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Abstract 

Nowadays, companies often implement sustainability strategies in order to react to changing market demands and reduce their environmental 
impacts and resource related costs. In this context, the identification and exploitation of resource saving potentials is a challenging issue. 
Depending on the knowledge and experience of the persons in charge, promising improvement measures might be found or remain undetected. 
At this point, knowledge-based systems can come into play, providing expert knowledge to support planners and decision-makers with the 
identification of specific improvement measures. This work presents such a knowledge-based system, which is able to identify improvement 
measures on machine and process chain level through rule-based reasoning. In order to exploit these potentials, suitable improvement measures 
are assigned automatically from a knowledge database. The application is demonstrated with a case from the metal mechanic industry. 
© 2017 The Authors. Published by Elsevier B.V. 
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1. Introduction 

Economic activities are strongly related to demands for 
resources such as materials, energy and water. A growing 
world population, natural resource depletion and the 
destruction of eco-systems induce an urgent need for industry 
to act in a more sustainable manner by reducing their demands 
for these resources. Motivated by this, manifold methods, tools, 
models and procedures have been developed in research and 
applied in practice in order to improve the sustainability of 
products and processes [1]. For many of these, main challenges 
are related to the identification of improvement areas, strategies 
and specific measures. Although many approaches help to 
identify general areas for improvement like critical life-cycle 
stages, manufacturing steps or material choices and propose 
general improvement strategies, they usually fail in naming 
specific measures. The reason for this cannot be seen in the 
general availability of knowledge about improvement 
measures, but rather in a lack of systematic identification 
procedures, insufficient knowledge management and hardly 

available experts. The problems can be observed in all types of 
companies: In small and medium sized enterprises, experts who 
carry improvement knowledge and could apply methods are 
often not existent. In large companies, experts may be 
available, but they are widely distributed while their knowledge 
is tacit and therefore not directly accessible. In both cases, a 
systematic support in the step of measure identification could 
improve the quality of decision making. Further, costs and 
efforts for identification and evaluation of improvement 
measures could be reduced. The approach presented here aims 
to provide this support by means of a knowledge-based system 
(KBS), giving concrete advice on how to achieve actual 
improvements. The system is intended to identify improvement 
measures, which address the process perspective of 
manufacturing systems by using rule-based reasoning.  
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2. Background 

2.1. Improvement strategies and measures to increase 
resource efficiency in manufacturing 

Several sources provide general strategies and specific 
measures for improving the resource efficiency and hence the 
economic and environmental sustainability of manufacturing. 
While general improvement strategies usually are constituted 
by a broad applicability to different systems, specific measures 
are concretely targeting at individual objects. Various 
examples for both can be found in academic literature, 
sustainability reports, corporate websites, good practice 
repositories, organizational or governmental websites and 
reports. A broad overview addressing typical improvement 
strategies at all manufacturing system levels from process unit 
to value chain level is given by Duflou et al [1]. As one popular 
example for general strategies, the seven types of waste in 
manufacturing (“muda”) according to the lean management 
philosophy can be mentioned [2]. By avoiding or reducing 
transportation, inventory, motion, waiting, over-processing, 
over-production and defects, significant resource savings can 
be reached. However, the approach targets at “lean” 
manufacturing, which does not necessarily correspond with 
“green” i.e. environmental targets [3]. Another established 
example for general strategies was introduced by Sarkis and 
Rasheed as “three Rs strategy” [4, 5]. They propose to apply 
the strategies reduce, remanufacture and recycle & reuse to 
improve the environmental impacts of manufacturing. Rashid 
et al. compared the four sustainable manufacturing strategies 
waste minimization, material efficiency, resource efficiency 
and eco-efficiency as the most popular strategies described in 
theory and practice [6]. They concluded that all strategies 
contribute to a sustainable development with no strategy being 
superior. In the context of energy value stream management as 
lean management method, Erlach & Westkämper have 
introduced eight general design principles in order to increase 
energy efficiency of manufacturing processes [7]. They address 
both technical aspects (e.g. use best available technology, reuse 
of energy) but also organisational aspects (e.g. energy oriented 
order sequence, levelling of energy demand peaks). In contrast 
to these general strategies, specific measures focus on specific 
processes like casting or machining, on machine components 
like engines or pumps or on functions such as heat or waste 
recovery. Despeisse has collected and classified about 1000 
specific sustainable manufacturing measures from sources 
described and sorted them according to the underlying 
strategies [8]. Apart from public measure sources, confidential 
databases exist within organisation. As an example, the 
Volkswagen AG established a worldwide database for 
improvement measures. Beneath others, it covers about 12.000 
measures aiming only at energy efficiency [9]. 

