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ABSTRACT
Phenology is the science that studies the timings of recur-

ring biological events such as leafing and blooming as well
as their causes and variations in space and time. Spatially ex-
plicit environmental datasets and are key to understand phe-
nological dynamics at continental to global scales. Here we
present a novel exploratory analysis where we link temperature-
based phenological indices and land surface phenological met-
rics derived from remotely sensed images. Our exploratory
analysis, illustrated with two multi-decadal and high-spatial
resolution phenological products for continental USA, focuses
on identifying phenological regions and on mapping the co-
herence between phenological products. To cope with the
computational challenges of analyzing big geo-datasets, we
executed our analysis on a cloud platform running Apache
Spark. First results show that weather, climate and land cover
variability modulate phenological patterns in contrasting ways,
and we believe that our computational solution work paves
the path towards the analysis of global vegetation phenology
at very high spatial resolution.

Index Terms— Extended spring indices, land surface phe-
nology, exploratory data analysis, big geo-data, Apache Spark.

1. INTRODUCTION

Phenology studies the timing of recurring plant and animal bi-
ological phases, their causes, and their interrelations [1]. This
seasonal timing varies from place to place and from year to
year because it is strongly influenced by environmental con-
ditions. Understanding this variability is critical to quantify
the impact of climate change on our planet. In this work we
present a novel exploratory analysis of two of the most im-
portant sources of spatio-temporal phenological data: pheno-
logical models based on weather- and location-related factors,
and land surface phenological metrics derived from Earth ob-
servation sensors.

Phenological models. The Extended Spring Indices (SI-
x; [2]) are a suite of models that transform daily temperatures
into consistent phenological metrics that can be used to study
the impact of global warming on vegetated canopies. 1. More

1http://www.globalchange.gov/explore/indicators

Fig. 1: Average of Leaf index [Top] and AVHRR SOS [Bot-
tom] maps of contiguous North-America from 1989 to 2014.

precisely, the SI-x models predict the day of the year (DOY)
of first leaf and of first bloom for three key indicator species
[3]. These phenological dates can be used to track spring on-
set at specific locations by using data from weather stations
[4] or at continental scales by using gridded weather and/or
climatic datasets [5].

In this work, we use a new long-term (1980 to 2015) and
high spatial resolution (1km) version of the Leaf and Bloom
indices, which was recently generated for the coterminous US
by adapting the SI-x models to a cloud computing environ-
ment [6]. Figure 1 [Top] illustrates, as an example, the av-
erage of the Leaf index from 1989 to 2014. This map shows
a clearly noticeable spring gradient, with low values in the
South and high DOY values in the North.

Land surface phenology. Time series of remotely sensed
images can be used to derive various land surface phenologi-
cal metrics. One of these metrics is the so-called Start of Sea-
son (SOS), which indicates the beginning of photosynthetic
activity in plants. Several SOS products exits in literature.
Often linked to a particular sensor or study. Here we use
a SOS product specifically made for the US by processing
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Fig. 2: Within cluster sum of squared Errors vs the number of clusters for the Leaf and Bloom indices and the SOS metric [Top
row]. Clustering maps for the Leaf and bloom indices (k=70) and the SOS metric (k=100) [Bottom row]

time series of the Advanced Very High Resolution Radiome-
ter (AVHRR) sensor 2. The AVHRR images were first trans-
formed into a smooth time series of Normalized Difference
Vegetation Index (NDVI). Then a curve derivative method
was applied to predict NDVI values based on the previous
observations Finally, the SOS day was determined by identi-
fying the day when the smoothed NDVI values become larger
than the predicted NDVI values [7].

The spatial resolution of this product matches that of the
SI-x but it is only available for the period 1989 - 2014 3.
Hence our exploratory analysis is based on the products avail-
able for this period. Again, as an example Figure 1 [Bottom]
illustrates the average SOS values from 1989 to 2014. In this
case the spring phenological gradient is less visible as the
SOS depends on both the land cover and the weather condi-
tions. Notice that the negative values in the SOS map indicate
that the SOS took place the year before (i.e. in 1988).

Computational solution. Analyzing multi-decadal and
very high spatial resolution phenological products at conti-
nental scales remains a challenging task. In this work we
use a cloud-based solution based on Apache Spark [8] and
its scalable machine learning library MLlib [9] to perform
our exploratory data analysis. Given the lack of well-tested
Spark solutions in the domain of big geo-data, a secondary
aim of our work is to evaluate the potential of such a compu-
tational solution to analyze big raster datasets, in both local
and cloud-based environments.

With the data stored in the original file formats, such as
GeoTiff and HDF, users are able analyze the data through
Jupyter notebooks running either Python, R or Scala. These
notebooks are not only used to share results among scientists
but also as a provenance method for the scientific results.

2https://lta.cr.usgs.gov/AVHRR
3https://lta.cr.usgs.gov/avhrr_phen

Using the phenological products described above and our
computational platform, we first identify regions with similar
phenology (Section 2) and then study their correlation (Sec-
tion 3). After that, we provide additional details on our com-
putational platform (Section 4) and, finally, we summarize
our findings and present follow up activities (Section 5).

2. MAPPING PHENOREGIONS

Clustering is a popular exploratory data analysis method that
allows analysts to study their datasets at a higher level of ab-
straction [10]. Here we use K-means to identify regions with
similar phenology (i.e. phenoregions) The three phenological
products were clustered into k groups (with k values rang-
ing from 10 to 500 in steps of 10) and the optimal k value
was identified by the ”elbow” of the Within Cluster Sum of
Squared Error (WCSSE) graph. Figure 2 shows the WCSSE
plots and the clustering results.

