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Abstract 
This chapter aims at a contribution to critically investigate whether human-made scientific 
knowledge and the scientist’s role in developing it, will remain crucial – or can data-models 
automatically generated by machine-learning technologies replace scientific knowledge produced by 
humans?  

Influential opinion-makers claim that the human role in science will be taken over by machines. Chris 
Anderson’s (2008) provocative essay, The End of Theory: The Data Deluge Makes the Scientific 
Method Obsolete, will be taken as an exemplary expression of this opinion.  

The claim that machines will replace human scientists can be investigated within several perspectives 
(e.g., ethical, ethical-epistemological, practical and technical). This chapter focuses on 
epistemological aspects concerning ideas and beliefs about scientific knowledge. The approach is to 
point out epistemological views supporting the idea that machines can replace scientists, and to 
propose a plausible alternative that explains the role of scientists and human-made science, 
especially in view of the multitude of epistemic tasks in practical uses of knowledge. Whereas 
philosophical studies into machine learning often focus on reliability and trustworthiness, the focus 
of this chapter is on the usefulness of knowledge for epistemic tasks. This requires to distinguish 
between epistemic tasks for which machine learning is useful, versus those that require human 
scientists.  

In analyzing Anderson’s claim, a kind of double stroke is made. First, it will be made plausible that the 
fundamental presuppositions of empiricist epistemologies give reason to believe that machines will 
ultimately make scientists superfluous. Next, it is argued that empiricist epistemologies are deficient, 
because it neglects the multitude of epistemic tasks of and by humans, for which humans need 
knowledge that is comprehensible for them. The character of machine learning technology is such 
that it does not provide such knowledge.  

It will be concluded that machine learning is useful for specific types of epistemic tasks such as 
prediction, classification, and pattern-recognition, but for many other types of epistemic tasks —such 
as asking relevant questions, problem-analysis, interpreting problems as of a specific kind, designing 
interventions, and ‘seeing’ analogies that help to interpret a problem differently— the production 
and use of comprehensible scientific knowledge remains crucial. 
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1. Introduction 
 

With the rise of A.I., expert-systems, machine-learning technology and big data analytics, we may 
start to wonder whether humans as creative, critical, cognitive and intellectual beings will become 
redundant for the generation and application of knowledge. And additionally, will the increasing 
success of machine-learning technology in finding patterns in data make scientific knowledge in the 
form of theories, models, laws, concepts, (descriptions of) mechanism and (descriptions of) 
phenomena superfluous?1 Or can it be argued that human scientists and human-made scientific 
theories etc. remain relevant, even if machines were able to find data-models that adequately but 
incomprehensibly relate or structure data – for example, data-models that provide empirically 
adequate mapping relationships between data-input and data-output or determine statistically 
sound structures in data-sets.2 

Anderson (2008) indeed claims that the traditional scientific method as well as human-made 
scientific theories will become obsolete: 

“This is a world where massive amounts of data and applied mathematics replace every other 
tool that might be brought to bear. Out with every theory of human behavior, from linguistics 
to sociology. Forget taxonomy, ontology, and psychology. Who knows why people do what 

 
1 In this chapter, ‘theory’ is taken in a broad sense, encompassing different kinds of scientific knowledge such 
as concepts, laws, models, etc. The more general term ‘scientific knowledge’ encompasses different kinds of 
specific epistemic entities such as theories, models, laws, concepts, (descriptions of) phenomena and 
mechanisms, etc., each of which can be used in performing different kinds of epistemic tasks (e.g., prediction, 
explanation, calculation, hypothesizing, …). 
 
2 On the terminology used in this chapter. In the semantic view of theories, patterns in data are also called 
data-models (see Section 3), which are mathematical representations of empirical data sets (e.g., Suppe 1974; 
McAllister 2007). This chapter will adopt the term data-model in this very sense.  
In machine learning textbooks, data-models are also referred to as mathematical functions. Abu-Mostafa 
(2012), for instance, speaks of the unknown target function f: X -> Y, where X is the input space (set of all 
possible inputs x), and Y is the output space (e.g., y1 is ‘yes’ for x1;  y2 is ‘no’ for x2; etc.). The machine learning 
algorithm aims to find a mathematical function g that ‘best’ fits the data, and that supposedly approximates 
the unknown target function f. Abu-Mostafa calls the function g generated by machine learning ‘the final 
hypothesis.’ 
Alpaydin’s (2010), on the other hand, uses the notion of model and function interchangeably. An example 
(Alpaydin, 2010, 9) is predicting the price of a car based on historical data (e.g., past transaction). Let X denote 
the car attributes (i.e., properties considered relevant to the price of a car) and Y be the price of the car (i.e., 
the outcome of a transaction). Surveying the past transactions, we can collect a training data set and the 
machine learning program fits a function to this data to learn Y as a function of X. An example is when the 
fitted function is of the form y = w1.x + w0. In this example, the data-model is a linear equation and w1 and w0 
are the parameters (weight factors) of which the values are determined by the machine learning algorithm to 
best fit the training data. Alpaydin (2010, 35) calls this equation ‘a single input linear model.’ Hence, in this 
example, the machine learning algorithm to fit the training data includes only one property to predict the price 
of a car. Notably, the machine learning program involves a learning algorithm, chosen by human programmers, 
that confines the space in which a data-model can be found – in this example, the learning algorithm assumes 
the linear equation, while the data-model consists of the linear equation together with the fitted values of the 
parameters (w0 and w1).  
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they do? The point is they do it, and we can track and measure it with unprecedented 
fidelity. With enough data, the numbers speak for themselves. … The big target here isn't 
advertising, though. It's science. The scientific method is built around testable hypotheses. 
These models, for the most part, are systems visualized in the minds of scientists. The models 
are then tested, and experiments confirm or falsify theoretical models of how the world 
works. This is the way science has worked for hundreds of years. … Scientists are trained to 
recognize that correlation is not causation, that no conclusions should be drawn simply on 
the basis of correlation between X and Y (it could just be a coincidence). Instead, you must 
understand the underlying mechanisms that connect the two. Once you have a model, you 
can connect the data sets with confidence. Data without a model is just noise. … But faced 
with massive data, this approach to science — hypothesize, model, test — is becoming 
obsolete” (Anderson 2008, my emphasizes). 

Essentially, Anderson suggests that the meticulous work done by scientific researchers aiming at 
scientific concepts, laws, models, and theories on the basis of empirical data, will become 
superfluous because learning machines are able to generate data-models that represent 
relationships and structures in the data. Each set of data will be fitted by a unique data-model, which 
implies that we can give up on generalization and unification endeavors. Intermediate scientific 
concepts, laws, models, and theories, which are desired by humans for obvious metaphysical beliefs, 
and which are also practically needed to deal with the limitations of their intellect, can be bypassed if 
relating, structuring and simplifying data —which basically is what science does according to 
Anderson’s quote— can be done by machines.  

