
Computing threat points in irreducible ETP-ESP games

Rogier Harmelink & Reinoud Joosten

IEBIS, School of Behavioral and Management Sciences, University of Twente, POB 217,
7500 AE Enschede, The Netherlands.

Abstract

In non-cooperative stochastic games, the threat point is the lowest possible
Nash equilibrium when players force each other to receive the minimal reward
possible. For repeated games the determination of the threat point seems
trivial, but when looking at more complex stochastic games this does not
hold. Frequency-dependent (FD) games are stochastic games for which the
stage payoffs depend on a FD function, a so-called Endogenous Stage Payoff
(ESP) game. Another type of FD games is when the transition probabilities
between states are adjusted based on a FD function, these are called Endoge-
nous Transition Probabilities (ETP) games. Incorporating these character-
istics in stochastic games results in non-trivial determination of the threat
point and therefore creates the need of an efficient threat point algorithm. In
this paper we develop an algorithm which computes the threat point in irre-
ducible ETP-ESP games with two players under the limiting average reward
criterion. We start by describing an algorithm for a simple repeated game
for which we later incorporate more complex elements in order to end up at
an ETP-ESP game. Our algorithm can at best be described as an intelligent
brute force method which computes a reasonably accurate threat point in a
reasonable amount of computational time. The resulting threat point can be
seen as a good approximation of the exact threat point while also giving an
indication of the set of Nash equilibria.

Keywords: game theory, algorithmic game theory, stochastic games,
Frequency-dependent games, jointly-convergent pure-strategies, ETP-ESP

Preprint submitted to Working Paper University of Twente January 31, 2020



1. Introduction

When John Nash Jr. defined the concept which is now known as the
Nash equilibrium [1], he probably did not know the impact it would have on
science and the world we are in nowadays. In this ever increasing complex
world the need for decision making based on rationality seems to increase.
The Nash equilibrium proved to be an useful rational concept for analyzing
sometimes ’irrational’ outcomes like the Prisoner’s Dilemma [2]. Even game
theoretical thought experiments like Newcomb’s paradox [3] can be analyzed
with the help of the Nash equilibrium [4].

The power of the Nash equilibrium also applies to more complex stochas-
tic games. When Shapley in 1953 introduced the stochastic game in order
to incorporate uncertainty of the state being in [5], the concept further in-
creased the difficulty of the analysis of Nash equilibria. However, stochastic
games are static to some extent, i.e. that the occurrence of play only has an
effect on the chosen transition probabilities between states. In 2003 the in-
troduction of frequency-dependent games by Brenner and Witt (2003), later
extended by Joosten et al. (2003) made stochastic games more dynamic by
adjusting the stage payoffs depending on the play up until and including the
current stage.

The development of the domain of Frequency-Dependent (FD) games
however has not stagnated. Now, they not only incorporate Endogenous
Stage Payoffs (ESP), but also the transition probabilities may alter based
on the history of play. These are called Endogenous Transition Probabilities
(ETP) and first explored by Joosten and Meijboom (2018). Because of these
developments, new applications of FD games were developed. Examples are
Small Fish Wars by Joosten (2007) and rarity value in a small fish war [10].
The big question is how to analyze these types of FD games in terms of Nash
equilibria.

Important in the analysis of Nash equilibria in stochastic games is the so-
called threat point. The threat point is the lowest possible Nash equilibrium
that players receive if both choose to force each other to this reward. We
assume that in a two-player game, player 1 plays strategy π while player 2
plays strategy σ. Both players receive a reward denoted, for player 1 as an
example, as γ1(π, σ). We define the threat point as follows:

v = (v1, v2) with:

v1 = min
σ

max
π

γ1(π, σ)

2



v2 = min
π

max
σ

γ2(π, σ)

Determination of this threat point is trivial in repeated games, in more
complex stochastic games such as ETP-ESP games the threat point is re-
trievable analytically. However, these methods are time intensive and prone
to human error. The need for an fast and accurate solution therefore in-
creases. Algorithms can bridge this gap in order to cover human errors while
computing reasonably accurate or even exact solutions.

1.1. Typology of stochastic games

In order to clarify the domain of stochastic games in which FD games play
an important role, we refer to an ordering of the types of stochastic games by
Joosten and Samuel (2018). They call this ’A computation-inspired ordering
among stochastic games’.

CTP ETP
Type I

(p0)
Type II

(x, p0)
Type III
(x, p(x))

CSP
(θ0)

AIT games Stochastic games
CAIT-games
ETP-games

ESP
(θ(x))

FD games
AIT FD games

Stochastic FD games
CAIT-ESP games
ETP-ESP games

Table 1: ’A computation-inspired ordering among stochastic games’ [11].

Table 1 shows three types of stochastic games. Type I games incorporate
transition probabilities that do not depend on the history of play or actions
chosen by the players in different stages of the game. Switching states is
therefore completely independent of player interference. Type II games are
regular stochastic games in which players’ actions have an impact on the
transition probabilities and therefore the switching of the state of play. Type
III games are the so-called ETP class of stochastic games in which the actions
of player not only impact the transition probabilities as a result of play, but
also alter them based on the frequency of play.

All types of stochastic games have a Constant Stage Payoffs version but
also an Endogeneous Stage Payoffs version. (C)AIT stands for (Current)
Action Independent Transitions. The term stochastic FD games has been
introduced by Mahohoma (2014), but Joosten and Samuel (2018) call this ”a
tautology in the broad interpretation”. Our goal in this paper is to develop

3



a threat point algorithm which can compute the threat point on the whole
range of stochastic games defined in table 1.

