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The port-Hamiltonian (pH) theory for distributed parameter systems has developed greatly in the past
two decades. The theory has been successfully extended from finite-dimensional to infinite-dimensional
systems through a lot of research efforts. This article collects the different research studies carried out
for distributed pH systems. We classify over a hundred and fifty studies based on different research
focuses ranging from modeling, discretization, control and theoretical foundations. This literature review
highlights the wide applicability of the pH systems theory to complex systems with multi-physical
domains using the same tools and language. We also supplement this article with a bibliographical
database including all papers reviewed in this paper classified in their respective groups.

Keywords: port-Hamiltonian theory; distributed parameter systems; multi-physical systems; energy-
based control; spatial discretization.

1. Introduction

The port-Hamiltonian (pH) systems paradigm is a framework for the modeling, analysis, design and
control of complex dynamical systems. The mentioned complexity arises due to multi-physical domains,
inter-domain couplings, nonlinearities and distributed sensing and actuation. The framework’s key
features include the emphasis on power flow between subsystems, the separation of the interconnection
structure of the system from its components’ constitutive relations and the exploitation of this separation
in the analysis and control of the system. The pH system theory has been successfully extended from the
lumped parameter (finite-dimensional) systems to distributed parameter (infinite-dimensional) systems
in the seminal work of van der Schaft & Maschke (2002).

For the past two decades, the distributed port-Hamiltonian (dpH) systems theory underwent a
huge evolution that branched in different directions and is still an active area of research. The first
research direction in the literature was in implementing the generic dpH theory for modeling distributed
parameter systems in different physical domains. The second direction was the analysis and design
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FiG. 1. The classification of research studies surveyed in this paper.

of control techniques suitable for pH models by extending the well-established techniques for finite-
dimensional pH systems, like energy shaping and damping injection. Another research direction was
focused on generating finite dimensional approximations of the dpH models or the infinite-dimensional
controllers by structure-preserving discretization methods. Finally, there has been also a lot of research
efforts in different theoretical formulations of pH systems and extensions to the original framework in
van der Schaft & Maschke (2002).

In this article we present a review of the research studies carried out in the past 20 years
(approximately) relying on the work of van der Schaft & Maschke (2002). We classify over 150
studies into different classes depending on their respective research focus, shown in Fig. 1. The research
directions considered include modeling, analysis and control, discretization, theoretical framework and
applications. The last class includes papers that combined other different techniques.

We aim with this literature review to show the wide applicability of the pH theory to complex
systems in multi-physical domains. We also highlight one of the key benefits of the pH paradigm which
is modeling a wide range of systems in different fields with the same tools and language at all stages,
starting from the theoretical modeling to the practical implementation. This aforementioned advantage
can be clearly observed in the applications class. Moreover, we highlight the main methodologies and
techniques developed in the different subfields of pH system theory, which helps identifying the existing
gaps. Finally, we provide in supplement to this article a bibliographical database' that includes the
papers reviewed in this article, classified in their respective groups. We hope this could guide new
researchers in the field and accelerate the research and development of this powerful paradigm.

The rest of the paper is organized as follows: we first start in Section 2 by a summary of the pH
formulation of van der Schaft & Maschke (2002), followed by a discussion of the other studies in the
literature related to that theoretical framework In Section 3, we present the modeling class that includes
the implementation of the framework to a wide range of physical domains. In Section 4, we present the
analysis and control class followed by the discretization class in Section 5. Finally, we conclude the
article in Section 6.

! http://dx.doi.org/10.17632/wz6h2xpvg9. 1
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2. Theoretical Framework

In this section we provide an overview of the different formulations of dpH systems introduced in the
literature. We stress that this classification is not so neat in the development of the various frameworks
that have followed in the past 20 years and many sub-formulations valid for different classes of systems
are present in the literature. Indeed we are conscious of the arbitrariness of the proposed macro-
classifications of the dpH formulations, that we choose in order to be pedagogical with the reader,
in the sense of dividing the formulations in a functional, and not chronological way.

We recognize and briefly address three main formulations of dpH systems: the Stokes—Dirac
structure approach, the functional analytic approach and the jet bundle approach. Then we present
a collection of different results extending these approaches in different directions.

2.1.  Stokes—Dirac structure formulation

As previously mentioned, a key characteristic of the pH paradigm is the modeling of a physical system
ensuring the separation of the interconnection-structure and the constitutive relations of the system’s
components linked together using the concept of ports. A port is defined by a pair (f, e) of a flow and
an effort, which are power conjugated.

In the lumped parameter case, shown in Fig. 2a, the aforementioned power-continuous intercon-
nection structure is mathematically modeled by a Dirac structure 2. A finite-dimensional pH system
is given by the tuple (%, H, .%, 2), where the state space Z"is a finite-dimensional manifold, and the
Hamiltonian H : 2 — R is a function of the state x. The pair 2 and H define the energy storage port
of the system (fg, eg) = (—%, 9,H), where X denotes the time derivative of x and 9, H denotes the partial
derivative of H with respect to x. The interaction port (f;,e;) € .#is a general port that can be used to
incorporate all other effects like internal energy dissipation, external sources and external interaction
with the environment. The absence of the interaction port is what identifies classical Hamiltonian
systems, in which the underlying mathematical object is a Poisson structure. The implicit pH system
dynamics and energy balance are then given by

