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Abstract 
Nowadays, a lot of use is made of large stroke flexure hinges in precision engineering. However, these large stroke 
flexure hinges typically lose stiffness in supporting direction during deflection. The lowest natural frequency is a 
commonly used measure for this property. Therefore, in shape and topology optimization, the decrease of this first 
parasitic frequency is often minimized. These optimizations are typically very time consuming, due to the large 
number of design evaluations. In this paper, a method is presented for determining stroke-dependent frequencies 
of large stroke flexure hinges. This method makes use of derivatives of mode shapes with respect to modal 
coordinates. Therefore, geometrical nonlinearities can be taken into account. Using these modal derivatives, 
frequency derivatives can be determined, making it possible to determine natural frequencies for any given 
deflection without having to linearize for every load step. For demonstration, the method is used to determine the 
first parasitic frequency of a single leaf spring as a function of the deflection. The results show that the decrease 
of this parasitic frequency has the shape of a bell-shaped curve, as commonly described in literature and found in 
experiments. 
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1. Introduction 
Flexure hinges are frequently used in precision engineering for their deterministic behavior, due to the absence of 
friction, hysteresis and backlash [1]. For their common applications, flexure hinges are compliant in driving 
directions, while constraining motion in other directions. Figure 1 illustrates this concept for a single leaf spring. 
This property requires a high support stiffness throughout the entire range of motion. A commonly used measure 
for the support stiffness of a flexure hinge, and therefore the performance, is its first parasitic frequency, i.e. the 
lowest natural frequency in the support direction. Because the support stiffness typically decreases rapidly with 
deflection, flexure hinges tend to have a reduced performance in their deflected state [1]. 

  
 

Figure 1: Single leaf spring flexure. 

From literature [1,2], we know that the decrease of the first parasitic frequency, and therefore the stiffness in 
support direction, is typically described by a bell-shaped curve as shown in Figure 2. This figure shows a 
comparison between results from software package SPACAR and results from FEM for a flexure hinge. This 
means that already for small deflections, the stiffness decreases significantly. Recent development is aimed at the 
design of large stroke mechanisms for which this performance reduction is minimized. This would result in the 
bell-shaped curve to become flatter. Figure 3 shows the result of such an optimized large stroke flexure hinge, for 
which the performance is improved. For deflections of , the first parasitic frequency only drops 
approximately . 
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Figure 2: Natural frequency of a flexure hinge as a function of the angle of deflection, determined by SPACAR 

and finite element method (FEM) [2]. 

 
Figure 3: Large stroke flexure hinge for which performance reduction is minimized [3]. 

Shape and topology optimization are used to design these sophisticated mechanisms, for which large stroke flexure 
hinges are included in geometrically nonlinear multibody analyses. As these forms of optimization require many 
design evaluations, model order reduction (MOR) is used to reduce computational costs. In [4], Wu and Tiso 
present a MOR technique suitable for multibody systems in the floating frame of reference (FFR) formulation 
using modal derivatives (MDs). The MDs are presented as the derivatives of the mode shapes  with respect to 
the modal coordinates . 

In the FFR formulation, the configuration of a flexible body is written as a combination of its global rigid body 
motion and a local elastic displacement field. When applying MOR, this local displacement field  is expressed 
as a linear combination of a small number of mode shapes, e.g. Craig-Bampton modes: . The modal 
coordinates  describe how the mode shapes behave in time. Geometric nonlinear effects in the displacement field 
are taken into account by the MDs, which are static corrections on the mode shapes. 

In this work, this MD-based technique is extended to determine stroke-dependent natural frequencies. To this end, 
the frequency derivatives (FDs) are introduced as the derivatives of the natural frequencies squared  with respect 
to the modal coordinates . The derivations of both MDs and FDs are presented in chapter 2. Using the FDs, the 
natural frequencies for any given configuration can be determined. For demonstration purposes, this method is 
used to determine the parasitic frequency as a function of the deflection in driving direction for the single leaf 
spring shown in Figure 1, using 3D beam elements. Chapter 3 shows this example. Finally, the conclusions are 
presented in chapter 4. 

