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Abstract

We introduce set packing games as an abstraction of situations in which n selfish
players select disjoint subsets of a finite set of indivisible items, and analyze the
quality of several equilibria for this basic class of games. Special attention is given
to a subclass of set packing games, namely throughput scheduling games, where the
items represent jobs, and the subsets that a player can select are those jobs that this
player can schedule feasibly. We show that the quality of three types of equilibrium
solutions is only moderately suboptimal. Specifically, the paper gives tight bounds on
the price of anarchy for Nash equilibria, subgame perfect equilibria of games with
sequential play, and k-collusion Nash equilibria. Under the assumption that players
are allowed to play suboptimally and achieve an e-approximate equilibrium, our tight
price of anarchy bounds are o + 1 for Nash and subgame perfect equilibria, but less
than o 4+ 1/(e — 1) for subgame perfect equilibria when games are symmetric. For
k-collusion Nash equilibria, the price of anarchy equals o + (n — k)/(n — 1), where
1 <k<n.

Keywords Set packing - Throughput scheduling - Price of anarchy

1 Introduction and main contribution

This paper addresses a problem where n players compete for a set of indivisible items
J € J.Eachitem j € J has a weight w; which represents the item’s utility. The utility
of an item is the same for all n players. In competing for these items, a player i is
bound in her choice by a downward-closed set system S; < 27, meaning that only
the subsets S; € S; are feasible for her. Players aim to maximize their utility, which
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means maximizing the total weight of the chosen items w(S;) = s, ;. Items are
indivisible, hence a feasible solution consists of a profile of subsets S = (S, ..., Sy)
such that §; € S; for all i and §; N S = ¥ for all i # k. Our interest goes into the
efficiency loss that occurs when the distribution of items is not controlled centrally,
and hence we study the price of anarchy for three types of equilibria for this class of
games. The motivation to address this problem is discussed in detail in Sect. 2.

Nash equilibria and sequential play A distinguishing feature of the game that we
propose is that each item j € J can only be selected by at most one of the players.
In that situation, a pure strategy Nash equilibrium is a selection of subsets ;, one for
every playeri = 1,...,n, so that §; N Sy = ¥ for any two players i # k, and for
each player i we have that w(S;) > w(T;) forall T; € S§; with T; € J\ (Ui Sk). In
words, given the items Sy selected by players other than i, among the remaining items
J\ Uy S, player i selects a feasible subset of maximum weight. When interpreted as
a single-shot strategic form game, to realize this disjointness restriction we can define
the payoff of a strategy S; equal —oo whenever another player’s strategy is Sy with
S; N Sk # @. While this seems a bit unnatural, our primary interest is to analyze the
more natural variant of the game where players select their subsets sequentially. Then,
the items selected by previous players are no longer available for subsequent players.
We address both problem variants in this paper.

Equilibrium concepts and price of anarchy For the entire paper, we measure the
quality of an (equilibrium) solution S = (571, ..., S,) by the total value of all selected
items, or equivalently, the sum of values of all selected items w(S) := Z;’: L w(S;).
The question is by how much an equilibrium solution falls behind an optimal solution
that could be computed by some central authority, in the worst case. For a maximiza-
tion problem as the one considered here, the price of anarchy (Papadimitriou 2001;
Koutsoupias and Papadimitriou 2009) denotes the ratio of the value of an optimal
solution over the value of an equilibrium solution. We analyze the price of anarchy for
three different equilibrium concepts, namely pure strategy Nash equilibria, subgame
perfect equilibria (Selten 1965) of a sequential version of the game, and a third equi-
librium concept that we refer to as k-collusion Nash equilibrium. The idea of the latter
is that up to k players may collude and are allowed to use any profit sharing protocol
among themselves, hence can be thought of as acting like a single player. This concept
also appears in a paper by Hayrapetyan et al. (2006). In fact, k-collusion equilibria are
a generalization of k-strong Nash equilibria as defined by Aumann (1959); see also
Andelman et al. (2009).

An illustrating example

Example 1 Consider n = 2 players and two items J = {1, 2}, with weights w; =
wy = 1, and the feasible subsets are S7 = {#, {1}, {2}} and S, = {0, {2}}. <

In an optimal solution, player 1 chooses the first and player 2 chooses the second
item, that is, the strategy profile is S = (51, S2) = ({1}, {2}) with payoffs (1, 1) and
w(S) = 2. This allocation is a Nash equilibrium. There is another Nash equilibrium,
namely S = ({2}, ¥), because {1} ¢ S. As the payoffs are (1, 0) and w(S) = 1, this
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Fig. 1 Strategic form for player 2
Example 1 with Nash equilibria 1) {2}
in bold [} 0,0 0,1
player 1 | {1} 1,0 1,1
{2} 1,0 —00, —00
Fig.2 Game tree for sequential player 1

version (player 1 — player 2) of
Example 1. The worst-case
subgame perfect equilibrium is

marked bold
player 2

{2}

(1,1) (1,0) (=00, —00) (1,0) (0.1) (0,0)

instance has a price of anarchy of 2. The strategic form of this game is depicted in
Fig. 1.

Considering the sequential game where player 1 precedes player 2, this yields a
game tree that is depicted in Fig. 2. A strategy for player 2 now specifies three actions,
one for every possible choice of player 1. When the orderis 1 — 2, all Nash equilibria
of the strategic form game are also obtained as subgame perfect equilibria, namely
({1}, ({21, 9. {2D) and ({2}, ({2}, ¥, {2})), with outcomes (S1, $2) = ({1}, {2}) and
({2}, ¥), and payoffs (1, 1) and (1, 0), respectively. The worst case subgame perfect
equilibrium is indicated in bold in Fig. 2.

For the reverse order of the sequential game (player 2 — player 1), the only
subgame perfect equilibria are ({2}, ({1}, {1})) and ({2}, ({2}, {1})), with as unique
outcome (S1, S2) = ({1}, {2}) and corresponding payoff (1, 1). As the sequential
price of anarchy takes the worst case over all possible sequential games, Example 1
has sequential price of anarchy of 2.