If let’s say, scientists such as Boyle, Gay-Lussac, and Hooke, had fed their experimental data to a 
machine (e.g., data consisting of the measured pressure, volume and temperature in a closed vessel, 
or the weights and extensions of different springs, respectively), the machine would have generated 
a data-model to connect these data, which could then be used to make predictions at new physical 
conditions. The Boyle/Charles/Gay-Lussac laws for gasses and Hooke’s law for elasticity would not 
have existed. Taking this a step further, Anderson’s claim implies that scientific concepts such as ‘the 
ideal gas law’, ‘the gas-constant’ (R), and ‘the elasticity coefficient’ (k) would be unnecessary. We 
would not even need related scientific concepts, such as ‘gas-molecules,’ ‘the number of Avogadro,’ 
‘collisions of molecules,’ and ‘reversible processes.’ 3  

This short expose aims to raise the question whether a future is conceivable in which nobody needs 
to understand science any longer – a future in which the production and uses of scientific concepts, 
laws, models, mechanisms, theories etc. can be replaced by machine learning algorithms that 
produce epistemically opaque data-models4 and networks stored in machines that will do all kinds of 
epistemic tasks for us – which would imply indeed that humans no longer need to learn theories etc. 

 
3 Current machine learning practices show that machine learning algorithms are dependent in varying degrees 
on our theoretical and practical background knowledge. Therefore, another option regarding Anderson’s 
assumptions is that the current state of knowledge suffices for this purpose. Yet, in the context of this article, it 
will be assumed that he means to say that machine learning technology will eventually develop to the extent 
that such knowledge will become superfluous in the construction of machine learning algorithms. 
 
4 The notion of epistemic opaqueness of a processes has been introduced by Humphreys (2009, 618): “a 
process is epistemically opaque relative to a cognitive agent X at time t just in case X does not know at t all of 
the epistemically relevant elements of the process. A process is essentially epistemically opaque to X if and only 
if it is impossible, given the nature of X, for X to know all of the epistemically relevant elements of the process.” 
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nor how to apply scientific knowledge in solving problems. Conversely, are there reasons to believe 
that scientific researchers still have a role to play? 

The structure of this article is as follows. Section 2 presents a brief overview of machine-learning 
technologies and applications. The different kinds of ways in which computers and machine-learning 
technologies may replace human experts and scientists are discussed. A list of epistemic tasks is 
drawn up, about which it can be reasonably assumed that machine learning will outperform humans. 

In Section Three, I aim to make plausible that the abilities of computers and machine-learning 
technologies largely correspond with ideas in the empiricist tradition about the character of 
knowledge and ways of (deductive or inductive) reasoning on the basis of knowledge – and vice 
versa, about how general knowledge can be derived (inductively and statistically) from observations 
and data.  

I will revisit accounts of empiricism at the beginnings of the philosophy of science, including 
(neo)positivism, because authors such as Mach and Duhem have articulated the basic assumptions of 
empiricism in a clear and straightforward manner. My aim is to first explain why epistemological and 
normative accounts of science developed in the (neo-)positivist and empiricist tradition, make it very 
hard to articulate our intuitive discomfort about the suggestion that machines could take over and 
make human scientists virtually superfluous. I aim to make plausible that on an empiricist 
epistemology the elimination of any human contribution to scientific knowledge is in fact already 
built in as a normative ideal. Attempts to ensure the superiority of science seem to assume that the 
objectivity of epistemic results and of methods testing these results consists of some kind of 
algorithmic reasoning, be it deductive or (statistical) inductive. If this is so, it should not come as a 
surprise that we are forced to believe that data-models produced by machine learning algorithms are 
just better. 

Three well-known ideas developed in the empiricist tradition will be discussed to show that a strict 
empiricist epistemologies indeed support the claim that objective, although opaque, data-models 
produced in machine learning processes can replace and may even be preferable to human-made 
scientific knowledge: (1) Hempel's model of scientific explanation, which supports the idea that the 
supposed laws and correlations operating in D-N and I-S explanation schema’s can be interpreted as 
data-models constructed to represent input-output relationships in larger sets of observed or 
measured data; (2) The rejection of a distinction between data and phenomena, which supports the 
idea that (descriptions of) phenomena can be reduced to statistically sound data-models generated 
in machine learning processes; and (3) The semantic view of theories, which supports the idea that 
scientific knowledge in the form of theories or models does not add much to empirically adequate 
and/or statistically sound data-models to represent data.  

Hence, several ideas central to empiricist epistemologies supports the belief that ultimately scientific 
knowledge is no longer needed, and show that the empiricist tradition offers hardly any possibilities 
for a more positive appreciation of the epistemic and cognitive roles of human scientists. 

In the last section (Section 4), it will be argued that empiricist epistemologies are flawed, or at least 
too limited to understand the crucial role of scientific knowledge (theories, models, etc.) and human 
scientist in epistemic practices such as the engineering and biomedical sciences. It will be argued that 
a better understanding of knowledge in the age of machine-learning technologies requires to widen 
our philosophical scope in order to include epistemological issues of using knowledge for all kinds of 
practical purposes. To that aim, philosophical accounts of science must start from the side of 
epistemic tasks and uses (e.g., Boon 2017c) and address questions such as, how science produces 
knowledge that can be used, and how is it possible that knowledge can be used anyway – for 
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instance, in discoveries, technological innovations, ‘real-world’ problem-solving, and in creating and 
controlling functionally relevant phenomena by means of technology (e.g., Boon 2017a). Finally, on 
the basis of this analysis, many roles of scientists and of comprehensive scientific knowledge can be 
pointed out, which is how the human is brought back in science. 

 

2. Machine-learning  
 

Machine-learning technologies 

Machine-learning algorithms are increasingly used in dealing with complex phenomena or systems, 
aiming to detect, predict or intervene with the complex physical phenomena or systems in 
developing technological application such as in biomedical and healthcare contexts. Examples are 
machine-learning applications in the prediction and prognosis of chronic diseases (Kourou et al. 
2015; Dai et al. 2015); drug discovery (Lima et al. 2016); brain imaging (Lemm et al. 2011); and 
genetics and genomics (Libbrecht et al. 2015).  