(=%,8.H.f.e)) € 9,  H=e¢]f. 2.1)
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In the foundational work of van der Schaft & Maschke (2002), the power-continuous interconnection
structure of distributed parameter systems was mathematically modeled by a Stokes—Dirac structure
(SDS) denoted by Z,,, shown in Fig. 2b. A dpH system is given by the tuple (M, Z,H,.#,9,%,,),
where M is the finite-dimensional manifold representing the spatial domain, with boundary oM. The
state space 2" is composed by a subspace of differential forms over M. The space 9 is a subspace of
differential forms over M. Finally H : 2 — R is a functional of the state x. The energy storage
port of the system is defined by (fs, eg) = (=%, 8,H), where 5, H denotes the variational derivative of the
functional H with respect to x. Energy-flow through the boundary into the system is modeled by utilizing
Stokes’ theorem which defines the boundary port variables (f;,e;) € 9 used to specify the boundary
conditions freely. Distributed port-variables, that allow for energy flow within the spatial domain, can
also be included through the interaction port (f;, e;) € .. The implicit pH system dynamics and energy
balance are then given by

(=%, 8 H.fp,ep.fye5) € Dy H =/0 ey Nfy +/ e Ay (2.2)
oM M

After the seminal work of van der Schaft & Maschke (2002) some extensions of dpH formulations
were carried out. The work in Macchelli et al. (2004b) was motivated by the need to find a clearer
formulation for infinite-dimensional pH systems, not relying on the definition of the SDS introduced
in van der Schaft & Maschke (2002), which was introduced as fundamental building block, but whose
generalization for more complex systems was not provided. In particular the definition of a novel class of
the SDS was formalized by a proper generalization of constant (i.e. not depending on the state variables)
Dirac structures of finite-dimensional pH systems. This has been done by generalizing the matrix
operators (representing interconnection, damping and interaction) of finite-dimensional pH systems,
to multivariable differential operators suitable for the infinite-dimensional case. The key result is the
constructive definition of a SDS starting from a formally skew-adjoint operator acting on vector-valued
smooth functions. This represents a further extension with respect to van der Schaft & Maschke (2002)
where only scalar-valued smooth functions on the spatial manifold were described as zero differential
forms. This generalization is referred to as multi-variable dpH system in Macchelli e al. (2004b). Using
Stokes theorem, a linear operator induced on the spatial boundary is formally introduced and depends on
the skew-adjoint operator. This operator-based approach has the advantage to describe broader classes
of PDEs with respect to the original formulation” , e.g. the controversial example of the heat equation is
described as dpH system in Macchelli ef al. (2004b) by introducing a self-adjoint differential operator
representing distributed dissipation for the diffusive process.

2.2.  Functional analytic formulation

In the following we describe the field that put together concepts coming from functional analysis and
dpH systems. Actually, the class of dpH systems that are considered in this framework is very small
if compared to the general class presented in van der Schaft & Maschke (2002) and therefore strictly
speaking it should not be considered as a separate formulation, but as a subclass. Nevertheless the
contributions and the connections with the PDE community have been of such importance and impact,
that we consider it valuable to keep this distinction.

2 Nevetherless some systems (e.g. n-dimensional fluid dynamic equation) can not be described by such operator due to their
non-constant SDS.
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The seminal work for this approach is Le Gorrec ef al. (2005), which had tremendous impact on the
future research and represents one of the most important contributions for dpH systems. The framework
introduced in this paper describes the connection between Dirac structures, Boundary Control Systems
(BCS) and skew adjoint-operators using functional analytic tools. This framework would allow to handle
rigorously well-posedness of the dpH system, in the sense of existence and smoothness of solutions> .
In principle this step is necessary to make a control design based on Lyapunov-like arguments, since
variations of energy have to be computed along solutions, for which these existence and smoothness
properties must be known. The price to pay to achieve such a level of mathematical rigour is to diminish
dramatically the class of considered systems to linear, one-dimensional spatial domain. The whole
approach is based on the definition of the operator _#

N i
Je = ZP(i)j—;(z), z € [a,b], (2.3)

i=0

where conditions on matrices P(i) are explicitly assumed in order to make the operator formally skew-
adjoint. In this context, Dirac structures have been defined on Hilbert spaces and consequently state
variables are not more identified with differential 1-forms as in van der Schaft & Maschke (2002),
but with vector-valued L? functions. The port variables living on the boundary of the spatial domain
(introduced by means of Stokes theorem like in the previous approach) are included in the SDS and
parametrized in such a way that the differential operator ¢ restricted to a proper domain generates
a contractive C,- semigroup. Consequently, a rich description of these systems as BCS was possible,
introducing input and output variables as specific linear combinations of state variables restricted on the
boundary of the spatial domain. In particular, connection to system theoretic properties like passivity
and more in general dissipativity are formalized.

The definition of dpH systems was done by introducing a quadratic energy functional H(x) =
%(x, Az)x) with Az) a coercive, bounded operator depending in general on the spatial variable z.
In this situation the dpH can be abstractly written as

k= g, (2.4)

with the appropriate boundary conditions. Here the energy function is the norm of a Hilbert space
induced by Zitself. The structure of the system led to important results like the possibility of valuating
properties which are complex and abstract in principle (e.g. generation of contraction semigroup) by
means of simple matrix inequalities and the fact dpH systems of the considered class are dissipative
with respect to quadratic supply rates, by considering energy as storage functional. Summarizing, this
formulation bridged the more geometric and physical approach started in van der Schaft & Maschke
(2002) with a more system and control-theoretic approach.

The contribution after Le Gorrec er al. (2005) grew fast in the relatively small system theoretic
community working on the subject and in Section 4.4 we are briefly going through the main results
developed in this framework in terms of both analysis and control.

