WET SKID RESISTANCE PREDICTION WITH BROADBAND DIELECTRIC SPECTROSCOPY

A. RATHI¹, M. HERNÁNDEZ², S.J. GARCÍA³, C. BERGMANN⁴, J. TRIMBACH⁴, J.W.M. NOORDERMEER⁵, W.K. DIERKES⁶, A. BLUME¹

¹UNIVERSITY OF TWENTE, THE NETHERLANDS; ²ICTP-CSIC, SPAIN; ³DELTU UNIVERSITY OF TECHNOLOGY, THE NETHERLANDS; ⁴HANSEN & ROSENTHAL, KG, GERMANY

Existing method for prediction of Wet Skid Resistance (WSR) : Tan δ at 0 °C / 1-100 Hz from DMA

The DMA measurements have been done in tension mode in the range of -60 to 20 °C at a static strain of 10%, dynamic strain of 0.5% and a frequency of 20 Hz. The coefficient of friction (µ) has been measured under wet road conditions at 65 km/h from real tire tests.

Limitation of the DMA method !!!

No linear correlation with the µ from tire test data

Proposal for prediction of WSR : Testing viscoelastic behavior at frequencies related to skidding (10⁴ - 10⁷ Hz) with Broadband Dielectric Spectroscopy (BDS)

The BDS measurements have been done in the range of -120 to 80 °C and 1 to 10⁶ Hz in a parallel plate geometry. Based on a speed to frequency conversion (Frequency = Speed / micro-roughness of the road), the frequency of the tire test is ca. 3.6x10⁷ Hz.

Better correlation with the BDS method !!!

For the three compounds studied, the BDS method delivers a good correlation with the coefficient of friction µ from the tire test measurements at 65 km/h in wet road conditions.

BDS seems to predict the WSR more reliable than the existing DMA method.

CONCLUSION

REFERENCE

Rathi, A., Investigation of safe mineral-based and bio-based process oils for tire tread application, PhD manuscript in preparation, 2019, University of Twente : Enschede, p 191-226.

ACKNOWLEDGEMENTS

The authors are thankful to Hansen & Rosenthal, KG for the financial and scientific support of this work. Special thanks to the Yokohama Rubber Company for providing the samples, the DMA measurement data and the tire test measurement data.