
A SYSTEMATIC APPROACH FOR COMPONENT-BASED
SOFTWARE DEVELOPMENT

Cléver Ricardo Guareis de Farias, Marten van Sinderen and Luís Ferreira Pires
Centre for Telematics and Information Technology (CTIT)

PO Box 217, 7500 AE, Enschede, the Netherlands
{farias, sinderen, pires}@cs.utwente.nl

KEYWORDS
Component-based development, component software, UML,
reusability.

ABSTRACT

Component-based software development enables the con-
struction of software artefacts by assembling prefabricated,
configurable and independently evolving building blocks,
called software components. This paper presents an approach
for the development of component-based software artefacts.
This approach consists of splitting the software development
process according to four abstraction levels, viz., enterprise,
system, component and object, and three different views,
viz., structural, behavioural and interactional. The use of
different abstraction levels and views allows a better control
of the development process.

INTRODUCTION

Reusability, whose benefits include both the reduction of
costs and time-to-market of software products, is a key issue
in software engineering. Component-based software devel-
opment has emerged to increase the reusability and
interoperability of pieces of software. Component-based
development aims at constructing software artefacts by as-
sembling prefabricated, configurable and independently
evolving building blocks, the so-called components. Compo-
nents are binary, self-contained and reusable building blocks
providing a unique service that can be used either individu-
ally or in composition with the service provided by other
components (Szyperski, 1998).
Traditional object-oriented software development aims at
providing reusability of object type definitions (classes), at
design and implementation levels. In contrast, component-
based development aims at providing reusability of compo-
nents at deployment level. In this way, components represent
pieces of functionality that are ready to be installed and exe-
cuted in multiple environments.
This paper presents an approach to the development of com-
ponent-based software based on the Unified Modelling Lan-
guage (UML) (Booch et al., 1998; OMG, 1999a). Our soft-
ware development process identifies four abstraction levels
for the development of a software artefact, viz., enterprise,
system, component and object.
This paper is further structured as follows. The next section
presents an overview of our development process. The fol-
lowing sections discuss the enterprise level, the system level
and the internal system levels of the development process,
i.e., the component and object levels, respectively. Finally,
we draw some conclusions and outlines some future work.

ABSTRACTION LEVELS AND VIEWS

Our software development process identifies four abstraction
levels for the development of a software artefact, viz., enter-
prise, system, component and object.
The enterprise (or business) level aims at capturing the vo-
cabulary and other domain information of the system being
developed. This level has similar goals as the enterprise
viewpoint of the RM-ODP (ISO/IEC, 1995) and provides the
most abstract description of the system being produced.
The system level aims at identifying the boundary of the
system being developed. This level aims at obtaining a clear
separation between the system and its environment by cap-
turing and defining the system requirements.
The component level aims at representing the system in
terms of a set of composable software components and inter-
faces. Components used in this level come from three alter-
native sources: off-the-shelf components, adaptation of
available components and construction of the new compo-
nents from scratch.
The object level aims at representing a component in terms
of a set of related objects. This level corresponds to tradi-
tional object-oriented software development.
Figure 1 depicts the layering structure of the software devel-
opment process.

Domain Knowledge

Environment

System

Enterprise
Level

System
Level

Object Level

Component
Level

Instantiation

Refinement Abstraction

Refinement Abstraction

Figure 1. Abstraction levels in the development process.



The four abstraction levels are related to each other in differ-
ent ways. For example, the system level corresponds to a
possible instantiation of the domain concepts present at the
enterprise level. Different systems can be generated based on
the same set of concepts. The component level corresponds
to a refinement of the system level, in which the system is
refined into a set of software components. The object level
corresponds to a refinement of the component level, in which
each component can also be refined into a set of objects.
We can also abstract from a set of objects to form a compo-
nent and abstract from a set of components to form the sys-
tem. However, it is not always possible to abstract from the
system and to obtain the complete description of the enter-
prise level because the concepts present at the system level
may correspond only to a subset of the enterprise concepts.
Besides structuring into abstraction levels, we also consider
different views at each one of these levels. Each view offers
a different perspective of the system being developed. These
perspectives are interrelated so that the information con-
tained in one view can partially overlap the information
contained in the others.
In this work, we identify three different views, viz., struc-
tural, behavioural and interactional. The structural view pro-
vides information about the structure of active or conceptual
entities. The behavioural view provides information about
the behaviour of each active entity in isolation, while the
interactional view provides information about the behaviour
of the different active entities as they interact with each
other. Both the behavioural and the interactional views can
be seen as dual views on the same aspect, viz., behaviour.
Figure 2 illustrates how the different views spans across the
abstraction levels. Because the enterprise level is primarily a
conceptual level, there is no clear division between the
views, which is reflected by considering a unique represen-
tation among the different views at this level.

