AN INTEGRATED CIRCUIT PROVIDED WITH A FAIL-SAFE MODE

Abstract: An integrated circuit comprises a first supply voltage bondpad (VSS); a second supply voltage bondpad (VDD); a combined input/output bondpad (I/O); an output driving stage for supplying a digital output signal (Uo) comprising a first transistor (T1) and a second transistor (T2), the first transistor (T1) having a first main terminal coupled to the second supply voltage bondpad (VDD), a second main terminal, and a control terminal, the second transistor (T2) having a first main terminal coupled to the second main terminal of the first transistor (T1), a second main terminal coupled to the combined input/output bondpad (I/O), and a control terminal; a further output driving stage (T3) coupled between the combined input/output bondpad (I/O) and the first supply voltage bondpad (VDD); and a pre-drive circuit (PDC) for receiving a digital input signal (UI) and for supplying a first voltage (V1) to the control terminal of the first transistor (T1), a second voltage (V2) to the control terminal of the second transistor (T2), and a third voltage (V3) to a control terminal of the further output driving stage (T3). The integrated circuit further comprises a control circuit (CNTLR) having a first input coupled to the second supply voltage bondpad (VDD), a second input coupled to the combined input/output bondpad (I/O), and an output for supplying a binary selection signal (SL) which is dependent on the voltage difference between the input and the output of the control circuit (CNTLR); and switching means (SWMNS) for the coupling of either the first voltage (V1) to the control terminal of the first transistor (T1) and the coupling of the second voltage (V2) to the control terminal of the second transistor (T2) or the coupling of the first voltage (V1) to the control terminal of the second transistor (T2) and the coupling of the second voltage (V2) to the control terminal of the first transistor (T1), under command of the binary selection signal (SL). The voltages between the first main terminal and the control terminal and between the first main terminal and the second main terminal of both the first and the second transistors (T1-T2) are never too high and as a consequence a long life-time of the first and second transistors (T1-T2) is guaranteed even in the case where the integrated circuit is in a so-called fail-safe mode (power down mode) in which the voltage between the first supply voltage bondpad (VSS) and the second supply voltage bondpad (VDD) is virtually 0 Volt, while the voltage between the combined input/output bondpad (I/O) and the first supply voltage bondpad (VSS) is relatively high, for instance 5 Volt.
An integrated circuit provided with a fail-safe mode.

The invention relates to an integrated circuit comprising a first supply voltage bondpad; a second supply voltage bondpad; a combined input/output bondpad; an output driving stage for supplying a digital output signal comprising a first transistor and a second transistor, the first transistor having a first main terminal coupled to the second supply voltage bondpad, a second main terminal, and a control terminal, the second transistor having a first main terminal coupled to the second main terminal of the first transistor, a second main terminal coupled to the combined input/output bondpad, and a control terminal; a further output driving stage coupled between the combined input/output bondpad and the first supply voltage bondpad; and a pre-drive circuit for receiving a digital input signal and for supplying a first voltage to the control terminal of the first transistor, a second voltage to the control terminal of the second transistor, and a third voltage to a control terminal of the further output driving stage.

Such an integrated circuit is known from the general state of the art as shown in Figure 1.

A problem of the known integrated circuit is that it has not a reliable fail-safe mode.

In a fail-safe mode of an integrated circuit, the power supply of said integrated circuit may be switched off while there is a relatively high voltage applied between the combined input/output bondpad and the first supply voltage bondpad. This situation can occur in systems where multiple integrated circuits are connected to a bus, or where multiple integrated circuits communicate with each. For these reasons it can occur that an integrated circuit is powered up and starts to try to communicate with other integrated circuits before one or more of the other integrated circuits are powered up. Thus it can occur that the voltage at the second supply voltage bondpad is for instance 0 Volt, as is indicated in Figure 1B, instead of for example 5 Volt, as is indicated in Figure 1A, while the voltage at the combined input/output bondpad is (for instance) 5 Volt, and the voltages at the control terminals of the first and the second transistors are respectively (for instance) 5 Volt and 2.5 Volt. Then in the
situation of Figure 1B the voltage at the common node formed by the drain of the first transistor and the source of the second transistor, is about 5 Volt (compared to V_{SS}). Thus both the voltage between the control terminal and the first main terminal of the first transistor and the voltage between the first main terminal and the second main terminal of the first transistor are 5 Volt. In a lot of modern IC-processes, especially in MOS-processes, these voltages would be too high and would seriously decrease the lifetime of the first transistor.