1.2. Earlier work

Algorithmic game theory has seen an increase in attention since the paper
of Nisan and Ronen (2001). But this was not the first instance of algorithms
being used within game theory as a mathematical discipline. In stochastic
games there was already research in algorithms under the discounted reward
criterion [14]. An algorithm for undiscounted stochastic games was developed
by Vrieze (1981) based on work of Filar and Raghavan (1979). The problem
with these algorithms is that it remains unclear if they are applicable to the
domain of FD games and are able to find a threat point result.

The first research in the domain of algorithms of FD games was done by
Mahohoma (2014). In his Master thesis he uses a simulation approach to
determine equilibria, rewards but also threat points in stochastic FD games.
This algorithm seems useful if non-stationary strategies are the only way
to reach the threat point, but in games in which stationary strategies are
guaranteed to give threat point solutions, the method seems cumbersome in
computational complexity (O(n4)).

Other work in the domain of algorithm development in FD games has
been done by Joosten and Samuel (2017). They developed an algorithm
which computes the set of feasible rewards in Type I, II and III games with
or without ESP. The algorithm computes the threat point as a part of the set
of feasible rewards but is unable to state this threat point as an actual result.
This paper builds further on this work by computing the threat point and
improving computational complexity. Part of the work on this algorithm has
been done in the form of a master thesis at the University of Twente [18].

In this paper we first have introduced the concept of different types of
stochastic games and the need for a threat point algorithm. Section 2 defines
the specifications surrounding the game and algorithm under scrutiny. In sec-
tion 3 we start with development of the algorithm on Type I games. Section 4
continues be extending the algorithm to incorporate regular stochastic game
characteristics while in section 5 we incorporate the last step of the ETP
characteristics. We end in section 6 with a conclusion and discussion of the
algorithm.

4



2. Game and algorithm specifications

In this section we set the specifications and criteria that our games but
also the algorithm should adhere to in order to successfully compute a threat
point result. We first introduce the letters and symbols surrounding our
algorithm. After this we denote the criterion of analysis of the rewards and
state the concept of jointly-convergent pure-strategy rewards. Also we state
specifications of the Markov chain and FD functions for which the algorithm
is guaranteed to work. We discuss the choice of the programming language
used and at last, we introduce an example game which we use throughout
the paper as a basis to show the application of the algorithm.

2.1. Mathematical letters and symbols used

We first introduce a small table of mathematical letters and symbols
which are used throughout this paper. This should reduce the chance of
ambiguity on certain interpretations of the algorithm.

5



Mathematical
Letters/Symbols

Description

γk Average reward for player k
Rk
t Expected payoff of player k at time t

π Strategy played by player 1
σ Strategy played by player 2
P Strategy matrix of player 1
Q Strategy matrix of player 2
t Current period in time
T Total amount of periods of time
xt Relative frequency vector at time t
X Relative frequency matrix
lim inf The limit inferior result
θSk

Payoff matrix of state k
pSk Transition probability matrix of state k
pi Transition probability vector
lim sup The limit superior result
Prπ,σ Probability under strategy pair π, σ
FDt

i FD function at time t with game type i
v The threat point result
Beta(n, α, β) Beta-distribution with number of points n
E ETP matrix

2.2. Limiting average reward criterion

Stochastic games are played for a(n) (in)finite number of periods. So
the total sum of payoffs can be analyzed via different criteria. Two of these
criteria are dominant in literature, the discounted reward and the limiting
average reward. The first one seems to be the most frequent criterion of use.
However, in this paper we focus on the limiting average reward criterion. We
think that it is essential in some games to value the far future equally to
the present. Also discounting could possibly result in finite horizon effects
occurring.

The expected payoff of player k at time t under strategy pair (π, σ) is
denoted as Rk

t (π, σ). So as described by Sorin (2003) we look at the limiting
average reward (γk(π, σ)) for player k with:

6



γk(π, σ) = lim inf
T!1

1

T

T∑
t=1

Rk
t (π, σ)

For this paper we focus on the limiting average reward as the way to
analyze rewards.

2.3. Jointly-convergent pure-strategy rewards

The development of this algorithm is based for a large part on the theory
of jointly-convergent pure-strategy pairs. This theory was first described by
Joosten et al. (2003). A player follows a pure strategy when a player always
plays a pure action in a certain stage at time t in any state with probability
1. A strategy pair is jointly-convergent for the strategy of player 1 π, player
2’s strategy σ and relative frequency vector x if and only if [7]:

lim sup
t!1

Prπ,σ[jxti � xij > ε] = 0 (1)

When the relative frequency vector for a strategy pair converges to a
vector of fixed numbers with probability 1 when t goes to infinity [20] we
call the strategy pair jointly-convergent. With the set of jointly-convergent
pure-strategy pairs we can also compute a set of rewards, as was done by
Joosten and Samuel (2017). Two main theorems surround the theory of
jointly-convergent pure-strategy rewards.

Theorem: “Each pair of individually-rational jointly-convergent pure-strategy
rewards can be supported by an equilibrium. Moreover, each pair of jointly-
convergent pure-strategy rewards giving each player strictly more than the
threat-point reward, can be supported by a subgame-perfect equilibrium. [7]”

The threat point plays an important role in this theorem. Also in the second
theory, the threat point has a large impact.

Theorem: “Each pair of rewards in the convex hull of all individually-
rational jointly-convergent pure-strategy rewards can be supported by an
equilibrium. Moreover, each pair of rewards in the convex hull of all jointly-
convergent pure strategy rewards giving each player strictly more than the
threat-point reward, can be supported by a subgame-perfect equilibrium [7].”

7



The threat point therefore defines the boundaries of the set of equilibria
that are covered by jointly-convergent pure-strategy rewards. Computing
the threat point therefore, not only gives the absolute minimum players can
reach as an equilibrium [7], but also solves the problem of determining the
complete set of equilibria.