3 This is only a rough definition aiming at giving an insight of the problem to the reader. The rigorous definition of well-
posedness, often not shared among authors, needs to be carefully addressed in the specific framework that is considered.
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2.3. Jet bundle formulation

The SDS formulation of dpH systems in van der Schaft & Maschke (2002) relies on a choice of proper
energy variables (efforts and flows) such that the Hamiltonian energy density does not depend on their
spatial derivatives. However, this choice is not unique at all and in some cases there are convincing
arguments that suggest different choices. An important example of this different way of thinking led to a
formulation that is based on the jet-bundle structure of the distributed system (Ennsbrunner & Schlacher,
2005; Schoberl & Siuka, 2014). To give an exhaustive overview of this formulation is out of the scope
of this literature review but we briefly highlight the main idea behind this approach, which makes use
of differential geometric tools like jet bundles (see, e.g., Schlacher (2007) for an introduction to this
topic). The main differences between the SDS formulation and the jet-bundle formulation is that in the
former differential operators appear in the interconnection map and that the variational derivative of the
Hamiltonian plays a different role. These differences are caused by a different choice of the independent
variables for the system, sometimes called evolutionary variables, in contrast to the energy variables.
This approach bridges theory of dPH systems with classical Hamiltonian field theory developed in
physics. A detailed comparison of the two approaches can be found in Schoberl & Siuka (2013a) applied
on the Mindlin plate as an example. Moreover, the jet-bundle formulation has been extended to second
order field theories in Schdberl & Schlacher (2015a,b, 2018).

2.4. Theoretical extensions

There have been many efforts in the past two decades to mathematically explore and extend the
fundamental building block in van der Schaft & Maschke (2002), which is the SDS. We briefly list
them in this section, for the sake of completeness and in order to provide references for the interested
reader.

In Vankerschaver et al. (2010), a method for systematically deriving the SDS for a given system was
presented based on symmetry reduction of a canonical Dirac structure on the co-tangent bundle, i.e.,
the unreduced phase space. In Nishida ez al. (2015, 2008a), the authors studied an extended SDS with
distributed port variables, which makes it a boundary non-integrable structure. Moreover, the authors
show that systems with distributed energy flow can be transformed to standard ones, without distributed
energy flows. This allows the application of boundary control techniques to the transformed system. The
work of Nishida et al. (2015, 2008a) was extended to manifolds with non-trivial topology in Nishida &
Maschke (2018).

The pH formulation in van der Schaft & Maschke (2002) was defined on a fixed spatial domain. A
relaxation of this assumption for the one-dimensional case was presented in Diagne & Maschke (2013),
where the authors studied two systems coupled via a moving boundary interface.

A unified modeling procedure of dpH systems for field equations was presented in Nishida &
Yamakita (2005) where a high-order SDS on variational complexes of jet bundles was used. This class
of dpH systems is referred to as field port-Lagrangian systems (Nishida & Yamakita, 2005). It has been
shown in Nishida er al. (2006) how field pL systems can be derived systematically from conservation
laws with a variational symmetry. Moreover, the authors of Nishida er al. (2006) present a strategy for
observing and detecting the breaking of the variational symmetry for field port-Lagrangian systems.
The practical significance of such symmetry observer have been discussed in Nishida et al. (2009).
An extension of the work of Nishida et al. (2006) to the case of infinite-dimensional symmetry of bi-
Hamiltonian systems can be found in Nishida et al. (2007).
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FiG. 3. The wide variety of physical domains in which the pH paradigm was applied to in the literature.

3. Modeling

There have been many efforts in the pH community for the past two decades to implement the generic
dpH framework for modeling distributed-parameter systems in a wide variety of multi-physical domains
including mechanical, electrical, magnetic, thermal and chemical domains, as shown in Fig. 3. In this
section we survey the different physical domains of the distributed parameter systems modeled in the
pH framework in the literature.

3.1. Structural mechanics

The first class of distributed parameter systems presented is structural mechanical systems with its
mechanical energy comprising of kinetic and potential elastic energy. In van der Schaft & Maschke
(2002), a model of a vibrating string was presented with the energy variables chosen as the strain
and momentum. The underlying SDS of the model was a canonical one with the exterior derivative
describing effort-flow relations. In the case of higher-order models like that of the Euler—Bernoulli
(Nishida & Yamakita, 2004) or the Timoshenko beam (Macchelli & Melchiorri, 2004), the underlying
SDS of the model describes high-order effort-flow differential-relations. The extended structures consist
of compositions of the exterior derivative and the Hodge star operator. In Brugnoli et al. (2019a,b) a
formulation of the thick plates (using respectively Midlin and Kirchoff models) that employs tensor
variables is given for a coordinate-free pH description. Nonlinear phenomena can be easily incorporated
in the framework through the constitutive relations, as in Trivedi ez al. (2016), where a nonlinear Euler-
Bernoulli beam model was presented including two-dimensional stress-strain relations modeling large
deflections of the beam. Another approach for modeling planar beams with large deformations is the
work of Golo er al. (2003), in which screw theory was used. Under the assumption of small deviations
around an equilibrium configuration, the longitudinal part of the developed dpH model in Golo et
al. (2003) is shown to correspond to the rod equation, while the transversal part corresponds to the
Timoshenko beam model. The work of Golo et al. (2003) was extended in Macchelli er al. (2007a,
2006) to describe flexible links with one-dimensional spatial domain deforming in three-dimensional
space, where gravity was also included through the use of a distributed port. In Heidari & Zwart (2019)
two different pH models for studying longitudinal vibrations in a nanorod are provided.
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In the context of mixed pH systems, i.e. systems merging from the interconnection of finite- and
infinite-dimensional pH systems, an inverted pendulum on a cart was modeled in Trivedi ef al. (2011), in
which the pendulum was described by a flexible beam with a tip mass. Moreover, the work of Macchelli
et al. (2007a) was extended to the case of a complete complex multi-body system in Macchelli et al.
(2009) with both rigid and flexible links connected through kinematic pairs. An example of such systems
is a robot manipulator with flexible links. Along the same line, a simplified model for a rotating flexible
spacecraft was presented in Aoues et al. (2017), where the model consists of a center rigid hub, two
flexible (Euler—Bernoulli) beams each connected to a tip mass. Finally, in Ramirez et al. (2013), an
underactuated simplified model for a flexible nano-gripper for DNA manipulation was presented. The
model comprised of a flexible (Timoshenko) beam connected to a network of mass-spring-dampers
modeling the DNA bundle, suspension and actuation mechanisms.

