ADVANCING RESILIENCE IN LOGISTICS USING SMART IOT PALLETS

J.P.S. PIEST (SPEAKER), R.H. BEMTHUIS, M. KOOT, M.E. IACOB

INVITED TALK – 1ST AREADS WORKSHOP

IN CONJUNCTION WITH THE 32ND INTERNATIONAL CONFERENCE ON ADVANCED INFORMATION SYSTEMS ENGINEERING (CAISE)
OUTLINE
STRUCTURE AND CONTENTS

- Resilience in logistics
- Architecture for situation aware smart logistics
- Smart IoT pallets and scenario
- Advancing resilience
- Discussion
Resilience is emerging research area and relevant topic
Multidisciplinary and multidimensional concept
Gaining attention in IS research
For this presentation, resilience is defined as the:
- “capability of an element to return to a pre-disturbance, stable state after a disruption”
- “ability to sense, recognise, adapt and absorb variations, changes, disturbances, disruptions and surprises”

Bhamra, Dani & Burnard (2011), Hollnagel et. al. (2006), Holling (1973)
Disruptions and exceptions are important risk sources in logistics

Need for situation-aware information systems and decision making

IoT is capable of real-time monitoring and exception detection

Enhancing and linking IoT data with internal and external data sources

Taking available knowledge and detection by users into account

Goal: achieving system-wide resilience

UNIVERSITY OF TWENTE.
EARLIER WORK
ARCHITECTURE FOR SITUATION-AWARE SMART LOGISTICS

- Layered viewpoint:
 - Business processes
 - Application
 - Technology

- Detailed viewpoints:
 - Exception management functions
 - Case study for validation
 - Information system prototype
EARLIER WORK
ARCHITECTURE FOR SITUATION-AWARE SMART LOGISTICS

M. Iacob, G. Charismadipta, M. van Sinderen and J. P. S. Piest (2019)
EARLIER WORK
ARCHITECTURE FOR SITUATION-AWARE SMART LOGISTICS

M. Iacob, G. Charismadiptya, M. van Sinderen and J. P. S. Piest (2019)
EARLIER WORK
ARCHITECTURE FOR SITUATION-AWARE SMART LOGISTICS

M. Iacob, G. Charismadiptya, M. van Sinderen and J. P. S. Piest (2019)
CURRENT WORK
IN THE DATAREL RESEARCH PROJECT

- Experiments and testing in real-life situations:
 - Multi-actor business process in logistics: product recall
 - Systems integration for real-time data streaming: condition monitoring
- Improve functionality and usability of the architecture:
 - Storage of historical data for data analytics and mining
 - Connectors for ERP integration and APIs for third parties
- Incorporation of artificial intelligence:
 - Capture ‘situational data’: temperature, humidity, pressure, shock, …
 - Usage of machine learning and deep learning techniques
 - Enhanced decision making based on intelligence amplification

UNIVERSITY OF TWENTE.
SMART IOT PALLETS
AHRMA’S SMART PALLET, IOT TECHNOLOGY AND DATA SERVICES

1. Pallet
 - Smart pallet including transponder technology
 - (real-time measuring location, shock, temperature, weight, humidity)

2. IoT
 - Gateway solutions to send collected information into cloud

3. Data
 - Information storage via cloud and information access via dashboard/API

4. Data Services
 - Value for the customer based on provision of data or services

Operations
- (e.g. end-to-end transparency in supply chain)

Goods
- (e.g. shock-information on pallet-level)

Problem solving (tbd)
- (e.g. customized consulting approaches)

AHRMA Cloud
- API into Customer’s (ERP) System
- Ahrma Dashboard
- Stationary Gateway (e.g. in warehouse)
- Mobile Gateway (e.g. in truck)
- Smart Phone with Ahrma App as Mobile Gateway (e.g. in field)

SCENARIO
ADVANCING RESILIENCE IN LOGISTICS WITH SMART PALLETS

UNIVERSITY OF TWENTE.

6/10/2020

International Data Space
THOUGHTS ON ADVANCING RESILIENCE
HOW SMART IOT PALLETS CONTRIBUTE TO RESILIENCE IN LOGISTICS

- Using Smart IoT Pallets extends the data coverage in the supply chain
- IoT actively transmits events, barcoding / RFID are passive
- IS contributes to resilience:
 - Faster exception detection
 - Event processing and presentation in context
 - Information sharing with supply chain partners and 3rd parties
- Individual and organization resilience for response and readiness
FUTURE WORK
WHAT ARE THE NEXT STEPS FORWARD?

- Assessment and modelling of resilience in enterprise architectures
- Development of demonstrator based on IDS for secure data sharing
- Deployment of business logic and –rules: edge, fog and/or cloud
- Algorithms for event detection, prediction and decision support
- Measurement of intelligence amplification

UNIVERSITY OF TWENTE.
DISCUSSION
PLEASE SHARE YOUR THOUGHTS AND ASK YOUR QUESTIONS
ADVANCING RESILIENCE IN LOGISTICS USING SMART IOT PALLETS

J.P.S. PIEST (SPEAKER), R.H. BEMTHUIS, M. KOOT, M.E. IACOB

INVITED TALK – 1ST AREADS WORKSHOP

IN CONJUNCTION WITH THE 32ND INTERNATIONAL CONFERENCE ON ADVANCED INFORMATION SYSTEMS ENGINEERING (CAISE)