Search for vacancies in concentrated solid-solution alloys with fcc crystal structure

1Institute of Materials Physics, Graz University of Technology, Petersgasse 16, 8010 Graz, Austria
2Faculty of Engineering Technology, University of Twente, P.O. Box 217, 7500AE Enschede, The Netherlands
3Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan

(Received 25 February 2020; accepted 4 May 2020; published 22 June 2020)

Single-phase concentrated solid-solution alloys (CSA), i.e., alloys without a principle alloying element but one randomly populated crystal structure, exhibit attractive material properties such as very high ductility at cryogenic temperatures, a gentle decrease of strength with temperature, or an unexpectedly high resistance against irradiation. For clarification of those observations assessment of atomic transport mechanisms including formation and migration of equilibrium point defects is indispensable. Positron annihilation lifetime spectroscopy measurements are performed to quantify the concentration of quenched-in thermal vacancies in fcc CSAs after quenching from temperatures close to their onset of melting. For various alloy compositions the concentration of quenched-in vacancies decreases with increasing entropy of mixing ΔS_{mix}. Whereas alloys with three constituents in nonequimolar fractions (CrFeNi) exhibit vacancy concentrations in the 10^{-5} range, the studied alloys with four (CoCrFeNi) and five constituents (CoCrFeMnNi, AlCoCrFeNi) do not show a vacancy-specific positron lifetime. Therefore, the concentration of quenched-in vacancies must be in the range of 10^{-6} or less. It can be concluded that there is either only a vanishingly small fraction of vacancies present at temperatures near the onset of melting or the generated vacancies are inherently unstable.

DOI: 10.1103/PhysRevMaterials.4.060601

I. INTRODUCTION

Over the last decade a new class of multicomponent single-phase alloys, often referred to as high entropy alloys, or concentrated solid-solution alloys, gained increasing attention (see, e.g., Refs. [1–4]). Contrary to conventional alloys, which consist of one base element and minor additions of other elements to achieve desired properties, these concentrated solid-solution alloys consist of multiple principal elements in equimolar fractions. Based on general knowledge on physical metallurgy, multicomponent alloys were assumed to form multiple phases and intermetallic compounds and to experience undesired properties such as brittleness. However, it turned out that a high number of different multicomponent alloys can be designed which form random solid solutions with mostly face-centered-cubic or body-centered-cubic structures. Concentrated solid-solution alloys have been reported to possess various desirable material properties such as high strength in combination with good ductility even at high temperatures [5,6], excellent wear and corrosion resistance [7,8], as well as superior radiation tolerance [9,10]. These properties make them interesting candidates for components used in extreme environments such as, for example, nuclear reactors. The enhanced radiation tolerance of concentrated solid-solution alloys has been the subject of several studies which concluded that the most probable cause is the distortion of the crystal lattice which slows down dislocation movement [10]. Concomitantly, further studies were conducted concerning the diffusion properties of these alloy types. The most recent studies among them, which applied the radiotracer method, found that there is no tendency of decreasing diffusivity with an increasing number of components, if compared on an absolute temperature scale [11].

An important aspect for a comprehensive understanding of bulk diffusion and radiation tolerance is the formation and migration behavior of vacancies in the multicomponent matrix. For this purpose, positron annihilation lifetime spectroscopy is a highly suitable technique, which is capable of detecting vacancy concentrations in the concentration range from 10^{-6} to 10^{-4} [12]. Positrons from a radioactive source are implanted into the sample, where they annihilate emitting two γ-quants. The positron lifetime in the material measured as the time difference between a start γ-quant (β-decay of 22Na) and the annihilation γ-quant includes specific and sensitive information on the defect structure of the sample.

In a previous positron annihilation study [13] a high defect concentration was found in an as-cast CoCrFeNi alloy, but it could not be discerned whether these defects were dislocations or vacancies. On the other hand, for the case of as-cast CoCrFeMnNi, it has been reported that the bulk of the material does not contain any structural defects [14]. In a recent study on the CoCrFeMnNi alloy, a strong increase of the mean positron lifetime with increasing temperature was observed indicating thermal generation of vacancies [15]. However, the positron lifetime in dependence of the temperature did...
not saturate, not even in the region of the highest applied temperature of 1473 K (0.92Tm,CoCrFeMnNi). Furthermore, the mean positron lifetimes measured at 293 K after the heat treatment were not significantly lower than the high temperature values which should be the case for reversible formation and removal of thermal vacancies. Hence, it remains unclear if the reported increase of the mean positron lifetime with increasing temperature is due to the thermal generation of vacancies or whether other processes in the multicomponent matrix such as phase decompositions play a role.

