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Abstract

This thesis presents techniques to improve reliability and prove functional cor-
rectness of parallel programs. These requirements are especially crucial in
critical systems where system failures endanger human lives, cause substantial
economic damages or security breaches. Today’s critical systems are expected
to deliver more and more complex and computationally intensive functions.
In many cases these cannot be achieved without exploiting the computational
power of multi- and even many-core processors via parallel programming. The
use of parallelization in critical systems is especially challenging as on one hand,
the non-deterministic nature of parallel programs makes them highly error-
prone, while on the other hand high levels of reliability have to be guaranteed.

We tackle this challenge by proposing novel formal techniques for verifica-
tion of parallel programs. We focus on the verification of data race freedom and
functional correctness, i.e. a program behaves as it is expected. For this purpose,
we use axiomatic reasoning techniques based on permission-based separation
logic.

Among different parallel programming paradigms, in deterministic parallel
programming, parallelization is expressed over a sequential program using
high-level parallel programming constructs (e.g. parallel loops) or paralleliza-
tion annotations; next the low-level parallel program (e.g. a multithreaded
program or a GPGPU kernel) is generated by a parallelizing compiler.

First, we present a verification technique to reason about loop paralleliza-
tions. We introduce the notion of an iteration contract that specifies the memory
locations being read or written by each iteration of the loop. The specifications
can be extended with extra annotations that capture data-dependencies among
the loop iterations. A correctly written iteration contract can be used to draw
conclusions about the safety of a loop parallelization; it can also indicate where
synchronization is needed in the parallel loop. Iteration contracts can be further
extended to specify the functional behavior of the loop such that the functional

correctness of the loop can be verified together with its parallelization safety.

vii



viii Abstract

Second, we propose a novel technique to reason about deterministic parallel
programs. We first formally define the Parallel Programming Language (PPL),
a simple core language that captures the main forms of deterministic parallel
programs. This language distinguishes three kinds of basic blocks: parallel,
vectorized and sequential blocks, which can be composed using three different
composition operators: sequential, parallel and fusion composition. We show
that it is sufficient to have contracts for the basic blocks to prove the correctness
of the PPL program, and moreover that the functional correctness of the
sequential program implies the correctness of the parallelized program. We
formally prove the correctness of our approach. In addition, we define a widely-
used subset of OpenMP that can be encoded into our core language, thus
effectively enabling verification of OpenMP compiler directives, and we discuss

automated tool support for this verification process.

Third, we propose a specification and verification technique to reason about
data race freedom and functional correctness of GPGPU kernels that use atomic
operations as a synchronization mechanism. We exploit the notion of resource
invariant from Concurrent Separation Logic to specify the behaviour of atomic
operations. To capture the GPGPU memory model, we adapt this notion of
resource invariant such that group resource invariants capture the behaviour of
atomic operations that access locations in local memory, which are accessible
only to the threads in the same work group, while kernel resource invariants
capture the behaviour of atomic operations that access locations in global
memory, which are accessible to all threads in all work groups. We show the
soundness of our approach and we demonstrate the application of the technique

in our toolset.

This thesis presents a set of verification techniques based on permission-
based separation logic to reason about the data race freedom and functional
correctness of program parallelizations. Our reasoning techniques address dif-
ferent forms of high-level and low-level parallelization. For high-level parallel
programs, we first formalize the main features of deterministic parallel pro-
gramming in PPL and discuss how PPL programs and consequently, real-world
deterministic parallel programs (e.g. OpenMP programs) are verified. For
low-level parallel programs, we specifically focus on reasoning about GPGPU
kernels. At the end we discuss how the presented verification techniques
are chained together to reason about the semantical equivalence of high-level

parallel programs where they are automatically transformed into low-level
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parallel programs by a parallelizing compiler. Thus, effectively enabling a

holistic verification solution for such parallelization frameworks.
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CHAPTER 1 l

INTRODUCTION

“The more I think about language, the more it amazes me that people ever
understand each other at all.”
— Kurt Gddel






His thesis presents techniques to improve reliability and prove functional
correctness of parallel programs. Software reliability is the probability
of failure-free software operation for a specific period of time in

a specific environment [Mus80, L*96]. Functional correctness of software
means that it behaves as defined by the functional requirements of the system.
Reliability and correctness are two important design criteria in almost any
system, but they are especially crucial requirements in the development of
critical systems.

