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Abstract A Mean-Field homogenization framework
for constitutive modeling of materials involving two
distinct elastic-plastic phases is presented. With this
approach it is possible to compute the macroscopic me-
chanical behavior of this type of materials based on the
constitutive models of the constituent phases. Different
homogenization schemes that exist in the literature are
implemented in efficient algorithms to be used in full-
scale FE simulations. These schemes are compared with
each other in terms of efficiency. Additionally two new
schemes are proposed which are both computation-
ally efficient and compare in accuracy with the more
physically based approaches. Finally the algorithms are
demonstrated on FE simulations of sheet metal forming
operations and compared with experimental results.
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Introduction

The growing needs for improved properties of prod-
ucts in terms of energy consumption, reduced weight,
functionality, smaller dimensions etc. leads to the in-
vestigation of advanced materials that provide more
with less. For the automotive industry for instance
different grades of steels such as TRIP (TRansforma-
tion Induced Plasticity) and DP (Dual-Phase) steels
are of interest. In personal care applications metastable
austenitic stainless steels are being used for their un-
conventional mechanical and physical properties.

One common feature among these alloys is that
they involve multiple phases in their microstructure.
A family from these materials can even be tailored
to yield different phase fractions with slight changes
in the production routes. In this sense these materials
can be considered as composite materials and since
the main concern of this study is metals, it is jus-
tifiable to refer to them as Metal Matrix Composites
(MMC). Clearly different approaches can be followed
for modeling these materials. The conventional hard-
ening models for instance can be used to fit their stress-
strain curves. The drawback of this method is that for
different batches with different phase fractions new
mechanical tests have to be carried out for fitting.
Additionally it is hard to use these models for tailoring
new batches to suit a specific purpose. A physically
based approach is presented here in which the most
important factor influencing the macroscopic mechan-
ical behavior is considered to be the mixture of two
phases with different mechanical properties. Although
each phase can be modeled with simplified phenom-
enological approaches, the mixture can possess totally
different properties than each phase separately.
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In the current approach, the mechanical properties
of the composite are approximated using the Mean-
Field homogenization method. This method makes it
possible to work with the averages of the fields within
subdomains to compute the overall response. Previous
studies show that this homogenization technique can be
used successfully to compute mechanical response of
reinforced solids (see for instance [2, 5]).

The outline of this paper is as follows. First, the
general ingredients of the homogenization technique
are introduced. Different homogenization schemes as
well as the solution algorithms developed are described
next. Finally the results of the study are demonstrated
on a sheet-metal forming simulation.

Mean-field homogenization

Homogenization is a general term that refers to the pro-
cedure of homogenizing the properties of an inhomoge-
neous material to obtain a higher level approximation.
The main ingredients of this procedure are apparently
averaging the fields over the volume of a domain and
projecting the results on its boundary.

Homogenization techniques are generally based on
the concept of a representative volume element (RVE)
which was introduced by HIll [6]. An RVE represents
a macroscopic point in the material (i.e. an integration
point in a Finite Element model) as a finite sized
inhomogeneous volume that is representative for the
microstructure of the material. The aim therefore is to
solve a complementary problem on the RVE and then
use the results in macroscale.

One of the possibilities of using the RVE for homog-
enization is to solve a finite element model defined over
the RVE using as the boundary conditions a combina-
tion of the macroscopic values (see for instance [9, 10]).
The computed results are returned to the macroscale by
suitable averaging techniques. This procedure is very
accurate since a detailed analysis of the stresses and
strains that develop in the RVE is done. On the other
hand, it is clear that this method is computationally very
expensive.

The Mean-Field method is built on the concept of
an imaginary RVE rather than an actual one. The
inhomogeneities are treated as separate homogeneous
domains in an aggregate of domains. The fields over
the subdomains are represented by their averaged val-
ues. The complementary problem then is to solve for
the interaction of the subdomains and find the new
averages that satisfy the boundary conditions. This is
usually carried out by using analytical solutions to the
simplified versions of the problem [1].