In the present study, positron annihilation lifetime spectroscopy is applied for the detection of thermally induced and quenched-in vacancies in a set of multicomponent concentrated solid-solution alloys. All of these alloys have a face-centered-cubic crystal structure, but exhibit an increasing number of constituents, from low to high mixing entropy. Well-defined samples of CrFeNi, CoCrFeNi, CoCrFeMnNi, and AlCoCrFeNi were subjected to an identical heat treatment under protective vacuum atmosphere, at high temperatures (1493 K), close to their onset of melting \(T_m \) (\(T_m, \text{CoCrFeNi} = 1717 \) K, \(T_m, \text{CoCrFeMnNi} = 1607 \) K [11]). Subsequently the samples were rapidly cooled to 273.15 K by quenching them in ice water. Interestingly, the positron lifetime of the quenched samples shows a decreasing trend towards a defect-free bulk positron lifetime with an increasing number of constituents, i.e., with an increase in mixing entropy.

II. EXPERIMENT

All samples were produced from raw materials with a nominal purity better or equal to 99.95 wt %, using ingots with a mass of 20–30 g which were initially produced by arc-melting in a zirconium-gettered argon atmosphere at 500 mbar absolute pressure. Every ingot was remelted six times before it was further processed. The alloys CoCrFeNi and AlCoCrFeNi were copper mold gravity cast into circular rods with a diameter of 8 mm. After casting, each rod was recrystallized in an evacuated silica tube at 1273 K for 24 h and subsequently water quenched. The other alloy samples were prepared from pieces of the master ingots which were cold-rolled to a final thickness of 30 min. They were then rapidly quenched to 273.15 K by quenching them in ice water. Interestingly, the positron lifetime of the quenched samples shows a decreasing trend towards a defect-free bulk positron lifetime with an increasing number of constituents, i.e., with an increase in mixing entropy.

III. RESULTS AND DISCUSSION

The exact alloy compositions as obtained from EDX composition maps as well as the lattice constants as obtained from XRD measurements are given in Table I. Note that the compositions are further only given in the declarations of the non-equimolar alloys. Figure 1 shows the results of the EBSD and EDX mapping in the quenched state exemplary for the CoCrFeMnNi alloy. The EBSD phase mapping as shown in Fig. 1(a) clearly demonstrates the presence of only the face-centered cubic (fcc) phase in the quenched state of the alloy. It has to be noted, that the circumference of pores in the grains of the CoCrFeMnNi alloy are falsely detected as grain boundaries. The constituent distribution maps in Figs. 1(c)–1(g) show the homogeneous distribution of each element, with no evidence of any elemental segregation. Equivalent measure-

