations, which directly and
selectively activate conceptual structures in neural blackboards.
Also, conceptual domains and relations are needed to in�uence
sequential processing in the control reservoirs of the NBA
(van der Velde, 2016a).

McGregor et al. (2015)outline a basis for a geometrical
conceptual space, with interpretable spaces and dimensions
derived from observed co-occurrence statistics in a large corpus.
Conceptual relations and domains can be obtained by the
techniques described byMcGregor et al. (2015)and by the metric
based on a semantic map as derived byvan der Velde et al. (2015).
This semantic map also consists of a co-occurrence matrix,
derived from human categorizations. The metric provided a
similar concept-cluster structure as derived from reduction
techniques. But it also revealed the possibility of derivingbridges
between conceptual domains based on metric violations.

The geometrical nature of such a conceptual space provides a
natural representation for the content addressable concept

representations underling the combined IDyOT-NBA
architecture. Furthermore, the geometrical nature of this
conceptual space and the neural blackboard mechanisms of
the IDyOT-NBA architecture provide the possibilities of new
forms of hardware implementations that can circumvent the
limitations of the Von Neumann Architecture, on which
symbolic computation is standardly based.

8.2. Brain and Computation
As referred to in our introduction, the processing of conceptual
structures can be studied with the aim to understand human
cognition and its relation to the brain. Or they can be targets for
the development of arti�cial cognitive systems. We argue thata
combined IDyOT-NBA architecture can address both aims.

Because learning in IDyOT is based on information found
in real corpora, it derives structures and processes based on
human information processing and generation. In this way,
the NBA structures and processes derived from IDyOT will be
based on human information processing as well. The neural
implementation of the NBA then allows a comparison between
the structures and processes of the combined architecture with
those observed in brain research.

An example of how the combined architecture can be related
to neuro-cognitive processing is presented inFigure 8. The �gure
illustrates a novel simulation of NBA activity, with the processing
of the sentenceBill-Gates has met two very tired dancers in Dallas,
with Bill-Gatesas one noun (BG). Activation of “main assemblies”
(MA), “sub assemblies” (SA) and binding in working memory
(WM) are shown, because they determine the representation
structure of the sentence in the sentence neural blackboardof
the NBA (van der Velde and de Kamps, 2006). Also shown is the
overall activation of all assemblies and circuits, consistingof more
than 300 neural populations in all (marked “Total”; red line).
The neural populations are simulated with Wilson and Cowan
population dynamics (Wilson and Cowan, 1972).

Using intracranial measurements,Nelson et al. (2014)
observed that binding of words and phrases produces an
increase and then decrease of activity (e.g., because binding
related activation will reduce after binding). The NBA activation
simulates this e�ect, and also indicates why it occurs, i.e., which
structures and processes are related to this e�ect. In particular,
total neural activity �rst increases when a new word is presented
(as illustrated by the increase of total activity at the location of
the black vertical bars, that indicate the presentation times of the
words). But then, total activity drops, due to the binding of the
presented word to previously presented words and phrases in the
developing sentence structure in the sentence neural blackboard
of the NBA. Occasionally, activity does not decline, as withBill
hasor very tired, which results from the fact thatBill is the �rst
word, which cannot bind to other words yet, andverydoes not
bind to the previous wordtwo.

Hence, the simulation illustrates the close relation between
neural dynamics and the representation structures underlying
processed sentences in the NBA. The aim of the integration of
NBA with IDyOT is to develop these representation structures
by learning from real corpora. In this way, machine learning

Frontiers in Psychology | www.frontiersin.org 13 August 2017 | Volume 8 | Article 1297



van der Velde et al. Representation and Processing of Conceptual Structures

FIGURE 8 | (A): NBA structure ofBill-Gates has met two very tired dancers in Dallas, with B(ill)-Gatesas one noun. Aux, va, auxiliary verb; Adj, na, adjective; Adv, ad,
adverb; N, n, noun; Num, nm, numerator; PP, pv, pn, preposition; S, sentence; V, v, verb.(B): Neural activity in the NBA whenBill-Gates has met two very tired
dancers in Dallasis processed. BG, Bill Gates; d'ers, dancers; MA, main assemblies; SA, sub assemblies; WM, working memory. `Total' (redactivity ) is the sum of the
activation of all neural populations in the NBA structure ofthis sentence (over 300 populations), simulated with Wilson-Cowan population dynamics. The words of the
sentence are presented at the times indicated with the vertical bars. The last bar signals the end of input activation.

could be related to brain activity observed in human cognitive
processing.

Furthermore, the NBA predicts the existence of “connection”
�elds (or matrices) with special roles, such as “agent” and “theme”
(object) in which bindings between (e.g.,) arbitrary verbsand
nouns as (agent or theme) arguments can occur. Recent fMRI
observations indicated the existence of (agent and theme) areas
in the cortex that are selectively activated when nouns function,
respectively, as agents or themes of verbs (Frankland and Greene,
2015). The activation patterns in these areas also concur with
the activation patterns produced in the NBA. These areas could
form a neural substrate for (parts of) a Global Workspace, in
which competitions between neural structural representations
could occur.

The combined IDyOT-NBA architecture also targets
the development of arti�cial cognitive systems. Recently,
Lake et al. (2016)argued that, despite recent successes,
Deep Learning does not capture essential characteristics
of human learning and processing. One of the di�culties
for Deep Learning concerns compositional (combinatorial)
processing, in which structured information is processed
in terms of already familiar constituents and partial
structures.

A crucial feature of compositional processing is the interaction
between specialized processors and domains in which these
processors, and the information they process, can interact,
compete, and be combined. This is what the neural blackboards
and the workspace in NBA and IDyOT are about. Because the
combined architecture can develop and activate these structures
based on learning from real corpora, it can address key features
of human cognitive processing.

The combined architecture can also address new demands
on computing power because the NBA can be implemented

fully as a system operating in parallel, based on dynamic
interactions. Of course, processing will be sequential when
input is presented in a sequential manner. Also, the dynamic
interactions will proceed in time as well. But each of the
components (e.g., connection nodes in the connection matrices)
will operate in parallel with all other components, and their
interactions are based on direct dynamical activation and
competition. When implemented in hardware, this allows the
system to operate at minimal levels of power, with fast processing
speeds.

9. CONCLUSION

We have presented two knowledge representations, used in
two cognitive architectures, the NBA and IDyOT, that both
aim to account for conceptual representation and processing
in productive forms of cognition. Although the architectures
di�er in that the NBA is neural and IDyOT is symbolic, they
are also similar in many ways. Both assume that conceptual
representations consist of structures in which all aspects
related to a concept are interconnected. Both assume that
processing with representations occur in blackboards or a
workspace, in which these representations can interact and can
be (re)combined. And both rely on the principles of chunking
to generate higher-level structural representations based on the
more elementary ones.

Finally, the relations between both architectures combined
with their di�erent bases provide unique opportunities for a
complementary integration. The NBA could provide a neural
implementation of the processing and representation of higher
level conceptual representations and IDyOT could provide
the learning mechanisms by which the more elementary
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representations needed for this implementation could be derived
from human cognitive (corpus) material.
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