The average adaptation time was calculated to be 4.9 ± 3.4 hours. The adaptation time decreased over time ($p < 0.05$).

The fingers of 7 patients were successfully treated for Dupuytren. Monitoring the force in their splints resulted in a total of 97 wearing periods. See the left for the data of one single patient. Most cases (63 / 97) showed a clear decrease in force. In those cases τ was significantly greater than zero ($p < 0.05$).

The default (relaxed) position of the hand is flexed. After surgery the splint prevents the wound from healing in this position. The gained extension is partly lost during the day and regained during the night. This behavior can be seen in the exponential decrease in force every time the splint is worn.

The results suggest that with wound recovery the plasticity of the tissue decreases. In the first weeks more extension has to be regained and it takes longer to reach an equilibrium. In later weeks the wound is almost healed and less extension needs to be regained at night, hence the shorter adaptation time.

The temperature data were used to identify when the splint was worn. For every wearing period (typically the duration of one night) the data were fitted to an exponential function.

$$F(t) = A \cdot e^{-\frac{t}{\tau}} + B$$

This gave the adaptation time, the time to reach 99.5% of the equilibrium value ($t_{99.5} = 3 \cdot \tau$).

DISCUSSION

The average adaptation time was calculated to be 4.9 ± 3.4 hours. The adaptation time decreased over time ($p < 0.05$).

The results suggest that with wound recovery the plasticity of the tissue decreases. In the first weeks more extension has to be regained and it takes longer to reach an equilibrium. In later weeks the wound is almost healed and less extension needs to be regained at night, hence the shorter adaptation time.