2.2. Identification procedures for improvement measures 

As described ahead, a general lack of improvement 
strategies and measures enhancing resource efficiency in 
manufacturing cannot be stated. Instead, the main challenge in 
practice is the identification of suitable and promising measures 
for a system under assessment. Here, procedures are needed in 
order to filter relevant measures and sort them according to their 

potential or applicability. Many procedures found in literature 
base on general improvement strategies as described in section 
2.1, which are ranked according to a proposed application 
sequence. Popular examples are the hierarchy of waste 
management, which has first been introduced in the Waste 
Framework Directive (75/442/EEC) of the European 
Commission [10, 11]. It provides a clear prioritization of 
strategies for waste management, ranging from prevention 
(highest priority) to final disposal (lowest priority). In analogy 
to the waste hierarchy, an energy hierarchy has been proposed 
by Wolfe and extended by other authors and institutions [12, 
13]. It puts highest priority on demand reduction by avoiding 
energy wastage, followed by demand reduction through energy 
efficiency measures. The last sustainable and therefore 
preferable option is to exploit fossil fuels by using conventional 
energies. Based on both waste and energy hierarchy, Despeisse 
derived a general improvement hierarchy for sustainable 
manufacturing [8]. It follows the steps prevention, waste 
reduction, resource reduction, reuse waste as resource and 
substitution. However, the hierarchy is intended to be used in 
an iterative and flexible manner, as the best strategy to follow 
depends on the object to improve. Figure 1 summarizes the 
described hierarchies for waste, energy and sustainable 
manufacturing.  

Figure 1: Improvement hierarchies for waste, energy and sustainable 
manufacturing [8, 10 - 13] 

All these procedures can lay the foundations for an 
improvement of resource efficiency in manufacturing. 
Nevertheless, they do rarely provide specific measures, which 
are suitable to the current situation and directly applicable. 
Consequently, experts are needed to apply the strategies on the 
specific systems under assessment, deriving and rating specific 
measures. Apparently, the result is highly depending on the 
knowledge and experience provided by the experts. One 
approach to overcome these shortcomings is the application of 
benchmarking the current system against systems reflecting 
best available technology or applying best practice. By 
comparing both the performances and setups, conclusions about 
promising improvement measures can be drawn. Dehning 
describes this procedure of knowledge transfer based on a 
corporate knowledge database from the industrial perspective 
[9]. Still, this procedure is limited to an application within large 
companies, as it bases upon an internal best practice database. 
In addition, expert knowledge is needed to compare the 
manufacturing system configuration (processes, machines, 
resources used) and judge about the transferability of measures. 
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As another alternative to identify measures, matching and data 
retrieval approaches using knowledge databases can be 
mentioned. Several corresponding approaches have been 
described, while most of them address the product perspective. 
For instance, Herrmann developed a knowledge-based system 
using fuzzy logics in order to support product developers in 
designing recyclable products [14]. In addition, commercial 
software tools like the CES Selector© support product 
developers by providing material specific knowledge in the 
design phase [15]. Addressing the process perspective, Schmid 
developed a knowledge-based analysis tool for a first rough 
estimation of energy improvement potentials [16]. It focuses on 
measures for compressed air, cooling and heating systems. 
However, the approach rather aims at assessing the impact of 
improvement measures than to identify them. Weinert et al. 
presented a framework for lean and green manufacturing, 
providing a structured procedure to identify improvement areas 
and appropriate improvement measures [3]. A guideline book 
contains extensive information for each measure such as 
prerequisites, related efforts and practical examples. 
Drawbacks can be seen in the significant efforts for manual 
measure selection. Fischer developed a solution finding 
process (SFP) to prioritize “lean and green” improvement 
measures [17]. Therefore, the measures are described in a 
formal way and matched with the results coming from an 
extended value stream analysis of the factory. Extensive 
information is needed to characterize each measure, hampering 
industrial applicability. Another approach is presented by 
Bergmann, who developed a concept to evaluate the influence 
of design elements such as lean management tools on 
functional requirements of a production system based on 
axiomatic design [18]. Still, the application requires well-
grounded expert knowledge and the derived measures are not 
specific enough to be directly implementable. 