Finally, assume that both players collude, then obviously, the only allocation that
maximizes their joint payoff is (S1, S2) = ({1}, {2}) and corresponding payoff (1, 1).
Therefore, the 2-collusion price of anarchy equals 1.

Relation to set packing and maximum coverage problems  The set packing problem
is one of Karp’s 21 problems first proved to be NP-complete (Karp 1972); it s listed as
problem [SP3] in Garey and Johnson’s classic on computers and intractability (Garey
and Johnson 1979). In set packing, the task is to select from a given collection S of
subsets of a set of items J, a collection of k disjoint subsets, for a given number k.
In the weighted optimization version of the problem each subset S € S has a weight
w(S), and the goal is to find disjoint subsets of maximum total weight. The general set
packing problem with or without weights is NP-complete (Garey and Johnson 1979),
and in general it is not even approximable to within any constant. We refer to Chandra
and Hallddrsson (2001) and Hazan et al. (2006) for more details. The problem that is
considered in this paper corresponds to the much simpler variant of set packing where
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items j € J have weights w;, and w(S) := > ;g w;. Due to our assumption that
the set system is downward-closed, as an instance of maximum weight set packing
this problem is trivial when there is no limit on the number of chosen subsets (e.g.,
take all singletons in U!_,S;). However if only a given number of n subsets may be
chosen -which is the problem that we consider- the downward closedness yields that
the problem is equivalent with the the NP-hard maximum coverage problem. That
problem can be approximated to within a factor 1 + 1/(e — 1) (Hochbaum 1997), and
the same approximation guarantee is recovered in this paper as the sequential price of
anarchy for symmetric set packing games.

Throughput scheduling A subclass of set packing games are throughput scheduling
games. These games were the subject of an extended abstract underlying this paper
(de Jong et al. 2013). Throughput scheduling has been studied from the algorithmic
perspective e.g. by Bar-Noy et al. (2001) and Berman and DasGupta (2000). Here, the
set of items J corresponds to a set of non-preemptive jobs, each with a release time
rj,adue date d;, and a weight w ;. There are m > 1 machines to process these jobs. In
the most general setting, the machines can be unrelated, meaning that the processing
time of any job j may depend on the machine £ it is processed on, and the £ x m
matrix (pg;) of processing times on machines can have rank > 1. A subset S; of jobs
is feasible for player i if there exists a schedule of the jobs in S; on the set of machines
of player i, so that each job can be processed in the time window [r, d;]. The job sets
S; that are feasible for player i is then a downward closed set system. Except one, all
lower bounds on the price of anarchy for set packing games are presented as instances
of throughput scheduling games.

Approximate equilibria  We generally consider «-approximate versions for all three
equilibrium concepts, for any fixed @ > 1. That means that a strategy profile is
considered in a-approximate equilibrium if the corresponding payoffs per player are
maximal up to a multiplicative constant «, given the strategies of the other players.
Indeed, the idea of considering approximate instead of exact equilibria is by now a
widely accepted concept in algorithmic game theory, with different variations. Already
Roughgarden and Tardos (2002) consider it for network routing games, and for exam-
ple Skopalik and Vocking (2008) discuss corresponding hardness results in the context
of congestion games. Approximate equilibria can be generally motivated in at least
two ways: The first is that players may be reluctant to changing strategies for small
improvements, and the second is that players may be computationally bounded, and
restricted to approximate equilibria by the computational hardness of computing a
best response. We come back to this point later. It is important to note that our price
of anarchy bounds are tight for all «-approximate versions of the three equilibria that
we consider.

Main contribution  Our contribution is as follows. If all players play «-approximate
Nash equilibria, the price of anarchy for set packing games equals o + 1. We also
show that sequential play, that is the game where players select their sets subsequently,
does not allow to improve on that bound in general. However, for the special case of
symmetric set packing games (to be defined later), sequential play does yield improved
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results for the price of anarchy: We show that subgame perfect equilibria yield a price
of anarchy of ¥/e/(&e — 1), which is tight, too. Note that for « = 1, this equals
1 4+ 1/(e — 1). Finally, we analyze k-collusion Nash equilibria, and show that when
players are assumed to play «-approximate k-collusion Nash equilibria, the price of
anarchy interpolates between o and o + 1, asitisequaltoa + (n — k)/(n — 1).

2 Related work and motivation

Throughput scheduling games have been the subject of the extended abstract (de Jong
et al. 2013) underlying this full-length paper. We are not aware that set packing games
as defined in this paper have been addressed in the literature. Generally spoken, much of
the work in algorithmic game theory addresses auctions, network routing or congestion
games, as well as scheduling and load balancing games. Refer e.g. to Section III of
the textbook by Nisan et al. (2007) for several of such models.

Coveringgames  There is a set of publications on so-called covering games that are
very closely related to our work. When allowing that one item is chosen by more than
only one player, the resulting game is a covering game as studied by Garing (2009).
In this case, one needs to define a utility sharing function for the items that are chosen
by several players. Gairing shows that there exist utility sharing functions such that
worst case Nash equilibria are at most a factor 1 4+ 1/(e — 1) away from the optimum.
Covering games can also be interpreted as a generalization of market sharing games as
studied e.g. by Goemans et al. (2004). For covering games with uniform utility sharing,
the price of anarchy equals 2 — 1/n for n-player games (Garing 2009; Brethouwer
2018). That result can also be obtained by a smoothness argument, so it extends to
more than Nash equilibria (Brethouwer 2018). In that context, note that the price of
anarchy bound for set packing games as proved in this paper is 2, which is tight for
any number of players n > 2. In contrast to covering games, a distinguishing feature
of set packing games is the property that items can only be chosen by one player, and
as a consequence, rational players affect each other only through the availability of
strategies from the strategy set S;, but not each other’s payoffs. As a result, there are
Nash equilibria of the non-sequential game that cannot be realized as subgame perfect
equilibria of a sequential game, and this feature allows us to obtain improved price of
anarchy results for subgame perfect equilibria. This is indeed no longer the case when
items are uniformly shared: generalized market sharing games have a price of anarchy
lower bound of 2 — 1/n even for subgame perfect equilibria of a sequential game
(Brethouwer 2018). Finally, we note that generalizations of covering games have also
been addressed recently by Paccagnan and Marden (2018); Paccagnan et al. (2018).