Other well-known machine-learning applications aim at automated pattern recognition in ways that 
replace human experts. For instance, recognizing visual images, which require the eye of an expert 
but not in-depth theoretical knowledge. Examples are automatic face recognition (Odone et al. 2009; 
Olszewska et al. 2016); automated visual classification of cancer (Esteva et al. 2017); vision 
technologies for biological classification (Tcheng et al. 2016); and, forensics (Mena 2011). Another 
application of machine-learning concerns pattern-recognition in the sense of discovering patterns, 
correlations and causal relationships in (big) data sets, especially in the social sciences. Originally, 
these kinds of data-sets were analyzed by means statistical programs such as SPSS. Examples of 
machine-learning technologies drawing on finding patterns and structures in order to make proper 
predictions about specific cases situations, are: financial risk management (van Liebergen 2017); 
fraud detection (Phua et al. 2010); and manufacturing (Wuest et al. 2016). In these kinds of 
applications, machine-learning technologies develop towards more advanced strategies of finding 
patterns in data, e.g., by coupling data from different sources, and strategies such as network-based 
stratification to detect correlations or even causal structures (e.g., Hofree et.al. 2013) that would be 
impossible through more traditional statistical programs. 

Notably, machine learning is different from computer simulations, which utilize scientific knowledge 
to build mathematical models (e.g., sets of differential equations) that can be run on a computer – 
scientists use these simulation models, for instance to view dynamic processes and to investigate 
how changes in parameter values affects these processes. The machine-learning process does not 
draw on scientific models that are constructed by means of theories, laws, mechanisms and so forth. 
No theory or mechanism or law needs to be fed to the machine-learning process. Instead, the 
learning problem of the machine is to find a data-model that presents a correct mapping relationship 
between input and output data of a training-set (Alpaydin 2010; Abu-Mostafa et al. 2012). For 
example, in ML systems concerning face recognition, the relevant task is classification in which the 
inputs, which are the images of human faces, are classified into the individuals to be recognized, 
which are the outputs.  
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What machines can do 

Given the currently known examples, computers and machine-learning technologies can do different 
types of things for different uses, thereby taking over intellectual capabilities and types of reasoning 
that were previously carried out by experts and scientific researchers. Here, I propose a provisional 
categorization of epistemic tasks that can be performed by both humans and machine learning 
technologies, with the aim of making clearer how capacities of computers relate to those of humans: 

(a) ‘Match’: Machine-learning technologies have the ability to learn to ‘match’ a visual images or 
data-strings (the input data) with a specific image or data-string somewhere sitting in a large 
data-set (e.g., automated face-recognition, finger-print recognition, matching of DNA 
profiles). Accordingly, ML technology is able to somehow mimic the human ability to 
recognize relevant similarities between visual images, or structural similarities in graphical 
pictures. It is often still possible to check (e.g., by and expert) whether the technology 
performs at least as good as the expert, but the ML-technology will outperform humans in 
speed. If images or data-strings get more complex, machines may perform more reliable or 
at a higher statistical precision (i.e., pointing out how reliable the outcome is). 

(b) ‘Interpret’: Machine-learning technologies have the ability to learn to ‘interpret’ visual 
images as belonging to a specific type, in accordance with categories defined by humans. 
Accordingly, ML technology is able to take over the human ability to recognize or interpret 
the image as of a specific type of object, to belong to a specific category, or to subsume it 
under a specific concept (e.g., “that is an oak,” “that is a car of brand Z,” “that is Picea 
mariana rather than Picea glauca”). In these applications experts may have played a role in 
supervising the machine-learning process (e.g. Tcheng et al. 2016). Here as well, it is often 
still possible to check (by an expert) whether the technology performs at least as good as the 
expert, but the ML-technology will outperform humans in speed. 

(c) ‘Diagnose’: Similarly, machine-learning technologies have the ability to learn to ‘diagnose’ 
data-strings as probably belonging to a specific class within pre-set categories, which may be 
generated by humans, but also by means of machines. Hence, ML technology is able to infer 
from limited information about a specific target that “it probably belongs to a specific 
category and therefore will probably also have several additional properties” (e.g., as in 
personalized advertisement of buyers; financial risk assessment of customers; and, in 
medical diagnosis of patients). 

(d) ‘Structure’: Machine-learning technologies have the ability to learn to find patterns, 
correlations and causal relations in data, which is a task originally done by humans or by 
statistical programs. When data-sets get more complex (which can also be considered as 
‘richer’), the relationships will become more complex (which can also be considered as ‘more 
refined’), which may then be accepted as empirically adequate but opaque structures in 
data. These structures, in turn, can be utilized in machines learning to ‘match,’ ‘interpret,’ or 
‘diagnose.’ 

(e) ‘Discover’: Additionally, structures found in data by ML technologies may point out, or point 
at (physical or social) phenomena, very similar to how human researchers infer from 
observed occurrences, causal relationships or measured regularities to (physical or social) 
phenomena. Yet, it will require human researchers to draw the relationship between 
computer outcomes and the real world, because the pattern does not speak for itself. 
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(f) ‘Calculate’: Machine-learning technologies are enabled by computers (the machine). 
Automated calculation was the first example of computers outperforming humans in 
accuracy and speed. Humans can check the calculations, and assume that the algorithm by 
which the computer performs the calculation somehow maps the algorithm as we 
understand it (e.g., adding up instead of multiplying). 

(g) ‘Simulate’: Similarly, computer programs running complex simulations of dynamic processes 
outperform humans in accuracy and speed, as well as in handling complexity. Here, as has 
been briefly explained above, the adequacy of the computer program is firstly checked by 
how the scientific model (on the basis of which the computer-program was build) was 
constructed. 

(h) ‘Integrate’: The performance of machine-learning technology will multiply if the mentioned 
abilities are combined. Natural language translation is an example, but also biomedical 
applications, for instance, as expressed in expectations regarding personalized and precision 
medicine. 

This overview shows that, while computers already performed better than humans with regard to 
deductive reasoning in calculation and simulation —which basically consists of performing repetitive 
tasks guided by logical rules— they now also start to get better than humans in recognizing patterns 
and structure in data or pictures, for matching, interpreting and diagnosing purposes. Additionally, 
machine learning technology may contribute to the discovery of new theoretical concepts or 
categories, but in this case, the crucial role of humans is still to recognize the discovered structure 
(pattern, correlation or causal relationship) as a representation of something that is traceable or 
existent in reality, i.e., as a (physical or social) phenomenon. 

One of the major applications of ML technology is their uses in making correct predictions. 
Computers were already widely used in their ability of deductive inference, thereby making 
deductively correct predictions – i.e., the prediction is logically correct, but may be empirically 
inadequate due to errors in the underlying models or the computational procedures. Machine-
learning technology adds predictions that are based on inductive inference, which means that the 
algorithms (i.e., the correct mapping relationship in a learning set) is applied in new situations to 
predict statistically expected outcomes.  