<table>
<thead>
<tr>
<th>Alloy</th>
<th>Al</th>
<th>Co</th>
<th>Cr</th>
<th>Fe</th>
<th>Mn</th>
<th>Ni</th>
<th>Lattice constant (a/\text{Å})</th>
</tr>
</thead>
<tbody>
<tr>
<td>CrFeNi (0.3:1:0.2)</td>
<td>19.2</td>
<td>68.2</td>
<td>12.6</td>
<td>3.581</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CrFeNi (1:1:1)</td>
<td>34.1</td>
<td>33.0</td>
<td>32.9</td>
<td>3.560</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CoCrFeNi (1:1:1:1)</td>
<td>24.9</td>
<td>25.5</td>
<td>24.9</td>
<td>3.570</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AlCoCrFeNi (0.3:1:1:1:1)</td>
<td>23.6</td>
<td>23.9</td>
<td>23.4</td>
<td>23.1</td>
<td>3.588</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CoCrFeMnNi (1:1:1:1:1)</td>
<td>20.2</td>
<td>20.5</td>
<td>20.1</td>
<td>19.5</td>
<td>19.7</td>
<td>3.596</td>
<td></td>
</tr>
</tbody>
</table>
An analysis of the positron lifetime spectra was performed according to a two-state positron trapping model [20]. The two-state trapping model is generally valid for any type of material including one type of defect, which means that the experimentally observed positron lifetime spectrum consists of two exponential decays (after source correction). Hence, it is assumed that positrons annihilate either in a defect-free state exhibiting a lifetime \(\tau_{\text{bulk}} \) or in the trapped state at a defect with a lifetime \(\tau_{\text{defect}} = \tau_2 \). The corresponding lifetime spectrum includes two components \(\tau_1 \) and \(\tau_2 \). From these the mean positron lifetime \(\tau_{\text{mean}} \) is calculated according to \(\tau_{\text{mean}} = \tau_1 I_1 + \tau_2 I_2 \), where \(I_1 \) and \(I_2 \) are the corresponding intensities (\(I_1 + I_2 = 100\% \)). The bulk lifetime \(\tau_{\text{bulk}} \) attributed to the annihilation of positrons in the defect-free bulk, is calculated by \(\tau_{\text{bulk}} = \left(\frac{I_1}{\tau_1} + \frac{I_2}{\tau_2} \right)^{-1} \). If there are no defects present only one lifetime component \(\tau_1 = \tau_2 = \tau_{\text{bulk}} \) is detected.

In Fig. 2 the mean positron lifetime \(\tau_{\text{mean}} \) for the set of alloys is shown as a function of their corresponding entropy of mixing \(\Delta S_{\text{mix}} \) calculated according to \(\Delta S_{\text{mix}} = -R \sum_i x_i \ln x_i \), with \(x_i \) the mole fraction of constituent \(i \) and \(R \) the gas constant. For comparison, the defect-free bulk lifetime of pure Ni is also given in Fig. 1 (dashed line, \(\tau_{\text{Ni}} = 110 \text{ ps} \) [21]). For the alloys CrFeNi (0.3:1:0.2) and CrFeNi, the mean positron lifetime \(\tau_{\text{mean}} \) is significantly higher than the expected, defect-free bulk lifetime. The mean positron lifetime decreases strongly with increasing mixing entropy \(\Delta S_{\text{mix}} \) until it reaches a value slightly higher than the bulk lifetime of Ni as is the case for the alloys CoCrFeNi, AlCoCrFeNi (0.3:1:1:1:1), and CoCrFeMnNi. The enhanced mean positron lifetime observed in CrFeNi (0.3:1:0.2) and CrFeNi indicates the existence of thermally induced, quenched-in vacancies in these alloys as is typical for metals after quenching (see, e.g., Ref. [22]). Contrarily, the low mean positron lifetime of the alloys with higher entropy of mixing CoCrFeNi, AlCoCrFeNi (0.3:1:1:1:1), and CoCrFeMnNi does not indicate the presence of a significant amount of quenched-in vacancies, which is rather unexpected.

For a closer understanding of these results, a component-wise analysis of the positron lifetime spectra is given in Table II. It includes the entropy of mixing \(\Delta S_{\text{mix}} \), the individual lifetime components \(\tau_1 \) (\(\tau_2 \)), and the corresponding intensities \(I_1 \) (\(I_2 \)) as well as the mean positron lifetime \(\tau_{\text{mean}} \) and the bulk lifetime \(\tau_{\text{bulk}} \) corresponding to the defect-free state. The confidence value of the best fits of the lifetime spectra as represented by the value of \(\chi^2 \) in Table II is excellent for all samples; \(\chi^2 \) even decreases towards higher mixing entropies. The positron lifetime spectra of the three-component alloys both contain two individual lifetime components \(\tau_1 \) and \(\tau_2 \),...
Table II. Mixing entropy ∆S mix, individual positron lifetime components τ1, (τ2), corresponding intensities I1, (I2), and calculated mean positron lifetime τ mean and bulk positron lifetime τ bulk of the individual sample pairs measured after the heat treatment. The errors for the individual lifetime components are given by the numerical uncertainty ∆τ1/2 = ±2 ps and ∆I1/2 = ±3%, and the errors of the mean positron lifetime and the bulk positron lifetime are ∆τ mean/bulk = ±2 ps.