Sequential price of anarchy  The analysis of subgame perfect equilibria as opposed
to Nash equilibria is one of the main contributions of this paper, and it is maybe also
the most interesting result from an applications point of view. At the time of writing
the conference publication underlying this full-length paper (de Jong et al. 2013),
the idea of considering sequential versions of games, and Selten’s subgame perfect
equilibria as an alternative to avoid the “curse of simultaneity” of Nash equilibria had
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just been brought up by Paes Leme et al. (2012). In contrast to the price of anarchy
which relates the outcome of the worst possible Nash equilibrium to that of an optimal
solution (Papadimitriou 2001; Koutsoupias and Papadimitriou 2009), the sequential
price of anarchy Paes Leme et al. (2012) relates the outcome of the worst possible
subgame perfect equilibrium of all sequential versions of the game where players act
subsequently (and farsighted), to the outcome of an optimal solution. For set packing
games, it is not hard to see that any outcome of a subgame perfect equilibrium of
a sequential version of the game is also a Nash equilibrium in the non-sequential,
strategic form of the game, but not necessarily vice versa; see also Theorem 6. It
should be noted that subgame perfect equilibria of a sequential game are not generally
Nash equilibria of the corresponding non-sequential game: Correa et al. (2015) give
an instance of a network routing problem where the sequential price of anarchy is
unbounded, while the price of anarchy is known to be 5/2 (Awerbuch et al. 2005;
Christodoulou and Koutsoupias 2005). Indeed, subsequent to the work by Paes Leme
etal. (2012), for ahandful of problems it was shown that the sequential price of anarchy
is lower than the price of anarchy (Paes Leme et al. 2012; de Jong et al. 2013; de Jong
and Uetz 2014; Hassin and Yovel 2014), while for others this is exactly opposite
(Angelucci et al. 2015; Bilo et al. 2015; Correa et al. 2015). To conclude, it should be
noted that also earlier than (Paes Leme et al. 2012), sequential versions of (routing)
games have been considered, however with different utility sharing functions. This
includes Olver (2006), Harks et al. (2009), Harks and Vegh (2007), as well as Farzad
et al. (2008).

Approximate equilibria and hardness of optimal play = The necessity to also consider
a-approximate equilibrium concepts is best motivated by considering some concrete
examples of throughput scheduling. For example, consider the special case where the
feasibility system of a player i consists of all sets of jobs j € J that can be feasibly
scheduled on a single machine. In the 3-field notation of Graham et al. (1979), this
problem reads 1|r;| > w;U;, where “1” stands for one single machine, r; specifies
that there are release dates, and the objective ) w ;U j is to maximize the total weight of
jobs scheduled before their due date d; . In that case, the input of the problem would not
be a list of all feasible sets S;, but only the set of jobs j € J with their time windows
[r;,d;], processing times p; and values w;. It follows from Lenstra et al. (1977)
that the problem to compute a subset of jobs maximizing the total weight is NP-hard,
hence players cannot generally be assumed to be able to compute a strategy to optimize
their payoff. More generally, if players control a set of several (unrelated) machines
each, the problem to compute a best response reads R|r;| > w;U; in scheduling
notation, where “R” stands for unrelated machines. This problem is equivalent to
the throughput scheduling problem as it has been addressed e.g. by Bar-Noy et al.
(2001), and subsequently by Berman and DasGupta (2000). For this problem, only
constant factor approximation algorithms are available, and this constant is essentially
2; see Berman and DasGupta (2000). Hence, assuming that players are equipped
with such approximation algorithms, the outcome of such a game would be an «-
approximate equilibrium with o« = 2. On the other hand, there are relevant special cases
of throughput scheduling where players can be assumed to be able to play optimally.
One such case is when feasibility sets S; are the sets of jobs that can be feasibly
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scheduled on a single machine, and jobs have unit weights and zero release dates.
This single-machine problem is solved in polynomial time by the Moore-Hodgson
algorithm (Moore 1968). Another case is when the feasibility system S; is the set of
jobs with unit processing times that can be scheduled on a set of identical, parallel
machines. This problem can be solved as an assignment problem (Brucker 2004). In
light of this discussion, recall that all our results are parametric in the parameter o.

Motivation  On the one hand, we believe that the game theoretic version of a classical
combinatorial problem such as set packing is interesting in its own right. On the
other hand, the original driver of this research was to understand the potential loss
of efficiency when the procurement of indivisible services is not controlled centrally.
Here, think of the following service procurement setting: Each item corresponds to a
service request —such as a computational task or a physical service—with a monetary
value that pays off once the service is executed. Given a collection of such service
requests, e.g. on an internet portal or within a larger corporation consisting of several
profit centers, players are service providers who can choose a subset of services in
order to generate revenue. Service providers, however, are bound by limited resources
and can therefore only choose certain subsets of services. Specifically, when these
services are specified by a release time, processing time, and a due date, this gives rise
to a throughput scheduling problem.

Sketch of applications =~ We give three instances of application domains that lead
to instances of set packing games. (1) When operating microgrids for decentralized
energy production, the goal is to consume locally produced energy as much as possible.
Here, the items are the operation of appliances in households (e.g. loading a car battery)
which come with a time window and a certain monetary value. Players, on the other
side, are intermediaries or local energy producers that want to maximize the total value
of items than can be accommodated within a given a profile of available energys; see,
e.g. Bakker et al. (2010) or Molderink et al. (2010) for more context. (2) In cloud
computing, service providers such as Google or Amazon provide an infrastructure
service. Here, the items are computational tasks that need to be distributed over data-
and computing centers. Indeed, the aim of a federated cloud computing environment,
as discussed e.g. in Buyya et al. (2010), is to “coordinate load distribution among
different cloud-based data centers in order to determine optimal location for hosting
application services”. Understanding the cost of uncoordinated load distribution is the
question that we ask. (3) A final application domain is distribution logistics in a B-to-
B context, like reverse auctions. Specifically, consider private car sharing portals like
e.g. http://www.snappcar.de (2017), where items correspond to car rental requests for
a certain time period and a predefined price. Owners of cars or car farms are players
that select subsets of such requests from the portal to rent out their car(s) in order to
maximize the total revenue.