Critical systems are failure-sensitive systems. Depending on the conse-
quences of a failure they are classified into different categories of safety, mission,
business, and security critical systems. In general critical systems are those
systems whose failure may endanger human lives, damage the environment,
cause substantial economic loss, disrupt infrastructure, or results in information
leakage [Kni02]. Traditional critical systems are spacecrafts, satellites, commer-
cial airplanes, defense systems, nuclear power plants and weapons. However, if
we look carefully, critical systems are much more pervasive nowadays and this is
an increasing trend. In medicine: heart pacemakers, infusion pumps, radiation
therapy machines, robotic surgery, in critical infrastructures: water systems,
electrical generation and distribution systems, emergency services such as the
112 line, transportation control and banking are some of the modern examples

of critical systems on which we are depending more and more.

Traditionally critical systems have been designed using only mechanical and
electronic parts where reliability can be achieved by setting high safety factor
or by adding redundant parts to the design. For example a standard elevator
design requires an “eight safety factor”. This means that it can carry eight
times more load than the expected load for which it is designed. This is a large
safety margin and a waste of resources but it is paid to ensure the right level of
reliability.

Critical systems have evolved over time to deliver more complex functions

3



4 1. INTRODUCTION

and at the same time be more programmable. Throughout this evolution,
software components and parallel programming were introduced to the designs
of these systems and then gradually became an essential part of them [SEUT15].
Although software-based systems are easily programmable such that a new
functionality can be implemented in a couple of hours, ensuring the absolute
safety of the system is in fact multiple orders of magnitude harder and even
impossible in some cases; this lesson has only been learnt through several
deadly and disastrous software failures [LT93| |Dow97, JM97|. It is also well
understood that software testing is not an ultimate solution as “festing can only
show the presence of bugs; not their absence” |Dij72].

Unlike mechanical and electronic parts, software does not age, wear-out or
rust. So all software-related errors are in principle design faults. They are human
mistakes; the failure of designers and developers to understand the system and
its operational environment, to communicate unambiguously, and to predict the
effect of actions and changes when they propagate in the system.

If we track these faults down in the process of system development. We real-
ize that most of them are caused by inconsistent assumptions or lack of precise
information. In practice, the requirements of the system are ambiguous in the
early stages of the design; even clients do not know clearly what precisely their
expected product should be. So software development proceeds by making a lot
of assumptions. These assumptions if documented, they are written in natural
language that is not sufficiently precise to be used for detecting the possible
inconsistencies. Later, developers build up the system on top of those imprecise
or potentially inconsistent assumptions. Consequently the absolute reliability
and functional correctness of the system become unverifiable.

Human beings are not evolved to be precise, only an approximated percep-
tion of the world would suffice for our survival [HSP15|]. However, as a creator
of a software system, even a small amount of deviation and imprecision may
eventually cause huge errors. This is perhaps the main reason that our current
science and engineering is so dependent on mathematics. Logic from its earliest
forms of Aristotle’s syllogism [ari17] to later well-defined forms of mathematical
logic known as formal logic is one of the oldest branches of mathematics. Formal
logic provides a mathematical method to specify knowledge in an unambiguous
way. When it is employed in software design and development, formal logic
can be used as a powerful instrument to precisely specify a software system

and its components. Only under a mathematically precise specification of a
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software system its absolute reliability and functional correctness is provable.
According to John MacCarthy, “it is reasonable to hope that the relationship
between computation and mathematical logic will be as fruitful in the next
century as that between analysis and physics in the last” [McC61].

The interaction of formal logic and computer science has been so much
profound so far that the formal logic has been called “the calculus of computer
science”. We shortly highlight the parts of this interaction which are specifically
related to this thesis and refer to Reference [HHI'01] for further readings. The
first application of formal logic in reasoning about the correctness of computer
programs dates back to the seminal works of Floyd and Hoare [Flo93, HW73]
where Hoare logic is introduced for the first time. The logic enables us to prove
the functional correctness of sequential programs assuming that they terminate.
In a significant breakthrough, Raynolds, O’Hearn, Yang and others [Rey02,
ORY01, IO01] extended Hoare logic to separation logic based on the Burstall’s ob-
servation [Bur72|| that separate program texts which work on separate sections
of the store can be reasoned about independently. Next O’'Hearn developed
the concurrent variant of separation logic [O’H04, O'HO07| (O’"HO8]||, Concurrent
Separation Logic (CSL) that enables modular reasoning about the reliability and
correctness of concurrent programs. To support concurrent reads, Bornat and
others present Permission-Based Separation Logic (PBSL) [BCOP05] that combines
CSL with Boyland’s fractional permissions [Boy03]. We discuss the course of
this evolution with more details in Chapter

