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Abstract. We investigate different sets of operations on languages
which results in corresponding algebraic structures, viz. in different
types of full AFL’s (full Abstract Family of Languages). By iterating
control on ETOL-systems we show that there exists an infinite sequence
Cm (m ≥ 1) of classes of such algebraic structures (full AFL-structures):
each class is a proper superset of the next class (Cm ⊃ Cm+1). In turn
each class Cm contains a countably infinite hierarchy, i.e., a countably
infinite chain of language families Km,n (n ≥ 1) such that (i) each Km,n

is closed under the operations that determine Cm, and (ii) each Km,n

is properly included in the next one: Km,n ⊂ Km,n+1.

1. Introduction

Usually, each newly introduced family of formal languages will be stud-
ied sooner or later with respect to its closure properties. In the early
days of formal language theory, this meant that (non)closure under each
known operation has to be established separately. Then one realised that
some operations are more fundamental that others, and that some other
operations can be expressed in these fundamental ones: they are “poly-
nomials” over those fundamental operations. In short, a more algebraic
view on this part of formal language theory emerged.

An important step in this algebraic approach to families of languages
has been the introduction of the notion of full Abstract Family of Lan-
guages (full AFL), being a nontrivial family of languages closed under
the operations: union, concatenation, Kleene ⋆, homomorphism, inverse
homomorphism, and intersection with regular sets [9]. Similar as in or-
dinary algebra —where one went from groups to semigroups, rings, and
fields— full AFL’s gave rise to weaker structures (full trios, full semi-
AFL’s [9]) and more powerful ones: full substitution-closed AFL’s [10],
full super-AFL’s [11] and full hyper-AFL’s [1].

For each class C of these full AFL-like structures, it has been shown
that C is not trivial in the sense that it does not solely consists of a few
“isolated” language families but, to the contrary, that C is infinite. This
latter fact is usually established by showing the existence of an infinite
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hierarchy i.e., a countably infinite chain of language families Kn (n ≥ 1)
such that (i) each Kn is closed under the operations that determine C,
and (ii) each Kn is properly included in the next one: Kn ⊂ Kn+1.

In this paper we show that by iterating control on ETOL-systems, as
studied in [7, 8], we obtain an infinite sequence of full AFL-structures.
Each class Cm (m ≥ 1) in this sequence is a proper superset of the next
class: Cm ⊃ Cm+1. So the full AFL-structures in Cm+1 are more powerful
than those in Cm. And each class Cm is nontrivial, since it contains an
infinite hierarchy of language families Km,n (n ≥ 1), each of which is
properly included in the next one: Km,n ⊂ Km,n+1. The proofs of these
results heavily rely on the main results of [4] and [7]. Many properties
of full substitution-closed AFL’s, full super-AFL’s and full hyper-AFL’s
(quoted in §5) have their counterparts for the classes Cm; see §7.

The remaining part of this paper is organized as follows. §2 con-
sists of Preliminaries. The definitions and properties of some general-
ized grammatical models (controlled K-iteration grammar, context-free
K-grammar, regular K-grammar) are in §3 and §4, respectively. In §5
we recall the corresponding full AFL-structures. In §6 we quote two fun-
damental theorems which enable us to establish the main result in §7.
Some concluding remarks are in §8.

2. Preliminaries

We already mentioned the standard text [9] on full AFL’s and related
concepts. Some other books on formal language theory, like [12, 13, 15],
also treat the relevant issues to the extent we use in this paper. For
Lindenmayer or L systems we refer to [14].

Henceforth, Σω denotes a countably infinite set of symbols. A family
of languages, or a family for short, K is a set of languages L with L ⊆ Σ⋆

L

such that each ΣL is a finite subset of Σω. As usual, we assume that
for each language L in the family K, the alphabet ΣL is minimal, i.e.,
a symbol α belongs to ΣL if and only if there exists a word w of L in
which α occurs. A family K is called nontrivial if K contains a nonempty
language L with L 6= {λ}, where λ denotes the empty word. We also
assume that each family is closed under isomorphism.