While it is true that each of these applications has additional features or practical
constraints that are not taken care of in the set packing games that we address here, the
paper aims to identify the combinatorial flavour that lies at the heart of such problems.
The overall conclusion is that the loss of efficiency caused by the lack of central
coordination is moderate.
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3 Preliminaries

We here fix some notation and the basic definitions. There are n players, and a finite
ground set J of items. Each item j € J has a value w;. For § C J, we let w(S) :=
> jes wj- Each player i has a strategy set S; € 27 which is downward closed, i.e.,
if §; € S, then T; € S; for all T; C ;. Given a strategy profile S = (S1, ..., Sp),
as usual define S_; := (S1,...,Si—1, Si+1, ..., Sy) as the strategies of all players
except i, and for any set of players K C {1, ..., n}, define S_g accordingly.

When (S1, ..., S,) isastrategy profile with S; € S; foralli = 1, ..., n, the payoffs
for player i are defined as

w(S;) ifSiNSy=0forallk #1i,
w; (Si, S—i) = ,
—oo  otherwise.
A strategy profile (S, ..., S,) is an o-approximate Nash equilibrium (for « > 1) if
it is true that for all playersi = 1,...,n
1
w;i (S, S—;) = —w;(T;,S—;) forall T; €S;. (D
o

Note that the existence of Nash equilibria with w;(S;, S—;) > 0 for all players i is
guaranteed by the fact that the feasibility systems &; are downward closed.

For a solution S = (S, ..., S,), in a slight but convenient abuse of notation! let us
write w(S) := > 7, w(S;) for the total value that it achieves. The price of anarchy
PoA (Papadimitriou 2001; Koutsoupias and Papadimitriou 2009) for a class of games
7 is then the ratio

w(OPT(I))

(a-approximate) POA = sup sup ————— (2)
1e7 seNE()  W(S)

where NE(I) denotes the set of all -approximate Nash equilibria of instance I € 7,
and OPT([I) is an optimal allocation for /. Note that for set packing games, OPT([) is
a Nash equilibrium too, hence the price of stability as proposed by Anshelevich et al.
(2004) equals 1.

Next, consider the extensive form game that is obtained when imposing some order,

say 1, ..., n on the players. A strategy for player i is then more complex, as it must
specify one action S; for all possible combinations of actions of preceding players
1,...,i — 1, that is, one action S; for each node of the game tree on level i. An -

approximate subgame perfect equilibrium is then a strategy that guarantees at least a
1 /a-fraction of the optimal action for each of the nodes of the game tree on level i.
As we deal with a full information game, (w-approximate) subgame perfect equilibria
can be computed via backward induction®. A nice feature of set packing games is that
the computation of («-approximate) subgame perfect equilibria is not suffering from

1 We use S to denote both, a strategy vector S = (51, ..., Sy ) as well as the total set of items that it induces,
ie., §=U{_S;. That will not yield any confusion, however.

2 See, e.g., Peters (2015). That is conceptually simple but generally not polynomial time.
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the typical hardness results for sequential games that is due to farsighted behaviour of
players: Indeed, computing outcomes of subgame perfect equilibria may be PSPACE-
hard with n players (Paes Leme et al. 2012), and NP-hard even with two players only
(Correa et al. 2015). For set packing games, an optimal action for the i-th player, upon
observing the actions Sy, ..., S;— of the preceding players, is computed by solving
the optimization problem

rTnéi)J(w(T) st. T C J\ U};ll Sgand T € S; ,

This suffices, as by the specific payoff structure of set packing games, the value attained
by player i is no longer affected by payers i 4 1,..., n, as long as they are all rational.
This problem is computationally hard only if the combinatorial structure encoded by
S; is hard; see the discussion in Sect. 2.

The price of anarchy for a-approximate subgame perfect equilibria, also called
sequential PoA (Paes Leme et al. 2012), is then defined analogously to the price of
anarchy in (2),

. . w(OPT(1))
(a-approximate) sequential POA = sup sup ————, 3)
1€z sespe(y  W(S)

where the first supremum sup; .7 is also taken over all possible orders of players, and
SPE(I) denotes all outcomes that can be obtained as a-approximate subgame perfect
equilibria of instance 1.

Finally, assume that up to k of the given n players may collude, and are allowed to
use any profit-sharing rule among them. In other words, we can think of a group K of
up to k players as maximizing their joint value w(U;cg S;). Then, wx (S, S—x) :=
Y iekx wi(Si, S—;) is the joint value achieved by players in K, and an «-approximate
k-collusion Nash equilibrium is a strategy profile (S1, ..., S,) such that the following
is true for all sets K of at most k players,

1
wK(SK, S_K) > —wK(T, S_K) forall T = U,‘EKT,' and T, € S,' . (4)
o

Obviously, the price of anarchy for «-approximate k-collusion Nash equilibria is then
again defined analogously to the price of anarchy in (2) by

. . w(OPT(1))
(«-approximate) k-collusion POA = sup sup ————, 5)
1eT seci () w(S)
where CEj(I) denotes the set of o-approximate k-collusion Nash equilibria of
instance /.

Symmetric set packing  We call a set packing game symmetric whenever there is
only one feasibility system S that is the same for all players i, and a player i can select
x; > 1 feasible sets from S, for some integer x; > 1. Note that when all x; = 1, this
exactly means that the strategic form game is symmetric in the sense that all players

@ Springer



J.de Jong, M. Uetz

have exactly the same strategy set. However we here choose a slightly more general
definition of symmetry, in that we allow players to select multiple feasible sets. In the
throughput scheduling context, that also captures a setting where each player controls
a subset of a set of identical machines. We define x := ) /_, x; to be the total number
of feasible sets from S that can be chosen by all players together, and note that x > n.