<table>
<thead>
<tr>
<th>Alloy</th>
<th>∆S mix/R</th>
<th>τ1/ps</th>
<th>I1/%</th>
<th>τ2/ps</th>
<th>I2/%</th>
<th>τ mean/ps</th>
<th>τ bulk/ps</th>
<th>χ²</th>
</tr>
</thead>
<tbody>
<tr>
<td>CrFeNi (0.3:1:0.2)</td>
<td>0.84</td>
<td>104</td>
<td>72</td>
<td>195</td>
<td>28</td>
<td>130</td>
<td>120</td>
<td>1.066</td>
</tr>
<tr>
<td>CrFeNi (1:1:1)</td>
<td>1.10</td>
<td>117</td>
<td>97</td>
<td>190</td>
<td>3</td>
<td>119</td>
<td>118</td>
<td>1.169</td>
</tr>
<tr>
<td>CoCrFeNi (1:1:1:1)</td>
<td>1.39</td>
<td>113</td>
<td>100</td>
<td>113</td>
<td></td>
<td></td>
<td></td>
<td>1.131</td>
</tr>
<tr>
<td>AlCoCrFeNi (0.3:1:1:1:1)</td>
<td>1.53</td>
<td>115</td>
<td>100</td>
<td>115</td>
<td></td>
<td></td>
<td></td>
<td>1.110</td>
</tr>
<tr>
<td>CoCrFeMnNi (1:1:1:1:1)</td>
<td>1.61</td>
<td>117</td>
<td>100</td>
<td>117</td>
<td></td>
<td></td>
<td></td>
<td>1.096</td>
</tr>
</tbody>
</table>

with a similar bulk lifetime τ bulk of 120 and 118 ps for CrFeNi (0.3:1:0.2) and CrFeNi, respectively. For the case of CrFeNi (0.3:1:0.2) the best fit resulted in a long-lifetime component τ2 = 195 ps with an intensity of I2 = 28%. For the fit of the lifetime spectrum of CrFeNi, τ2 was held constant at a value of 190 ps, which is reasonable since both three-component alloys have the same fcc crystal structure and a very similar lattice constant (see Table I). For CrFeNi an intensity of I2 = 3% was found for the second lifetime component τ2. The theoretically calculated positron lifetimes in vacancies of the respective pure metals range from 184 to 201 ps [23]. Consequently, the second lifetime component τ2 of the three-component alloys has to be attributed to the annihilation of positrons in vacancies, which confirms the existence of quenched-in vacancies within these alloys.

Applying a two-state trapping model, the concentration of vacancies c v can be estimated from

$$\mu d c v = \frac{I_2}{I_1} \left(\frac{1}{\tau_{\text{bulk}}} - \frac{1}{\tau_2} \right).$$

where μd is the positron trapping rate coefficient [20]. For the CrFeNi (0.3:1:0.2) alloy, a concentration of quenched-in vacancies of 1.3 × 10^16 cm^-3 can be estimated using a trapping rate coefficient μd = 1 × 10^14 s^-1. The equilibrium vacancy concentration c v,eq at a temperature T can be calculated according to

$$c_{v,\text{eq}} = \exp \left(\frac{S_f}{k_B} \right) \exp \left(-\frac{H_f}{k_B T} \right)$$

with k_B the Boltzmann constant, and S_f and H_f as the vacancy formation entropy and enthalpy. This results in an equilibrium vacancy concentration of 10^16 cm^-3 at 1493 K using values for H_f and S_f as reported for γ-Fe [24,25]. These results are in line, taking into account losses of a certain amount of vacancies during quenching.

On the other hand, the positron lifetime spectra of the alloys with four and five components CoCrFeNi, AlCoCrFeNi (0.3:1:1:1), and CoCrFeMnNi exhibit only one single lifetime component. The obtained single lifetimes for CoCrFeNi, AlCoCrFeNi (0.3:1:1:1), and CoCrFeMnNi were 113, 115, and 117 ps, respectively. This slight increase of the positron lifetime τ1 is consistent with an increasing lattice constant as derived from XRD measurements (see Table I).