To sum up the focuses of existing work, a lack of procedures 
to identify specific improvement measures for industrial 
application can be stated. The provision and matching of 
knowledge by means of a KBS is regarded as promising 
solution, hence their typical elements and functionalities are 
explained in the following. 

2.3. Knowledge-based systems and rule-based reasoning 

Knowledge-based systems are able to help decision-makers 
in a decision situation by providing documented knowledge. 
Their application is widely spread over different sectors, 
ranging from resource extraction over production, business 
management or medicine. Typical use scenarios are related to 
data interpretation, surveillance, diagnosis, planning, design as 
well as prognosis. Figure 2 displays the typical structure of a 
KBS [19]. The main characteristic of a KBS is the separation 
of knowledge storage within a knowledge database and 
knowledge processing performed by an inference machine 
[19]. The knowledge database serves as data backbone of the 
system. It can contain knowledge from the analysis of specific 
use cases on the one hand and general domain specific 
knowledge on the other hand [19]. A distinction is made 
between declarative knowledge (like improvement measures) 
and procedural knowledge (like application rules) [20]. The 

latter are usually defined as “IF… THEN…” conditions. The 
inference component is the problem-solving component of the 
system, applying the rules to find a solution for a specific 
problem [19]. Problem related data or information is fed into 
the system through an interview component as part of a user 
interface, which does also display the results. The user interface 
may contain additional components such as an explanation 
component as well as a knowledge acquisition component, 
allowing to add, change or remove knowledge from or to the 
knowledge database [19]. 

 
 

 

3. Concept 

The concept described subsequently follows the idea that 
KBS can help to identify improvement measures systematically 
and efficiently by providing expert knowledge. Hence, a 
concept for a KBS has been developed and implemented as 
prototype in Microsoft Excel©. From the beginning, a seamless 
integration with the decision-making toolbox described by 
Blume et al. has been aspired [21]. So far, the main 
functionality of the toolbox was to assess the current resource 
efficiency of factories and value chains. Hence, it was built 
upon material and energy flow models of the value chains, 
applying methods such as combined energy value stream 
mapping, material flow simulation and life cycle assessment. 
As results, technical, economic and environmental key 
performance indicators (KPI) were obtained on different 
system levels (e.g. indicating utilization rates per machine, 
quality related material losses within a factory or total costs per 
product along the entire value chain). Apart from assessing the 
status quo, the toolbox was already able to identify potential 
areas of improvement by detecting critical processes and 
parameters through method application and sensitivity 
analyses. This could for instance be the electrical energy input 
and quality rate (critical parameters) of a hardening process 
(critical process). Improvement measures could be tested 
virtually before implementing them in the real world value 
chains. However, the toolbox was not designed to identify 
specific improvement measures so far. Instead, the 
identification was carried out rather manually. By extending 
the toolbox with a KBS, this gap could be closed now (see 
Figure 3). For this reason, critical processes and parameters as 
well as supplementary data such as product, process and 
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production parameters are transferred from the toolbox to the 
KBS through a newly developed interface. An identification 
and ranking of suitable improvement measures is then carried 
out automatically by the KBS. The structure of the KBS is 
oriented to the general structure of KBS introduced in section 
2.3. Hence, a knowledge database has been implemented, 
containing improvement measures (“measure database”) and 
matching rules (“rule database”). Through a (user) interface, 
the toolbox data is imported into the KBS. The matching engine 
corresponds to the inference component, applying rules in 
order to match measures to the critical processes and  
parameters.  