2.4. Specifications of the Markov chain

Transition probabilities in stochastic games are modeled as a Markov
chain, i.e. the probability of switching to another state only depends on the
current state being in. In order for a successful approximation of the threat
point our algorithm demands certain properties of the Markov chain. These
are: irreducibility and aperiodicity.

Definition Irreducible Markov Chains: “A Markov chain (X0, X1, ...)
with state space S = fs1, ..., skg and transition matrix P is said to be irre-
ducible if for all si, sj 2 S we have that si , sj. Otherwise the chain is
said to be reducible [21].”

In short, we expect to have stochastic game in which the play at any time
can switch to another state in the game. Temporarily absorbing states are
therefore no issue, but for stochastic games in which the states are absorbing
we cannot guarantee the workings of our algorithm. This however does not
mean that our algorithm will not work on the games with absorbing states,
further research on this is necessary.

Definition Aperiodic Markov Chains: “A Markov chain is said to be
aperiodic if all its states are aperiodic. Otherwise the chain is said to be
periodic [21].”

Aperiodicity means that the Markov chain does not have a fixed period
of switching between states, the transition between states is random and
does not incorporate any form of certainty of switching states after a certain
amount of time. On the side we are looking into ways to make our algo-
rithm use-able on games with a periodic Markov chain. For now we assume
that the algorithm only works on games in which the Markov chain is irre-
ducible and aperiodic, resulting in an useful property for use in the algorithm:

Theorem: “For any irreducible and aperiodic Markov chain, there exists

8



at least one stationary distribution [21].”

This stationary distribution can be linked with the convergence of the rela-
tive frequency x in Equation 1. Also, Markov chains that are irreducbile and
aperiodic are sometimes refered to as ergodic.

2.5. Specifications of the FD functions

In frequency-dependent games we need to define a FD function which
state the impact of the frequency of play on the stage payoffs or transition
probabilities. The function used can be defined in any possible way, but we
are not always able to guarantee the working of our algorithm. We have
tested the algorithm on polynomials and linear functions and were able to
receive accurate results. However, when the function is not monotonic, the
algorithm is not able to generate accurate results, only an inaccurate estima-
tion. We encountered these problems already in a paper in which the stage
payoffs were analyzed with rarity value [10]. We plan on future research in
order to incorporate non monotone functions within this algorithm.

2.6. Programming language

A programming language could be seen as just a method in order to de-
liver a certain output. In our opinion however, the choice of well suiting
programming language could have a lasting impact on usage of algorithms.
Earlier versions of our algorithm have been build in Excel and MATLAB.
However, we think that Python is a more suitable alternative for game the-
oretical programs. Game theorists are mathematicians, not programmers,
in our opinion a more easy readable syntax would enhance their analyzing
capabilities. The goal of Python is to provide the user with easy and under-
standable syntax. On the other side, Python is in itself a slow language due
to its dynamic nature. This we compensate by making use of the NumPy
package in Python for highly optimized computations.

2.7. An example game

When writing the algorithm we tested it on a multitude of games. For
didactic purposes we show the working of the algorithm on an example game
developed by Samuel (2017). This example game, in our opinion, shows well
what the effect is of the frequency-dependent functions while also offering a
clear test case of the algorithm. The example game is a two-player frequency-
dependent commons-pool game which is essentially modelled as an ETP-ESP

9



game. However, elements of the ETP-ESP game can be extracted in order
to reflect Type I, Type II and Type III games.

2.7.1. Payoff matrices

Our example game is modelled as a frequency-dependent two-player two-
state game. In both states, players have the option to act responsible or to
gain a higher short-term payoff in favor of the depletion of the common-pool
resource. The first state represents a situation in which there is a larger
common-pool resource available. The upper-left corner of the payoff matrix
is always the responsible option and results in no depletion of the common-
pool resource. The bottom-right result always takes the largest hit on the
common-pool resource within a state, the other two outcomes are moderately
depleting.

θS1 =

[
16, 16 14, 28
28, 14 24, 24

]
θS2 =

[
4.0, 4.0 3.5, 7.0
7.0, 3.5 6.0, 6.0

]
2.7.2. Transition probabilities

The transition probabilities guard the switching between the two states
in this game. When in a certain state, the chance of staying in that same
state is always weakly dominating the chance of switching states (except for
when the FD function adjusts the transition probabilities in an ETP game).
The sustainable (more responsible) left-upper corner always results in both
states in a higher chance of ending up in the first state in which the resource
availability is richer. Acting irresponsible results in a higher chance of staying
in or transitioning to the second state in which the common-pool resource is
already exhausted.

pS1 =

[
0.8, 0.2 0.7, 0.3
0.7, 0.3 0.6, 0.4

]
pS2 =

[
0.5, 0.5 0.4, 0.6
0.4, 0.6 0.15, 0.85

]
2.7.3. FD functions

In our ETP-ESP game we have at least two FD functions. The use of FD
functions is not limited to one per type of functionality, FD functions can
also be intertwined like in [10]. However, the example game keeps it simple.
We have two ESP functions which are denoted by FDt

I for the Type I game
and by FDt

II,III for the Type II and III games. The ETP function is denoted
by p(x). In this example game with an ESP function we see a larger depletion
of the stage payoffs in case of reckless actions on the common-pool resource.

10



In case of the ETP function the transition probabilities tend to shift towards
a higher probability of ending up in the second state when players choose to
act irresponsible.

FDt
I = 1� 1

4
(xt2 + 2xt3)� 2xt4

3

FDt
II,III = 1� 1

4
(xt2 + xt3)� xt4

3
� 1

2
(xt6 + xt7)� 2xt8

3

p(x) = p0 � [x � E] with:

3. Developing an algorithmic basis for Type I games

We introduced the specification and limitations on the type of game that
can be used on our algorithm. Now we describe the building blocks of our
algorithm. This we do in a structured fashion where we describe the differ-
ent functions that are incorporated into the algorithm and execute specific
computations. The algorithms themselves are described in pseudocode, but
mathematical elements of the algorithms are introduced with a corresponding
notation.