Enterprise Level

System Level

Component Level

Object Level

Structural
View

Behavioural
View

Interactional
View . . .

Figure 2. The use of views in the development process.

In the sequel we discuss in further detail each one of the ab-
straction levels and illustrate some of steps of the develop-
ment process using some excerpts from a voting application
example.

ENTERPRISE LEVEL

The enterprise level captures the vocabulary and other do-
main knowledge information of the system being developed.
This level is similar to the enterprise viewpoint of RM-ODP
(ISO/IEC, 1995) in the sense that it defines the purpose,
scope, actors, activities, rules, policies, support services and
so forth, of the system being developed.
The information captured at the enterprise level is used both
to communicate with the users of the system being devel-

oped and to serve as the basis for delimiting the system with
respect to its environment.
An interesting characteristic of the enterprise level is its
relative independence from the target application. In other
words, because the information present at this level is mainly
domain specific, it is common to several applications in this
domain. For example, suppose we are developing a shared
whiteboard. Once we have identified the concepts that are
likely to be found in most shared whiteboards, we can create
different systems based on these concepts, each one possibly
considering a instantiation of different subsets of these con-
cepts.
Different techniques can be used to capture the information
present at the enterprise level, such as a glossary of terms
and concept diagrams.
The use of a glossary (Larman, 1997) aims at mantaining a
standard documentation of the terms encountered in the do-
main of the system. The use of such kind of documentation
is common in software engineering and often appears with
different names, such as data dictionary or model dictionary.
An entry in the glossary should contain the name of the term,
its type, such as actor, activity, rule or policy, and some brief
description. The glossary should be mantained and updated
as the development of the system continues. Consequently,
the abstraction level at which the term was defined should be
mentioned as well in the glossary since this term may be
assigned different types as the system evolves.
In order to precisely describe some of the activities, precon-
ditions and postconditions should be used whenever possi-
ble. A precondition is a constraint that must be true before
the execution of the activity, while a postcondition is a con-
straint that must be true after the completion of the activity.
Figure 3 shows entries of the voting application glossary.

Name Level Type Description
Controller Enterprise Actor Person who creates new sessions and

authorises new participants.
Vote Enterprise Activity Activity performed by all participants of

a voting session in which they choose a
winning proposal by voting for it.

Figure 3. Glossary of terms.

Concept diagrams can also be used at the enterprise level to
capture domain-related concepts. Often there is no direct
mapping between the identified concepts and their possible
implementations. A concept diagram consists of a UML
class diagram in which classes represent concepts and asso-
ciations between these classes represent relationships be-
tween the concepts (see (Guareis de Farias et al., 2000) for
usage examples of concept diagrams). UML object diagrams
can complement the use of class diagrams by representing a
possible instantiation of the concepts captured.

SYSTEM LEVEL

The system level clearly defines the boundary between the
system and its environment by capturing the system re-
quirements. External services that support the system are
identified at this level as well. At the system level the differ-
ences between the three views become apparent so that at
this level these views get a more prominent role in the devel-
opment process.
The structural view of a cooperative application at the sys-
tem level is captured mainly through UML use case and
package diagrams. Use case diagrams aim at capturing the



system requirements, while package diagrams aim at cap-
turing the static relationship between the system and external
support services or systems.
The enterprise concepts of actor and activities are directly
mapped to the use case diagram concepts of actor and use
case, respectively. The static relationship between an exter-
nal service that support the activities and the system itself
may be represented by the presence of an actor representing
an external entity associated with a use case in a use case
diagram. Alternatively, we can use a package diagram to
represent dependencies between these external services and
the system itself.
Figure 4 depicts the use case diagram of the voting applica-
tion. In this figure, an ellipse represents a use case, a “stick
man” represents an actor and ©includesª� represents a rela-
tionship between use cases.