This vast range of machine-learning applications may suggest that scientific researchers and scientific 
knowledge become superfluous as learning from large data-sets, algorithms and data-models will be 
developed at a degree of complexity and adequacy far beyond the capacity of the human intellect. 
Yet, in Section 4, it will be argued that scientists and scientific researchers still play a crucial role. 

 

3. Empiricist epistemologies 
 

Basic assumptions of empiricism 

The first claim of this paper is that, if we accept some of the fundamental presuppositions of 
empiricism, it becomes very difficult to argue against the idea that machines will ultimately perform 
better than human scientists. Presuppositions central to empiricist strands can be divided into two 
kinds, one normative and one epistemological. The normative ideal is driven by the desire to prevent 
superstition and abuse of power through knowledge, by requiring knowledge to be verifiable in 
principle, and is one of the reasons why objectivity plays a central role in science. Linked to this is 
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also the explicit aim of avoiding metaphysical claims in science. This then requires an epistemology 
that explains how objectivity can be achieved while avoiding metaphysical content. Yet, empiricist 
epistemologies are not necessarily normatively motivated, but can also be determined by purely 
epistemological convictions. In order to substantiate my first claim, I will first outline the basic 
assumptions of empiricism by reference to Mach’s Positivism and Logical positivism.  

Central to Mach’s positivism is the idea that the subject matter of scientific theories is phenomenal 
regularities.5 Theories characterize these regularities in terms of theoretical terms, which need to be 
grounded in observation. Accordingly, theoretical terms in our theories and laws have to be explicitly 
defined in terms of phenomena, and are nothing other than abbreviations for such phenomenal 
descriptions. Additionally, Mach maintained that one must reject any a priori (or metaphysical) 
elements (such as causality) in the constitution of knowledge of things.  

Logical positivism agreed that the subject matter of scientific theories is phenomenal regularities and 
that theories characterize these regularities in terms of theoretical terms being conventions used to 
refer to phenomena, and indeed added to positivism that a scientific theory is to be axiomatized in 
mathematical logic that specifies the relationships holding between theoretical terms. 

The preliminary point I aim to make based on this brief overview, is that if these basic assumptions of 
a strict empiricism were correct, the theoretical terms (also called scientific concepts), mathematical 
relationships between them (also called scientific laws) and theories (also called axiomatic systems) 
generated in science by the meticulous efforts of scientists, are in fact quite arbitrary intellectual 
instruments to fit the data, which, in principle, can be replaced by the data-models generated and 
executed in machine-learning technologies. Additionally, since machines can handle much bigger 
data-sets, and because machines are not confined by the kinds of idealizations and simplifications 
humans need to make in order to fit data into comprehensive mathematical formalisms, we may 
expect that machines will handle the inherent irregularity and complexity of data-sets more 
effectively than the human intellect ever could. 

 

Scientific explanation 

Also Duhem’s philosophy of science stands in the tradition of positivism and conventionalism of the 
late 19th and early 20th century. In accordance with the basic assumption of this tradition, Duhem 
denies that theories of physics present (causal) explanations. Instead, an explanation is a system of 
mathematical propositions, deduced from a small number of principles, which aim to represent as 
simply, as completely, and as accurately as possible a set of experimental laws. Experimental laws on 
this view, are simplified or idealized general descriptions of experimentally produced observable 
effects. Concerning the very nature of things, or the realities hidden under the phenomena described 
by experimental laws, a theory tells us absolutely nothing. On the contrary, from a purely logical 
point of view, there will always be a multiplicity of different physical theories equally capable of 
representing a given set of experimental laws (Duhem [1914] 1954; Craig 1998).6 

 
5 Frederick Suppe (1974, Chapter One) presents a comprehensive outline on the historical background to the 
so-called Received View, which develops from positivism to logical positivism (e.g., Carnap) and logical 
empiricism (e.g., Hempel). 

6 A clarifying phrase “to save the phenomena” to capture the empiricist idea of how knowledge is obtained 
from data was originally introduced by Duhem (2015/1909) and later adopted by, among others, Van Fraassen 
(1977, 1980) and Bogen & Woodward (1988). 
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Hempel’s (1962, 1966) two models of explanation agree to the basic assumptions of empiricism as 
well. Although Hempel emphasizes that one of the primary objectives of the natural sciences is to 
explain the phenomena of the physical world, he defends that formal accounts of explanation should 
avoid the metaphysical notion of causality. Similar to Duhem, Hempel claims that: the explanation 
fits the phenomenon to be explained into a pattern of uniformities and shows that its occurrence 
was to be expected, given the specified laws and the pertinent particular circumstances. 
Explanations, therefore, may be conceived as deductive arguments whose conclusion is the 
explanandum sentence, E, and whose premise-set, the explanans, consists of general laws, L1, L2, ..., 
Lr, and of other statements C1, C2, ..., Ck, which make assertions about particular facts. Hempel calls 
explanatory accounts of this kind, explanations by deductive subsumption under general laws, or 
deductive-nomological (DN) explanations. The second model involves explanation of phenomena by 
reference to general laws that have a probabilistic-statistical form. In this case, the explanans does 
not logically imply the explanation, but involves inductive subsumption under statistical laws, called 
inductive-statistical (IS) explanation. In this case, the statistical laws makes it only likely that the 
phenomenon was to be expected. 

Similar to Duhem, Hempel’s notion of explanation entails that an explanation only tells that, based 
on our empirical knowledge of the world so far, the phenomenon was to be expected – the 
phenomenon ‘fits to’, or ‘can be subsumed under,’ the regularities, patterns and correlations that 
have been found in observations and experimentally produced data.  

Again, if, as empiricist epistemologies suggest, this is what science ultimately has to offer —that 
indeed, theories, models laws and scientific concepts can be traced back to data, and are just helpful 
instruments that do not add anything to our knowledge about the world— then, it is to be expected 
that eventually machines will outperform human scientists. For, as especially Duhem’s position 
suggests, there is no good reason to belief that the regularities, patterns and correlations in data 
found by humans would be better than the empirically adequate but opaque data-models found by a 
machines – and additionally, if empiricists are correct, there is no reason to doubt that machines will 
be capable to accurately fit a particular phenomenon into data-models stored in machines such as to 
predict that given a certain input a specific output is to be expected (with a specified probability). 