In this section we introduce a basis for the three types of games, applied to
a Type I game. All types of games consists of three main functions, drawing

11



a random strategy for the player who threatens, create a frequency matrix
for both players and later sorting this frequency matrix based on the pure
best replies from the player under threat. These three elements are then
combined into an algorithm for a Type I game.

3.1. Draw random strategy

The threat point for a player is defined as min max γk(π, σ). So in order
to compute a reward γk we start by fixing the strategy of the player who is
threatening. In case of a two player game, the strategy π (σ) for player 1 (2)
is fixed. However, we apply a technique called vectorization, which means
that we do not draw single strategies or compute single rewards. We compute
a whole set of rewards at once. This does mainly lower the computational
complexity, on the other side, it requires a larger memory for computation.

In this case we draw random strategies from a so-called random number
generator, usually random number generators follow a uniform distribution.
But in this case we use the beta distribution as the source for generating a
random number. We do this because the beta distribution has a property
that tends to draw more values near the edges of the distribution when
0 < α = β < 1 [22]. A value closer to 0 results in more strategies that are
closer to the edges of the rewards distribution. One should keep in mind
that adjusting this value has a potential change on the approximation of the
threat point. When plotting rewards we tend to go for α = β = 0.1, when
computing the threat point we use α = β = 0.5.

P = Beta(n, α, β) (2)

or

Q = Beta(n, α, β) (3)

In Equation 2 (3) we draw a strategy matrix for player 1(2) containing n
number of strategies. However, we need to normalize all these strategies in
order to sum to one.

P =
Pn,i∑k
i=1(Pn,i)

(4)

or

12



Q =
Qn,i∑k
i=1(Qn,i)

(5)

Equation 4 (5) therefore normalizes the drawn strategies per strategy for
player 1(2) so that they sum up to 1. Combining these equations we end up
with a function which draws a random strategy matrix for the threatening
player which is normalized. We describe this in Algorithm 1.

Algorithm 1 Function: Draw Random Strategy.

Input: Total points to generate, number of total actions for player who
threatens

Output: Random strategy matrix
1: Draw points number of strategies with a length of number of total actions

from a β-distribution with (α = β = 0.5)
2: Normalize the drawn strategies, such that each individual strategy sums

to one
3: Return the random strategy matrix

3.2. Create frequency vector based on the best replies

Now having generated a strategy matrix for the player who is threatening
we have to make a match with the player who is being threatened. Therefore,
we transform the strategy matrix into a frequency matrix. We base the
creation of this frequency matrix on a result by Hordijk et al. (1983). They
state that mixed stationary strategies are always best replied with a pure
stationary strategy. Because we have guaranteed stationary strategies as
optimal due to an ergodic Markov chain guarding the transition probabilities,
the result of Hordijk et al. (1983) should hold. So a player being threatened
in a two-player two state game with two actions per state always has four
pure strategies to use in order to get a best response.

The result is Algorithm 2 which does the simple job of bookkeeping which
strategies of the threatening player match to the pure strategies of the player
under threat.

13



Algorithm 2 Function: Create Frequency Matrix.

Input: Total points generated, number of total actions for both players,
random strategy matrix

Output: Frequency pairs based on pure best replies from player under threat
1: Initialize frequency vector with dimensions: (total number of points �

total number of actions Player 1 , total number of actions Player 1 �
total number of actions Player 2)

2: for i in range total number of actions player under threat do
3: for j in range total number of actions threatening player do
4: if v1 is searched then frequency vector[total number of points �

(i � 1):total number of points i,(number of actions player 2 � i)+j] =
random strategy matrix[:,j]

5: end if
6: if v2 is searched then frequency vector[total number of points �

(i � 1):total number of points i,(number of actions player 1 � j)+i] =
random strategy matrix[:,j]

7: end if
8: end for
9: end for

10: Return frequency matrix

14



3.3. Sort the payoffs for threat point selection

In order to complete the algorithm for (non)-FD Type I games we need
a function which re-sorts the payoffs based on the frequency matrix gener-
ated. As an example, if the player threatening has a certain mixed strategy,
the player who is being threatened has (in case of our example game) four
best pure stationary replies. In the end, for threat point determination the
player under threat always wants to play the pure stationary strategy which
maximizes his reward. On the other side, the threatening player will always
want to choose the mixed stationary strategies which gives the opponent the
minimal reward possible. We therefore need a function which matches all
pure stationary best replies to a threatening strategy. This is exactly which
Algorithm 3 describes.

Algorithm 3 Function: Reward sort.

Input: Total points generated, rewards matrix, total number of actions
Output: Sorted rewards matrix

Initialize empty sorted reward matrix (number of points, number of ac-
tions)
for x in range total number of points do

for i in range total number of actions do
Sorted reward matrix[x,i] = reward matrix[points � i+ x]

end for
end for
Return sorted reward matrix

3.4. Combined into Type I algorithm

Now we have three basic functions which can be used to create a Type
I algorithm for threat point determination. Algorithm 4 describes the steps
that the algorithm takes, starting from line 5. We flatten the reward matrix
into a reward vector, draw random strategies with help of Algorithm 1. Then
we create a frequency matrix with Algorithm 2. If we have an ESP Type I
game we activate the FD-function and compute the rewards corresponding
to the frequency matrix. If not, we just compute the rewards. These rewards
are then sorted for determination of the threat point, which in the end is done
by first choosing a maximum reward for the player under threat given each
mixed stationary threatening strategy. Then, the minimum of all generated

15



threatening strategies is chosen. If these steps are followed, the algorithm
should result in the threat point of the two-player (non)-FD Type I game.