We will use well-known families like FIN (family of finite languages),
REG (regular languages), CF (context-free languages), as well as the
family ONE of singleton languages: ONE = {{w} | w ∈ Σ⋆

ω}, the family
ALPHA of alphabets: ALPHA = {Σ | Σ ⊂ Σω, Σ is finite}, and the
family SYMBOL of singleton alphabets: SYMBOL = {{σ} | σ ∈ Σω}.

We often need the concept of substitution and a few of its general-
izations (Definitions 2.1 and 5.1).
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Definition 2.1. Let K be a family and V an alphabet. A K-substitution
is a mapping τ : V → K; it is extended to words over V by τ(λ) = {λ},
and τ(α1 . . . αn) = τ(α1) . . . τ(αn) where αi ∈ V (1 ≤ i ≤ n), and to
languages L over V by τ(L) =

⋃
{τ(w) | w ∈ L}. If K equals FIN or

REG, τ is called a finite or a regular substitution, respectively.
Given families K and K ′, let Sûb(K,K ′) be defined by Sûb(K,K ′) =

{τ(L) | τ is a K ′-substitution; L ∈ K}. A family K is closed under K ′-
substitution if Sûb(K,K ′) ⊆ K, and K is closed under substitution, if
K is closed under K-substitution.

τ : V → K is a K-substitution over V if τ(α) ⊆ V ⋆ for each α ∈ V .
A K-substitution τ over V is nested, if α ∈ τ(α) for each α ∈ V . 2

Definition 2.2. A prequasoid K is a nontrivial family that is closed un-
der finite substitution and under intersection with regular languages. For
each family K, let Π(K) denote the smallest prequasoid that includes
K. A quasoid is a prequasoid that contains an infinite language. 2

It is easy to see that each [pre]quasoid includes the smallest [pre]quas-
oid REG [FIN, respectively], whereas FIN is the only prequasoid that is
not a quasoid; cf. [1, 2].

Definition 2.3. A full Abstract Family of Languages or full AFL is a
nontrivial family of languages closed under union, concatenation, Kleene
⋆, homomorphism, inverse homomorphism, and intersection with regular
languages. A full substitution-closed AFL is a full AFL closed under
substitution. 2

Frequently, the following characterization of full AFL’s is useful; cf.
Theorem 5.4(1) below.

Proposition 2.4. [10, 9, 2] A family K of languages is a full AFL
if and only if K is a prequasoid closed under regular substitution (i.e.,
Sûb(K,REG) ⊆ K), and under substitution in the regular languages
(i.e., Sûb(REG,K) ⊆ K). 2

3. Some Generalized Grammars

In this section we recall the definitions of some grammar types with a
countably infinite number of rules rather than a finite number. These
generalizations are based on the concepts of ETOL-system (Definition
3.1), controlled ETOL-system (3.2), context-free grammar (3.4), and
non-self-embedding context-free grammar (3.5).

Definition 3.1. [1, 2] Let K be a family. A K-iteration grammar G =
(V,Σ,U, S) consists of an alphabet V , a terminal alphabet Σ (Σ ⊆ V ),
an initial symbol S (S ∈ V ), and a finite set U of K-substitutions over V .
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The language L(G) generated by G is defined by L(G) = U⋆(S)∩Σ⋆ =⋃
{τp(. . . (τ1(S)) . . .) | p ≥ 0; τi ∈ U, 1 ≤ i ≤ p} ∩ Σ⋆.