There is a large literature on explanation that argues against Hempel’s account of explanation, 
claiming that, although Hempel's theory may succeed in avoiding the (metaphysical) concept of 
causality, it is insufficient to account for the proper meaning of explanation. Well-known counter-
examples, which meet Hempel’s criteria of DN or IS explanations but are considered improper 
explanations, are: the barometer explaining the storm (which illustrates the problem of common 
cause); the length of the shadow of the flagpole explaining the length of the flagpole (which 
illustrates the problem of symmetry); and, taking the birth-control pill explaining why male do not get 
pregnant (which illustrates the problem of explanatory relevance). Conversely, counter examples 
that do not meet Hempel’s criteria, but are considered proper explanations have been given, such as: 
the mayor’s untreated syphilis explains why he got paresis (which illustrates the problem of low 
probabilities). 

The briefly listed arguments against Hempel’s logical empiricist account of explanation concern the 
meaning of explanation, assessed by what is commonly (and rather intuitively) taken as proper and 
improper (scientific) explanations. The listed arguments boil down to the idea that an explanation 
ought to be an answer to a why question, and therefore should refer to a relevant (physical) cause. 
But because reference to hidden causes is based on empirically untestable and thus metaphysical 
convictions, this is indeed what (strict) empiricism aims to avoid.  
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In the context of this article, the issue is whether the opaque data-model generated by machine-
learning technologies count as explanations for the relationships found between input and output. As 
has been argued above, Duhem rejects (causal) explanations entirely, and may therefore agree that 
the possibility of empirically grounded algorithms produced by machines from which new 
conclusions can be derived, proves this even better. So, his point entails that we need no 
explanations anyway. Yet, contrary to Duhem, many of us will hold that we need explanations, and 
that an opaque data-model together with specific conditions producing an outcome —which 
basically is the logical or mathematical structure of an explanations on Hempel’s account— is not a 
proper explanation for that outcome. But then the issue is, what ‘being a (scientific) explanation’ 
actually adds, and conversely, what is it that apparently is not provided by the opaque data-model. 
Does our resistance to the idea that an explanation in terms of an opaque data-model is not any 
better than an explanation in terms of theories and laws merely rely on deep ‘scientific realist’ 
intuitions, according to which —paraphrasing Van Fraassen (1980)— an explanation gives us a 
literally true story of what the world ‘behind’ the observable phenomena is like? Differently phrased, 
on a scientific realist view, opaque data-models do not provide explanations because genuine 
explanations describe or represent the unobservable (physical) causes (or mechanisms, processes, 
phenomena, or structures otherwise) that bring about the observed (physical) phenomena. In the 
last section, I will return to this issue, namely whether it is merely our metaphysical disposition, or 
whether genuine explanations are more than data-models that fit the data.  

 

Data and phenomena 

The issue whether we eventually will need human-made explanatory laws and theories, rather than 
opaque data-models that merely fit the data, is at the heart of the question about explanation 
discussed in the previous section. Here, it will be laid out that the presuppositions of strict 
empiricism also challenge the distinction between data and phenomena as proposed by Bogen and 
Woodward (1988), because strict empiricism agrees to the idea that phenomena are nothing more 
than statistically justified mathematical structures in data. 

Bogen and Woodward (B&W 1988) contest that there is a direct relationship between theories and 
data as assumed in strict empiricism. Instead, according to B&W, the notion of phenomena is crucial 
for understanding the relationship between data and theories. Therefore, different from the 
empiricist tradition, in particular Van Fraassen (1977) who builds on Duhem, a conceptual distinction 
is needed between data and phenomena. Loosely speaking, scientists infer to phenomena based on 
data, because data are idiosyncratic to particular experimental contexts and typically cannot occur 
outside them, whereas phenomena are objective, stable features of the world. Phenomena, 
therefore can occur outside of the experimental context, and are detectable by means of a variety of 
different procedures, which may yield quite different kinds of data, whereas data reflect the 
influence of many other causal factors, including factors that have nothing to do with the 
phenomenon of interest and instead are due to the measurement apparatus and experimental 
design (B&W 1988, Woodward 2011).  

B&W’s (1988) position, including some of the clarifications by Woodward (2011) and Bogen (2011), 
can be summarized as follows: (1) Phenomena are distinct from data, where data is what is directly 
observed or produced by measurement and experiment; (2) Often phenomena are unobservable, or 
at least, not observable in a straightforward manner; (3) B&W think of phenomena as being in the 
world, not just the way we talk about or conceptualize the natural order – i.e., phenomena exist 
independent of us, but beyond that B&W are ontologically non-committal; (4) B&W don’t want 



11 
 

phenomena to be some kind of low level theories; (5) Phenomena are inferred from data; (6) Data 
produced by measurement and experiment serve as evidence for the existence or features of 
phenomena; and, (7) Theories aim at providing explanations of phenomena, whereas it is difficult to 
provide explanations of data from theory (even in conjunction with theories of instruments, non-
trivial auxiliaries, etc.). 

Bogen and Woodward’s (1988) notion of phenomena has been criticized by several authors. 
McAllister (1997, 2011) assumes that B&W describe phenomena both as investigator-independent 
constituents of the world, and as corresponding to patterns in data-sets. He criticizes this view by 
arguing that there are always infinitely many patterns in any data-set, and so the choice of one as 
being a phenomenon is subjectively stipulated by the investigator, which make phenomena 
investigator-dependent. Also Glymour's (2000) criticizes on the point that B&W leave open the 
question of how scientists discern or discover phenomena in the first place. Are phenomena merely 
summaries of data? Or is there something more to phenomena than just patterns or statistical 
features. Glymour argues there is not. According to him scientists infer from data to patterns by 
means of statistical analysis, which does not add anything new to the data. This implies that 
phenomena coincide with patterns in data, and that no subjective grounds are involved. Accordingly, 
Glymour concludes that Bogen and Woodward are mistaken in thinking that a distinction between 
phenomena and data is necessary, while McAllister (1997) is mistaken in thinking that the choice 
about ‘which patterns to recognize as phenomena’ can only be made by the investigator on 
subjective grounds.7 

Within a machine-learning context, we may start to wonder what B&W actually have in mind when 
distinguishing between data and phenomena. They take Nagel's example of the melting point of lead 
to explain this: “Despite what Nagel's remarks seem to suggest, one does not determine the melting 
point of lead by observing the result of a single thermometer reading. To determine the melting 
point one must make a series of measurements. … Note first that Nagel appears to think that the 
sentence ‘lead melts at 327 degrees C’ reports what is observed. But what we observe are the 
various particular thermometer readings – the scatter of individual data-points. … So while the true 
melting point is certainly inferred or estimated from observed data, on the basis of a theory of 
statistical inference and various other assumptions, the sentence ‘lead melts at 327.5 + 0.1 degrees C’ 
—the form that a report of an experimental determination of the melting point of lead might take— 
does not literally describe what is perceived or observed” (B&W 1988, 308-309, my italics). In this 
example ‘the true value of the temperature at which lead melts’ is considered to be the 
phenomenon, which, according to B&W is determined by statistical analysis of a set of data taken in 
measurements. Based on this example, one may be inclined to conclude that Glymour (2000) is 
correct in claiming that phenomena do not add anything to data. 