 

The functioning of the different KBS elements is briefly 
explained in the following. The measure database contains 
improvement measures addressing industrial manufacturing 
processes. The database has been created using case and 
domain specific measures found in literature as well as 
individual knowledge acquired in industrial and research 
projects. The measures were structured hierarchically (see 
Figure 4), distinguishing main strategies, sub strategies and 
measures. The specificity increases from top to bottom level, 
while the broadness of applicability decreases. The main 
strategies and sub strategies have been adapted from Despeisse 
[8]. In order to assess their applicability for a specific case, each 
measure has been described individually using few criteria, 
indicating for which processes it is applicable, at which system 
parameter category it mainly targets and which additional 

constraints need to be fulfilled for implementation. Concerning 
the process, both a general process category (e.g. separating) 
and a specific process type (e.g. grinding) are distinguished 
according to DIN 8580 [22]. The distinction is done due to a 
potential transferability of measures within the same process 
category, e.g. between milling and turning processes. 
Measures, which can be applied to multiple processes, can be 
characterized accordingly by selecting several (or all) process 
categories or types. The parameter category refers to the system 
parameter, which the measure is mainly aiming it. Six 
parameter categories are differentiated according to the results 
provided by the decision-making toolbox: energy input, 
material input, workforce input, rework rate, quality rate and 
processing time. Under energy and material input, all kinds of 
energy and materials are summarized, while the other 
parameter categories are referring to single values. Measures 
may target more than one parameter category, e.g. increasing 
the cutting speed of a milling process may both improve the 
energy input and the processing time. Figure 4 exemplarily 
shows some measures to recover waste heat. Obviously, the 
applicability of these measures is not limited to a specific 
process type, as they are generally applicable for processes 
generating waste heat. If recovered heat is taken as input of the 
same or another process, energy is saved. Thus, the main target 
parameter category of these measures is the energy input. 
Depending on the measure, additional constraints might need 
fulfillment to apply it. For instance, the installation of a heat 
pump is reasonable for waste heat temperature levels of 150°C 
or below, while the installation of a steam turbine is 
meaningful for temperature levels from 400 °C. 

  
The rules in the rule database evaluate the matching level 

between measures and the identified improvement areas by 
comparing parameter category, process category and process 
type. In addition, eventual constraints of each measure are 
checked using the supplementary data submitted from the 
toolbox. Like indicated in Figure 5, five matching levels from 
0 to 100 can be reached depending on the criteria fulfillment. 
If no criteria matches, a matching level of 0 is assigned. The 
corresponding rule in the rule database can be expressed as: “IF 
parameter category matches not AND process category 

Figure 3: Concept of the KBS and integration with the existing decision-
making toolbox 

Figure 4: Structure and description of improvement measures in measure 
database of the KBS 
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matches not AND process type matches not AND constraints 
matches not THEN assign matching level of 0”. The rules for 
each other row can be expressed following the same logics. As 
soon as either parameter category, process category or 
constraints match, the measure receives a matching of 25, 
indicating a measure which does not fit well, but might have at 
least a certain transfer potential. If a measure matches all 
criteria (matching level 100), it is tailored to the critical process 
and also fulfills eventual additional constraints. The matching 
engine is liable for applying the rules for all measures of the 
measure database. As a result, every measure is assigned to a 
matching level. The measures are then sorted with respect to 
their matching level in order to receive a prioritized list. Further 
sortings are not carried out, i.e. a sorting within the same 
matching level is not performed. Actual improvement 
potentials as well as invests for measure implementation are not 
considered at this stage, as they are highly individual and 
general estimations seemed not to be meaningful. The measure 
list is finally displayed to the user in the user interface and 
transferred to the decision-making toolbox to allow further  
quantitative measure assessments. 

Figure 5: Criteria to assign matching levels for improvement measures 

4. Application 

In the following, the practical application of the KBS is 
demonstrated with an industrial case study from the European 
metal mechanic sector. As described by Blume et al. [21], an 
energy and material flow model of the whole value chain had 
been set up in the decision-making toolbox in order to identify 
improvement areas. This analysis had shown several 
“hotspots” along the value chain concerning the economic, 
environmental and technical KPI of interest. One of the most 
critical parameters is the electrical energy demand of a 
hardening process, which is carried out using a hardening 
furnace. Thus, a strong motivation to improve this specific 
parameter can be expected from the company’s perspective. 
Instead of manually deriving possible measures to reduce the 
energy input of the hardening process, the evaluation results are 
transmitted to the KBS, accompanied by supplementary 
process data such as utilization rate, quality rate and 
temperature level. This supplementary data is needed to check 
whether the process fulfils the constraints of certain measures, 
hence to figure out if they are well applicable. The matching 
engine of the KBS then checks the matching rules for all entries 
in the measure database, assigning each measure to a distinct 