Participant

Controller Create Session

Manage invitation

Join Session

Vote

Control Presence

<<includes>>

<<includes>>

<<includes>>

<<includes>>

Figure 4. Use case diagram.

Although a use case diagram is useful to identify the possible
use cases of the system being developed, a use case diagram
usually says little about the order in which the use cases
should be executed. In this way, we suggest the use of (non-
standard) use case sequence and collaboration diagrams to
capture the behavioural view of an application at the system
level (Hruby, 1998). Standard sequence and collaboration
diagrams represent sequences of messages exchanged be-
tween a set of objects. Use case sequence and collaboration
diagrams are not explicitly present in the UML notation
guide, but they are allowed according to the UML meta-
model (OMG, 1999a).
According to UML, use cases are not allowed to communi-
cate with each other. Furthermore, use cases are always initi-
ated by a signal from its associated actor. This makes it im-
possible to model situations in which a use case is initiated
during the execution of another use case.
To overcome these restrictions we use invoke messages that
represent the invocation of use case constructors. These con-
structors map to the signals from the actors to the use cases,
either directly or indirectly. Invoke messages are the only
messages that can be exchanged between use cases.
Figure 5 shows a use case sequence diagram. According to
this diagram a participant executes the use cases Join Session
and Vote. The execution of the former use case triggers the
execution of the use case Control Presence, which is not
directly executed by the actor.
The interactional view of an application at the system level
explicitly captures the possible interactions between the sys-
tem and its environment, either actors or support systems and

services, by using (non-standard) package sequence and
collaboration diagrams (Hruby, 1998). These diagrams are
also not explicitly present in the UML notation guide, but
similarly to use case sequence and collaboration diagrams
package sequence and collaboration diagrams are also al-
lowed according to the UML metamodel (OMG, 1999a).

: Participant

invoke

invoke

invoke

: Join
Session

: Vote : Control
Presence

Figure 5. Use case sequence diagram.

SYSTEM INTERNAL STRUCTURE

This section presents the inner levels of our development
process, i.e., the component level and the object level, and
discusses some issues pertaining to component composition.

Component level

The component level represents the system being developed
in terms of a set of composable components and their inter-
faces. A component is a binary, self-contained and reusable
building block that provide a unique service that can be used
either individually or in composition with the service pro-
vided by other components (Szyperski, 1998). A component
provides access to its services via one or more interfaces.
These services usually can be customised by adjusting some
properties of the component.
In principle when building an application from components
we do not need to know how these components are internally
represented as objects. Actually, a component does not have
to be necessarily implemented using an object-oriented tech-
nology, although this technology is generally recognised as
the most convenient way to implement a component.
Components can be off-the-shelf, adapted from similar com-
ponents and constructed from scratch. So far, most of the
effort spent on building component-based applications con-
centrate on building new components. Nevertheless, the
more mature and widespread this technology becomes the
more likely it is that this effort will move towards adapting
components and reusing existing ones.
Components can be developed at different levels or with
different granularities, such as small, medium and large. On
one hand, small components are usually easier to develop,
being much alike object classes, and they are normally gen-
eral purpose. However, when small components are used the
amount of work required to compose them can be considera-
bly large. On the other hand, medium to large components
are more difficult to develop and they are usually specific
purpose. Nevertheless, the composition of medium and large
components is normally less time-consuming than the case
of small components. Frequently, larger components are
built using smaller ones.