In discussing this issue a bit further, I will use the notion ‘physical phenomena’ rather than just 
‘phenomena’ to stress that phenomena in the sense of B&W are considered independently existing 

 
7 McAllister (2007) presents an in-depth technical discussion of how to find patterns in data (i.e., data-models). 
He argues that “the assumption that an empirical data set provides evidence for just one phenomenon is 
mistaken. It frequently occurs that data sets provide evidence for multiple phenomena, in the form of multiple 
patterns that are exhibited in the data with differing noise levels (ibid , 886). McAllister’s (2007, 885) also 
critically investigates how researchers in various disciplines, including philosophy of science, have proposed 
quantitative techniques for determining which data-model is the best, where ‘the best’ is usually interpreted as 
‘the closest to the truth,’ ‘the most likely to be true,’ or ‘the best-supported by the data.’ According to 
McAllister, “These [data-]model selection techniques play an influential role not only in research practice, but 
also in philosophical thinking about science. They seem to promise a way of interpreting empirical data that 
does not rely on judgment or subjectivity (ibid, 885, my emphasis),” which he disputes.  
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(physical) things (objects, properties or processes). Additionally, I will use the notion ‘conceptions of 
phenomena,’ to account for the fact, rightly pointed out by B&W, that phenomena are usually not 
observable in a straightforward manner, but need to be discovered and established. Hence, the 
notion of phenomena is connected to the notion of scientific concept, because a scientific concept 
can be considered a conception of a physical phenomenon, which, once the meaning of the concept is 
sufficiently established, becomes a definition in a dictionary or textbook. This definition gets the 
character of a (literal) description of the phenomenon (Boon 2012a).  

The pressing question is whether the formation of concepts of phenomena (including establishing 
their definitions) will be still required once machine-learning technologies are able to find statistically 
justified patterns in data in the sense suggested by Glymour. More generally phrased, will data-
models generated by statistical analysis of data make all other scientific knowledge superfluous, and 
will machine learning technology be able to generate these data-models?8  

 

The semantic view of theories 

Acceptance of scientific knowledge in empiricist epistemologies involve two important rules: 
knowledge must be objective and it must be testable. Ideally, therefore, knowledge and the way in 
which it is tested must be independent of specificities of human cognition, and the measured data 
used for testing it must be independent of the knowledge to be tested. The so-called semantic view 
of theories, which in one or another version is held by authors such Suppes (1960), Van Fraassen 
(1980), Giere (1988, 2010), Suppe (1989), and Da Costa and French (2003), accounts for testing 
theories. It aims to account for the structure of theories and the independent relationship between 
theories and measurements, that is, between the outcomes predicted by the theory, and the 
outcomes of a measurement, by reducing the relationships between abstract theories, models and 
measured data to semantic relationships between abstract logical-, mathematical- and data-
structures (see Schema 1). 

 

Schema 1: Semantical relationships between a theory and measured data according to the semantic view. 
Theory acceptance when (partial) isomorphism between model of theory and model of data. 

Loosely speaking, the semantic view posits that a theory is a (usually deductively closed) set of 
sentences in a formal language, such as an abstract calculus, an axiomatic system, or a set of general 
laws (such as Newton’s equations of motion), which enables to deduce logical consequences about 
particular types of physical systems (such as the model of a pendulum). The resulting model is a 
structure which is an interpretation (or realization) of the theory. Conversely, the theory represents 

 
8 Affirmative answers to these questions can be taken as an interpretation of Anderson’s position. Notably, 
even machine learning scientists and textbooks promote that knowledge of any sort related to the application 
(e.g., knowledge of concepts, of relevant and irrelevant aspects, and of more abstract rules such as symmetries 
and invariances) must be incorporated into the learning network structure whenever possible (Alpaydin 2010, 
261). Abu Mostafa (1995) calls this hints, which are the properties of the target function that are known to us 
independent of the training examples – i.e., hints are auxiliary information that can be used to guide the 
machine’s learning process. The use of hints is tantamount to combining rules and data in the learning network 
structure – hints are needed, according to Abu Mostafa, to pre-structure data-sets because without them it is 
more difficult to train the machine. In image recognition, for instance, there are invariance hints: the identity of 
an object does not change when it is rotated, translated, or scaled. 



13 
 

the structure of the model. On this view, testing the adequacy of a theory only requires isomorphism 
(or similarity) between the model of the theory for a particular kind of system, and the measurement 
results called a model of the data. In brief, the semantic view explains how a theory is compared with 
measurements.9 On Van Fraassen’s (1980) version, testing whether a theory is empirically adequate 
means to assess (partial) isomorphism of a (mathematical) structures predicted by the theory (the 
models of the theory) and the structure in a set of measured data (the models of the data). 

Obviously, the focus of the empiricist epistemology expressed in the semantic view is on the theory 
and how to test it. The question is not, for instance, whether the data-model is adequate. 
Conversely, in machine learning, the focus is on the data-model and how to test whether it is 
adequate. Therefore, from a machine learning perspective, someone may now ask ‘why bother 
about the theory?’ If machine learning technology can generate adequate data-models based on 
data, we do not need the theory any longer. Assume that a machine-learning technology has 
produced a data-model (although opaque and incomprehensive) that fits the data (see right part of 
Schema 1), and assume that the model of the theory is (partially) isomorphic with the data-model 
(see middle part of Schema 1), why would we need the left part of this schema anyway? Since, in 
empiricist epistemologies, the data and the data-model are taken as the solid ground of knowledge, 
the theory seems to be an unnecessary surplus. Hence, the semantic view of theories supports the 
idea that scientific knowledge in the form of theories or models does not add much to empirically 
adequate and/or statistically sound data-models to represent data. Accordingly, it supports the belief 
that ultimately scientific knowledge is no longer needed. Again, the empiricist tradition offers hardly 
any possibilities for a more positive appreciation of scientific theories and the epistemic and 
cognitive roles of human scientists. 