One of the main steps in homogenization is the
scale transition which requires macroscopic quantities
to be transferred to the lower scale and vice versa. This
process is carried out using an averaging operator. The
assumption therefore is that macroscopic quantities can
be described with the averages of the microscopic fields
over a volume. The averaging operator is defined as:

〈g(x)〉ω = 1

V

∫
ω

g(x)dV = ḡ (1)

where g is any field defined over the domain, ḡ is the
macroscopic value and 〈g(x)〉ω is the averaged value of
g over the coordinates x belonging to the volume ω.

Equation 1 implies that the volume over which a field
is averaged can be decomposed into different domains:

〈g(x)〉ω = 1

V

∑
k

∫
ωk

g(x)dVk , ω =
⋃

k

ωk. (2)

Rephrasing Eq. 2 in terms of volume fractions of the
decomposed domains gives:

〈g(x)〉ω =
∑

k

fk 〈g(x)〉ωk , fk = Vk

V
. (3)

To be able to justify the scale transition for stress
and strain, the consistency of the mechanical work
computed in both scales must be assured. This requires
that the averaged mechanical work over the RVE is
equal to the mechanical work that is calculated using
the averaged stress and strain. In mathematical terms,
the condition requires:

σ̄σσ : ε̄εε = 〈σσσ 〉ω : 〈εεε〉ω = 〈σσσ : εεε〉ω. (4)

Equation 4 is known as the Hill–Mandel condition.
According to Hill [6], a necessary condition for the
validity of this condition is that equilibrium and com-
patibility within the RVE are satisfied. Furthermore,
the boundary conditions applied on the surface of the
RVE must be of the type that would produce uniform
strain or stress within the RVE if the material were
homogeneous.

Supported by the Hill–Mandel condition, scale tran-
sition relations for stress and strain are given as:

σ̄σσ =
∑

k

fk〈σσσ 〉ωk , ε̄εε =
∑

k

fk〈εεε〉ωk . (5)

These equations are exact under the small strain as-
sumption. In the case of finite strains and deformations,
some considerations must be taken into account. One
of the difficulties when dealing with large deformations
is the volume over which the averaging operation is
carried out. In finite deformations and strains, the refer-
ence and current configuration are different from each
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other. Some strain and stress measures are defined in
the former and some in the latter. This causes an in-
consistency in relating the macroscopic averages to the
averaged values over the RVE. An excellent analysis
for large deformation averaging procedures is given in
Nemat and Nasser [14].

The equations presented so far only provide the scale
transition relations once the fields are determined on
the RVE. Using a Direct FE approach the fields can be
computed by applying the macroscopic stress or strain
in terms of surface boundary conditions (tractions and
displacements, respectively) on the RVE. After the
fields are computed numerically, averaging is carried
out and the results are transferred to the macroscale.
In the Mean-Field homogenization schemes, instead of
the fields, only the averages in different sub-domains
are computed based on a number of assumptions which
will be described in the following section.

In order to compute the stress and strain fields
on an RVE, the mechanical response of the phases
must be known. Generally in the Mean-Field methods
it is assumed that each constituent phase follows its
own macroscopic material behavior. Furthermore, the
effects of the interactions between the phases and their
boundaries are neglected. With these assumptions, the
relation between the average stress and strain on the
sub-domains on the RVE is supplied by continuum
material models:

〈σσσ 〉ωk = Ck : 〈εεε〉ωk (6)

where C is the elasticity tensor.
Equation 6 provides the stress-strain relation for

each phase individually. However, in order to compute
either the stress or the strain, one of these quantities
must be supplied. Therefore the equations given so far
are not sufficient to solve the homogenization prob-
lem. The remaining equations must supply the relation
between the strains or stresses among the different
phases. These equations can be written in terms of
strain or stress concentration relations:

〈εεε〉ωk = Ak : 〈εεε〉ω , 〈σσσ 〉ωk = Bk : 〈σσσ 〉ω (7)

where A and B are the fourth-order strain and the stress
concentration tensors, respectively. In the case when all
the concentration tensors of one type are known, the
tensors for the other type can be determined. Mean-
Field homogenization schemes differ from each other
by the selection of these tensors. In the following sec-
tions the schemes that are studied are discussed.