Several pH models of mechanical systems have been also presented using the jet-bundle formalism
including the Euler—Bernoulli beam (Schoberl & Schlacher, 2015a), Kirchhoff plate (Schoberl &
Schlacher, 2015a, 2018), Timoshenko beam (Schoberl & Siuka, 2014) and Mindlin plate (Schoberl
& Schlacher, 2015b; Schoberl & Siuka, 2013a).

3.2. Electro-mechanics

The second class of infinite-dimensional systems presented is electro-mechanical systems, which
consists of two different physical domains interacting with each other in addition to mechanical and
electrical ports defined on the boundary of the domain. In Macchelli er al. (2004a), the dynamics
of a piezoelectric material, connected to a flexible beam, is modeled with the assumptions of quasi-
static electric field, linear behavior and negligible thermal effects. Under the same assumptions, another
model of the piezoelectric dynamics has been presented in Schoberl ef al. (2008) using jet variables. An
extended model for a piezoelectric Timoshenko beam has been studied in Vo3 & Scherpen (2014), which
can represent nonlinear beam deformations as well as dynamic electric fields. The model studied was
used to describe inflatable space structures. Another type of electro-mechanical system that was studied
is the ionic polymer-metal composite (Nishida er al., 2008b, 2011), which is a type of electro-active
polymer consisting of a mechanical flexible beam with large deformations in addition to an electric
double layer of polymer and metal electrodes. The mechanical and electric parts are coupled through
electro-stress diffusion. The presented model incorporated the inherent nonlinearities as well as the
multi-spatial-scale structure of the system. A very original example of mixed finite/infinite-dimensional
pH description of an electro-mechanical system is present in Falaize & Hélie (2017) where a Rhodes
Piano is modeled and simulated.

3.3.  Fluid mechanics

Fluid-dynamical systems equations are characterized by two conservation laws: the balance of mass and
momentum of the fluid. Several models of fluid-dynamical systems have been studied in the literature.
The shallow-water equations (aka Saint-Venant equations) have been used in Hamroun ez al. (2006);
Pasumarthy & van der Schaft (2006b) for the (one-dimensional) modeling of open-channel irrigation
systems. An extended model is presented in Hamroun er al. (2007) to include interconnected reaches
with slopes and bed frictions. In one of the earliest work on distributed pH systems, the dynamics of
an three-dimensional compressible inviscid isentropic fluid was presented in van der Schaft & Maschke
(2001). The same results were also included in the original paper of van der Schaft & Maschke (2002)
with the energy variables chosen as the mass density and Eulerian velocity field. The SDS describing
the system is nonlinear; however, it was also shown that for irrotational flow, the underlying SDS
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becomes the canonical one. An extended model describing the case of non-isentropic fluids is presented
in Polner & van der Vegt (2014) in terms of the vorticity-dilatation variables. Moreover, for the spatial
one-dimensional case, different pH models of fluid-thermal equations can be found in Lopezlena &
Scherpen (2004b), a dpH of Navier—Stokes equations for reactive flows can be found in Altmann &
Schulze (2017), while jet-bundle formulations of the Kortweg-de Vries and Boussinesq equations can
be found in Maschke & van der Schaft (2013).

Some work on fluid-structure interaction has also been conducted in the dpH framework. In
Lequeurre & Tucsnak (2015), the one-dimensional Navier—Stokes equation is coupled with a point mass
to describe a simplified model of a gas/piston system. Moreover, in Cardoso-Ribeiro et al. (2017), the
shallow water equations in a moving tank are coupled to a flexible beam with piezoelectric actuators.
The whole setup is a model for the fuel sloshing in a tank connected to very flexible wings in aeronautical
applications.

3.4. Magneto-hydrodynamics

Magneto-hydrodynamical systems are ones in which the fluid’s magnetic behavior and electrical
conductance is considered. Examples of such systems include electrolytes, liquid metals and plasmas.
Such systems comprise of two physical domains interacting together, i.e. electromagnetism, governed
by Maxwell equations, and fluid mechanics, governed by Euler equations of ideal isentropic fluids. The
coupling term is a function of the free current density and the magnetic field induction. pH models of the
magneto-hydrodynamics equations based on the jet-bundle formalism can be found in Siuka et al. (2010)
and Nishida & Sakamoto (2010). Moreover, if the fluid thermal behavior is taken into consideration,
then such models are called thermo-magneto-hydrodynamical systems. Several research studies have
been conducted in Vu & Lefevre (2013); Vu et al. (2012, 2016) for pH modeling of plasma in nuclear
fusion reactors. The work has also been extended in Vincent et al. (2017) for modeling burning plasma
models.