This thesis contributes to the above-mentioned research line by developing
verification methods based on permission-based separation logic to reason
about the safety and functional correctness of parallel programs. We also
facilitate the practical applicability of this verification approach by prototyping
the developed techniques in a verification toolset.

1.1. Concurrency, Parallelism and Data Races

According to Moore’s law the number of transistors on a chip doubles every two
years [Moo98]. Independent of how the law will survive in the next decades,
it played an influential role on hardware development and also the way we
program that hardware in the past half a century. With more transistors on a
chip, customers expect more storage and faster processing. However, in a single-

core processor increasing the processing speed, achieves at the cost of higher
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power dissipation and more complex processor design. To manage the power
consumption and complexity, processor vendors has recently favored multi-core
processor designs. That, however has not really resolved the complexity issue
but rather lifted it up to the software level; as exploiting the full computing
power of the modern multi-core architectures requires software developers to
give up the simpler and more reliable way of sequential programming in favor
of parallel programming.

Writing a parallel program typically starts with decomposing the expected
functionality into a set of smaller tasks (also known as threads or processes).
Tasks are executed concurrently on a single or multi-core processor. When
inter-task communication is necessary, developer can weave a synchronization
protocol into the program that restrict the interleaving of statements such that
the deterministic execution of the program is guaranteed. If the synchronization
is correct, the visible outcome of the concurrent execution of the tasks should
be as if they are executing sequentially by a single processor. In fact this
programming method has been invented and being used even before the

emergence of multi-core processors, in the form of concurrent programming.

Concurrency and parallelism are often used as synonyms in the literature,
as well as in this thesis. However, there is a slight distinction between the two
concepts that we would like to elaborate on. Concurrency is about making a
model of software in which the expected functionality is distributed among
smaller tasks, how the tasks are communicating and how data is shared among
them but concurrency does not propose how the tasks are executed on a
specific hardware platform (e.g. on a single or multi-core or even many-core
processor). The actual binding of the concurrency model to a specific hardware
platform is called parallelism. So concurrency defines a software model while
parallelism represents how that model is bound to a specific hardware platform.
Despite this subtle difference, because of simplicity we consider these two terms
synonym in this thesis.

Concurrent programming is known to be difficult and error-prone [Lee(6].
What makes concurrency specifically difficult is when processes need to com-
municate. Concurrent execution of independent processes is safe; however in
many applications inter-process communications are inevitable. One efficient
way for inter-process communication is to use shared memory. Processes
can read and write from the shared memory and even to or from the same

location. So one process can write a value which may later read by another
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process. The problem is that there is no guarantee that the read of the reader
process happens after the write of the writer process (assuming that this is the
expected behaviour); unless they are properly synchronized. If two accesses are
read, there is no execution order which yields a harmful result. However, the
uncontrolled race of two processes where they access to a same location and at
least one of the accesses is a write access is called data race. This is the source of
many errors in concurrent programs that eventually leads to non-deterministic

functional behaviour and unreliability.

A closer look into the way concurrency is used, especially in scientific
and business applications, reveals that concurrency often is not intrinsic to
the function of the system but rather it is an optimization step. Therefore
in many applications it is possible to express the full functionality of the
system by a sequential program and the more efficient parallel version of the
program can later be generated by a parallelizing compiler. This is a high-level
parallelization approach that allows the parallelization to be defined over a
sequential program. As this parallelization method only produces the parallel
programs that are able to represent the deterministic functional behaviour
of a sequential program (namely their original sequential counterpart), this
approach is often called deterministic parallel programming. One problem is that
standard sequential programming languages are not sufficiently expressive to
describe parallelization. Thus in many cases the compiler cannot decide if for
example a loop is parallelizable or not.