Homogenization schemes

The simplest schemes are Voigt and Reuss estimates
where isostrain and isostress conditions among the
phases are assumed, respectively. Hence in the Voigt
scheme all the strain concentration tensors are equal to
unity, i.e. Ak = I. This scheme gives an upper bound
for the stress response of the composite. Similarly in
the Reuss scheme the stress concentration tensors are
unity, i.e. Bk = I and it gives a lower bound for the
stress response.

A better approach for determining the strain con-
centration tensor is to use Eshelby’s analytical solution
to the inhomogeneity problem. Eshelby [4] introduced
the equivalent inclusion theory in order to solve the
strain concentration problem for a single inhomogene-
ity embedded in an infinitely large matrix. Hence his
solution can be used only for a composite with two
phases: the matrix and the inhomogeneity. He showed
that when the matrix properties are isotropic and the
inhomogeneity has an ellipsoidal shape, the localized
stress and strain fields in the inclusion are uniform.

Eshelby’s solution

The problem is to find the strain concentration due to
a single inhomogeneity in an infinitely large matrix. To
arrive at the solution Eshelby first derives the inclusion
theory. In this problem the equilibrium strain and stress
are to be determined in the case where a strain is
prescribed in a certain volume within an infinitely large
homogeneous material. The prescribed strain is stress-
free, i.e. no stress develops in as a result of this strain in
an unconstrained setting. Accordingly this is referred
to as an eigenstrain or a transformation strain. When
constrained by the matrix, the equilibrium strain in the
deformed region is given as:

ε̃εε = E : εεε∗, (8)

where εεε∗ is the eigenstrain, ε̃εε is the equilibrium strain
and E is the Eshelby tensor which is a function of the
isotropic elastic properties of the matrix and the shape
of the inclusion. For expressions of the Eshelby tensor
for different geometries see for instance [13]. Here we
use the one applicable to spherical inclusions.

Eshelby proposes that the stress concentrated in
an inhomogeneity can be equally represented as the
stress concentrated by an inclusion (occupying the same
domain as the inhomogeneity) undergoing an arbitrary
eigenstrain. In mathematical terms:

CI : (
εεεM + ε̃εε

) = CM : (
εεεM + ε̃εε − εεε∗) (9)
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where I and M denote the inhomogeneity and the
matrix, respectively. Using Eq. 8 and considering that

εεεI = εεεM + ε̃εε, (10)

the strain concentration can be obtained in the
following form:

εεεI = [
E : (

CM
−1 : CI − I

) + I
]−1 : εεεM (11)

This analytical solution is valid, as mentioned, for
the case of a single inclusion and when the matrix is
infinitely large. Therefore, it is not directly applicable
in an RVE where the matrix is comparable in size to
the inclusion. In order to use Eshelby’s solution for
homogenization, some assumptions have to be made.
Therefore, following Eshelby’s work, different homog-
enization schemes have been proposed which are based
on different approaches to solve the problem.

Self consistent method

The Self Consistent scheme [8, 11] has been origi-
nally developed to compute the mechanical response
of polycrystals and takes into account the interaction
of the matrix and the grains using Eshelby’s solution.
In the model, every grain is treated as an inclusion in
the overall RVE. Hence, based on Eq. 11 the strain
concentration tensor for each grain becomes:

Ak = [
E : (

C
−1 : Ck − I

) + I
]−1

(12)

where C and Ck refer to the elasticity tensor of the RVE
and the kth grain, respectively. The Eshelby tensor in
Eq. 12 is a function of the shape of the grain and the
elastic properties of the RVE. The elasticity tensor of
the RVE is computed as:

C =
∑

k

fk Ck : Ak. (13)

Substituting Eqs. 13 in 12 makes it clear that this
scheme has an implicit nature and requires a non-linear
solution algorithm.

Mori–Tanaka method

For composite materials involving only two phases a
simpler approach has been proposed by Tanaka and
Mori [15]. In this scheme, it is assumed that the inclu-
sions in the RVE, experience the matrix strain as the
far-field strain in the Eshelby theory. This assumption
allows:

〈εεε〉ωI = [
E : (

CM
−1 : CI − I

) + I
]−1 : 〈εεε〉ωM

≡ H : 〈εεε〉ωM , (14)

where H is a tensor that describes the relation between
the strains in each phase. It is related to the strain
concentration as:

A = [
f I + (1 − f ) H

−1
]−1

. (15)

The relation given in Eq. 14 approaches the ex-
act solution as the volume fraction of the inclusions
vanishes. Therefore, it can be deduced that the Mori–
Tanaka assumption is well applicable for low second-
phase concentrations.