Algorithm 4 (Non)-FD Type I threat point algorithm.

Input: Type I Game, total number of points, activate FD function
Output: Threat point

1:

2: If v1 is calculated, then A = 1, B = 2,
3: If v2 is calculated, then A = 2, B = 1
4:

5: Turn reward matrix Player A into flattened reward vector
6: Threatening strategy matrix Player B = Draw Random Strategies
7: Best response Player A frequency matrix = Create Frequency Matrix
8: if Activate FD function = True then
9: Activate and Calculate FD reward function result

10: end if
11: Payoffs Player A = Sum over all columns of: (Frequency matrix per row
� flattened reward vector Player A)

12: if FD Function is active then
13: Element wise multiplication of FD reward function result with rewards

Player A
14: end if
15: Sorted reward matrix = Reward sort
16: Pick the maximum value of each row of the sorted reward matrix as best

response of Player X
17: Pick the minimum value over all rows as the result of vA

18:

19: Return threat point v = (v1, v2)

3.5. Results on the example game and testing

In order to validate the algorithm and to test the workings in terms of
accuracy and speed we have run a few tests. We can safely say that we
found a good approximation of, as an example the result of v1, as a part of
the threat point v if and only if:

max
π

min
σ
� min

σ
max
π

16



The minσ maxπ result should be the approximation of v1. If we have
found maxπ minσ to be equal to minσ maxπ, we have an exact result of v1. If
there is a difference but the inequality is adhered, we say that we have found
an approximation.

Tests show that the accuracy of our algorithm corresponds to the number
of mixed strategies that are generated for the threatening player. The higher
the amount of mixed strategies, the more accurate the results seem to get.
With our example game we are able to produce, by generating 100, 000 mixed
threatening strategies an accuracy of 9 decimals for the non-FD version. On
the FD version we find an accuracy of 7 decimals [18].

Visually we receive the following figures in our example game. We use
an adjusted version of the algorithm of Joosten and Samuel (2017) for the
computation of the total set of rewards.

Figure 1: Rewards including threat point of the Type I non-FD example game [18].

As is visible in Figure 1, we see that the threat point is the only Nash
equilibrium possible. Therefore, if players decide to play individually ratio-
nal, they can only end up at the threat point. However, if we add the ESP
to the game, we end up with a FD Type I game.

17



Figure 2: Rewards including threat point of the Type I FD example game [18].

Figure 2 clearly shows that the set of obtainable rewards shifted to the
lower left part of the pure reward points. Also, in this case the threat point
denotes a bigger set of Nash equilibria that are attainable as described by
Folk Theorem. The FD function therefore has a noticeable impact on the set
of obtainable individual-rational rewards and the threat point.

In terms of speed and accuracy, we have compared our algorithm in case
of non-FD Type I games with a linear programming approach [18]. We tested
both our algorithm and the linear programming approach on accuracy. For
larger bi-matrix games, our algorithm was diverging in terms of accuracy
more than the linear programming approach. The linear programming ap-
proach however, was also not able to find an exact threat point for really large
(10 x 10) bi-matrix games. In computational speed, the linear programming
algorithm finds an ε-accurate solution within 1

100
th of the time that our algo-

rithm takes [18]. However, our algorithm is able to cope with FD functions.
Currently, we are also looking into the linear programming approach on FD
games in order to improve the speed and accuracy, but have not been able
to get this working on the broad range of FD-games.

18



4. Extending the algorithm to Type II games

Our algorithm works on Type I games, but Type II games are a different
ball game. Type II games are stochastic games in which players have an
impact on the transition probabilities. A stochastic game could be seen as a
generalization of a Markov Decision Process in which one player has a fixed
strategy while the other player controls the transition probabilities [24].

The hardest part in computing rewards in stochastic games is the fre-
quency of ending up in a certain state. However, in 2.4. we stated specifica-
tions to which the Markov chain guarding the transition probabilities should
adhere. If the transition probabilities are ergodic, then there always exists
a stationary distribution. Based on this stationary distribution, we could
compute the frequency of which play ends up in a certain state.

4.1. Balance equation

This is where the balance equation comes into play. The balance equation
computes the stationary distribution to which the frequency vector x will
converge based on the transition probabilities from vector p. The balance
equation for a two-player two state stochastic game with two actions per
state is:

4∑
i=1

xi(1� pi) =
8∑
i=5

xipi (6)

If and only if:
4∑
i=1

xi(1� pi) 6= 0 (7)

8∑
i=5

xipi 6= 0 (8)

Equations 7 and 8 state that the balance equation can not end up with
absorbing states. We calculate the stationary distribution of the Markov
chain in a similar way done by Samuel (2017) with the introduction of in-
termediate vector y and variable Q. In which Q represents the frequency of
play in State 1, and therefore (1�Q) being the frequency of play in State 2.

yS1
i =

xS1
i∑4

j=1 x
S1
j

(9)

19



yS2
i =

xS2
i∑8

j=5 x
S2
j

(10)

Which provide a basis for calculating Q.

Q =

∑8
i=5 y

S2
i pi∑4

i=1 y
S1
i (1� pi) +

∑8
i=5 y

S2
i pi

(11)

We incorporate the calculations of y and Q into a function described in
Algorithm 5.

Algorithm 5 Balance Equation Function.

Input: Frequency matrix X, transition probabilities p
Output: Frequency matrix X adjusted to stationary distribution

1: Initialize Q and y
2: Calculate y
3: Calculate Q with y and p
4: Calculate new frequency matrix X based on Q and y
5: Return new frequency matrix X adjusted to the stationary distribution

In case of Type II games it is only necessary to compute the balance
equation just once, because after just one iteration of the balance equation
the frequency matrix already converges to a stationary distribution.