The high-level description of parallelization over sequential programs can
be implemented differently. One approach is to use annotations in the form of
compiler directives to hint the compiler where and how to parallelize [opel7d]
opel7b|, BBCT15]. OpenMP [opel7d] is one of the popular language extensions
for shared memory parallel programming that follows this approach. The
approach has also inspired projects such as CARP [CAR17|] which are aimed at
increasing the programmability and portability of programs written for many-
core processors by hiding the complexity of hardware dependent low-level
details and presenting the parallelization in a high-level language (i.e. PENCIL
[BBC™15, BCG™15]). The downside of the approach is that the compiler fully
relies on user annotations. Thus, an incorrect parallelization annotation leads
to a racy low-level parallel program. Other approaches are diverse in the range
between extending sequential programming languages with parallelization

constructs (e.g. parallel loop construct) and wrapping parallelization into some
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high-level library functions [GM12, BAAS09, Rob12, |Par17].

Given a high-level parallel program, the parallelizing compiler generates
the low-level parallel program for a specific target platform. It can be a multi-
threaded C program to be executed on a multi-core or a single core processor or
an OpenCL kernel to be executed on a many-core accelerator processor such as a
GPU. As the final product in this programming method is the low-level parallel
program, it is important to show that the generated low-level parallel program is
indeed semantically equivalent to its high-level counterpart (i.e. it behaves same as
its high-level counterpart). For example the functional behaviour of an OpenMP
program is preserved when it is translated into an OpenCL kernel and runs on
a GPU.

This thesis tackles the challenge of ensuring reliability and functional cor-
rectness of the high-level approach to program parallelization discussed above.
We specifically use permission-based separation logic to specify and verify:
(1) the high-level parallelization annotations are used correctly, (2) the high-
level program respects its functional properties and (3) the low-level translation
preserves the same functionality and it is data race free. The next section
elaborates these verification challenges.

1.2. Verification Challenges

This section briefly presents the main challenges that we study in this thesis.
Each of the following challenges is addressed by one of the chapters of this
thesis: Chapter Bladdresses Challenge 1, Chapter [d]and Chapter 5 discuss how
we tackle Challenge 2 and 3 respectively; and Chapter [p| presents our solution
to Challenge 4.

o Challenge 1: How to specify and verify loop parallelization?

The iterative structure of loops makes them suitable for parallelization.
However, only the loops that have data-independent iterations can be
safely parallelized. In the presence of loop-carried dependencies, par-
allelization is either not possible or it can be done only if proper inter-
iteration synchronizations are used. The challenge is how to verify that a
loop which is claimed parallel by the developer is indeed parallelizable.
Moreover, we want to be able to verify if the loop can be parallelized by

adding extra synchronizations.
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o Challenge 2: How to precisely formalize high-level deterministic parallel program-
ming?
We discussed how deterministic parallel programming simplifies paral-
lelization by expressing parallelism over a sequential program; so the low-
level parallel program can be automatically generated. This approach
makes parallelization more accessible, productive, platform independent
and maintainable. Although the approach is commonly used especially
in high performance scientific and business applications, it is not properly
formalized. This hinders the application of formal approaches to rea-
son about the correctness of this parallel programming paradigm. The
challenge is how to formalize a core parallel language that captures the
main features of deterministic parallel programming such that it can be
used for static analysis and verification of real-world deterministic parallel

programs.

o Challenge 3: How to reason about the functional correctness and data race freedom

of high-level parallel programs?

Given a formalized core language for deterministic parallel programming,
the challenge is how to verify functional correctness and data race freedom
of the programs written in it. As writing manual specifications is costly
and time consuming, can we reduce specification overhead by automating
some parts of the reasoning?

o Challenge 4: How to show that low-level parallel programs, in particular GPGPU

programs, are functionally correct and data race free?

Among the available techniques for low-level parallel programming (e.g.
using POSIX threads), General Purpose GPU (GPGPU) programming is
a rather new and rapidly growing paradigm. There are only limited
static analysis techniques that specifically deal with data race freedom
of GPGPU programs [BCD'12} LG10, BHM14]. Among them, the work
by Blom et al. [BHM14] presents a deductive verification approach based
on permission-based separation logic that enables reasoning about both
functional correctness and data race freedom of GPGPU programs. How-
ever, the method is limited to GPGPU programs that do not use atomic
operations. The challenge is to extend the technique such that the GPGPU
programs that use both barriers and atomic operations can be verified as
well. Additionally, when a GPGPU program is automatically generated
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from a high-level parallel program, how can the semantic equivalence of
the GPGPU program and its high-level counterpart be ensured?