4 The price of anarchy for nash equilibria

We begin by giving the simple proof for the upper bound on the price of anarchy for
arbitrary set packing games, assuming that the outcome is an «-approximate Nash
equilibrium.

Theorem 1 The a-approximate price of anarchy equals o + 1 for set packing games.

Proof We first give the proof for the upper bound. Take any instance with optimal
solution OPT and Nash equilibrium S, and let S; and OPT;,i = 1, ..., n, be the items
selected by player i in S and OPT, respectively. For W C J, let W = J\W be the
complement of W in J.

Since all items in S are available, and all items in OPT; are feasible for player i,
and all S; are downward closed, by the definition of @-approximate Nash equilibrium
we have for all players i that cw(S;) > w(OPT; N ). Now we get, by the fact that
Si N Sy = ¥Wand OPT; N OPTy = () for any i # k,

(@ + Dw(S) > aw(S) + w(OPTN S)
- Z:’Zl aw(S;) + w(OPTN S)

n —
=) . wOPT;NS) +w(OPTNS)
= w(OPT).

For a matching lower bound, see the proof of the next theorem. O

We next give a matching lower bound example, which is an instance for throughput
scheduling (and an asymmetric set packing game).

Example 2 Assume that @« = p/q, where p > g. When « is not rational, note that we
can approximate « arbitrarily well by appropriate p and ¢g. Consider a game with g + 1
players. For each player i, there is one machine, which we also denote by i. The set J
of items are jobs that are partitioned into two sets P and Q, with |P| = p, |Q| = q.
Each job j € J has deadline d; = 1, unit weight w; = 1, and its processing time
on machine 1 is p;; = 1/p. Moreover, jobs j € Q have processing time p;; = 1
on any other machine i # 1, while jobs j € P have processing time p;; = 2 on any
other machine i # 1. Note that any subset of jobs of size p can be feasibly allocated
to player 1. Players 2 . .. n can be allocated only one job each, and only jobs from Q.
See Fig. 3 for an illustration in the case where o = 3/2. <

Theorem 2 The a-approximate price of anarchy equals a + 1 for throughput schedul-
ing games.

@ Springer



The quality of equilibria for set packing...

Fig.3 Example 2 for p =3 and OPT Nash Equilibrium S
g = 2. Numbers represent
machines. Rectangles represent
jobs. The left side of each job is |
its starting time, its width is its
processing time on the machine 1 | | } P 1 :Ij Q
on which it is allocated. The
dashed line is the deadline,
which is the same for all jobs in 2 2
this example

b Q

Proof PoA < o+ 1 follows from Theorem 1, since throughput scheduling games give
rise to downward closed feasibility sets per player. To see that POA > « + 1, consider
the instance of Example 2. In the optimum solution OPT, all p + g jobs are feasibly
allocated: All jobs in P are allocated to player 1, and each of the jobs in Q is allocated
to one of the g other players 2,...,qg + 1. Now consider the a-approximate Nash
equilibrium S where only ¢ jobs are allocated: All jobs from Q are allocated to player
1, and no jobs are allocated to players 2, ..., g + 1. This is indeed an «-approximate
Nash equilibrium, as player 1 achieves a total value of ¢, while maximally that player
can be allocated p = «g jobs. In other words, the a-approximate Nash condition (1)
holds for player 1. Moreover, given that all jobs from Q are allocated to player 1, players
2,...,q + 1 cannot do better than a value 0, as none of the jobs from P are feasible
for these players. We conclude that PoA > w(OPT)/w(S) = (p+q)/g =a+1. O

Note that the upper bound is universal in the sense that it is independent of how
the («-approximate) Nash equilibrium is obtained. It is conceivable that specific algo-
rithms can yield a better bound for the price of anarchy. However, the existence of
more complicated counter-examples for specific algorithms is not unlikely either; see
the next Section 5 for an example.

4.1 Symmetric set packing games

The price of anarchy of set packing games does not improve if the game is symmetric.

Theorem 3 The a-approximate price of anarchy equals a+1 for symmetric set packing
games.

The upper bound « + 1 is a consequence of Theorem 1. The lower bound follows from
the following theorem for throughput scheduling games, based on Example 3 below,
which is an instance of a symmetric set packing game.

Example 3 Let @« = p/q. There are n players i, each corresponding to one machine.
The set J of p 4+ (¢ + 1)(n — 1) jobs is again partitioned into two sets P, Q, |Q| =
qgn—1)+ p,|P|=(n—1). All jobs j € J have deadline d, = 1. Jobs j € Q have
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Fig.4 Example 3 for OPT Nash Equilibrium S
p =3,q =2,n = 3. Numbers

represent machines. Rectangles !
represent jobs. The left side of

each job is its starting time, its 1 m } Q 1 ]]

width is its processing time. The

dashed line is the deadline,
which is the same for all jobs in 2 2 ]]

this example | P

3 3]]

Q

processing times p; = 1/(g(n — 1) + p) and weight w; = 1, while jobs j € P have
processing times p; = 1 and weight w; = p. See Fig. 4 for an illustration for the
case where p =3,¢ =2 andn = 3. <

Theorem 4 The a-approximate price of anarchy equals o+ 1 for symmetric throughput
scheduling games.

Proof We are only left to show PoA > « + 1. Consider Example 3. In the optimum
solution OPT, player 1 is allocated all jobs j € Q, and each remaining player is
allocated exactly one job in P. Consider Nash equilibrium S where each player is
allocated g jobs in Q. Note that S is indeed an «-approximate Nash equilibrium: Any
player i could choose at most one job from P or at most p jobs from Q, since other
players are allocated g(n — 1) jobs from Q in total. Neither of the feasible deviations

increases player i’s utility by more than a factor «. For this example, w (OPT) /w(S) =

prtqn=l) _ ptq 1, 1 4 o forn — oo i
qn q n :
However this Nash equilibrium is generally not subgame perfect when considering

the corresponding sequential game. This observation is exploited in the following.