4.2. Combined into Type II algorithm

Computing the threat point in Type II games is now possible. To do this,
we need a slight alteration of the Type I algorithm. We add in the balance
equation function after we have sorted the frequency matrix based on the
best response from the player under threat. After this, computation of the
threat point is possible, for both the ESP and CSP version of the Type II
game. We describe this in Algorithm 6.

20



Algorithm 6 (Non)-FD Type II threat point algorithm.

Input: Type II Game, total number of points, activate FD reward function
Output: Threat point

1:

2: If v1 is calculated, then A = 1, B = 2,
3: If v2 is calculated, then A = 2, B = 1
4:

5: Turn reward matrix Player A into flattened reward vector
6: Threatening strategies Player B = Draw Random Strategies
7: Best response Player A frequency matrix = Create Frequency Matrix
8: Calculate adjusted frequency matrix by computing the balance equation
9: if Activate FD reward function = True then

10: Activate and Calculate FD Function result
11: end if
12: Payoffs Player A = Sum over all columns of: (Frequency Matrix per row
� flattened reward vector Player A)

13: if FD Function is active then
14: Element wise multiplication of FD function result with reward Player

A
15: end if
16: Sorted reward matrix = Reward sort
17: Pick the maximum value of each row of the sorted reward matrix as best

response of Player A
18: Pick the minimum value over all rows as the result of vA

19:

20: Return threat point v = (v1, v2)

4.3. Results on the example game

Again, we run our algorithm on the example game described in 2.7. Also,
we check our algorithm with a Relative Value Iteration from algorithm from
[18] and also determine the lower boundary with a maximin version of the
algorithm. First we look at the non-FD Type II example game with our
algorithm.

Figure 3 shows that the set of obtainable rewards is in the middle of
the pure reward points of both states. In this case, the threat point is in
the higher regions of the obtainable rewards. In comparison to Figure 1 we
already see that there are more Nash equilibria obtainable in this case, this

21



Figure 3: Rewards including threat point of the Type II non-FD example game [18].

is largely due to the game now being of a stochastic nature.

Figure 4: Rewards including threat point of the Type II FD example game [18].

22



In Figure 4 we see that the impact of the ESP function is larger. The set
of obtainable rewards shifts to the pure reward points from the second state,
in which the common-pool resource is more depleted than in case of the first
state. The threat point also shifts to the bottom part of the set of obtainable
rewards, increasing the absolute set of Nash equilibria as a whole.

We again tested the algorithm in terms of speed and accuracy. The
Relative Value Algorithm from [18] works on non-FD Type II games but not
on FD Type II games. We test this on the example game, but also on a 10 x 10
bi-matrix stochastic game. The nature of the Relative Value Algorithm lies in
the Bellman equation and dynamic programming. Therefore, the algorithm
is able to find good approximations of the threat point. However, our results
on the example game show that when generating 10, 000 points, the Relative
Value Iteration algorithm is able to generate a 4 decimal accurate result but
taking 110 times longer to generate the result [18]. Our algorithm computes
a 2 decimal accurate result but in a much faster time, but on the other side
uses more memory than the Relative Value Iteration algorithm. On larger
stochastic games we see that for a large amount of points our algorithm can
run into memory errors. The Relative Value Iteration algorithm is able to
generate a threat point result, but was not close to a best approximation of
the maximin result [18].

5. Incorporating the ETP from Type III games

The last, but also the most complex hurdle to take is incorporating En-
dogenous Transition Probabilities into the algorithm. For Type II games
we only had to compute the balance equation once, but for Type III games
“determining a stationary distribution is like shooting at a moving target
[11]”.

5.1. Balance equations for an ETP function

In order to try to ’hit’ the stationary distribution we adjust the balance
equation function created in Section 4 in order to cope with an ETP function.
We do this in two ways, with and without Aitken’s ∆2 accelerator. Both have
their positive and negative aspects, which we will address. Starting with the
function without Aitken’s ∆2.

5.1.1. Without Aitken’s

In this version we compute the stationary distribution of the Type III
game without accelerator. The main purpose is to look at convergence of

23



a row in the frequency matrix towards a stationary distribution. If the row
in the matrix settles to a stationary distribution, it is removed from the
computations. Rows that have not converged will be computed again.

Algorithm 7 Balance Equation ETP function.

Input: Frequency matrix X, transition probabilities p, ETP matrix E
Output: Frequency matrix X adjusted to stationary distribution

1: Initialize Q and y
2: Calculate y
3:

4: while Not all rows in frequency matrix X have converged do
5: Calculate new p(x) with X � E
6: Calculate Q with y and p(x)
7: Calculate new frequency matrix X based on Q and y
8: Check whether Q has converged based on earlier result
9:

10: if Q has converged then Remove row from frequency matrix X from
calculating a new Q

11: end if
12: end while
13: Return new frequency matrix X adjusted to the stationary distribution

However, our calculations show that some of the targets keep moving,
even after shooting for a large amount of times by computing the balance
equation. Figure 5 shows us that after roughly 50 � 60 iterations most Q’s
have entered a stationary state. Which is also what Joosten and Samuel
(2018) have concluded. Unfortunately, still a large proportion of the Q’s
are unable to reach a stationary state. Even for larger amount of iterations
(> 100) convergence of Q is never guaranteed. The underlying reasons are
opaque to us, it could be due to the nature of the ETP function that the
frequency vector is not able to reach a stationary distribution. Another pos-
sibility is that the frequency vector has practically converged to a stationary
distribution, but due to floating-point arithmetic the computer is stating that
convergence is not exact.

24



Figure 5: Convergence of Q [18].