Contributions

This thesis contributes with novel techniques for reasoning about functional

correctness and data race freedom of parallel programs. We list the following

contributions:

1.4.

A specification and verification technique for reasoning about the safety

and functional correctness of loop parallelizations;

Formalizing a simple Parallel Programming Language (PPL), which cap-
tures the main forms of deterministic parallel programs;

A verification technique for reasoning about the data race freedom and
functional correctness of PPL programs;

An algorithm for encoding OpenMP programs into PPL that enables

verification of OpenMP programs;

A specification and verification technique that adapts the notion of re-
source invariants to the GPU memory model and enables us to reason
about the data race freedom and functional correctness of GPGPU kernels

containing atomic operations;

Demonstrating the practical applicability of the proposed verification
techniques by prototyping them in our VerCors toolset.

Outline

The thesis is organized as follows:

Chapter[l] (Introduction).

Chapter[2] (Permission-based Separation Logic): presents background on sep-

aration logic and how it can be used for reasoning about concurrent programs.

It also gives a high-level overview on the architecture of our VerCors toolset.
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Chapter (Verification of Parallel Loops): introduces the notion of iteration
contracts and employs it to reason about loop parallelization. This chapter
is based on the papers “Verification of Loop Parallelisations” and “Verifying
Parallel Loops with Separation Logic”, which were published at FASE 2015
[BDH] and PLACES 2014 [BDH14] respectively.

Chapter[d (Parallel Programming Language): explains the syntax and opera-
tional semantics of our parallel programming language. It also gives an intro-
duction to OpenMP and discusses how OpenMP programs are translated into
PPL programs. This chapter is based on the paper “A Verification Technique for
Deterministic Parallel Programs”, which was published at NFM 2017 [DBH17a]
and its extended version [DBH17Db].

Chapter (Verification of Deterministic Parallel Programs): discusses our
verification approach to reason about deterministic parallel programs repre-
sented in PPL. This chapter is based on the paper “A Verification Technique for
Deterministic Parallel Programs”, which was published at NFM 2017 [DBH17al.

Chapter [6| (Verification of GPGPU Programs): gives a short introduction to
GPGPU programming and presents how we reason about the data race freedom
and functional correctness of GPGPU kernels that use atomic operations. This
chapter is based on the paper “Specification and Verification of Atomic Opera-
tions in GPGPU Programs”, which was published at SEFM 2015 [ADBH15].

Chapterﬁ] (Conclusion): concludes the thesis and identifies some promising

new directions for future work.






CHAPTER 2 l

PERMISSION-BASED
SEPARATION LOGIC

“The job of formal methods is to elucidate the assumptions upon which formal
correctness depends.”
— Tony Hoare






top of Permission-Based Separation Logic (PBSL) [Boy03, BCOP05,
Hur09b, HHHA14|]. Separation Logic [Rey(02] is an extension of
Hoare Logic [Hoa69], originally proposed to reason about imperative pointer-

T HE verification techniques that we discuss in this thesis are built on

manipulating programs. In this thesis we use permission-based separation logic
as the basis of our specification language to reason about program paralleliza-
tions. Section [2.1} first gives an overview on the main concepts of the logic.
Then Section 2.2 formally presents the syntax and semantics of the formulas.
Finally in Section we give a high-level overview about how reasoning with
permission-based separation logic for parallel programs is implemented in our
VerCors toolset. Later in Chapters 3} [fland[6} we elaborate on how the proposed
verification technique in each chapter is implemented as part of the VerCors
toolset.

2.1. The Basic Concepts of Separation Logic

Hoare logic is a formal system for reasoning about program correctness. In
this approach, a program or part of it, is specified by pre- and postconditions.
A precondition is a predicate that formally describes the condition that a
program or part of it relies upon for a correct execution. The postcondition
is the predicate that specifies the condition a program establishes after its
correct execution. When they are used for specifying program components (e.g.
functions) pre- and postcondition present a mathematically precise contract for
that component. For a function they are a contract between the implementation
of the function and the caller of the function (the client). The precondition of
the function should be fulfilled by the client and in return the client relies on
the postcondition of the function after the call to the function.