For high volume fractions on the other hand Eq. 14
can be reversed to find:

〈εεε〉ωI = [
E : (

CI
−1 : CM − I

) + I
] : 〈εεε〉ωM . (16)

This property makes the Mori–Tanaka scheme at-
tractive for two-phase composite materials with either
low or high volume fraction of the inclusions. Further-
more, as seen in Eqs. 14 and 16 the scheme is explicit.

Lielens interpolation method

An alternative model for two-phase composites has
been proposed by Lielens [2, 3]. This model is based
on an interpolation of the Mori–Tanaka scheme as a
function of the volume fraction of the phases. With
this approach the accuracy of the Mori–Tanaka scheme
is increased for intermediate volume fractions. To cal-
culate the strain concentration tensor in the Lielens
algorithm the relation of the strains in each phase is
formulated as:

→
H = [

E : (
CM

−1 : CI − I
) + I

]−1
,

←
H = E : (

CI
−1 : CM − I

) + I ,

〈εεε〉ωI =
{
(1 − φ)

→
H

−1

+ φ
←
H

−1}−1

: 〈εεε〉ωM (17)

where φ ( f ) is the chosen interpolation function. It can

be observed that the tensors
→
H and

←
H relate to the for-

ward and reverse Mori–Tanaka schemes, respectively.
The requirement on φ ( f ) is that it should always be
bracketed by 0 and 1 and approach to these values as
f approaches 0 and 1, respectively. One function that
meets these requirements is:

φ = f p , p ≥ 0 , (18)

where p is introduced as a fitting parameter.
As seen in Eq. 17 the Lielens scheme is explicit

and approaches the forward (actual) Mori–Tanaka for
f = 0 and the reverse Mori–Tanaka for f = 1. The
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response of the composite for intermediate volume
fractions is estimated by the interpolation of the two.
However, a theoretical basis for that range is difficult
to obtain since the terms “matrix” and “inclusion”
become irrelevant. The Self Consistent scheme treats
every phase as an inclusion in the composite material,
but the validity of this approach is also questionable
at these volume fractions. The introduced parameter
p in Eq. 17 becomes effective in this region and plays
an important role on the stiffness in the intermediate
ranges.

Bound interpolation method

Here, a simpler homogenization method for two-phase
composites is proposed that does not require calcula-
tion of the Eshelby tensor. Instead, it relies on an inter-
polation function in order to describe the partitioning
of the strain. The interpolation is based on the Voigt
and Reuss models for changing volume fraction of the
inclusions.

The strain relation between the phases is defined as:

〈εεε〉ωI = [
(1 − φ) CM

−1 : CI + φ I
]−1 : 〈εεε〉ωM , (19)

where φ is the interpolation function. In the Lielens
model (described above) the starting and end points are
defined as the forward and the reverse Mori–Tanaka
models, which are very accurate and accordingly the
interpolation function starts at a value of 0 and ends at
a value of 1. In this scheme however the starting point is
the Reuss assumption (lower bound) and the end point
is the Voigt assumption (upper bound) which under and
over estimate the stiffness, respectively. Hence, another
interpolation function is proposed for φ as:

φ = (c1 + c2 f )c3 (20)

where c1−3 are fitting parameters. In order not to
violate the theoretical requirements, the parameters
chosen must satisfy the following conditions:

0 ≤ cc3
1 ≤ 1,

0 ≤ (c1 + c2)
c3 ≤ 1.

The proposed technique can alternatively be derived
from the Mori–Tanaka scheme. Starting from the strain
concentration tensor in Eq. 14, if the Eshelby tensor E

is replaced with the spherical tensor:

E = (1 − φ) I, (21)

Equation 19 is obtained. This derivation also shows that
in the cases where the Eshelby tensor is anisotropic,
e.g. the inhomogeneity is not spherical in shape, the

anisotropy expected from the material cannot be cap-
tured with this approach.