5.1.2. With Aitken’s and the potential risks

The other version of computing the balance equation with an ETP func-
tion uses Aitken’s ∆2. Joosten and Samuel (2018) introduced this accelerator
in order to further speed up computations regarding the balance equation.
As long as the sequence in it self is linearly convergent, the sequence will
converge to a certain value with Aitken’s ∆2 [25]. If the sequence is specified
with fpng1

n=0, then we define Aitken’s ∆2 as:

p̂n = pn �
(pn+1 � pn)2

pn+2 � 2pn+1 + pn
(12)

Equation 12 is not always numerically stable. Numerical stability can
however be improved by using another version of Aitken’s ∆2:

p̂n = pn+2 �
(pn+2 � pn+1)2

(pn+2 � pn+1)� (pn+1 + pn)
(13)

Joosten and Samuel (2018) have successfully implemented this method,
which will decrease the number of iterations necessary for convergences to
25�30. We also adopt this method into our balance equation function, which
is described in Algorithm 8.

25



However, incorporating Aitken’s ∆2 in the computation of the balance
equation is not without risk. When applying the accelerator, we encountered
two issues with the method. First of all, when applying the accelerator after
three iterations, we saw a slight numerical instability. Therefore the threat
point result could be sometimes slightly lower than the maximin result. Trial
and error has resulted in using Aitken’s ∆2 after ten iterations of the balance
equation. We can see in Figure 6 that convergence after ten iterations rapidly
increases.

Figure 6: Convergence of Q with Aitken’s �2 [18].

The second risk surrounding applying Aitken’s ∆2 is due to the rapid
convergence of the frequency vector to a stationary distribution. A computer
represents their numbers with floating-points, but the risk with Aitken’s ∆2

is directly related to these floating-points. When applying the accelerator,
the computer is sometimes unable to compute a more accurate version of the
sequence and therefore returns a Not a Number (NaN).

26



(a) Iterations of Q with NaN (b) Sum of Q with NaN

Figure 7: Occurence of NaN’s during iterations of Q with Aitken’s �2 [18].

Figure 7 shows the number of NaN’s occuring when applying the accel-
erator after 10 iterations. We have run this for 400, 000 Q’s to be generated.
62.5% of the Q’s have been reported to converge to a NaN by the computer.
We expect that the value probably has converged due to the rapid nature of
Aitken’s ∆2. Therefore we have constructed a safeguard which restates the
last known value for the NaN result and assumes that the frequency vector
has converged. These are then combined in to Algorithm 8.

27



Algorithm 8 Balance Equation ETP Aitken’s function.

Input: Frequency matrix X, transition probabilities p, ETP matrix E
Output: Frequency matrix X adjusted to stationary distribution

1: Initialize Q and y
2: Calculate y
3:

4: for ten iterations do
5: Calculate new p(x) with X � E
6: Calculate Q with y and p(x)
7: Calculate new frequency matrix X based on Q and y
8:

9: Return Q
10: end for
11:

12: while Not all rows in frequency matrix X have converged do
13: Calculate new Q with Aitken ∆2

14: Compare new Q with old Q for convergence
15: if Q has converged then Remove frequency matrix X from calculating

a new Q
16: end if
17: end while
18: Return new frequency matrix X adjusted to the stationary distribution

5.2. Combined into Type III algorithm

We opted to use the version of the balance equation which uses Aitken’s
∆2 with the safeguarding mechanism. However, this has not fully solved the
problem. When using the results of Q for computation of the rewards, the
computer still reported some NaN’s after multiplication withQ. Therefore we
remove all NaN results from the row of rewards containing the NaN reward.
In case of our example game containing two states in which each state is a
2x2 bi-matrix game we have to remove 4 rewards from the row containing
the NaN reward.

28



Algorithm 9 (Non)-FD Type III threat point algorithm.

Input: Type III Game, total number of points, activate FD reward function
Output: Threat point

1:

2: If v1 is calculated, then A = 1, B = 2,
3: If v2 is calculated, then A = 2, B = 1
4:

5: Turn reward matrix Player A into flattened reward vector
6: Threatening strategies Player B = Draw Random Strategies
7: Best response Player A frequency matrix = Create Frequency Matrix
8: Calculate Q based on Algorithm 8 with Aitken’s ∆2

9: Calculate adjusted frequency matrix with help of Q
10: if Activate FD reward function = True then
11: Activate and Calculate FD Function result
12: end if
13: Rewards Player A = Sum over all columns of: (Frequency Matrix per

row � flattened vector Player A)
14: if FD reward function is active then
15: Element wise multiplication of FD reward function result with Rewards

Player A
16: end if
17: Sorted reward matrix = Payoff sort
18: Pick the maximum value of each row of the sorted reward matrix as best

response of Player A
19: Pick the minimum value over all rows as the result of vA

20:

21: Return threat point v = (v1, v2)

As can been seen in Algorithm 9 the basis for the Type III game is largely
Algorithm 6 from the Type II game, but now adjusted with the balance
equation for Type III games. All algorithms described in this paper can be
found in an online Github environment1. We encourage readers to check the
workings of our algorithm and to contribute to further research.

1Environment link: https://github.com/Rogierr/GTToolbox. We further develop the
toolbox as a part of more game theory research.

29



5.3. Results on the example game

At last we check the workings of our algorithm on the example game. For
the ETP game we have been unable to create a second algorithm in order to
compare our algorithm with. Therefore the only thing we can check is the
accuracy of the algorithm based on the example game.

Figure 8: Rewards including threat point of the Type III non-FD example game [18].

Figure 8 shows the rewards including threat point on the Type III game
without ESP function. We see that the set of rewards is more shifted towards
the pure rewards of the second state, probably due to the ETP function
having an impact on ending up more regularly in state two.

30



Figure 9: Rewards including threat point of the Type III FD example game [18].