It is an object of the invention to provide an integrated circuit which does not have the problem of the known integrated circuit.

To this end, according to the invention, the integrated circuit of the type defined in the opening paragraph is characterized in that the integrated circuit further comprises a control circuit having a first input coupled to the second supply voltage bondpad, a second input coupled to the combined input/output bondpad, and an output for supplying a binary selection signal which is dependent on the voltage difference between the input and the output of the control circuit; and switching means for the coupling of either the first voltage to the control terminal of the first transistor and the coupling of the second voltage to the control terminal of the second transistor, or the coupling of the first voltage to the control terminal of the second transistor and the coupling of the second voltage to the control terminal of the first transistor, under command of the binary selection signal.

The invention will be described in more detail with reference to the accompanying drawings, in which:

Figure 1 is a circuit diagram of a known integrated circuit and;

Figure 2 is a circuit diagram of an embodiment of an integrated circuit according to the invention.

In these Figures parts or elements having like functions or purposes bear the same reference symbols.

Figure 2 shows a circuit diagram of an embodiment of an integrated circuit according to the invention. The integrated circuit comprises a first supply voltage bondpad V_{SS}; a second supply voltage bondpad V_{DD}; a combined input/output bondpad I/O; and an
output driving stage for supplying a digital output signal \(U_o \). The output driving stage comprises a first field effect transistor \(T_1 \) having a source connected to the second supply voltage bondpad \(V_{DD} \), a drain, and a gate; and a second field effect transistor \(T_2 \) having a source connected to the drain of the first field effect transistor \(T_1 \), a drain coupled to the combined input/output bondpad I/O, and a gate. The integrated circuit further comprises a further output driving stage \(T_3 \) by way of example implemented by a third field effect transistor \(T_3 \) having a drain connected to the combined input/output bondpad I/O, a source connected to the first supply voltage bondpad \(V_{SS} \), and a gate. The integrated circuit further comprises a pre-drive circuit PDC for receiving a digital input signal \(U_i \) and for supplying a first voltage \(V_1 \), a second voltage \(V_2 \), and a third voltage \(V_3 \) which is coupled to the gate of the third field effect transistor \(T_3 \). The integrated circuit further comprises switching means SWMNS for the coupling of either the first voltage \(V_1 \) to the control terminal of the first transistor \(T_1 \) and the coupling of the second voltage \(V_2 \) to the control terminal of the second transistor \(T_2 \), or the coupling of the first voltage \(V_1 \) to the control terminal of the second transistor \(T_2 \) and the coupling of the second voltage \(V_2 \) to the control terminal of the first transistor \(T_1 \), under command of the binary selection signal \(SL \). The integrated circuit further comprises a control circuit CNTLR having a first input connected to the second supply voltage bondpad \(V_{DD} \), a second input connected to the combined input/output bondpad I/O, and an output for supplying the binary selection signal \(SL \) which is dependent on the voltage difference between the input and the output of the control circuit CNTLR.

The principle operation of the integrated circuit is as follows. It is by way of example assumed that a 5 Volt DC-voltage is supplied between the second supply voltage bondpad \(V_{DD} \) and the first supply voltage bondpad \(V_{SS} \). In that situation the state of the binary digital signal \(SL \) supplied by the control circuit CNTLR is such that the switching means SWMNS couples the first voltage \(V_1 \) to the gate of the first field effect transistor \(T_1 \) and the second voltage \(V_2 \) to the gate of the second field effect transistor \(T_2 \). This is a normal operation mode of the integrated circuit: the digital output signal \(U_o \) is responsive to the digital input signal \(U_i \).