2. Method 
In order to derive MDs, the full nonlinear Green-Lagrange strain expression [5] is taken into account: 

 (1) 

Using this expression, the configuration dependent stiffness matrix can be determined by differentiating the strain 
energy twice with respect to the generalized coordinates: 

 (2) 

To this end, the strain energy [5] is expressed as: 

 (3) 

178



 

 

in which  and  are the stress and strain vector, respectively, including all terms of the stress and strain matrix. 
The eigenvalue problem for free vibrations around the undeformed equilibrium configuration is then given as: 

 (4) 
where  and  are the stiffness and mass matrix, respectively, and  is the natural mode shape corresponding to 
natural frequency .  

Differentiation of the eigenvalue problem with respect to the modal coordinates  yields: 

 (5) 

where  are the MDs, defined as the derivate of  with respect to , and  are the FDs, defined as the 
derivatives of  with respect to .  

The inertia terms in (5) can be neglected [6], therefore the expression for the modal derivatives yields: 

 (6) 

Since the MDs are now known, it is possible to determine the system’s mode shapes in its deflected state. The 
local elastic displacement field is now written as a combination of mode shapes and modal derivatives [7]: 

 (7) 

From (5), the FDs can be derived. In order to obtain a scalar equation, (5) is pre-multiplied with : 

 (8) 

The FDs can then be solved as: 

 (9) 

The natural frequencies can now be written as a combination of the natural frequencies in undeformed equilibrium 
configuration and frequency derivatives: 

 (10) 

3. Results 
To demonstrate the method presented in chapter 2, the 3D example of the single leaf spring in Figure 1 is analyzed 
using ten 3D beam elements. For numerical computations, the leaf spring is given length  m, height  m 
and thickness  m. The material is given the following properties: Young’s modulus  GPa, shear  
modulus  GPa and density  kg/m3. The first natural frequency of the system corresponds to a bending mode 
shape in the driving direction. When the system is deflected in this first mode, the natural frequency in the support 
direction is determined using the method as explained in chapter 2. The system is deflected until the angle of the 
end node reaches .  

Figure 4 shows the decrease of this parasitic frequency. It can be seen that already for relatively small deflections, 
the reduction in performance is indeed significant: for a deflection of , the decrease is already near . The 
results match the typical bell-shaped curve as shown in Figure 2 and presented in literature [1,2]. This means that 
the behavior of the natural frequencies can indeed be predicted in a reliable way using FDs. 

In current optimization processes, software packages such as SPACAR are used. SPACAR uses a flexible 
multibody approach with nonlinear beam elements, which can also include large deformations. A detailed 
description of the formulation is found in [8]. To produce similar results, SPACAR needs to solve a linearized 
eigenvalue problem for each incremental step in the deflection. The method presented here does not require this, 
which makes it attractive to apply on computationally expensive processes such as shape and topology 
optimizations. 
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Figure 4: Decrease of parasitic frequency of a single leaf spring for increasing deflection in the first mode shape. 

4. Conclusions 
This paper presents a new method to determine stroke-dependent natural frequencies during large deflections, 
based on a model order reduction technique using modal derivatives as earlier presented by Wu and Tiso in [4]. 
Both the modal derivatives and frequency derivatives are determined by differentiating the eigenvalue problem 
for free vibrations with respect to the modal coordinates. 

The frequency derivatives are used to describe the stroke-dependent natural frequencies as a combination of natural 
frequencies in undeformed equilibrium configuration and frequency derivatives. This method is applied on a 3D 
example of a single leaf spring and has proven to give realistic results, as the behavior of the first parasitic 
frequency was found to be similar to the typical bell-shaped decrease of the first parasitic frequency as presented 
in literature before. 
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