Figure 9 shows the effect of the ESP function on the set of rewards but
also on the threat point. Again, the threat point shifts to the lower end of the
rewards, as also was the case at the other types of games with ESP function.
In terms of speed and accuracy we have cannot compare our algorithm with
another algorithm, but in case of the non-FD Type III game we find a three
decimal accurate solution within 39.03 seconds. For the FD Type III game
we find a two decimal accurate solution in 35.51 seconds2 [18]. Therefore
we find it plausible that we have constructed a brute-force algorithm which
finds a reasonably accurate solution in a reasonable amount of computational
time.

2Computational time is just an indication of the speed of the algorithm. The computer
of choice has a large impact on the real-life speed of the algorithm

31



6. Conclusion and discussion

In this paper we developed an algorithm which can cope with the com-
putation of the threat point in a two-player two-state irreducible ETP-ESP
game. We gradually built the algorithm by starting with a Type I game,
defining the three basic functions which are then used for all types of games.
The balance equation is used when the transition probabilities come into
play. Largely, our algorithm is an adaptation of the work of Joosten and
Samuel (2018). However, our algorithm approximates the threat point while
also having significant gains in reduction of computation time due to vector-
ization.

We compared the algorithm to other algorithms built for Type I and
Type II games without ESP. Our algorithm is in comparison a good trade-
off in terms of speed and accuracy when focusing on a two-player two-state
game in which each state has two actions. We also have shown that the
use of Aitken’s ∆2 accelerator can result in large improvements in terms of
speed but is not completely without risk. However, there are still multiple
enhancements or alternatives to our algorithm which could result in an even
larger improvement in either speed or accuracy3.

A possible route for a future enhancement could be to adapt a global
search local search strategy. First the algorithm should find a global approx-
imation and later look for a more accurate solution on a local level. Another
possibility is to further dive into solving the problem as a linear programming
problem. We have made a small step in completing this approach with the
Sequentially Least Squares Programming algorithm, but have been unable
to get it working on Type II and Type III games. Results on Type I games
are however very promising. The most out-of-the-box option is to look at
computation of the threat point from a reinforcement learning perspective.

Theoretically our biggest pitfall currently is the algorithm not working on
FD-games in which the utility functions are non-monotonic. That does not
only require an algorithmic perspective, but a more rigorous mathematical
approach to solve.

3We invite interested researchers to join us in further developing our algorithms in the
GTToolbox: https://github.com/Rogierr/GTToolbox

32



References

[1] J. Nash, Non-cooperative games, Annals of mathematics 54 (1951)
286–295.

[2] W. Poundstone, Prisoner’s Dilemma/John von Neumann, Game Theory
and the Puzzle of the Bomb, Anchor, 1993.

[3] R. Nozick, Newcombs problem and two principles of choice, in: Essays
in honor of Carl G. Hempel, Springer, Dordrecht, 1969, pp. 114–146.

[4] T. A. Weber, A robust resolution of Newcombs paradox, Theory and
Decision 81 (2016) 339–356.

[5] L. S. Shapley, Stochastic games, Proceedings of the national academy
of sciences 39 (1953) 1095–1100.

[6] T. Brenner, U. Witt, Melioration learning in games with constant and
frequency-dependent pay-offs, Journal of Economic Behavior & Orga-
nization 50 (2003) 429–448.

[7] R. Joosten, T. Brenner, U. Witt, Games with frequency-dependent stage
payoffs, International journal of game theory 31 (2003) 609–620.

[8] R. Joosten, R. Meijboom, Stochastic games with endogenous transitions,
in: S. Neogy, R. B. Bapat, D. Dubey (Eds.), Mathematical Programming
and Game Theory, Springer, 2018, pp. 205–226.

[9] R. Joosten, Small Fish Wars: a new class of dynamic fishery-
management games, The IUP Journal of Managerial Economics (2007)
17–30.

[10] R. Joosten, R. Harmelink, Strong rarity value in view of hysteresis in a
stochastic fishery game, 2019.

[11] R. Joosten, L. Samuel, On finding large sets of rewards in two-player
ETP-ESP-games, 2018.

[12] W. Mahohoma, Stochastic games with frequency dependent stage pay-
offs (MSc thesis), 2014.

33



[13] N. Nisan, A. Ronen, Algorithmic mechanism design, Games and Eco-
nomic behavior 35 (2001) 166–196.

[14] T. E. S. Raghavan, J. A. Filar, Algorithms for stochastic games - A
survey, Zeitschrift für Operations Research 35 (1991) 437–472.

[15] O. J. Vrieze, Linear programming and undiscounted stochastic games in
which one player controls transitions, Operations-Research-Spektrum 3
(1981) 29–35.

[16] J. A. Filar, T. E. S. Raghavan, An algorithm for solving an undiscounted
stochastic game in which one player controls transitions, Research Mem-
orandum, University of Illinois, Chicago (1979).

[17] R. Joosten, L. Samuel, On the computation of large sets of rewards in
ETP-ESP-games with communicating states, 2017.

[18] R. Harmelink, Computing threat points in two-player ETP-ESP games
(MSc Thesis), 2019.

[19] S. Sorin, Classification and basic tools, in: Stochastic Games and
Applications, Springer, 2003, pp. 27–36.

[20] P. Billingsley, Probability and measure, John Wiley & Sons, 2008.

[21] O. Häggström, Finite Markov chains and algorithmic applications, vol-
ume 52, Cambridge University Press, Cambridge, 2002.

[22] L. Samuel, Computations in Stochastic Game Theory (MSc Thesis),
2017.

[23] A. Hordijk, O. J. Vrieze, G. L. Wanrooij, Semi-Markov strategies in
stochastic games, International Journal of Game Theory 12 (1983) 81–
89.

[24] J. Filar, K. Vrieze, Competitive Markov decision processes, Springer
Science & Business Media, 2012.

[25] R. L. Burden, J. D. Faires, Numerical Analysis, Brooks/Cole, ninth
edition, 2011.

34