Elastic-plastic homogenization

The equations presented in the previous section are
based on the elastic properties of the constituents. In
order to utilize them in an elastic-plastic homogeniza-
tion framework a fictitious reference material must be
chosen. Hill [7] introduced as reference the linearized
elastic-plastic response of the phases, i.e. the continuum
elastic-plastic modulus. With this approach the stiffness
of each phase is approximated by its instantaneous
modulus which is a function of deformation. These
moduli are then used for determining the strain con-
centration tensors of the phases. Alternative definitions
of the reference material also exist in literature. In
Moulinec and Suquet [12], the advantages of using the
secant modulus over the elastic-plastic one is discussed.
It is shown on a number of problems that algorithms
using the secant modulus compare better with exper-
iments. In Doghri and Ouaar [3], the advantages of
using the continuum tangent modulus and the algo-
rithmic tangent modulus are compared, including their
isotropic projections. It is demonstrated that using the
algorithmic tangent moduli as reference materials and
the isotropic projection of them in computing the Es-
helby tensor results in good agreement with observa-
tions.

From these studies it is clear that the selection of the
reference material is very important to have a reliable
algorithm. In this study the algorithmic elastic-plastic
tangent modulus is chosen as the reference material.
For calculating the Eshelby tensor, the isotropic pro-
jection of the corresponding tangent is used (for details
of the projection algorithm see [3]) and the inclusions
are considered to be spherical in shape.

In large deformation analysis, as mentioned before,
care must be taken in relying on the averaging operator.
When the deformed configuration does not coincide
with the reference configuration, some of the averaged
strain and stress measures do not conform with their
macroscopic values. Nemat and Nasser [14] gives a
detailed analysis on this matter. For the case of form-
ing operations, an approximation to the solution can
be obtained using an incremental approach where the
total deformation is imposed incrementally on the RVE
and the configuration is updated after each converged
step. Provided that the incremental displacements are
small compared to the size of the RVE, the current
configuration can be approximated with the reference
configuration. This implies that the effects of the incon-
sistencies are negligible.
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According to these considerations, in the end a sym-
metric strain concentration tensor is obtained. There-
fore, when the velocity gradient (L = ∇v) is used as
a strain measure, only the symmetric part of it (D =
1
2 (L + LT)), i.e. deformation rate, will be concentrated
and anti-symmetric part (W = 1

2 (L − LT)), i.e. spin, will
be unaffected. Assuming rotational equivalence of the
phases results in the following formulation:

〈D〉ωk = Ak : 〈D〉ω ,

〈W〉ωk = 〈W〉ω. (22)

Equation 22 implies that the strain concentration tensor
operates on the deformation rate of each phase and the
rotation at the macroscale is considered as a rigid body
rotation over the entire RVE.

Solution algorithms

For the elastic homogenization, i.e. when both phases
remain elastic during the deformation, the solution of
the strain partitioning according to the schemes de-
scribed in the previous section is trivial (except for the
Self Consistent scheme which will be treated below).

For the elastic-plastic case, the strain concentration
tensor becomes a function of the deformation. This
means that although the schemes Voigt, Reuss, Mori–
Tanaka, Lielens Interpolation and Bound Interpolation
yield an explicit definition of the concentration ten-
sor, its computation requires an iterative algorithm. In
Doghri and Ouaar [3], the solution is obtained using
the method of Fixed-Point iterations which proves to
be robust for this problem.

The non-linearity arises due to the fact that the strain
concentration tensor for all the schemes is a function
of the instantaneous moduli of the phases. As these
moduli change with the amount of strain increment
so does the partitioning. In an Euler backward (fully
implicit) approach therefore the system of equations
becomes non-linear. In order to solve the system, the
stress update is considered to take place in two lev-
els where the homogenization level encapsulates the
stress-update of each phase.

The algorithm starts with an initial partitioning of the
phases according to the Voigt assumption. Having the
initial strain increment for each phase, the stresses are
updated and the corresponding moduli of the phases
are determined. Based on these the strain concentra-
tion tensor is determined which results in the new strain
increments. The iterations continue until there is no
change in the concentrated strain. It is worth mention-
ing that the homogenization algorithm is independent

of the constitutive models chosen for each phase. The
algorithm is summarized in Algorithm 1.