The family of languages generated by K-iteration grammars is de-
noted by H(K). For m ≥ 1, Hm(K) is the family generated by K-
iteration grammars that contain at most m K-substitutions in U . 2

Definition 3.2. [1, 2] Let Γ and K be a families of languages. A Γ -
controlled K-iteration grammar or (Γ,K)-iteration grammar is a pair
(G,M) that consists of a K-iteration grammar G = (V,Σ,U, S) and
a control language M , i.e., M is a language over U , and M ∈ Γ . The
language L(G,M) generated by (G,M) is defined by L(G,M) = M(S)∩
Σ⋆ =

⋃
{τp(. . . (τ1(S)) . . .) | p ≥ 0; τi ∈ U, τ1 . . . τp ∈ M} ∩ Σ⋆.

The family generated by (Γ,K)-iteration grammars is denoted by
H(Γ,K). Similarly, Hm(Γ,K) is the family generated by (Γ,K)-iteration
grammars that contain at most m K-substitutions in U (m ≥ 1). 2

Clearly, H(K) =
⋃

m≥1 Hm(K) and H(Γ,K) =
⋃

m≥1 Hm(Γ,K).

Example 3.3. By taking concrete values for the parameter K we ob-
tain some families of Lindenmayer languages; viz. H(ONE) = EDTOL,
H1(ONE) = EDOL, H(FIN) = ETOL, and H1(FIN) = EOL. Readers
unfamiliar with L systems are referred to [14]. Alternatively, they may
view these equalities as definitions. 2

Definition 3.4. [16, 2, 6] Let K be a family. A context-free K-grammar
G is a K-iteration grammar G = (V,Σ,U, S) of which each substitution
τ from U is a nested K-substitution over V ; so α ∈ τ(α) for each α ∈ V
and each τ ∈ U .

The family of languages generated by context-free K-grammars is
denoted by A(K). For m ≥ 1, Am(K) is the family generated by context-
free K-grammars that contain at most m K-substitutions in U . 2

Definition 3.5. [2, 5] Let K be a family and let U be a finite set
of nested K-substitutions over an alphabet V . Then U is called not
self-embedding if for all u ∈ U⋆ and for all α in V , the implication
w1αw2 ∈ u(α) ⇒ (w1 = λ or w2 = λ) holds for all w1, w2 ∈ V ⋆.

A regular K-grammar G = (V,Σ,U, S) is a context-free K-grammar
where U is a non-self-embedding set of nested K-substitutions over V .

The family of languages generated by regular K-grammars is denoted
by R(K). For each m ≥ 1, Rm(K) is the family generated by regular
K-grammars that contain at most m K-substitutions in U . 2

Example 3.6. When we take K equal to FIN, we have A(FIN) = CF
and R(FIN) = REG. 2
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4. Some Properties of These Generalized Grammars

This section consists of some useful properties of the grammatical devices
that we discussed in the previous section.

First, we remember that regular control does not extend the gener-
ating power of K-iteration grammars.

Theorem 4.1. [1, 2] If K ⊇ ONE, then H(REG,K) = H(K). 2

The number of K-substitutions in a Γ -controlled K-iteration gram-
mar can be reduced to two in case the parameters Γ and K satisfy some
very simple conditions, since we have

Proposition 4.2. [1, 2] Let K be a family with K ⊇ SYMBOL.

(1) If Γ is a family closed under λ-free homomorphism, then H2(Γ,K) =
Hm(Γ,K) = H(Γ,K) for each m ≥ 2.

(2) For each m ≥ 2, H2(K) = Hm(K) = H(K). 2

For [non-self-embedding] context-free K-grammars a reduction to a
single, equivalent [non-self-embedding] K-substitution is possible.

Proposition 4.3. [2, 6, 5] Let K be a family closed under union with
languages from SYMBOL. If K ⊇ SYMBOL, then A1(K) = Am(K) =
A(K) and R1(K) = Rm(K) = R(K) for each m ≥ 1. 2

Comparing Propositions 4.2(2) and 4.3 reveals that providing regular
or context-free K-grammars with control does not lead to interesting
results.

We conclude this section with a few useful inclusion properties for
which we need some additional terminology.