5 The sequential price of anarchy

In this section we aim to show that substantial improvements for the price of anarchy
are possible when considering sequential games and subgame perfect equilibria. This
improvement is interesting, we believe, because in almost all applications that we can
think of, it is the sequential version of the game which is practically relevant. To start
with, however, we observe that in general, Example 2 also provides a lower bound for
the quality of subgame perfect equilibria, and we get the following.

Theorem 5 The a-approximate sequential price of anarchy equals o+ 1 for set packing
games and throughput scheduling games.

Proof Letus first argue that the sequential PoA > «+ 1. Recall Example 2, and assume
that player 1 is the first to make a selection. Then if player 1 makes the same selection
of job set Q as in the proof of Theorem 2, the obtained solution can indeed be obtained
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as an o-approximate subgame perfect equilibrium, as player 1 cannot improve by more
than a factor « by selecting other jobs, and given that, all other players have nothing
to choose. (We can specify any reasonable actions for those parts of the game tree
that are not played in this equilibrium.) By the same argument as before, the lower
bound on the price of anarchy follows. To see that the upper bound on the sequential
PoA also holds, the next theorem shows that any subgame perfect equilibrium of the
sequential game is a Nash equilibrium of the corresponding non-sequential game,
hence Theorem 1 carries over. O

Theorem 6 For set packing games and any a > 1, the actions played in an o-
approximate subgame perfect equilibrium of any sequential version of the set packing
game, are an o-approximate Nash equilibrium in the corresponding non-sequential
strategic form game.

Proof Consider the actions S = (S, ..., S,) played in any subgame perfect equi-
librium SPE of any sequential version of the set packing game. Assume w.l.o.g. the
order was 1, ..., n. Consider any player i choosing S;. We need to show that the Nash
condition holds, whichis aw(S;) > w(T;) forall T; € S; with T; € J\Ug; Sx. Butas
the choice §; is part of a subgame perfect strategy, we even know that cw(S;) > w(T;)
forall T; € S; with T; C J\ U;;ll Sk. This inequality must be true because i’s choice
is a-approximately optimal, and since in a subgame perfect equilibrium, i’s payoff
is not affected by rational subsequent players k > i, for any 7; that player i might
choose. Hence S a Nash equilibrium in the non-sequential game. O

It is not generally true that subgame perfect equilibria of a sequential game are Nash
equilibria of the corresponding non-sequential game. See, e.g., Correa et al. (2015)
for an example.

5.1 Symmetric set packing games

When considering symmetric set packing games, sequential play and subgame per-
fection rule out worst-case Nash equilibria. Assuming the outcome of such a game is
an o-approximate subgame perfect equilibrium, the main result of this section is:

Theorem 7 The a-approximate sequential price of anarchy equals Ye/( e — 1) for
symmetric set packing games.

We prove the theorem in several steps. First we derive the lower bound, which is
again obtained by considering a throughput scheduling instance.

Example 4 There are n players. Each player i corresponds to one machine. The set J
of n? jobs is partitioned into n sets Ji, ..., Ju, |Jk| = n for all k € [n]. We refer to
a job from Ji as a k-job. All k-jobs have deadline k. All jobs j € J have processing
time p; = 1 and weight w; = 1. See Figure 5 for an illustration for the case where
n=5anda = 1. <

Lemma 1 The a-approximate sequential PoOA > e/(/e — 1) for symmetric set
packing games.
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OPT Equilibrium S
Ji Jo J3 Jy J5
/JWﬁ/_Aﬂ/_Aﬂ
1 1 2 3 4 5 1 5 5 5 5 5
2 1 2 3 4 5 2 4 4 4 4
3 1 2 3 4 5 3 3 3 3 4
4 1 2 3 4 5 4 2 3 3
5 1 2 3 4 5 5 2 2
Fig.5 Example 4 in case of 5 players and o« = 1. Numbers represent machines. Rectangles represent jobs.

The left side of each job is its starting time, its width is its processing time. The number in each job is its
deadline

Proof In the optimum solution OPT, every player is allocated exactly one k-job for
allk =1, ..., n. Therefore w(OPT) = n2.

We construct an -approximate subgame perfect outcome S, as follows: For every
playeri = 1, ..., n in this order, we find the maximum number of jobs that can be
feasibly allocated to this player, given jobs already assigned to players 1,...,i — 1,
and when considering jobs with the largest deadlines first (which are the most flexible
jobs). Denote this number of jobs m;. We allocate to player i exactly [m; /«] of these
jobs, so that the allocation is still an «-approximation. Let S; be the jobs allocated to
player i in this way.

We bound w(S) in the following way: Let (i) = ‘S"'QIJ"I, i.e. rr (i) is the fraction
of k-jobs allocated to player i, relative to the total number of jobs allocated to player
i.Letry =Y 7, re(i). Now,

I;rk ZZrk(O—ZZ'Sl'?'Jkl ;lzn. 6)

k=1 i=1 i=1 k=1

In §, any playeri who gets allocated a k-job, is not allocated any job from J;, j > k+2,
hence she is allocated at most [(k 4+ 1)/a] < (k+ 1+ «)/« jobs. Therefore, each
k-job contributes at least o/(k + 1 4 «) to ry. For any k for which all of the n k-jobs
are allocated in S, we obtain

re >na/tk+1+a). 7

Now, for some k¥’ > 0, by construction of the allocation we have that for all
k > n — Kk, all n k-jobs are allocated, as well as a subset of the (n — (k' + 1))-
jobs. We obtain
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n

n n
no no
n> re > ST L= 8
—k:nZ_k,"—k:nz_k,k+1+a—/k_n_k/k+1+a ®)

where the first inequality follows from (6), the second inequality follows from (7),
and the last inequality follows from basic calculus.