 

4. Knowledge in the age of machine-learning technologies 
 

Empiricist epistemologies: Theories add absolutely nothing to data-models 

In the previous section, it has been defended that a consequence of presuppositions and 
requirements of (anti-realist) empiricist epistemologies is that explanations, phenomena, and 
theories generated in science can (in principle, although maybe not yet in practice) be represented 
by, reduced to, or replaced with data-models generated by machine learning technologies. Empiricist 
epistemologies require that data-models adequately fit the data, but there are no specific 
epistemological reasons to require that data-models are intelligible for humans – that is, the fact that 
data-models generated by machines usually are opaque and incomprehensive for humans is not a 
problem in regard of the epistemic value of data-models. Additionally, referring to Duhem, and in his 
footsteps Van Fraassen, theories tell us absolutely nothing about hidden realities – rather, different 
theories may be equally capable of representing a given set of experimental laws. When taking 
experimental laws, in Duhem’s wordings, to be data-models, this implies that no additional epistemic 
value is gained by theories over data-models, especially when data-models accurately represent 
large data-sets achieved by machine learning technologies. Hence, taking the semantic view of 
theories as a proper advancement of Duhem’s ideas implies that the epistemic value of theories is to 
adequately represent data-models, where ‘represent’ means ‘structural similarity,’ i.e. being 

 
9 Notably, ‘phenomena’ in the sense of Bogen and Woodward (1988) do not occur in this view. Rather than 
phenomena, as B&W claim, the model of data mediates between the measured data and the model of the 
theory, which is a specific instantiation (interpretation, concretization) of the theory (see Schema 1). 
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(partially) isomorphic. In turn, data-models represent the measured data. If we assume that 
representational relationships in science are transitive, this implies that from an epistemological 
point of view empirically adequate theories do not add anything to empirically adequate data-
models10 – as empirically adequate data-models already allow for adequate predictions of ‘real-
world’ data, theories and models become unnecessary (see Schema 1). As a consequence, the claim 
that machine learning technologies will render human scientists and scientific knowledge superfluous 
accords with beliefs about the epistemic value of theories in anti-realist empiricist epistemologies. 
Empiricist epistemologies, therefore, support Anderson’s (2008) claims cited in the introduction. 
Having this said, several arguments can be put forward against this conclusion. 

 

Scientific realism in defense of science 

Anderson’s (2008) claims can be more easily countered from scientific realist than from anti-realist 
viewpoints. Scientific realist positions are supported, at least in part, by the no-miracle argument: the 
successes of scientific theories would be a miracle unless we assume that theories truthfully describe 
or represent hidden realities behind the phenomena, which is why scientific realism is the best 
explanation for the successes of science. As a consequence, data-models, whether produced by 
human scientists or by machines, are epistemologically inferior to theories. Accordingly, contrary to 
the conclusion inferred from anti-realist empiricist epistemologies, scientific realists will believe that 
the successfulness of (approximately) true scientific theories cannot be superseded by data-models.  

Additionally, scientific realists may argue that scientific theories have an intrinsic value, which has 
nothing to do with their epistemic or practical usefulness anyway. Many theories are not useful, at 
least not to begin with. One may even defend that the aim of science is not useful theories, but true 
theories. Science may be of epistemic and practical value to all kinds of applications such as in 
engineering and medicine, but this is a by-product of science, not its intended aim (also see Boon 
2011, 2017c). Rather, science has an intrinsic cultural value in telling us what the world is like, which 
is a task that cannot be replaced by machine learning technologies whatsoever since 
incomprehensive, opaque data-models do not tell us anything meaningful about the world. 
Therefore, ‘real science’ and machine learning technologies operate in very different domains and 
must not be regarded as competing. 

 

The pragmatic value of scientific knowledge in epistemic tasks 

Empiricist epistemologies do not deny the pragmatic value of science and agree indeed that 
pragmatic criteria play a role in the acceptance of theories, but only deny that pragmatic criteria add 
to the epistemic value of theories (e.g., Van Fraassen 1980). In Section 3, it has been argued that 
machine-made data-models may become capable to perform better in regard of epistemic criteria 
(esp. empirical adequacy regarding the data) as compared to human-made scientific knowledge. In 
addition, it has been suggested that the generation and use of data-models for all kinds of epistemic 
tasks can be carried out by machine learning technology, which will in many cases perform better 
than human scientists who aim to generate and use scientific knowledge for similar tasks (see 
overview in Section 2). It has also been argued that machine-made data-models usually are 
incomprehensible, opaque, and even inaccessibly ‘sitting’ in the machine, to the effect that they 

 
10 This claim only holds for anti-realist interpretations (as in Duhem and Van Fraassen) of the semantic view. 
Yet, the semantic view of theories also allows for realist interpretations of theories (e.g., Suppe 1989).  
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cannot be used by human epistemic agents. Therefore, machines do not produce scientific 
knowledge as in ‘traditional’ scientific practices — i.e., epistemic entities such as theories, laws, 
models and concepts that can be obtained from the machine and utilized in, say, self-chosen 
epistemic tasks by humans. Even if it were possible to obtain the data-models from the machine, 
they would be useless for epistemic uses by humans as these data-models do not meet relevant 
pragmatic criteria to enable such uses. The other way around, in order to be useful for humans in 
performing epistemic tasks, scientific knowledge must also meet pragmatic criteria.  

The crux of pragmatic criteria such as consistency, coherency, simplicity, explanatory power, scope, 
relevance and intelligibility in generating and accepting scientific knowledge is to render scientific 
knowledge manageable for humans in performing epistemic tasks. I will leave unanswered whether 
machine learning technologies cannot offer this in principle. But if they cannot, a future without 
science would require machines to take over every epistemic task, which seems unlikely already 
regarding our daily interactions with the world. 

 

Preparing the data 

Much needs to be in place before the machine-learning can even begin. Data-sets need to be 
generated, prepared and gathered, which requires epistemic activities by humans, such as designing 
experimental set-ups and measurement equipment (e.g., as in the experiments of Boyle, etc. in 
Section 1). These epistemic tasks require scientific and background knowledge. As stated above, 
knowledge must meet specific pragmatic criteria to be manageable when performing epistemic 
tasks. For example, knowledge must be such that epistemic agents can see which real-world target-
systems the knowledge is applicable to – for example, in order to recognize or explain specific 
phenomena in the data-generating experimental set-up. Conversely, it requires of scientists to have 
the cognitive ability to think, theorize, conceptualize, explain, mathematize, and interpret by means 
of scientific knowledge when performing epistemic tasks, not only when setting up the data-
generating instrumentation and seeing to its proper functioning, but also in assessing and 
interpreting the data, drawing relationships between data from different sources, and for making the 
distinction between ‘real’ phenomena and artifacts. These crucial cognitive abilities go well beyond 
what empiricist epistemologies can explain, require, or allow in view of the requirements of 
objectivity. 