Definition 4.4. A family Γ is closed under left marking [right marking]
if for each language L in Γ with L ⊆ Σ⋆ for some Σ, and for each symbol
c not in Σ, the language {c}L [L{c}, respectively] belongs to Γ . And
Γ is closed under full marking if Γ is closed under both left and right
marking. 2

Proposition 4.5. [1, 4]

(1) Let Γ be a family closed under right marking, and let K be a family
with K ⊇ ONE. Then Γ ⊆ H(Γ,K) and K ⊆ H(Γ,K).

(2) Let Γ be a family closed under (i) left or right marking, (ii) union
or concatenation, and (iii) Kleene star. If K is a family with K ⊇
SYMBOL, then H(K) ⊆ H(Γ,K). 2

Proposition 4.6. [2, 4, 5, 6] Let K be a family closed under union
with languages from SYMBOL. If K ⊇ SYMBOL, then K ⊆ H(K),
K ⊆ A(K), and K ⊆ R(K). 2
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Proposition 4.7. [1, 2, 4, 5, 6] Let Γ be a family closed under full
marking. If the family K is a prequasoid, then so are the families R(K),
A(K), H(K) and H(Γ,K). 2

5. Some Full AFL-Structures

In §2 we already encountered full AFL’s and full substitution-closed
AFL’s. For full AFL-like structures weaker than full AFL, we refer to
[9]. The present section is devoted to structures stronger than full AFL,
which are related to the generalized grammars of §3.

Definition 5.1. A family K is closed under iterated substitution if for
each language L from K with L ⊆ V ⋆ for some alphabet V , and for each
finite set U of K-substitutions over V , the language U⋆(L), defined by

U⋆(L) =
⋃

{τp . . . τ1(L) | p ≥ 0, τi ∈ U (1 ≤ i ≤ p)},

belongs to K. In case each substitution in U is nested, then K is called
closed under nested iterated substitution.

A full hyper-AFL [1] is a full AFL closed under iterated substitution;
a full super-AFL [11] is a full AFL closed under nested iterated substi-
tution. 2

Definition 5.2. Let K be a family. By F̂(K) [R̂(K), Â(K), and Ĥ(K)]
we denote the smallest full AFL [full substitution-closed AFL, full super-
AFL, and full hyper AFL, respectively] that includes K. 2

Theorem 5.3. [2, 4, 5, 6] Let K be a family. Then K is a
(1) full substitution-closed AFL, if and only if K is a prequasoid and
R(K) = K.
(2) full super-AFL, if and only if K is a prequasoid and A(K) = K.
(3) full hyper-AFL, if and only if K is a prequasoid and H(K) = K. 2

Theorem 5.4. [2, 4, 5, 6] Let K be a family. Then
(1) Sûb(REG,Sûb(Π(K),REG)) = Sûb(Sûb(REG,Π(K)),REG) is a
full AFL that includes K.
(2) RΠ(K) is a full substitution-closed AFL that includes K.
(3) AΠ(K) is a full super-AFL that includes K.
(4) HΠ(K) is a full hyper-AFL that includes K. 2

Theorem 5.3(3) says that K is a full hyper-AFL if and only if Π(K) =
K and H(K) = K. Consequently, the smallest full hyper-AFL Ĥ(K),
that includes a family K, equals Ĥ(K) =

⋃
{w(K) | w ∈ {Π,H}⋆} or,

equivalently, Ĥ(K) = {Π,H}⋆(K). According Theorem 5.5 below, this
infinite set of strings over {Π,H} can be reduced to the single string HΠ.
Obviously, a similar remark applies to the other full AFL-structures.



An Infinite Sequence of Full AFL-structures 7

Theorem 5.5. [2, 4, 5, 6] Let K be a family of languages. Then F̂(K) =
Sûb(REG,Sûb(Π(K),REG)) = Sûb(Sûb(REG,Π(K)),REG), R̂(K) =
RΠ(K), Â(K) = AΠ(K), and Ĥ(K) = HΠ(K). 2

Theorem 5.6. REG [REG, CF, ETOL, respectively] is the smallest full
AFL [full substitution-closed AFL, full super-AFL, full hyper-AFL]. 2

Each full hyper-AFL is a full super-AFL, and each full super-AFL
is a full substitution-closed AFL. But none of the converse implications
hold; cf. Theorem 5.6.