3.5. Chemical processes

The dpH formalism was also applied fo the modeling of chemical processes in which heat and mass
transport occurs along with chemical reactions. In Eberard & Maschke (2004), the dpH framework was
extended to included irreversible thermodynamic processes. Then in Eberard ef al. (2005), the diffusion
process in a heterogeneous mixture is modeled, with an example of the pressure swing adsorption
process.

In Baaiu et al. (2009a), the heat and mass transport phenomena with multiscale coupling is modeled.
The hydrodynamics of the fluid is not modeled explicitly but is handled by the introduction of a moving
reference frame. Several studies have been also devoted for reaction-diffusion systems in which there
is coupling between mass transport and chemical reactions. Different pH models can be found in
§e§lija et al. (2010, 2014b); Zhou et al. (2017, 2012, 2015). A different way to model multi-scale
systems stemming from the combination of hyperbolic and diffusive processes is studied in Le Gorrec
& Matignon (2013), where fractional integrals and derivatives are used.

4. Analysis and Control

Here we summarize the main control techniques that have been developed for dpH systems. As preamble
it is worth mentioning that when dealing with infinite-dimensional systems, some intrinsic difficulties
arise in the proofs of stability of equilibria. This is mainly due to the fact that all norms are not equivalent
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in infinite-dimensional spaces and in principle a norm has to be chosen in the specific stability argument
(Jacob & Zwart, 2012). The pH modeling for infinite-dimensional systems does not solve these issues,
which are intrinsic in distributed parameter systems, but provides a physical understanding of the model,
in which properties of the energy of the system are encoded in the dynamic equations. Normally, the
Hamiltonian energy appearing in the system is a good choice for a Lyapunov functional, which can
be used for designing the control law in a more intuitive way. In other words the idea of the control
techniques developed in this context aim at generalizing the machinery of energy shaping and damping
injection established for finite-dimensional pH systems in a control by interconnection paradigm.

The rest of this section is organized in the following way: in Section 4.1 the control techniques that
arise as extension of control by interconnection ideas from the finite-dimensional case are presented. In
Section 4.2 control designs based on spatial discretization of dpH are listed while in Section 4.3 the rest
of the relevant control ideas are present. In Section 4.4 the control techniques related to the framework
described in Section 2.2 are summarized, by presenting first well-posedness and stabilizability results,
and then design of controllers for such systems. Basically our choice is to distinguish the techniques
that have been developed for dpH systems as BCS and the rest of the approaches, which are in principle
applicable to general dpH systems.

4.1. Extension of control by interconnection

In Macchelli & Melchiorri (2004) the damping injection technique is applied to the dpH Timoshenko
model to stabilize the beam both at the distributed and boundary ports. In the same work, control by
interconnection to perform energy shaping of the beam is extended to the infinite-dimensional case
following the ideas presented in Rodriguez et al. (2001). This has been done by introducing a finite-
dimensional controller and a tip mass on the extremities of the beam and generalizing the concept of
Casimir functions for the resulting closed-loop system. In the same spirit as in Macchelli & Melchiorri
(2004), the dpH model and damping injection control is performed to the two-dimensional case of the
Mildlin plate in Macchelli et al. (2005a).

In Macchelli & Melchiorri (2005) control by interconnection was formalized for a class of mixed
pH systems, in the sense of a power conserving interconnection between an infinite-dimensional
system, ‘sandwiched’ between two finite-dimensional ones, all of them in pH form. The control by
interconnection by means of Casimir generation has been extended to this class of systems, allowing
for a structural state feedback law able to shift the equilibrium of the closed-loop system if appropriate
conditions on the Casimirs are fulfilled. In Macchelli et al. (2005b) the same idea was applied for closed-
loop systems consisting on the interconnection of two systems only, one finite-dimensional and the other
distributed. A related work is Pasumarthy & van der Schaft (2005) where only one-dimensional systems
are considered. In Pasumarthy & van Der Schaft (2007) the problem of characterizing achievable
Casimirs is analysed for systems merging form the interconnection of finite-dimensional systems at
the boundary of infinite-dimensional ones. Distributed and boundary dissipation are included in the
analysis which is substantially limited to one-dimensional spatial domain dpH systems in which the
SDS is defined on the space of differential forms. An attempt to tackle the two-dimensional case has
been done in Macchelli ef al. (2015b) where control by interconnection has been applied on dpH systems
with rectangular domain.

4.2.  Control design based on spatial discretization

Another approach is to take advantage of the spatial discretization algorithms for dpH systems and
design the regulator on the basis of the finite-dimensional approximation. This has been the strategy
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in Macchelli (2011, 2012b); Macchelli & Melchiorri (2009, 2010) where the Casimirs for the closed-
loop system were chosen on the basis of the finite-dimensional closed-loop approximation and where
the connection with the corresponding infinite-dimensional Casimirs is studied. In Kotyczka (2014);
Kotyczka & Brandst (2014) the feedforward control problem is studied for spatially discretized dpH
systems consisting in hyperbolic systems of two conservation laws. The obtained results rely on the
explicit expression of the inverse dynamics, which is available since the discretized system of the
considered class possesses a non zero feedthrough term. In Toledo et al. (2019) an observer-based
controller is designed on the basis of a spatial discretization of a dpH system in the form (4.1) in
such a way that it stabilizes the infinite-dimensional system as well, avoiding spillover effects. In
Cardoso-Ribeiro et al. (2019) the nonlinear two-dimensional shallow water equations are discretized
and controlled at the boundary. The problem is tackled after a reduction to a one-dimensional system
performed by means of symmetry conditions and use of polar coordinates.