A program is partially correct with respect to its specification if, assuming

the precondition is true just before the program executes, then if the program

15
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terminates normally without exceptions, the postcondition is true. The program
is totally correct if it is partially correct and also the termination of the program
is guaranteed.

To reason about program correctness, Hoare logic uses Hoare triples. A Hoare
triple when it is used to specify the partial correctness is of the form:

{P1s{Q}

where P and @ are pre- and postconditions respectively and S is the state-
ment(s) of the program. The total correctness meaning of a Hoare triple,
specified with the Hoare triple [P]S[Q)], is that if the execution of S starts in
a state where P is true, then S will terminate in a state where @ is true.

Consider the Hoare triple {z == 1}z = x * 10{z > 5}. The triple is correct
because given x == 1, if we multiply = by 10, the result is # == 10, which
implies x > 5. So given the precondition, the postcondition is satisfiable after
the execution of the statement z = x * 10. However the given postcondition can
be strengthened if it is substituted by + == 10. The latter postcondition is the
strongest postcondition for the provided statement.

Given the specifications in the form of Hoare triples the partial correctness
of programs is deduced using the axioms and rules of Hoare logic. For a
detailed discussion on how the rules and axioms of Hoare logic are used to
prove program correctness, we refer to [Apt81} Apt83} Hoa69, HW73,[LGH " 78].

Hoare logic presents a formal system to prove the correctness of impera-
tive programs. However, the approach is not effectively applicable to some
programming techniques. A well-known class of programs of this kind is
pointer-based programs that are widely used in many application domains. The
problem with these programs is that they allow a shared mutable data structure
to be referenced from more than one point in the program. So a memory
location might be altered by a seemingly unrelated expression. This can happen
when there are at least two pointers that are aliases (i.e. refer to the same
location); in this way they are essentially different pointer variables referring
to the same memory location. A number of solutions have been proposed
for reasoning about pointer-based programs (a partial bibliography is given
in Reference [IO01]). Among them separation logic has gained widespread
popularity. The other approaches either have a limited applicability or they
are extremely complex. Although separation logic was initially presented
as a solution for reasoning about the correctness of pointer-based programs,
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it turned out that the logic has a great potential to be extended to reason
about concurrent program. Before showing how separation logic is used for
verification of concurrent programs, we first discuss its main building blocks.

The central idea in separation logic is to specify program properties over
disjoint (separated) partitions of the memory. Therefore, instead of finding a
complex predicate which is valid globally in the program, one can specify valid
properties on smaller and disjoint parts of the memory. This is enabled by
the separating conjunction operator x. The predicate P x () asserts that P is a
valid assertion on the memory partition m; and @ is another valid assertion
on another memory partition ms, and m; and ms are disjoint (i.e. there is no
memory location which belongs both to m; and my).

An important basic predicate in separation logic is the points-to predicate
2 +— v, meaning that = points to a location on the memory, and this location
contains the value v. The points-to predicates can be conjoined by separating
conjunction x operator. For example, x — 1 x y — 2 asserts that there exists
(only) two separate memory cells pointed to by pointer variables x and y where
the z location contains the value 1 and the y location contains the value 2. The
presence or absence of the term “only” in the previous sentence distinguishes
between two main flavors of separation logic in the literature: intuitionistic
separation logic [IO01] and classical separation logic [JP11, BCOO5]. If the term is
present, it adds an extra semantics that the memory only contains two memory
cells with the specified properties, the classical flavor, while when the term is
absent, it leaves open the possibility of having or not having other memory cells
besides the specified ones, the intuitionistic flavor. In this thesis we use the
intuitionistic flavor of the logic.

According to the definition of the separating conjunction, the predicate z —
_* x — _is a contradiction as both the left-hand and right-hand operand of the
separating conjunction are referring to the same memory cell; so they cannot
be disjoint. Note that the assertion  — 2 A y +— 2 either states that there are
two memory cells pointed by = and y pointers where both contain the value 2
or there is one memory cell referenced to by both pointers = and y and it has the
value 2. Thus, x and y are aliased.