6. Two Fundamental Results

This section contains two results (Theorems 6.1 and 6.4) that constitute
the principal steps in obtaining the main result of this paper; cf. §7. The
first one is a direct consequence of a more general statement from [4].

Theorem 6.1. [4] Let Γ1, Γ2 and K be families of languages and let
Γ2 be closed under full marking, union or concatenation, and Kleene ⋆.
If K ⊇ ALPHA, then H(Γ1,H(Γ2,K)) ⊆ H(Sûb(Γ1, Γ2),K). 2

Corollary 6.2. [4] (1) Let Γ be a family of languages closed under full
marking and under substitution that satisfies Γ ⊇ REG. If K is a family
with K ⊇ ALPHA ∪ ONE, then H(Γ,H(Γ,K)) = H(Γ,K).

(2) Let Γ be a family of languages that is closed under full marking,
union, concatenation, and Kleene ⋆. If K is a family with K ⊇ ALPHA∪
ONE, then H(H(Γ,K)) = H(Γ,K). 2

Corollary 6.2(2) has been used to show that certain families H(Γ,K)
are full hyper-AFL’s. In particular, there exist infinite chains of full
hyper-AFL’s [7, 8]; see also Theorem 6.4 below. In §7 we will use Corol-
lary 6.2(1) to obtain related results.

Corollary 6.3. [4] If K ⊇ ALPHA∪ONE, then HH(K) = H(K). 2

In establishing results like Theorems 5.3(3), 5.4(4) and 5.5, Corollary
6.3 plays an important rôle.

The strictness of our infinite sequence of full AFL-structures, as well
as the properness of our hierarchies rely on the following theorem that
stems from a rich collection [7, 8] of similar hierarchies.

Theorem 6.4. [7, 8] Let K0 = REG and Ki+1 = H(Ki,FIN) for each
i ≥ 0. Then {Ki}i≥1 is an infinite hierarchy of full hyper-AFL’s, i.e.,

• for each i ≥ 1, Ki is a full hyper-AFL, and

• for each i ≥ 1, Ki is properly included in Ki+1: Ki ⊂ Ki+1. 2
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7. An Infinite Sequence of Full AFL-Structures

In this section we define a family of full AFL-structures (Definition 7.1).
Then we show some properties of these full AFL-structures (Proposition
7.2, Theorems 7.3 and 7.4) and our main result (Theorem 7.5).

In this section we frequently write HΓ (K) instead of H(Γ,K) in order
to distinguish between the two arguments of H(Γ,K): K will play the
rôle of “ordinary” argument, whereas Γ is an additional parameter over
which we proceed inductively (Theorems 6.4, 7.4 and 7.5).

In view of Theorem 5.3, the following definition is a natural extension
of the notion of full hyper-AFL.

Definition 7.1. Let Γ be a fixed family of languages. An arbitrary
family K is a full Γ -hyper-AFL if K is a prequasoid with H(Γ,K) = K,
or equivalently, with HΓ (K) = K. For each family K, let ĤΓ (K) denote
the smallest full Γ -hyper-AFL that includes K. 2

Ordinary full hyper-AFL’s are now obtained as a special instance of
Definition 7.1, since Theorem 4.1 implies

Proposition 7.2. A family K of languages is a full hyper-AFL if and
only if K is a full REG-hyper-AFL. 2

Theorem 7.3. Let Γ be a full substitution-closed AFL.

(1) Each full Γ -hyper-AFL is a full hyper-AFL.

(2) If K is a family, then HΓ Π(K) is a full Γ -hyper-AFL that includes
K.