The optimal number of phenoregions is 70 for the Leaf
and Bloom indices and 100 for the SOS metric. This indi-
cates that land cover phenological variability is larger than the
one caused by temperature differences. However, the pheno-
logical regions derived from the spring indices have a much
stronger spatial coherence, especially on the East Small scale
differences in elevation and land cover lead to much more
scattered phenoregions in the American West.

3. SPATIO-TEMPORAL CORRELATION

The ecological meaning of land surface phenological metrics
is not fully clear yet [11]. To shed light on this, we performed
a spatio-temporal correlation analysis between the Leaf and
Bloom indices and the SOS metric. Figure 3 shows that large
areas exhibit moderate to high positive correlations. This con-
firms that temperature is, indeed, one of the main drivers of
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Fig. 3: Correlation between the Leaf index and SOS [Top]
and between the Bloom index and SOS [Bottom]

phenological development. Our analysis also shows that the
Leaf index is, in general, less correlated with the SOS than the
Bloom index. This could indicate that satellites cannot detect
the very early leaf onset, and that a certain amount of leaves
(vegetation activity) is needed before spring can be seen from
space.

Interestingly, Figure 3 also shows areas with moderate to
high negative correlation. These areas correspond to locations
where phenology seems to be driven by other environmental
factors (e.g. water) and to areas where the SOS happens in
the second half of the year.

4. COMPUTATIONAL PLATFORM

Our research work is conducted in a open-source platform us-
ing cloud-based infra-structures. With the aim to either do
massive data analysis or a simple exploratory one, our com-
putational platform is designed for easy user interaction and
scalability. Users interact with the platform through Jupyter
notebooks and computations are pushed down to a remote
cluster. The computations are designed to use distributed data
structures and Spark internals for efficient distributed process-
ing. For its deployment and management we use Emma [12],
a project to create a platform for development of applications
for Spark and DockerSwarm clusters.

A cloud-based platform. The platform runs on an infra-
structure composed by local or virtual machines attached to
a large object storage with an Amazon Simple Storage Ser-
vice (S3). The latter is becoming a de-facto API standard
for objects-storage. It is supported by Google and Microsoft
cloud services for easy port of cloud-based applications. The
machines are prepared/constructed by either preparing cloud
virtual machine or constructing using Vagrant [13] boxes. The

Fig. 4: Computational platform

latter allows the platform to be simulated on a local machine,
i.e., provide a local development environment.

Once the machines are prepared the servers are provi-
sioned using Ansible, an automation tool for IT infra-structure.
Ansible [14] playbooks are used to create a storage layer, pro-
cessing layer and JupyterHub [15] services. With Ansible we
are able to deploy a platform with the same features at differ-
ent locations, such as local cluster, national infra-structure or
even a commercial cloud provider. Such feature allows us to
have tool-provenance for easily repeatability of experiments
between Scientists.

The platform’s architecture is organized in three lay-
ers: storage layer, processing layer and JupyterHub services
for user-interaction, (Figure 4). The storage layer offers two
flavors of storage, file-base by Hadoop Distributed File Sys-
tem (HDFS), and object-based by Amazon S3 service. For
local environments we use Minio [16], an open source object
storage server with Amazon S3 compatible API, to avoid ap-
plication re-write when moving to a cloud provider. HDFS is
used by Apache Spark [8] to exploit data locality and to store
intermediates to avoid re-computations. The object storage is
used to store the phenology data products and other remote
sensing data products.

At the processing layer we have Spark with its machine
learning library SparkMLlib [9] and GeoTrellis [17] for high-
performance geographic data processing. With GeoTrellis
GeoTiffs are directly read from the S3 storage into Resilient
Distributed Datasets (RDDs). With the phenology data prod-
ucts loaded as RDDs we then exploit Spark’s internal for dis-
tributed data processing. One example is the the mapping of
pheno regions in Section 2.

For the data analysis the user expresses the operations ei-
ther in Scala, R or Python using Jupyter notebooks. Hence,
with a browser and remote connection the user is able to ex-
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press a research question or collect an insight over large data
sets. All computations are pushed down to the computational
platform and results fetched back for data visualization.

Scalability. On our platform computations are not only
pushed down for remote processing, but they are also de-
signed to exploit Spark’s cluster computational features. To
achieve that data is always loaded into memory-based data
structure such as RDD, DataFrames and distributed matrices.
With the data loaded into Spark’s memory-based structures,
distributed task scheduling and fault-tolerance is then handled
by Spark.

Such strategy is crucial to achieve efficiency and scala-
bility. It also releases the user from the burden of re-writing
an application in case the problem size increases, e.g., use
higher resolution data from Sentinel-2, or for changes in the
amount of available resources when moving to a different
cloud-infrastructure. The decision of which structure to use
and a study on the impact of different resource allocation, i.e.,
a detailed performance profile, is out of the scope of this pa-
per.

5. CONCLUSIONS AND FUTURE WORK

In this paper we exploit the Apache Spark ecosystem for large
scale distributed processing. With our phenological exper-
iments we have demonstrated that it possible to map phe-
noregions at high spatial resolution and at continental scales.
Moreover, we have shown that temperature-based indices are
both positively and negatively correlated with the AVHRR
SOS metric. Further analysis is needed to better understand
the complementary and synergistic value of these two pheno-
logical products.

Future work will deal with the integration of the millions
of ground phenological observations collected by citizen sci-
entists as well as with the analysis of very high spatial reso-
lution phenological metrics from the Sentinel missions. We
plan to conduct this analysis at the ESA cloudtoolbox 4 and at
different commercial cloud providers in an attempt to verify
if our platform is generic enough.
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