The necessity to prepare data that are about something in the real world also implies that 
phenomena are crucial in scientific practices, even when only aiming at the generation of data for 
machine-learning processes. Harking back to the discussion above, the way in which Bogen and 
Woodward (1988) think about phenomena forces them to accept that phenomena coincide with 
data-models. However, this notion of physical phenomena is far too narrow regarding the uses of 
this notion in scientific practices, even if only practices aimed at measuring data. The description of a 
physical phenomenon such as ‘lead melts at 327.5 + 0.1 degrees C’ is not grasped by the number (i.e., 
the value) in this proposition. In contrast to the data-model that is statistically derived from the 
measurements in the way suggested by B&W, the described phenomenon can be analyzed in terms 
of a set of interrelated heterogeneous aspects, such as: the observation that substances (including 
lead) can melt; an understanding of the concept ‘temperature’ (also see Chang 2004); the observed 
regularity that a substance (including lead) always melts at approximately the same temperature; an 
understanding of the concept ‘melting-point’; the conception that ‘having a melting-point’ is a 
specific characteristic of substances; the regulative principle that at the same (experimental) 
conditions the same effects will happen (Boon 2012b); the assumption that the temperature at which 
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a substance melts (the melting-point) is an exact number; the assumption that the temperature can 
be measured at a pretty high accuracy; the decision or assumption that the observed fluctuations in 
the observed melting temperatures are due to (partially) unknown causes of the experimental set-up 
and measurement tools (e.g., Mayo 1996); and finally, an understanding of the workings of the 
measurement tools. In short, the full conception of the physical phenomenon consists of a collection 
of heterogeneous, mutually related but heterogeneous aspects, which are generated in a number of 
cognitive actions by human scientists, rather than being a statistically derived number only. 

This elaboration of B&W’s example shows that skills, knowledge, and understanding of scientists are 
required to establish both the physical phenomenon —which involves the experimental and 
measurement set-up, and also their proper operations to get a stable and reproducible 
measurement of the temperature at which lead melts—, as well as the conception of the 
phenomenon, even if the phenomenon under study is as simple as ‘lead melts at 327.5 + 0.1 0C.’ 
Additionally, this brief analysis shows that the formation of the concept of a phenomenon and 
physically establishing it in an experimental set-up, go hand-in-hand, and necessarily involve all kinds 
of basic assumptions that cannot be empirically tested (Chang 2004; Boon 2012a, 2012b, 2015).  

Expanding on this analysis, it can be argued that empiricist epistemologies are flawed in believing 
that the theory-ladeness of data is fundamentally problematic as it threatens the objectivity of 
science. More specifically, Bogen and Woodward are mistaken to hold that phenomena should not 
be some kind of low-level theories (claim 4). To the contrary, theory-emptiness of data fed to 
machine-learning processes would really be a problem. In actual scientific practices, the production 
of data representing supposed physical phenomena usually develops in a process of triangulation 
together with the development of the experimental set-up and measurement techniques and with 
the construction and application of scientific knowledge of all kinds. The data, phenomena and 
theory, as well as our interpretations of measurements and understanding of the working of 
instruments and experimental set-ups are intrinsically conceptually entangled (e.g., Chang 2004; 
Feest 2010; Van Fraassen 2008, 2012; Boon 2012a, 2017a; Van Fraassen 2008, 2012). 

 

Epistemic tasks in engineering and biomedical sciences 

In machine-learning-technologies, descriptions of (physical or social) phenomena are reduced to (and 
represented by) data-models, which is considered unproblematic within empiricist epistemologies. 
As sketched above, the data or data-model representing the phenomenon entail hardly any 
information relevant to epistemic tasks in dealing with phenomena, for instance, in aiming to interact 
with the targeted phenomenon in one or another way.  

Yet, these kinds of epistemic tasks are at the center of the so-called applied sciences such as the 
engineering and biomedical sciences. These research practices aim at scientific knowledge about 
targeted (bio)physical phenomena, and about technological instruments that can possibly produce or 
control them – for the sake of the targeted phenomenon, not first theories, which are considered to 
be the focus of basic sciences.11 These practices function in the way sketched above, which is to say 

 
11 In other work, I have explained from a range of different philosophical issues, the crucial role of phenomena 
in the ‘applied’ research practices and what this means for our philosophical understanding both of scientific 
knowledge and of the aim of science (Boon 2011, 2012a,b, 2015, 2017a,c, forthcoming). The idea that these 
application-oriented scientific research practices aim at scientific knowledge in view of epistemic tasks aimed at 
learning how to do things with (often unobservable, and even not yet existing) physical phenomena has led to 
the notion of scientific knowledge as epistemic tool (Boon and Knuuttila 2009; Knuuttila and Boon 2011; Boon 
2015; Boon 2017b,c; also see Nersessian 2009; Feest 2010; Andersen 2012). The original idea of scientific 
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that experimentally producing and investigating targeted phenomena (e.g., a phenomenon we aim to 
produce for a specific technological or medical function) is entangled with the generation of scientific 
knowledge and the development of technological instruments and measurement apparatus relevant 
to the phenomenon. Every tiny step in these intricate research processes involves epistemic tasks —
e.g., to explain, interpret, invent, idealize, simplify, hypothesize, model, mathematize, design, and 
calculate— for which all kinds of practical and scientific knowledge is crucial and needs to be 
developed in the research process. Therefore, scientific knowledge needs to be comprehensible to 
the extent that it allows for these epistemic tasks. Especially regarding these kinds of practically 
oriented scientific research practices in which human scientists aim at comprehensible scientific 
knowledge as well as epistemic and practical resources such as measurement instruments, 
technological procedures, and methods, it is inconceivable that machine-learning-technologies will 
make science and scientists superfluous. 

 

The error of empiricism 

Empiricist epistemologies insufficiently account for the types of epistemic tasks that are crucial for 
the development and use of epistemic and practical tools, which in turn are used in the development 
of, for instance, medical technologies. This shortcoming already applies to the generation of data 
that can be fed to machines that generate data-models for specific purposes. Empiricist 
epistemologies therefore miss out on crucial aspects of the uses and generation of scientific 
knowledge (theories, models, etc.) in intricate scientific processes taking place in application oriented 
research practices like the engineering and biomedical sciences, and thus give room to beliefs such as 
defended by Anderson (2008). Rethinking the philosophical presuppositions of empiricist 
epistemologies that seem to force us to the view that science will become superfluous in the age of 
machine learning can help in gaining insights that bring the scientist back into science. 
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knowledge (or, originally more narrowly stated, ‘scientific models’) as epistemic tools, proposes to view 
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