4.3.  Other control methods

In Malzer et al. (2019); Rams & Schoberl (2017); Schoberl & Siuka (2011, 2013b), control by
interconnection in terms of Casimir generation is analysed in the context of dpH systems described using
the jet bundle formulation, and not through skew-adjoint operators. In Nishida ef al. (2013) optimal
control for dpH systems has been used to derive passivity based control laws in a differential geometric
setting. A numerical algorithm is then proposed to control a flexible beam with large deformations. In
Kosaraju et al. (2017); Macchelli (2016a) a Brayton—Moser formulation is given for the dpH systems
in the form (4.1) and a boundary control algorithms is proposed to shape the mixed-potential function
to overcome the dissipation obstacle. In Trang Vu et al. (2017); Trenchant et al. (2017b) control by
structural invariant is extended to shape not only the energy of the closed-loop system, but also its
structure. It is shown how a one-dimensional hyperbolic dpH system of two conservation laws can be
shaped in a parabolic one. A similar idea was followed in Vu ef al. (2017a) where the IDA-PBC synthesis
is explicitly addressed for a dpH system with spatial symmetries.

4.4. Well-posedness, stabilization and control of dpH systems as BCS

4.4.1. Well-posedness and Stabilization. ~The following contributions rely on the functional analytic
formulation of Le Gorrec et al. (2005). It is important to realize that the machinery connecting dpH
systems and BCS was not yet available at the time at which some of the previously listed control
techniques were introduced. As a consequence, in the first works extending control by interconnection to
dpH systems, the closed-loop system merging from the designed controller is ‘solution free’ (Macchelli
& Melchiorri, 2004), in the sense that existence of trajectories of the closed-loop system was not
addressed. This does not take away importance to these works, that in principle can be applied to more
general systems than those for which exhaustive functional analysis has been applied on later. The idea
of section 4.1 is indeed to collect control by interconnection for dpH systems in this ‘solution free’
fashion, while in the following we discuss results relying directly on the functional analytic approach.
As previously mentioned, this framework is characterized by the following trade-off: the control design
gained more rigour from a functional analytic point of view in the sense that existence of solutions for
closed-loop the system is addressed rigorously (the design of the controller is not anymore ‘solution
free’) with a dramatic decrease of the class of systems that are considered. In fact besides of minor
variations, the plants on which controllers have been designed are substantially represented by the PDE
(4.1). Anisolated exception is represented by the work of Kurula & Zwart (2015), where well-posedness
of the linear wave equation is studied in an n-dimensional spatial domain. It is important to cite Le
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Gorrec et al. (2006) where distributed dissipation was added to the framework by means of a symmetric
operator.

The work on stabilization of dpH systems by means of finite-dimensional boundary controllers
started in Villegas et al. (2005) where asymptotic stability results based on static and dynamic feedback
of BCS considered in Le Gorrec et al. (2005) were carried out by means of frequency based arguments.
It started to be clear that by restricting the class of systems described by the differential operator (2.3)
to the case N = 1 technical issues necessary for stability were automatically satisfied, leading to the
definition of the abstract class of linear dpH systems on one-dimensional spatial domain

0
i=P a—z(.ﬁf(z)x) + (Py — Gop)-A2)x, 4.1)

with P; and G, being symmetric matrices and P skew-symmetric. Here z € [a, b] and x lives in the
functional space equivalent to L*([a, b], R") endowed with the inner product that makes its induced
norm equal to twice the energy functional. It is clear that the names P, P, derive from the indices of
the truncated series in (2.3) and G, is the operator describing distributed dissipation. In the PhD thesis
of Villegas (2007) a great number of results in terms of stability and stabilization have been formalized
for systems in form (2.4)—(4.1). In this thesis arguments highlighting the difficulty of extending the
functional analytic approach to higher dimensional spatial domains are present. The key result in
Villegas et al. (2009) provided an exponential stability argument for BCS systems in pH form (4.1)
by means of adding dissipation on the boundary of the spatial domain. This result has been of great
importance since it provided a practical check to evaluate exponential stability and was instrumental
for future stabilizability results. In Zwart et al. (2009) results on well-posedness of systems in the form
(4.1) are carried out even for the case in which the autonomous system does not generate a contraction
semigroup. At this point the richness of the framework was enough to publish the monograph Jacob &
Zwart (2012), where the important results for systems (4.1) were collected and developed.

Further important research involving exponential stabilization of BCS in pH form is present in
Ramirez et al. (2014) where the methodology developed in Villegas er al. (2009) has been used to study
stabilizability of (4.1) by means of finite-dimensional boundary controllers, here considered to be finite-
dimensional pH systems with non zero feedthrough term. It is worth mentioning that practically every
result in stabilizability of systems in form (2.4) or (4.1) make the assumption of a particular input—output
parametrization, i.e. impedance passivity (Le Gorrec et al., 2005). In Macchelli & Califano (2018) the
results are extended to any possible parametrization introduced in Le Gorrec et al. (2005) such that
the autonomous BCS generates a contraction semigroup and consequently the supply rate can assume
any quadratic form of the input-output pair. Here the finite-dimensional controllers are assumed to be
general linear-time-invariant systems, and not more in pH form, in order to deal with general supply
rates. This result has been instrumental to handle more general systems of coupled PDEs and ODEs and
as result repetitive control systems (Califano et al., 2017; Macchelli & Califano, 2018) have been cast
in this rigorous framework to derive novel stability conditions. In Jacob & Zwart (2018) the operator
based analysis to dpH systems is extended to address control theoretic properties like controllability and
input-to-state stability. It is also important to cite the PhD thesis of Augner (2018), where some stability
results for the second order case are present.