Because the last term is upper bounded by 1, we can derive an upper bound on k’.
In fact, basic calculus shows that

1 a _l n
K > (nt1+o)(¥e—1) = / Ldk>n,
e k=n—k k+1+a

(n+140)(Ye—1)

which together with (8) yields that k' < e . Because only k-jobs with

k > n — (k' + 1) are allocated, we conclude that

a

) < (D < (n+1+a+ aefl)(%—l) -

<

We see that
w(OPT) ne — v for n - oo
w(S) (n+1+a+ (jﬁl)((’/@—l) Ve - ’
and the claim follows. O

Note that the lower bound construction assumes that players choose the most flexible
jobs first, which is reasonable from a practical point of view. Also note that in the lower
bound example, x; = 1 for all players. Therefore, the lower bound holds even in the
special case when the strategic form game is a symmetric game.

To derive a matching upper bound on the sequential price of anarchy for symmetric
set packing games, we generalize some of the proof ideas from Bar-Noy et al. (2001)
in their analysis of the k-GREEDY algorithm for throughput scheduling. We here
generalize the proof to the case where players may control more than one machine, or
in our case, more that one feasible set. Algorithmically, that means that in one iteration
of the greedy algorithm not only one but several sets from the feasibility system get
chosen. Stripping off the technical details, one of the core ingredients of the proof
below is the fact that the next player may greedily choose her feasible subset(s), and
this choice approximates the optimal solution for the set of currently available items.
That optimal value is in turn at least as large as the optimal solution restricted to the set
of currently available items. This is expressed in inequality (9) below. Indeed, this is
a generic approach when analyzing greedy algorithms for subset selection problems,
and the same idea also appears in the analysis of the greedy algorithm for maximum
coverage problems; see (Hochbaum 1997, Lemma 3.13). We want to prove:

Lemma2 The a-approximate sequential PoOA < e/(%/e — 1) for symmetric set
packing games.
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Denote by S; the items selected by player i in an o-approximate subgame perfect
equilibrium, and recall that S denotes both the strategy vectorand § = U?_, S;, the total
set of selected items. The following lemma lower bounds the total weight collected
by player i.

Lemma 3 We have for all players i

Xi
w(S;) = Ew(OPT(J\ Uj<i Sj)) .

where OPT(W) denotes an optimal solution for a fixed subset of items W C J.

Proof Let W := J\ U;.; S;. Let OPT' denote the maximum weight set of items
that player i can achieve from W. Observe that w(OPT") > (x; /x)w(OPT(W)). This
follows because player i could potentially select the x; most valuable feasible sets from
OPT(W). Now, because we assume an «-approximate subgame perfect equilibrium,
w(S;) = w(OPT) /a > x;w(OPT(W))/(xa). O
Proofof Lemma2 Let y := xa, and recall that w(OPT) = w(OPT(J)) denotes the
value of an optimal solution. We use Lemma 3, to get

X
w(s;) > ?lw (OPT(J\Uj-; S})) = —’< (OPT) — Z w(s; )) 9)
Here the last inequality is crucial and it holds because w(OPT) — Y < w(S;) rep-

resents the value of some feasible solution for the items J\ U;; S;. Now add
Z’j;ll w(S;) to both sides to get

i—1
Zw(S ) > xlw(OPD N us)). (10)
=1

We now follow the proof of Theorem 3.3 in Bar-Noy et al. (2001), and aim to prove
that

PRICHE "X"Lx,_mw(opn, (11)
. )/ i

where x| = Z j=1%;- This part of the proof is done by mathematical induction on the
player index i. In contrast to Bar-Noy et al. (2001), this is technically more involved
here. The proof of inequality (11) is by double induction and given in Appendix A.
Now we get for i = n (cp. to the proof of Thm. 3.3 in Bar-Noy et al. (2001))

n X

w(S) =Y w(S)) > %V_l)xw(omy

X
j=1
We conclude that the

v _ (xa)* e
Y -y -DY @) —@a—1*" T Ye—-1"

sequential PoA <
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where the last inequality follows because the right hand side is exactly the limit for
x — 00, and the series b, = (xa)*/((xa)* — (xa — 1)*) is monotone in x, with
by =a < ¥e/(¥e — 1). This ends the proof of Lemma 2. ]

Basic calculus shows that

< e !

1
a+§_{‘/E—1_ e—1

for « > 1. Hence the improvement over the (pure Nash equilibrium) price of anarchy
of o + 1 is substantial, but only for small values of «. We explicitly mention the special
case where o = 1.

Corollary 1 The sequential price of anarchy for symmetric set packing games equals
1+1/(e—1)~1.58.

6 The k-collusion price of anarchy

While sequential play is a way to reduce the price of anarchy for symmetric set
packing games, we now show that collusion of players helps to reduce the price of
anarchy, too. This is true also for general, asymmetric set packing games. Recall that
an o-approximate k-collusion Nash equilibrium means that no coalition K of up to k
players can improve their total value w(Sk) by more than a factor «. The following
theorem generalizes Theorem 1 to the case where collusion is possible.

Theorem 8 The a-approximate k-collusion price of anarchy equals o + % for set
packing games.

Note that for k = n, we consider an a-approximate (centralized) solution, and for
o = 1, this is an optimal solution. First we give a proof for the upper bound.

Lemma4 The o-approximate k-collusion PoA < o + % for set packing games.

Proof The proof mimics our earlier proof of Theorem 1, only here we have to keep
track of the values of more subsets of J. We fix an optimal solution OPT and a k-
collusion Nash equilibrium S, write N = {1, ..., n}, and use the following shorthand
notation:

the total weight of items in OPT; N S; fori, j e N,
xijj = the total weight of items in S;\OPT fori =0,j €N,
the total weight of items in OPT;\S fori e N,j=0.