In previous studies similar values for the positron lifetime in the defect-free bulk of CoCrFeNi (τ bulk = 108 ps [13]) and CoCrFeMnNi (τ bulk = 112 ps [14]) were found. Furthermore, the bulk lifetimes of the four- and five-component alloys are only slightly enhanced compared to the value for pure Ni. These deviations can also be explained due to differences in the packing densities of pure Ni and the investigated multicomponent alloys. Therefore, as already indicated by the mean positron lifetimes, also the componentwise analysis shows that no thermally generated vacancies can be detected in the alloys CoCrFeNi, AlCoCrFeNi (0.3:1:1:1:1), and CoCrFeMnNi by the means of positron annihilation spectroscopy. It seems that vacancy concentrations in these samples are exceptionally low.

The question arises whether lattice vacancies cannot be detected due to strong competitive positron trapping at defects with short positron lifetimes. Shallow traps with positron lifetimes substantially shorter than that of lattice vacancies are considered for coherent and semicoherent precipitates in Al alloys [26]. Such types of traps can safely be excluded for these concentrated solid-solution alloys due to their single-phase homogeneous structure. Above all, the value of the single short positron lifetime τ1 observed in the four- and five-component samples (see Table II) corresponds to that expected for the free state.

Although any other interpretation of τ1 than the free state appears unlikely, for the sake of completeness, we may hypothetically discuss scenarios where τ1 would be associated with any kind of shallow trap. Assume, for instance, that τ2 represents a mean value of two components, one of which arises from a shallow type of trap with a characteristic positron lifetime τ shallow = 140 ps and a relative intensity I shallow = 40%. For a mean value τ1 = 115 ps (AlCoCrFeNi sample, Table II), a value of 98 ps would follow for the other 60% component of the spectrum that is due to annihilation from the free state. These components (98 ps, 140 ps) both with substantial intensity should be clearly resolvable by numerical spectra analysis. This may no longer necessarily be the case if the intensity of τ shallow is much lower and correspondingly the shorter component closer to τ1; however, this would also mean that the trapping rate of such shallow traps is much lower and, therefore, this would hardly hinder a detection of a positron lifetime component associated with vacancies, if present.

An extreme limit in this scenario would pertain to the case that the τ1 component arises from saturation trapping at shallow traps with τ shallow = τ1. Saturation trapping at such shallow traps indeed could mask competitive positron trapping at lattice vacancies. However, this can safely be ruled out, since there is neither a physical justification for positron traps with a lifetime as low as that of the free delocalized state, nor is there any reason for high concentration of such traps. An unambiguous proof that the absence of a vacancy-typical
IV. CONCLUSION

In the present study, the method of positron annihilation lifetime spectroscopy is applied to show that in the concentrated solid-solution alloys CoCrFeNi, AlCoCrFeNi (0.3:1:1:1:1), and CoCrFeMnNi exhibiting a high entropy of mixing only a concentration of thermally generated vacancies smaller than 10^{-6} can be quenched-in. An identical heat treatment and quenching from temperatures close to their onset of melting was applied to a set of similar alloys with the same fcc crystal structure but with lower mixing entropy. For the latter case a vacancy concentration of 10^{-5} could be detected for CrFeNi (0.3:1:0.2). The mean positron lifetime of the samples decreases with increasing mixing entropy; furthermore, the lifetime spectra of the four- and five-component samples exhibit only one component. It can be concluded that in CoCrFeNi, CoCrFeMnNi, and AlCoCrFeNi (0.3:1:1:1:1) there is either only a vanishingly small fraction of vacancies present at temperatures near the onset of melting or the generated vacancies are inherently unstable. Since in the latter case an unreasonably small migration enthalpy for the self-diffusion process must be assumed, the former explanation seems to be more promising.

ACKNOWLEDGMENTS

This work was performed in the framework of the inter-university cooperation of TU Graz and Uni Graz on natural sciences (NAWI Graz). Support by the GIMRT Program of the Institute for Materials Research, Tohoku University (Grant No. 19K0513) is gratefully acknowledged.