(3) For each family K, ĤΓ (K) = HΓ Π(K).

(4) HΓ (FIN) is the smallest full Γ -hyper-AFL.

Proof. (1) It suffices to show that H(Γ,K) = K implies H(K) = K.
Since Γ ⊇ REG, we have by Propositions 4.6 and 4.5(2): K ⊆ H(K) ⊆
H(Γ,K) = K. Hence H(K) = K.

(2) The result follows from Propositions 4.7, 4.5(1), Corollary 6.2(1),
and the fact that Γ is closed under substitution.

(3) By the inclusion K ⊆ ĤΓ (K) and the monotonicity of both HΓ

and Π, we have HΓ Π(K) ⊆ HΓ ΠĤΓ (K). According to Definition 7.1
this yields HΓ Π(K) ⊆ ĤΓ (K). Now Theorem 7.3(2) and Proposition
4.5(1) imply that HΓ Π(K) is a full Γ -hyper-AFL that includes K. Hence
we obtain that ĤΓ (K) = HΓ Π(K).

(4) FIN is the smallest prequasoid, and Theorem 7.3(3). 2

Compare Theorem 7.3(2), (3) and (4) with their “uncontrolled coun-
terparts”: Theorems 5.4(4), 5.5, and 5.6, respectively.

Theorem 7.4. Let the family K be a prequasoid, let Q0 = REG and
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Qi+1 = H(Qi,K) for each i ≥ 0. Then for each i ≥ 0, Qj is a full
Qi-hyper-AFL provided that j > i.

Proof. A simple proof by induction on i using Theorem 4.1, Propositions
4.5(1) and 4.7, and Corollary 6.2(2), yield the following facts: (F1) Qi

is a full hyper-AFL for each i ≥ 1, and (F2) Qi ⊆ Qj provided j ≥ i.
Next we prove by induction on i (i ≥ 0) that Qj (j > i) is a full

Qi-hyper-AFL.
Basis (i = 0): We have to show that Qj is a full Q0-hyper-AFL for each
j ≥ 1. Since Q0 = REG and each Qj is a full REG-hyper-AFL if and
only if Qj is a full hyper-AFL (Proposition 7.2), the statement follows
from (F1).
Induction step: Assume that for each j > i, Qj is a full Qi-hyper-AFL.

We have to show that each family Qj with j > i + 1 is a full Qi+1-
hyper-AFL.

Consider an arbitrary Qj with j > i + 1; then Qj = H(Qj−1,K). As
j − 1 > i, the induction hypothesis implies that Qj−1 is a full Qi-hyper-
AFL. Now by Theorem 7.3(1) and Proposition 4.7, Qj is a prequasoid.

So it remains to show that H(Qi+1, Qj) ⊆ Qj, since the converse
inclusion follows from Proposition 4.5(2) and (F1).

From the definition of Qj and Theorem 6.1 respectively, we obtain

H(Qi+1, Qj) = H(Qi+1,H(Qj−1,K)) ⊆ H(Sûb(Qi+1, Qj−1),K).

We already remarked that the induction hypothesis implies that Qj−1

is a full Qi-hyper-AFL. By Theorem 7.3(1), Qj−1 is a full hyper-AFL
and so Qj−1 is closed under substitution. As j − 1 ≥ i + 1, we have
Qi+1 ⊆ Qj−1 by (F2), and consequently, Sûb(Qi+1, Qj−1) ⊆ Qj−1.
Hence we have H(Qi+1, Qj) ⊆ H(Sûb(Qi+1, Qj−1),K) ⊆ H(Qj−1,K) =
Qj, which completes the induction. 2

We are now ready for the main result.