In a so-called fail-safe mode (power down) of the integrated circuit the DC-voltage supplied between the second supply voltage bondpad \(V_{DD} \) and the first supply voltage bondpad \(V_{SS} \) is virtually 0 Volt. In this situation the digital output signal \(U_o \) is not responsive to the digital input signal \(U_i \). In this fail-safe mode two situations can be further distinguished. In the first situation the voltage between the combined input/output bondpad I/O and the first supply voltage bondpad \(V_{SS} \) is relatively low, for instance 0 Volt. This is not a problematic
situation in the sense that no abnormal large gate-source voltages or drain-source voltages at the first and second field effect transistors T₁ -T₂ exist. In the second situation the voltage between the combined input/output bondpad I/O and the first supply voltage bondpad Vₜₚ is relatively high, for instance 5 Volt. In an integrated circuit according to the prior art as shown in Figure 1 this would lead to the problem that the gate-source voltages and the drain-source voltages at the first field effect transistor T₁ can be too high. This is indicated in Figure 1B: both the gate-source voltage and the drain-source voltage of the first field effect transistor T₁ equals 5 Volt. However this is not the case in the embodiment of the invention as shown in Figure 2. This is because in this situation due to the relatively high voltage between the combined input/output bondpad I/O and the first supply voltage bondpad Vₜₚ, the binary signal SL has changed its state and as a consequence the switching means SWMNS couples the first voltage V₁ to the gate of the second field effect transistor T₂ and the second voltage V₂ to the gate of the first field effect transistor T₁. By so doing the gate-source voltages and the drain-source voltages at the first and second field effect transistors T₁ -T₂ are never too high and thus a long lifetime of the first and second field effect transistors T₁ -T₂ is guaranteed.

The switching means SWMNS can be implemented in various ways, for instance by pass-gates or logic-ports.
CLAIM:

An integrated circuit comprising a first supply voltage bondpad \((V_{SS}) \); a second supply voltage bondpad \((V_{DD}) \); a combined input/output bondpad \((I/O) \); an output driving stage for supplying a digital output signal \((U_o) \) comprising a first transistor \((T_1) \) and a second transistor \((T_2) \), the first transistor \((T_1) \) having a first main terminal coupled to the second supply voltage bondpad \((V_{DD}) \), a second main terminal, and a control terminal, the second transistor \((T_2) \) having a first main terminal coupled to the second main terminal of the first transistor \((T_1) \), a second main terminal coupled to the combined input/output bondpad \((I/O) \), and a control terminal; a further output driving stage \((T_3) \) coupled between the combined input/output bondpad \((I/O) \) and the first supply voltage bondpad \((V_{SS}) \); and a pre-drive circuit \((PDC) \) for receiving a digital input signal \((U_i) \) and for supplying a first voltage \((V_1) \) to the control terminal of the first transistor \((T_1) \), a second voltage \((V_2) \) to the control terminal of the second transistor \((T_2) \), and a third voltage \((V_3) \) to a control terminal of the further output driving stage \((T_3) \), characterized in that the integrated circuit further comprises a control circuit \((CNTLR) \) having a first input coupled to the second supply voltage bondpad \((V_{DD}) \), a second input coupled to the combined input/output bondpad \((I/O) \), and an output for supplying a binary selection signal \((SL) \) which is dependent on the voltage difference between the input and the output of the control circuit \((CNTRL) \); and switching means \((SWMNS) \) for the coupling of either the first voltage \((V_1) \) to the control terminal of the first transistor \((T_1) \) and the coupling of the second voltage \((V_2) \) to the control terminal of the second transistor \((T_2) \) or the coupling of the first voltage \((V_1) \) to the control terminal of the second transistor \((T_2) \) and the coupling of the second voltage \((V_2) \) to the control terminal of the first transistor \((T_1) \), under command of the binary selection signal \((SL) \).
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

IPC 7 H03K19/003

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 H03K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, PAJ

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>EP 0 862 267 A (SILICON SYSTEMS RESEARCH LTD) 2 September 1998 (1998-09-02) column 2, line 34 -column 4, line 17; figures 2-6</td>
<td>1</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of box C. Patent family members are listed in annex.

* Special categories of cited documents:
 "A" document defining the general state of the art which is not considered to be of particular relevance
 "E" earlier document but published on or after the international filing date
 "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 "O" document referring to an oral disclosure, use, exhibition or other means
 "P" document published prior to the international filing date but later than the priority date claimed
 "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
 "A" document member of the same patent family

Date of the actual completion of the international search: 15 November 2000

Date of mailing of the international search report: 21/11/2000

Name and mailing address of the ISA:
European Patent Office, P.B. 5818 Patentlaan 2 NL-2280 HV Rijswijk Tel: (+31-70) 340-2040, Tx: 31 651 epo nl, Fax: (+31-70) 340-3016

Authorized officer: Feuer, F
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>EP 0862267 A</td>
<td>02-09-1998</td>
<td>US 5852375 A</td>
<td>22-12-1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2260068 A</td>
<td>22-01-1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1228885 A</td>
<td>15-09-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9802965 A</td>
<td>22-01-1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 6137311 A</td>
<td>24-10-2000</td>
</tr>
</tbody>
</table>