Thus, separation logic enables the specification of properties over separated
partitions of the memory. This separation is exploited by the logic’s proof rules
to enable an interesting aspect of the logic, so-called local reasoning: the parts of

the program which access to disjoint memory partitions can be reasoned about
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independently. One of the important proof rules, behind the local reasoning in
separation logic is the frame rule:
{P}S{Q} (modifies SNwars R =0)
{PxR}S{Q* R}

[Frame Rule]

This rule expresses that if we can prove { P}S{Q} locally on a memory partition,
we can conclude that {P x R}S{Q@x R} holds for an extended memory. This
means that S has not modified anything in the extended part of the memory R.
The side-condition means that the free variables in R have also not modified by
S.

In addition to reasoning about pointer-based programs, separation logic can
also be used to reason about concurrent programs: if two threads only access
to disjoint parts of the memory, they do not interfere and thus can be verified
in isolation. This means that the correctness proof of a concurrent program can
be decomposed into the correctness proof of its threads, given the fact that the
threads are accessing to disjoint memory locations. This is formulated in the
parallel rule [O’H07,(O’HO8) |Vaf11]):

{P3Si{Q1t - {Pa}Sn{Qn} (Cr and Cy)
(Prr %P S| 1S {Q1 5% Qn}

The rule explains that if the predicates P, to P, hold on n separate memory

[Parallel Rule]

partitions, and we distribute each partition to a separate thread, then we can
reason about each thread in isolation, and finally combine their postconditions
Q1 *---*Qyp. The rule has two side-conditions, C; states that a variable that is
changed by one thread cannot appear in another thread unless it is owned by
that thread and C} states that the thread S; must not modify variables that are
free in P; or (); where i # j. However, as Bornat showed the side-conditions of
both parallel and frame rule can be removed by treating variables as resources
[BCYO06].

Separation logic provides a modular way to reason about concurrent pro-
grams. However, the logic only allows reasoning about threads that operate
on disjoint locations; so simultaneous reads from the same location by different
threads is not allowed. To address this issue the logic has been extended with
the notion of fractional permissions to denote the right to either read from or
write to a location [Boy03,BCOP05| BH14, BDHO17, Hur09, [ HHHA14, |Vip17].
Any fraction in the interval (0,1) denotes a read permission, while 1 denotes a

write permission. Permissions can be split and combined, but soundness of the
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logic prevents the sum of the permissions for a location over all threads to exceed
1. This means that at most one thread at a time can hold a write permission,
while multiple threads can simultaneously hold a read permission to a location.
This guarantees that if permission specifications can be verified, the program is
data race free. The set of permissions that a thread holds are often called its
resources.

These (ownership) fractions are often denoted as Perm(e, 7) indicating that a
thread holds an access right = to the memory location e, where any fraction
of 7 in the interval (0,1) denotes a read permission and 1 denotes a write
permission. Write permissions can be split into read permissions, while mul-
tiple read permissions can be combined into a write permission. For example,

Perm(x,1/2) x Perm(y,1/2) indicates that a thread holds read permissions to
access the disjointlocations z and y. If a thread holds Perm(x, 1/2) x Perm(x,1/2),
this can be merged into a write permission Perm(z,1). Equivalently, the write
permission can be split into read permissions; for example when a master thread
shares a piece of memory between the threads it forks.

In this thesis we use the VerCors version of permission-based separation
logic to reason about the correctness of program parallelization. In different
chapters, we present specification techniques to reason about different classes
of parallel programs. The syntax and semantics of the separation logic formulas
used in our specifications are defined formally in the next section.

2.2. Syntax and Semantics of Formulas

Our specification language combines separation logic formulas with the Java
Modeling Language (JML). In this way we exploit the expressiveness and
readability of JML while enabling the use of separation logic for reasoning about
data race freedom and functional correctness. JML annotations that are used in
the examples of this thesis are standard and commonly known by programmers.
We discuss them later where they are actually used in our examples. To learn
more about JML, we refer to [LBR99, [LBR06]. In this section we explain the
syntax and semantics of the separation logic formulas that in combination with
JML annotations construct our specification language.

