HOW VALID ARE LEFT–RIGHT SYMMETRICAL MUSCULO–SKELETAL MODELS?

Conference Paper · July 2016

6 authors, including:

Riza Bayoğlu
University of Twente
14 PUBLICATIONS 10 CITATIONS
SEE PROFILE

Karlijn Groenen
Radboud University Medical Centre (Radbou...
13 PUBLICATIONS 16 CITATIONS
SEE PROFILE

Nico Verdonschot
University of Twente
393 PUBLICATIONS 6,372 CITATIONS
SEE PROFILE

Some of the authors of this publication are also working on these related projects:

All-Polymer Knee View project

Musculo-Skeletal Modeling of the Human Spine View project

All content following this page was uploaded by Riza Bayoğlu on 12 July 2016.
The user has requested enhancement of the downloaded file.
HOW VALID ARE LEFT-RIGHT SYMMETRICAL MUSCULO-SKELETAL MODELS?

Riza Bayoglu¹, Leo Geeraertds², Karlijn Groenen², Nico Verdonschot¹³, Bart Koopman¹, Jasper Homminga¹

1. Department of Biomechanical Engineering, University of Twente, Enschede, the Netherlands; 2. Department of Anatomy, Radboud university medical center, Nijmegen, the Netherlands; 3. Orthopaedic Research Lab, Radboud university medical center, Nijmegen, the Netherlands

Introduction
Musculo-skeletal (MS) models of the spine provide clinical insights into the in vivo functioning of the spine and allow us to answer “what if” questions [1]. Current musculo-skeletal models combine data from different dissection studies [2] and make assumptions about missing data. A musculo-skeletal model based on a complete and coherent dataset, obtained from one specimen, would further improve our understanding of the human spine significantly and is therefore a better approach for use in clinical practice [3]. With the aim of building such a complete and consistent model of the entire spine, we recently started a detailed-dissection project. In this specific study, we compare morphologic parameters for the left and right sternocleidomastoid muscle to assess the validity of making a left-right symmetrical model.

Methods
We obtained the left and right sternocleidomastoid muscle (SCM) from an embalmed body of a 79-year-old male (height: 154 cm, mass: 51 kg). Prior to resection, we divided the muscles into smaller muscle-tendon elements to represent the muscle function more accurately (figure 1, left). Elements 1 and 2 originated from the sternum, 3 and 4 from the clavicle. Resected muscles were stored in 2% formaldehyde solution to prevent decay and drying of the tissues. We measured several morphologic parameters: fiber length, tendon length, sarcomere length, optimum fiber length, pennation angle and physiological cross sectional area (PCSA), using the protocols described by Breteler et al. [4]. From each element, we isolated six to ten single muscle fibers for sarcomere length measurements with a He-Ne laser using the method of Cross et al. [5] (figure 1, right).

Results
Clear differences were seen between the left and right SCM muscle (table 1). For example, although the fiber lengths were similar between the left and right SCM, optimum fiber lengths were higher in the left muscle due to different contraction state of the sarcomeres. The total tendon length of the sternal part was also higher in the left SCM. The total PCSAs were 32% and 25% larger in the right for the sternal and clavicular parts, respectively. This results in maximum force differences of 47 and 29 Newton assuming a specific muscle tension of 90 N/cm2, which translates into equally large maximal force differences in MS models.

Discussion
Symmetry is usually assumed when building MS models. However, the data presented here indicated muscular imbalance for sternocleidomastoid muscle. Erroneous force estimations will emerge in MS models if the presented differences are neglected. Although we measured one muscle in this study, similar-anatomical variations are anticipated for other muscles of the spine.

References

Acknowledgements
This work was supported by a grant from fonds NutsOhra.