EUV Optical Elements with Enhanced Spectral Selectivity for IR Radiation

V. V. Medvedev¹, A. E. Yakshin¹, R. W. E. van de Kruijs¹, V. M. Krivtsun², E. Louis¹,³ and F. Bijkerk¹,³

¹FOM Institute DIFFER, P.O. Box 1207, 3430 BE Nieuwegein, The Netherlands
²Institute for Spectroscopy RAS, Fizicheskaya Str., 5, Troitsk, Moscow Region, 142190 Russia
³MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands

We report on the development of multilayer based solutions to enhance the spectral purity of EUV light generated by plasma-based sources. These multilayer systems reflect EUV radiation and simultaneously suppress infrared (IR) light, e.g. scattered CO₂ laser radiation of the laser-produced plasma. Two possible solutions are discussed: 1) the planar mirrors combining EUV-reflective properties of multilayer Bragg reflectors together with IR antireflection based on the effect of destructive interference; 2) hybrid multilayer gratings combining EUV reflection with spectral-selective suppression of the specular IR reflectance due to the grating phase-shift resonance. Review of experimental results is given for 13.5 nm optics and 6.x nm optics relevant for EUV lithography and beyond.

Presenting Author