The composition of components to form a larger component
or application presents many problems, such as how to cope
with incompatible interfaces and how to provide a unified
interface for a composed component. Much research has
been done on how to compose software in general and com-
ponents in particular (Keller and Schauer, 1998; Lewandow-
ski, 1998; Bergmans, 2000). Because component composi-
tion is a research topic in its own, we exempt ourselves from
discussion it further.
The structural view of an application at the component level
can be represented using package diagrams. The use of
package diagrams aims at capturing the static relationship
and dependencies between the internal components of the
application and between these components and external sys-
tems. A deployment diagram can also be used to capture the
physical distribution of the components in processing nodes.
The structural view also comprises the representation of the
interfaces of the components. A component interface is a
collection of operations that specify the service provided by
the component. This interface can be represented as an inter-
face class to show its operations. An interface class is an
object class without attributes and exhibiting the ©interfaceª
stereotype.
We can formalise the operations on an interface using the
Object Constraint Language (OCL) (OMG, 1999a; Warmer
and Kleppe, 1999). OCL is an expression language that al-
lows one to describe constraints on object-oriented models.
In our component-based software development process, we
prescribe that one should try to assign the use cases identi-
fied at the system level to components, such that these com-
ponents correctly support the use cases. However, there is no
rule of thumb on how to assign use cases to components. A
good practice is to keep similar functionalities in a same
component and distinct functionalities in separate compo-
nents. Although similarity and distinction are subjective
terms, sometimes it suffices to rely on the individual judge-
ment and experience of the application designer. In case a
use case is likely to be supported by two or more compo-
nents, it is possible that this use case is too complex and that
it should be refined in multiple simpler use cases. Actually, it
is may be necessary to introduce new use cases as the devel-
opment process continues.
Normally different alternative sets of components may all
correctly support the same application, i.e., the different sets
of components produce all equivalent results. For example,
we could decide to use many small components instead of
fewer larger ones or vice-versa, both resulting in equivalent
compositions.
Figure 6 depicts a package diagram resulting from the as-
signment of use cases to components. The use cases Create
Session, Join Session and Control Presence were assigned to
the Session Manager component. The use case Manage In-
vitation was assigned to the Invitation Manager component,
while the use case Vote was assigned to the Vote Controller
component. Because we are roughly illustrating parts of the
development process, it is hard to notice that some pieces of
functionality found in these use cases aim at maintaining the
consistency among the replicated instances of the application
(we are implicitly assuming a replicated architecture for this
application). In order to handle replication, we assigned
these functionalities to a single component named Replica-
tion Manager. We also designated a single component
named User Interface to implement the user interface for all

components. Optionally, each component could implement
its own user interface.

User Interface
<<Component>>

Replication
Manager

<<Component>>

Session Manager
<<Component>>

Invitation Manager
<<Component>>

Vote Controller
<<Component>>

Create Session

Manage Invitation

Join Session

Vote

Control Presence

<<includes>>

<<includes>>

<<includes>>

<<includes>>

Figure 6. Assignment of use case to components.

The behavioural view of an application at the component
level can be represented using activity diagrams for each
component, while the interactional view of an application at
the component level is captured mainly through package
sequence and collaboration diagrams. The use of package
diagrams aims at capturing the possible interactions between
the internal components of the system and between these
components and external systems.
We derive the interface(s) of a component from its interac-
tion with other components and external systems.
Figure 7 shows a package collaboration diagram at the com-
ponent level.

Participant :
User Interface

 : Session
Manager

 : Vote
Controller

Local : Replication
Manager

1: join (sessionId, username)

2: return acceptance

7: vote (username,
proposal)

8: return acknowledgement

4: joinNotification
(sessionId, username)

9: voteNotification
(username, proposal)

5: joinNotification (sessionId, username)

10: voteNotification (username, proposal)

3: joinNotification
(sessionId, username)

6: proposalNotification (list_proposals)

Remote : Replication
Manager

Figure 7. Package collaboration diagram.



Object level

The object level corresponds to the internal structure of the
components. A component is structured using a set of related
objects, which are implemented in a programming language.
The structural view of an application at the object level can
be represented using class and object diagrams. The behav-
ioural view can be represented using statechart and activity
diagrams, while the interactional view can be represented
using sequence and collaboration diagrams.
The development process of a component at the object level
corresponds to traditional object-oriented software develop-
ment processes and therefore it does not require further dis-
cussion.