We conclude this dense list of results by mentioning studies aiming at interconnecting linear dpH
systems with nonlinear controllers, ending up with the difficult task of handling a nonlinear, infinite-
dimensional closed-loop systems. This scenario is particularly challenging and only few recent results
are present in terms of well-posedness and stabilization. In particular in Ramirez er al. (2017a) a
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class of nonlinear passive systems stabilizing first asymptotically and then exponentially dpH in form
(4.1) is presented. This work has inspired Califano e al. (2018) where stability analysis for nonlinear
repetitive control schemes has been performed for a class of systems, subsequently extended in Califano
& Macchelli (2019). In Augner (2018) a nonlinear semigroup approach is used to prove exponential
stability of dpH systems by means of nonlinear dissipative feedback. In Hastir ef al. (2019) a different
approach is used to study the interconnection of infinite-dimensional linear systems interconnected with
a static nonlinearity. The result can be applied in this framework to show well-posedness of a vibrating
string in pH form with a nonlinear damper at the boundary.

4.4.2. Control of dpH systems as BCS. Inthis context aspects related to Casimir generation have been
reinvestigated for systems in the form (4.1) in order to properly address well-posedness (i.e. existence
and smoothness of solutions) for the closed-loop system.

In Macchelli (2012a) control by interconnection by means of Casimir generation is revisited in
this framework without dissipation (G, = 0 in (4.1)) where the closed-loop system merges form the
interconnection of the dpH and a finite-dimensional boundary regulator in pH form. Conditions for
existence of Casimirs and asymptotic stability conditions are given. In Macchelli (2013, 2014) the class
of stabilising controllers has been enlarged by relying on the parametrisation of the system dynamics
provided by the image representation of the SDS to overcome the dissipation obstacle, i.e. the problem
of steering a dynamical system in a state that dissipates energy. In this way the boundary control is not
generated implicitly by means of Casimirs of the closed-loop system but directly as feedback control
law. The methodology is applied to the whole class of (4.1) in Macchelli ez al. (2015a). In Macchelli
(2015) the dissipation obstacle is overcome in a different way: by defining a new passive output and
applying control by interconnection to the new input-output pair of the dpH system it was shown how to
overcome the dissipation obstacle by means of Casimir generation for the new closed-loop-system. In Le
Gorrec et al. (2014) asymptotic stability for (4.1) is proven by means of a boundary finite-dimensional
pH controller and Casimir generation for the closed-loop system. The methodology is applied to a
nanotweezer DNA-manipulation device. In Macchelli (2016b) the control by interconnection paradigm
is augmented with an output feedback control loop providing exponential stability of the closed-loop
system of the internally shaped equilibrium. An important contribution summarizing the ideas about
boundary control laws for (4.1) is Macchelli et al. (2017b), where Casimir generation, state feedback
control laws able to overcome dissipation obstacle, and asymptotic stabilization with damping injection
are extensively addressed.

In Ramirez et al. (2017b) a backstepping boundary controller is designed for a simple one-
dimensional hyperbolic lossless dpH system, showing that pH structure is able to simplify the control
design process for a target system with dissipation. In Macchelli et al. (2017a) the same idea to map
system (4.1) into a target one is explored through a proper coordinate transformation preserving the
Hamiltonian structure.

5. Discretization

For numerical simulation and control synthesis, it is necessary to have finite approximations of the
infinite-dimensional pH system models or infinite-dimensional controllers discussed earlier. These
finite-dimensional approximations should maintain the ‘openness’ property to be able to interconnect it
via its ports to other systems. The conventional numerical algorithms emanating from the numerical
analysis field fail to preserve the intrinsic pH system structure and properties, such as passivity,
symplecticity, and conservation laws (Selija e al., 2012).
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TABLE 1.  Structure-preserving discretization methods for pH systems.

Discretization Method References

Finite element Baaiu et al. (2006, 2009b); Bassi et al. (2007); Eberard et al.
(2007); Golo et al. (2002); Macchelli et al. (2007b);
Pasumarthy ez al. (2012); Talasila et al. (2002); Vol & Weiland
(2011); Wu et al. (2015)

Finite difference Lopezlena & Scherpen (2004a), Trenchant et al. (2018a),
Trenchant et al. (2017a), Trenchant et al. (2018b)

Finite volume Kotyczka (2016), Serhani et al. (2018)

Partitioned finite element Cardoso-Ribeiro et al. (2018), Serhani et al. (2019¢), Serhani et
al. (2019b), Serhani et al. (2019a)

Pseudo-spectral Harkort & Deutscher (2012), Moulla et al. (2011), Moulla et al.
(2012), Vu et al. (2013a), Vu et al. (2017b)

Discrete exterior calculus Kotyczka et al. (2018), Seslija et al. (2011), Seslija et al.

(2014a),Seslija et al. (2012)

TABLE 2. Application research papers combining different aspects of the pH framework. The aspects
include Modeling, Discretization, Control, and Experimental Validation.