Algorithm 1 Stress-update algorithm for two-phase
elastic-plastic homogenization. S denotes the array of
state variables.

Require: �εεε, f , σσσ t−1
M , σσσ t−1

I , St−1

initialize
A

1 = I

while |R| > TOL do
k = k + 1
calculate the strain increments

�εεεk
I = A

k : �εεε

�εεεk
M = �εεε − f �εεεk

I

1 − f
stress-update for phase M

send �εεεk
M, σσσ t−1

M and St−1
M

get σσσ k
M, C

k
M and Sk

M
stress-update for phase I

send �εεεk
I , σσσ t−1

I and St−1
I

get σσσ k
I , C

k
I and Sk

I
calculate the A tensor

send f , C
k
M and C

k
I

get A
k+1

calculate the residual
R = �εεε − (

A
k+1

)−1 : �εεεk
I

end while
σσσ t = f σσσ k

I + (1 − f )σσσ k
M

C = C
k
M + f (Ck

I − C
k
M) : A

k

Return: σσσ t, σσσ k
M, σσσ k

I , Sk, C

The calculation of the A tensor is trivial for all
schemes except for the Self Consistent due to its im-
plicit nature. The iterative algorithm for the solution
of the strain concentration for this case is given in
Algorithm 2.

Plane stress condition

An important constraint for sheet-metal forming simu-
lations is the plane stress condition which stems from
the fact that the thickness of the sheet metal is very
small compared to the in-plane dimensions. This con-
dition requires the stress components in the thickness
direction to vanish. Accordingly, the thickness strain is
an unknown that has to be determined.

Although for a homogeneous material the strain can
be assumed to be uniform over a material point (con-
sidering that the material point comprises sufficiently
many grains), for a two-phase composite material a
uniform thickness strain assumption does not hold. In
case the plane stress condition is imposed on each phase
individually the system will be over-constrained. The
extra constraint makes the solution depart from the
minimum energy solution. Therefore it must be kept
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Algorithm 2 Calculation of the strain concentration
tensor for the Self Consistent scheme.

Require: CM, CI , f
initialize

calculate the A tensor for the Lielens method
send f , C

k
M and C

k
I

get A
k+1

while |R| > TOL do
k = k + 1
Calculate the homogenized material tangent

C
k = CM + f (CI − CM) : A

k

calculate the Eshelby tensor
send C

k

get E

Calculate the A tensor

A
k+1 =

[
E :

(
C

k−1 : CI − I

)
+ I

]−1

Calculate the residual
R = A

k+1 − A
k

end while
Return: A

k+1

in mind that when there are constraints over the RVE
it is crucial to impose these conditions on the overall
behavior of the RVE and not on the individual phases.

This however, leads to a computational drawback.
Since the plane stress condition cannot be imposed
on each phase, the stresses must be computed for the
full three dimensional case. Additionally, the resulting
material tangent must be condensed.

In this study the Regula-Falsi (False Position)
method is used to solve for the thickness strain. The
condensation of the material tangent for the plane
stress condition is performed as:
[
σ̇σσ a

0

]
=

[
Caa Cab

Cba Cbb

] [
ε̇εεa

ε̇εεb

]

⇒ σ̇σσ a = (
Caa − Cab : C

−1
bb : Cba

) : ε̇εεa (23)

where a and b stand for the in-plane and out-of-plane
components, respectively.

Results

The results of the constitutive model are presented
first at the material point level where the schemes are
compared with each other. Next, as a demonstration of
the model, a deep drawing simulation run in MSC.Marc
is shown.

For the demonstrations, a simple J2-plasticity model
with isotropic hardening is assumed for each phase.
Hardening is prescribed as a power-law relation. How-
ever, the homogenization method presented in this arti-

Table 1 Plasticity material paramaters

Phase σ y (MPa) K (MPa) m

Ferrite (α) 291 741 0.1928
Martensite (α′) 1,293 2,486 0.0747

cle is not restricted by the material model chosen for the
constituent phases. The material parameters are chosen
for a DP600 dual-phase steel, where the constituent
phases are ferrite (α) and martensite (α′). The phase
fraction of martensite is considered as: f = 0.2.