CONCLUSION AND FUTURE WORK

This paper presented a component-based software develop-
ment process for the construction of software artefacts. Ac-
cording to this process, the development of an application is
organised using four different abstraction levels. At each
level different system views are used to capture structural,
behavioural and interactional aspects of the system under
development.
The three different views presented in this paper seem to be
the most relevant ones for system design. Still we could have
introduced other views, such as a test view. In this case, at
each abstraction level the test view would capture the infor-
mation required to test the system as a whole, and compo-
nents and objects individually.
Unlike most software development processes, such as the
Unified process (Jacobson et al., 1999) and the four deliver-
able process (Hruby, 1998), which normally prescribe the
development of a set of objects followed by their grouping
into components, our approach aims at identifying a set of
components, possibly reusing existing ones, and refining
them into objects afterwards.
UML is suitable to model most of the development process
of a software component, but UML still does not support the
explicit specification of quality of service (QoS) require-
ments. To describe simple and isolated requirements, we can
attach some constraints or textual descriptions to use cases or
interfaces, but if QoS requirements are pervasive throughout
the whole system these ad hoc constraints and descriptions
are not enough. Recognising the importance of QoS specifi-
cation, OMG recently launched a request for proposals for a
UML profile that defines standard paradigms of use for
modelling QoS and other aspects of real-time systems
(OMG, 1999b).
Some UML commercially available supporting tools, such as
Rational Rose, Together J and Select Software, do not sup-
port use case and package sequence and collaboration dia-
grams because these diagrams are not described in the UML
notation guide, although they are allowed by the UML
metamodel. This shortcoming exposes the limitations of
UML for supporting component-based software develop-
ment. However, a major change in UML is expected to occur
in 2001 with the release of the UML 2.0 specification (Ko-
bryn, C. 1999). This release aims at, amongst others, pro-
viding better support to component-based development, in-
cluding CORBA, Enterprise Java Beans and DCOM.
Currently, we are applying our approach in the development
of several cooperative applications, such as a chat system, a

shared whiteboard and a conferencing tool. These systems
will be further composed into a tele-learning environment.
We will also investigate the use of other techniques to be
applied in combination with UML. In particular, we are in-
terested in the use of the architecture modelling language
proposed in (Quartel, 1998).

ACKNOWLEDGEMENTS

This work has been carried out in the scope of the Amidst
(Application of Middleware in Services for Telematics) proj-
ect, which is a project of the ‘Telematica Instituut’ (the
Netherlands). Cléver Ricardo Guareis de Farias is supported
by CNPq (Brazil).

REFERENCES

Bergmans, L. 2000: Constructing reusable components with
multiple concerns. International Symposium on Soft-
ware Architectures and Component Technology
(SACT). University of Twente, Enschede, The Nether-
lands. To be published in M. Aksit (ed.), Kluwer.

Booch, G., Rumbaugh, J. and Jacobson, I. 1998: The Unified
Modelling Language user guide. Addison Wesley,
USA, 1998.

Guareis de Farias, C.R., Ferreira Pires, L. and van Sinderen,
M. 2000: A conceptual model for the development of
CSCW systems. Fourth International Conference on
the Design of Cooperative Systems. To appear.

Hruby, P. 1998: Structuring Design Deliverables with UML.
In Proceedings of UML’98 International Workshop,
251-260.

ISO/IEC 1995: Open Distributed Processing – Reference
Model: Part 3: Architecture, International Standard.

Jacobson, I., Booch, G. and Rumbaugh, J. 1999: The unified
software development process. Addison Wesley, USA.

Keller, R.K. and Schauer, R. 1998: Design components: to-
ward software composition at the design level. In Pro-
ceedings of the 1998 International Conference on Soft-
ware Engineering, 302-311.

Kobryn, C. 1999: UML 2001: a standardization odyssey.
Communications of the ACM, 42(10), 29-37.

Larman, C. 1997: Applying Uml and Patterns: An Introduc-
tion to Object-Oriented Analysis and Design. Prentice
Hall, USA.

Lewandowski, S. M. 1998: Frameworks for component-
based client/server computing. ACM Computing Sur-
veys, 30(1), 3-27.

Object Management Group 1999a: Unified Modeling Lan-
guage 1.3 specification.

Object Management Group 1999b: UML profile for model-
ing quality of service and fault tolerance characteris-
tics and mechanisms. Draft RFC, version 2.

Quartel, D. Action relations: basic design concepts for be-
haviour modelling and refinement. PhD thesis, Univer-
sity of Twente, Enschede, the Netherlands, 1998.

Szyperski, C. 1998: Component software: beyond object-
oriented programming. Addison-Wesley, USA.

Warmer, J. and Kleppe, A. 1999: The object constraint lan-
guage: precise modeling with UML. Addison-Wesley,
USA.