Theorem 7.5. Let K0 = REG and Km+1 = H(Km,FIN) for m ≥ 0,
and let Cm be the class of all full Km-hyper-AFL’s. Then for each m ≥ 1,
(1) the class Cm is a proper superset of Cm+1: Cm ⊃ Cm+1,
(2) the class Cm contains an infinite hierarchy of full Km-AFL’s, i.e.,
a countably infinite chain of language families Km,n (n ≥ 1) such that
(i) Km,n is a full Km-AFL, and (ii) for each n ≥ 1, Km,n is properly
included in the next one: Km,n ⊂ Km,n+1.

Proof. (1) follows from Theorems 6.4, 7.4 (with K = FIN) and 7.3(4).
(2) For fixed m (m ≥ 1), we define {Km,n}n≥1 by Km,n = Km+n for

each n ≥ 1. By Theorems 6.4 and 7.4 this is an infinite hierarchy of full
Km-hyper-AFL’s. 2
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8. Concluding Remarks

We extended the finite sequence “full AFL, full substitution-closed AFL,
full super-AFL, full hyper-AFL” to a countably infinite sequence of full
AFL-structures, each of which possesses properties (Theorem 7.3) simi-
lar to those of the members of the initial, finite sequence (Theorems 5.4,
5.5 and 5.6). And each new class of full AFL-structures is nontrivial in
the sense that it contains a countably infinite hierarchy (Theorem 7.5).

The concept of full AFL abstracts the regular languages in case
they are characterized by nondeterministic finite automata and regu-
lar expressions. Full substitution-closed AFL’s generalize the regular
languages when they are viewed as the languages generated by non-
self-embedding context-free grammars. Similarly, full super-AFL’s, full
hyper-AFL’s and full Γ -hyper-AFL’s correspond to context-free gram-
mars, ETOL-systems and Γ -controlled ETOL-systems, respectively.

Actually, a full Γ -hyper-AFL is a full AFL closed under Γ -controlled
iterated substitution. A family K is closed under Γ -controlled iterated
substitution, if for each language L from K with L ⊆ V ⋆ for some al-
phabet V , for each finite set U of K-substitutions over V , and for each
language M over U from the family Γ , the language M(L), defined by

M(L) =
⋃

{τp . . . τ1(L) | p ≥ 0, τi ∈ U (1 ≤ i ≤ p), τ1 . . . τp ∈ M},

belongs to K; cf. Definition 5.1.
We could take the obvious, next step: a family K is closed under

controlled iterated substitution if K is closed under K-controlled iterated
substitution. And a family K is a full ⊤-hyper-AFL if K is a prequasoid
and H(K,K) = K.

Up to now there are only a few full ⊤-hyper-AFL’s known. Of course
there are the smallest full ⊤-hyper-AFL Kω =

⋃
m≥1 Km (cf. Theorem

6.4), and the largest effective one: the family RE of recursively enumer-
able languages (since we have H(RE,RE) = RE by Church’s thesis). A
less trivial example is the family L⋆OI studied in [17]. In particular, it is
an open question whether these exist infinitely many full ⊤-hyper-AFL’s.

In this context we quote an interesting result (Proposition 8.1) for
which we need some additional terminology. A family K is closed under
removal of right endmarker, if for each language L (L ⊆ Σ⋆) and each
symbol c with c /∈ Σ, L{c} in K implies L in K.

Proposition 8.1. [3]. Let K be a family closed under removal of right
endmarker. If DSPACE(log n) ⊆ K ⊂ RE, then K is not closed under
controlled iterated (λ-free) substitution. 2

(Originally, this statement has been formulated for λ-free substitutions
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only. Obviously, it applies to arbitrary substitutions as well.) Proposition
8.1 implies that DSPACE(log n) is neither a subfamily of Kω nor of L⋆OI.

On the other hand it is known that the hierarchy of Theorem 6.4,
and consequently Kω, is situated within the family of context-sensitive
languages; see [3, 7, 8]. Therefore, the smallest elements in the classes Cm

(m ≥ 1), as well as the infinite hierarchies {Km,n}n≥1 (m ≥ 1) (Theorem
7.5) are in the family of context-sensitive languages.
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