Elastic properties of both phases are assumed to be
equal, which is a reasonable assumption for DP steels.
The elastic modulus and the Poisson’s ratio are chosen
as: E = 210 (GPa) and ν = 0.3. The plastic material
parameters are summarized in Table 1 which describe
the flow stress in the form: σ f = σ y + K (εp)m.

Partition of strain and stress

In this section all the discussed homogenization
schemes are demonstrated on a test problem at the in-
tegration point level. The aim is to show how the strain
and stress are partitioned into the phases for a pre-
scribed stress in the overall material. For the solution
of the strain increments, the material tangent computed
by the homogenization algorithm is used. The tangent
proves to supply stable convergence behavior however
due to the history-dependent nature small increments
lead to more accurate results.

In the example, a uniaxial stress state is prescribed
and the stresses and strains in the phases are com-
puted with the homogenization schemes described in
the previous section. The only schemes that need input
parameters are Lielens interpolation and Bound inter-
polation, of which the former has one and the latter has
three. Here, the parameters are selected such that the
results closely approximate the Self Consistent scheme.
On the other hand the advantage of these models is that
if data from an experiment exists, the response can be
adjusted accordingly. The chosen parameters are:

p = 0.75,

c1 = 0.6, c2 = 0.4, c3 = 1.2.

In Fig. 1 the equivalent stress results obtained using
all the schemes are presented. As expected Voigt and
Reuss models give the most stiff and most compli-
ant response, respectively. Among the schemes, Self
Consistent and Mori–Tanaka models do not have any
fitting parameters and the results show that the latter
has softer response than the former. The results of the
proposed Lielens interpolation and Bound Interpola-
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Fig. 1 Comparison of the stress-strain relations obtained with
different homogenization schemes under uniaxial tension

tion schemes lie in between Self Consistent and Mori–
Tanaka models. This is due to the chosen parameters
for the interpolation. With different parameters the
response can be altered to be stiffer or more compliant.

Figures 2 and 3 show the developed normal stresses
in the orthogonal direction in each phase. As discussed
before these stress components are not zero, as op-
posed to the overall stress. This means that although
the averaged response of the material is uniaxial, in the
individual phase level it is not. If this condition would
have been imposed on each phase, the results would
deviate from the current ones.

It can be seen on the results that all schemes, except
for the bounds, capture similar directions of the stresses
that develop in each phase. Although the Bound Inter-
polation model is not based on the Eshelby’s solution,
it is observed that the direction predicted by it matches
those by the Self Consistent and the Lielens Interpo-
lation models. On the other hand, this observation is

Fig. 2 Comparison of the austenite normal stress in the orthogo-
nal direction for different homogenization schemes

Fig. 3 Comparison of the martensite normal stress in the orthog-
onal direction for different homogenization schemes

true only for isotropic material properties and spherical
inclusions.

Cyclic shear

In this section the results of the different schemes for
a plane-stress, cyclic shear deformation are presented.
The constitutive models of each phase involve only
isotropic hardening. This means that the phases individ-
ually cannot capture the Bauschinger effect. In order to
have that possibility a kinematic hardening model has
to be included.

On the other hand, in the two phase composite due
to differences in the yield stresses of the phases, the
Bauschinger effect can be observed clearly. This arises
due to the fact that during reverse loading when the
soft phase already starts developing a negative stress,
the hard phase is still elastic with a positive stress. As
the soft phase yields in the reverse direction—at its
isotropic flow stress—the average stress over the com-
posite is smaller in magnitude than the forward flow
stress. The additional influence of kinematic hardening
models for the constituent phases have been studied
in Doghri and Friebel [2] by cyclic deformation simu-
lations for the Mori–Tanaka and Lielens Interpolation
schemes.