Modeling Discretization Control Experiment

Banavar & Dey (2010)
Hamroun et al. (2010)

Siuka et al. (2011)

VoB3 & Weiland (2011)
Nishida et al. (2012)
Ramirez et al. (2013)

Vu et al. (2013b)
Seslija er al. (2014b)
Kotyczka & Blancato (2015)
Trenchant et al. (2015)
Trivedi et al. (2016)

Aoues et al. (2017)
Cardoso-Ribeiro et al. (2017)
Brugnoli et al. (2019a,b)

v v

(\
N N N N NN NEN

AN N N N N NN
SNEN

AN NS

This has motivated research for the past two decades in developing structure-preserving discretiza-
tion techniques of dpH systems, summarized in Table 1. These methods, similar to traditional ones, are
based either on the approximation of equations or the approximation of solutions (Baaiu et al., 2009b).
The first category includes finite-differences methods and finite-volume methods, while the second
category includes weighted residual methods and finite-element methods.

One of the earliest works in structure-preserving discretization techniques was the work of Golo et
al. (2002, 2003, 2004); where a mixed finite-elements method was presented. The method of Golo er
al. (2004) considered the approximation of the differential forms, corresponding to the port variables in
Fig. 2b, by Whitney forms. The method was used to discretize the telegrapher’s equation (Golo et al.,
2002), wave equation (Golo et al., 2003), chemical adsorption column (Baaiu et al., 2006), Maxwell’s
equations (Eberard et al., 2007) and a vibro-acoustic system (Wu et al., 2015).
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The work of Golo er al. (2004) was extended to the case of a non-constant SDS in Pasumarthy
et al. (2012); Pasumarthy & van der Schaft (2006a) for the shallow water equations and extended
to irreversible pH systems in Baaiu et al. (2009b); Vo3 & Weiland (2011). Another method that was
inspired by Golo et al. (2004) is Bassi et al. (2007), which was formulated for the functional analytic
formulation of pH systems discussed in section 2.2. The algorithm described in Bassi et al. (2007) was
implemented in Macchelli et al. (2007b) for a flexible link.

Structure-preserving discretization methods based on finite differences and finite volumes have also
been presented in the literature. In Clemente-Gallardo et al. (2002); Lopezlena & Scherpen (2004a), a
method based on discretizing the spatial domain into a grid of nodes where finite differences are used
to approximate the differential form variables of the pH system. A drawback of this method, unlike
the method of Golo er al. (2004), is that only uniform grids can be used. This problem was avoided
in Trenchant et al. (2017a, 2018b) by using staggered-grids finite differences thus allowing the use of
different grids. Rectangular grids have been used in Trenchant et al. (2017a) while cylindrical grids have
been used in Trenchant ef al. (2018a). A finite-volume scheme based on the generalized leapfrog method
has been introduce for one-dimensional systems in Kotyczka (2016) and extended to two-dimensional
systems in Serhani ez al. (2018).

A promising and very recent structure-preserving numerical method is the Partitioned Finite Element
Method (PFEM). It has been introduced in Cardoso-Ribeiro et al. (2018), developed in Serhani ef al.
(2019a,b,c) and successfully applied for discretization and simulation of thick plate models in the
already referred papers Brugnoli et al. (2019a,b). The method consists in rewriting the system in a
weak-form where only some of the equations are integrated by parts. As consequence the SDS and
the constitutive equations are discretized separately, preserving the power balance of the open system
(including boundary control and observation) at the discrete level.

Another class of discretization methods that has been used in the literature includes pseudo-spectral
methods, which can be considered a generalization of mixed finite element methods when low-order
polynomials are used for approximation. In Moulla er al. (2011) a method based on polynomial
approximation bases, with Lagrange interpolation, is introduced and used to discretize the lossless
transmission line (Moulla ef al., 2011) and the shallow water equations (Moulla et al., 2012). The
aforementioned method was extended in Vu er al. (2013a, 2017b) using Bessel function bases and
applied to a one-dimensional Tokamak model. Another pseduo-spectral method was introduced in
Harkort & Deutscher (2012) using a generalized Galerkin projection method for discretizing linear pH
systems in the functional analytic approach.

A natural approach to the structure-preserving discretization of pH systems is to mirror the
continuous exterior calculus formulation using discrete exterior calculus. The framework replaces the
smooth structures in exterior calculus by their discrete analogues, e.g. replacing the smooth manifold
by a simplicial complex and replacing the differential forms by co-chains. The conventional discrete
exterior calculus methods were extended from the Hamiltonian setting to the pH setting in the work of
Seslija et al. (2011,2012) in an algebraic topology setting. The main results of Seilija er al. (2011,2012)
have been made more accessible in Seilija er al. (2014a) by being rewritten in matrix representations
instead of the algebraic topology nomenclature. A closely-related work to the discrete exterior calculus
formulation is Kotyczka et al. (2018) which was based on the weak-form of the SDS of the pH system.

6. Conclusion

In this survey paper we reviewed the topic of dpH systems that started about 20 years ago. We
analyzed and classified over 150 studies that we considered relevant. Our pedagogical classification
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is based on conceptual approaches and not on chronological order. The aim of this review is to help
researchers in consulting and examining relevant references, and also in understanding the conceptual
backbone of the topic, together with their variations. This manuscript highlights the fact that the
dpH framework provides a deep understanding of the different multi-physical natural phenomena by
explicitly separating energetic and interconnection properties of the system. One of the key benefits of
the pH framework is the unified language and conceptual insight that can be applied for the synthesis of a
distributed parameter system, namely the modeling, discretization, analysis and control, in addition that
these powerful techniques are directly usable at the practical level. Table 2 lists the research studies
that applied the dpH framework through the combination of the aforementioned steps. Taking into
consideration also that the pH framework can incorporate both finite and infinite dimensional systems
in a similar manner conceptually, we believe this framework to be very fruitful in the near future.
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