Our proof is based on the following observation: players from any coalition K
collude and collectively deviate if and only if the total weight of items allocated
to them increases by more than a factor « > 1, by choosing any set of items in
(Uiek Si) U (J\ U;j¢k Si). Therefore, in particular for all coalitions K of size k in any
a-approximate k-collusion Nash equilibrium, we have by (4) that
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o Z(Zx,-j+xo,-) >3 D xij +xio

jeK \ieN ieK \jek

Note that all items that contribute to the left-hand side are allocated to players in K in
the equilibrium S. Also note that all items that contribute to the right-hand side can be
feasibly allocated to players in K, since these items are allocated to players from K
in OPT. Also, these items are available for coalition K, since they are either allocated
to players in K in S, or not allocated. We rewrite this as

(T (Tt o)) 2 E Tt Do
jeK \ieN ieK jeK ieK
i#]j
Now, any player i is in (Zj}) coalitions of size k, and any combination of two players

i, jisin (Z:g) coalitions of size k. Therefore, summing (12) over all coalitions K of
size k yields

(N[ (Zx,-,. +x0,)

jeN \ieN
n—2 n—1

> (k_2>zzxij+<k_l) Z(xii+xi0)~

ieN jeN ieN

i#]
Adding
n—1 n—2 n—2
((21)-(2) B - () 2T
ieN jeN ieN jeN
i#] i#]

to both sides yields

“ ((Z:D + (Z:?)) DD i+ (Z: :) > s+ x0))

ieN jeN JeEN
i#]
n—1 n—1
> <k—1>zzxij+<k—l) Z(xii—i-xio)- (13)
ieN jeN ieN

i#]

Therefore,

()2
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A CDEE (-G

ieN jeN JEN
n—1 -1
= \\k -1 k—1 DD i+ 1 Z(xj'j +xo;)
ieN jeN JEN
i#j
n—1 n—1
> (k 3 1> Z inj + (k B 1) Z(xii + xi0)
ieN jeN ieN

i#j
n—1 OP
~(; ) )Jucorn,

where the last inequality follows from (13). This yields

n—1 n—2
+ _
k-collusion PoA < a% =o+ n Ilc .
n—
k—1

m}

In fact, this proof of the upper bound provides us with an easy way to create a tight
lower bound example for any n.

Example 5 We make the upper bound analysis tight by setting x;; = 0 and xo; = 0
for all players i € N . We normalize x;; = 1 for all players i, j € N for whichi # j,
and finally we set x;o = n — k + (n — 1)(a — 1) for all players i € N. We construct
the strategy spaces such that any player i can only choose subsets of either OPT; or
Si, where S; is the set chosen in the in the k-collusion Nash equilibrium. The resulting
game for n = 3, k = 2 is shown in Fig. 6. <

Proof (of the matching lower bound for a-approximate k-collusion PoA.) To see that
the above construction actually yields an a-approximate k-collusion Nash equilibrium,
consider any coalition K of k players. If players play strategy profile S, any player
in K has utility n — 1. By switching to the strategy chosen in OPT, each player in K
obtains utility (k — 1)1 + 1((n — I)(& — 1) +n — k) = a(n — 1), which is fine. If
some players in K choose a subset of the items chosen in OPT, and other players in K
choose a subset of the items chosen in S, then this yields a total value at most «e(n — 1)
for each player. We see that no coalition of k players can improve by deviating, from
which the result follows. O

For o = 1, we obtain the following as a special case.
Corollary 2 The k-collusion price of anarchy equals 1 + 7= for set packing games.

Although the k-collusion price of anarchy is strictly lower than the price of anarchy
for all k > 2, note that this improvement becomes negligible for large n. Interestingly,
as opposed to all other lower bound examples in this paper, we did not find a matching
lower bound example for throughput scheduling games.
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OPT Equilibrium S

playerl T =1 T10 =
200 —1

player2 91 =1 ;(2:37:1 91 =1 To3 =1
player3 2y =1 Ty = 1 T30 =
31 32 20 -1

playerl playerl player3

Fig.6 The k-collusion Nash equilibrium from Example 5 for k = 2 and n = 3. Circled items are allocated
to the same player. Each item is named after the value used in the upper bound proof

7 Concluding Remarks

As discussed earlier, when more than one player may select one and the same item,
one needs a utility sharing protocol, and the game becomes a covering game for which
several results have been obtained, e.g. by Garing (2009), and for more general set-
tings also by Paccagnan and Marden (2018); Paccagnan et al. (2018). The price of
anarchy for Nash equilibria is then 2 — 1/n, assuming that items are shared uniformly.
Brethouwer (2018) has also studied the sequential version of that class of games, and
observed that sequential play does not allow to improve this price of anarchy bound.
To pin down the exact value of the sequential price of anarchy for that class of games
is open.
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A Appendix: Proof of inequality (11) by induction.

Recall that we want to prove the following by induction on player index i.

i x! x!
i~ (y = DN
Y sy = E=Y =D wopn,
j=1 v
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The base case i = 1 is the following lemma, proved by yet another inductive argument
on xj.

Lemma5

w(Sy) > %Zl_l)lw(om).

Proof We know by definition of y, and by plugging i = 1 into Lemma 3 that
X1
w(S1) > —w(OPT).
14

Hence we are done when we can prove by induction on x; that

T e A Vi

v yH
When x; = 1, we get

v 14
which clearly holds. Assume the claim holds for x; = k — 1. We get

_y-=b 1

)

R | =

k k=1 1
Y 14 14
—1 _ (1, _ 1)k—1
oo
v 14
el el Dk ¢ e VA s G
vk
k _ 1)k
SV (Vk D ,
14
proving Lemma 5. O

Assume now that (11) holds for i — 1. Applying the induction hypothesis to (10) we
get

OP — X1 — _lxt 1
Zw(s) xzw( T) Xi V (V )
Y yz 1

w(OPT) .

This can be used to prove the inductive claim, using the following.

Lemma 6

Y 14 yxl/cfl )/X//(

AL bl phe = (= D%y — (= )%
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Proof We have

X — X xli—l_ _lxli—l
kLYo Y y=D

Y Y )/xllc—l
_% =Dyt g - D%
B V4 yxl/(—l yxl,c—l
ek O VA e VIO e etV i

- )/xk yxl/cfl )/xl/c—l

— 1) — )% — 1)%-1
:<1_(J/ ) ).(7/ D =D

y -k y k-1 y k-1
e Ve Vi

'}/xk yxl/c—l

oy = (y = D%
- i ,

where the first inequality follows from x7" > ka_;+l)xk

Lemma 5, and the last equality follows from x; = x; | + xi. ]

, as shown in the proof of
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