The results of the schemes in cyclic shear are shown
in Fig. 4. It is seen that all models except Reuss show the
Bauschinger effect. It is most pronounced in the Voigt
model while the Self Consistent and Lielens Interpo-
lation schemes also capture the effect significantly. On
the other hand, after the second direction change it is
seen that all the models return to their original flow
stress relation.
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Fig. 4 Comparison of the shear stress in a cyclic test for different
homogenization schemes

Sheet metal forming simulation

Here, the applicability of the presented schemes in a
full scale FE simulation is presented. The process is
cup-drawing of a thin sheet with the parameters given
as:

Blank radius: 90 mm
Blank thickness: 1 mm

Punch radius: 50 mm
Die radius: 51.25 mm

Punch fillet radius: 9.53 mm
Die fillet radius: 7.14 mm

Friction coefficient: 0.05

In the simulation a quarter of the blank is discretized
with 360 thick shell elements which have out-of-plane
shear components and reduced integration capability.

Fig. 5 Punch force-displacement curves obtained using different
homogenization schemes

Fig. 6 Thickness profiles obtained using different homogeniza-
tion schemes

The punch force-displacement curves obtained using
the homogenization schemes are presented in Fig. 5.
As a reference, results from a single phase, isotropic
material model that is fitted to the Self Consistent
uniaxial hardening curve is also shown. In the figure
it is observed that the results of the homogenization
schemes show the similar trend as in the integration
point level results. The single phase curve however
falls significantly apart. This is related to the fact that
the partitioning of stress into phases depends on the
current stress state as shown on the previous exam-
ples. Additionally, homogenization schemes show the
Bauschinger effect whereas the single phase model in-
volves only isotropic hardening.

In Fig. 6, the thickness distribution over the blank
radius is plotted. No significant difference is observed
among the different models.

In order to compare the computational efficiency
of the models the CPU times as well as the global
number of iterations are summarized in Table 2. No
significant difference in the number of iterations can be
observed among the models. In the computational costs
however the Self Consistent scheme stands out as the

Table 2 CPU times and global number of iterations required for
the simulation using different homogenization schemes

Scheme CPU time (s) Iterations

Reference 97 618
Voigt 569 602
Reuss 620 608
Mori–Tanaka 652 615
Self consistent 2,133 638
Lielens interpolation 814 641
Bound interpolation 640 643
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most demanding one. Lielens and Bound interpolation
schemes therefore serve as cheap alternatives which are
shown to yield accurate results.

Summary and conclusions

The study concerns the Mean-Field homogenization
method to be applied in constitutive modeling of mul-
tiphase materials. The goal of this study was to use a
physically based approach and develop computation-
ally efficient algorithms which can be used in modeling
of these materials.

The basic ingredients of the Mean-Field homoge-
nization method as well as the details of different ho-
mogenization schemes were presented. The Voigt and
Reuss schemes are based on very crude assumptions
and determine the upper and the lower bounds for
the incremental stiffness of the material. Two com-
pletely physically based schemes can be found in lit-
erature, namely the Self Consistent and Mori–Tanaka
approaches. These schemes do not involve any fitting
parameters and capture the response of the compos-
ite based on Eshelby’s solution of the inhomogeneity
problem. The Mori–Tanaka scheme is accurate for low
volume fractions of the inclusions whereas there is no
such restriction on the Self Consistent model.

The Lielens scheme interpolates the forward and
reverse Mori–Tanaka models to capture the response
at higher concentration of the inclusions. A new inter-
polation function is proposed here with which a fitting
parameter is introduced. The parameter does not affect
the results at low and high volume fractions but enables
to alter the behavior in the intermediate range.

A new scheme is proposed which is similarly an in-
terpolative method. The schemes that are interpolated
in this case are Voigt and Reuss. This method is not
based on the Eshelby’s solution and is rather heuristic.
However a derivation based on the Mori–Tanaka ap-
proach justifies the use of the model. The interpolation
function has three parameters which makes the fitting
of the response flexible.

The schemes are demonstrated at the integration
point level on one stress and one strain driven exam-
ple. The results reveal that all schemes, except for the
bounds, yield similar results. An important considera-
tion here is the direction of stresses that develop within
each phase. It is seen that the proposed schemes can
capture the directions accurately.

Finally, the models are compared on a full scale
deep-drawing simulation. It is observed that the con-

vergence behavior of homogenization schemes is com-
parable with conventional plasticity models. In terms
of computational efficiency the schemes perform satis-
factorily where only less than an order of magnitude of
increase in time is observed.
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