matching level (0, 25, 50, 75 or 100). This procedure is carried 
out automatically without any action to be taken by the user. 
He or she receives a ranked measure list as result, starting with 
the best matching measures and ending with measures, which 
only match partly. In Figure 6 this procedure is illustrated and 
an excerpt of the resulting measure list for the use case is 
presented. Apparently, the KBS has identified several measures 
receiving a match of 100. According to the matching level 
definition, these measures are addressing the parameter 
category “energy input” of a hardening process and the process 
fulfills their additional constraints. For the case assessed, 
perfect matching measures are for instance a replacement of 
electricity as main energy carrier by natural gas (strategy 
“change resource”) or heat recovery using an ORC (strategy 
“manage resource”). Other exemplary measures like the 
recovery of heat losses using a heat pump do not get the full 
rating, as for instance their constraints do not match with the 
critical process characteristics. However, this does not 
necessarily mean that they have a lower resource saving 
potential. After the matching is performed, some of the 
measures can directly be assessed by means of the toolbox. 
This applies to the replacement of electrical energy with natural 
gas, which can be done easily in the decision-making toolbox 
by changing the input energy carrier for the process. 
Furthermore, the potential of a machine switch-off in non-
productive times can be assessed, e.g. by reducing the electrical 
load demand of the machines for non-productive states. 
However, a perfect switch-off in all non productive times is 
hardly achievable in practice. In order to verify these first 
impact estimations and to assess more complex measures like 
heat recovery, expert consultations are still required. 

Figure 6: Exemplary application of the KBS 
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5. Conclusions and Outlook 

Motivated by the challenge to systematically identify 
improvement measures addressing resource efficiency in 
manufacturing, this paper describes the concept and software 
implementation of a KBS. It is capable to propose suitable 
measures for cases analyzed with the existing decision-making 
toolbox. Therefore, a rule-based matching procedure has been 
developed in order to select suitable measures according to 
their characteristics. The implementation in a standard software 
makes the KBS easy accessible. It can therefore replace or at 
least support experts in the step of measure identification. Due 
to the open structure of the knowledge database, both measures 
and matching rules can be adapted and extended with only 
slight manual efforts. First testings in real use cases revealed a 
high potential to simplify the step of systematic measure 
identification as part of a continuous improvement process 
regarding resource efficiency. However, the measure ranking 
provided by the KBS does neither automatically correspond to 
the potential impact in terms of resource efficiency nor can it 
reflect important economic indicators such as the payback time. 
Thus, supplementary expert knowledge is still necessary in 
order to assess which system parameters will be influenced 
through measure application and to which extend they might 
change. One approach towards the automation of this impact 
quantification could be based on case specific knowledge to 
extend the measure characterization such as invest, achieved 
resource savings or payback times. Though, this data is rarely 
available for many measures, as it is usually not or only partly 
published by the implementing companies and could therefore 
not be considered in the KBS so far. In addition, also further 
frame conditions and assumptions about the manufacturing 
system would be required in order to realistically estimate the 
impacts of a measure transfer from one system to another. 
Consequently, a quantification would go along with significant 
additional data collection. Another possible extension of the 
KBS relates to the seamless integration of measures from other 
sources than the manually filled measure database. The internet 
could be such a source, as it brings together many different 
publications from scientific, industrial and governmental 
domains. Hence, the availability of solutions for very specific 
questions could be improved. Main challenges can be seen in 
the automatic detection of these solutions, e.g. by using web 
search engines and applying data and text mining algorithms to 
the search results. First attempts in this direction have shown 
that many search results are not containing sufficient 
information about specific measures. Further, the measures are 
not described in a standardized way, preventing an automated 
matching following the proposed rules. Yet, it would be 
possible to carry out automatic web searches in the background 
in order to provide the user with potentially relevant websites 
or publications.  
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