Formulas F' in our logic are built from first-order logic formulas b, per-
mission predicates Perm(es, e2), conditional expressions (-?- : -), separating
conjunction *, and universal separating conjunction % over a finite set . The
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syntax of formulas is formally defined as follows:

F:=0b|Perm(ey,es) |VIF : F | FxF | %kicrF(4)

b:=true | false |e; ==ez|e1 <ex | bbby Aby ...

ex=v|n|le]|er+ex|er—ea]...
where b is a side-effect free boolean expression, e is a side-effect free arithmetic
expression, [.] is a unary dereferencing operator, thus [¢] returns the value stored
in the address e in shared memory, v ranges over the variables and n ranges over
numerals. We assume the first argument of the Perm(ey, e3) predicate is always
an address and the second argument is a fraction. We use the array notation ale]
as syntactic sugar for [a + e] where a is a variable containing the base address of
the array a and e is the subscript expression; together they point to the address
a + e in shared memory.

Our semantics mixes concepts of Implicit Dynamic Frames [SJP12] and
separation logic with fractional permissions. In this respect it is different from
the traditional separation logic semantics and more aligned towards the way
separation logic is implemented over traditional first order logic tooling. For
further reading on the relationship of these two semantics we refer to the work
of Parkinson and Summers [PS11].

To define the semantics of formulas, we assume the existence of the following
domains: Loc, the set of memory locations, VarName, the set of variable names,
Val, the set of all values, which includes the memory locations, and Frac, the set
of fractions ([0, 1]).

We define memory as a map from locations to values h : Loc — Val. A
memory mask is a map from locations to fractions = : Loc — Frac with unit
element 7y : [ — 0 with respect to the point-wise addition of heap masks. A
store is a function from variable names to values: ¢ : VarName — Val.

Formulas can access the memory directly; the fractional permissions to
access the memory are provided by the Perm predicate. Moreover, a strict form
of self-framing is enforced. This means that the boolean formulas expressing the
functional properties in pre- and postconditions and also in invariants should
be framed by sufficient resources (i.e. there should be sufficient permission
fractions for the memory locations that are accessed by the boolean formula).

The semantics of expressions depends on a store, a memory, and a memory
mask and yields a value: o, h, 7 [e) v. The store ¢ and the memory h are used
to determine the value v, the memory mask 7 is used to determine if the

expression is correctly framed. This means that there is sufficient permission
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for the memory locations that are required to be accessed for the evaluation of
the expression. For example, the rule for array access is:
o, h,mle)i m(o(a)+1i) >0
o,h,male]) h(o(a) + 1)

where o(a) is the initial address of array a in the memory and ¢ is the array index
that is the result of evaluation of index expression e. Apart from the check for
correct framing as explained above, the evaluation of expressions is standard
and we do not explain it any further.

The semantics of a formula, given in Figure depends on a store, a
memory, and a memory mask and yields a memory mask: o, h, 7 [F) n’. The
given mask 7 represents the permissions by which the formula F' is framed.
The yielded mask 7’ represents the additional permissions provided by the
formula. Hence, a boolean expression is valid if it is true and yields no
additional permissions, (rule Boolean), while evaluating a Perm predicate yields
additional permissions to the location, provided the expressions are properly
framed (rule Permission). We overload standard addition +, summation ¥, and
comparison operators to be respectively used as pointwise addition, summation
and comparison over the memory masks. These operators are used in the rules
SepConj and USepConj. In the rule SepConj, each formula F; and F; yield a
separate memory mask, 7’ and 7 respectively, where the final memory mask is
calculated by pointwise addition of two memory masks, 7’ +7". The rule checks
if F'1 is framed by = and F is framed by m + 7’. The rule USepConj extends
the similar evaluation by quantifying over a set of formulas conjoined by the
universal separating conjunction operator. Note that the permission fraction
on any location in the memory cannot exceed one, this is checked in the rules
USepConj and Permission.

Finally, a formula F' is valid for a given store o, memory h and memory mask
w if starting with the empty memory mask g, the required memory mask of F
is less than :

o h,m = F,if (o,h,m [F)m') A (7' < )
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o, h, [b) true
o, h,m[b) mo
o,h,mler)l o,h,mlea) f )+ f<1
o, h,m[Perm(ey, e2)) mo[l — f]
o,h,w[b)true o h,w[F) 7 o h,m[b)false o, h,7[FR) 7

[Boolean]

[Permission]

o h,w[b7F) : Fy) 7! o h,m[b7F) : Fy) 7’
o, h,m [Fy) « o, h,m+ 7' [Fy)n”
o, h,m[FyxF)n + 7"
Viel:ohw[F(i))m m+Xerm <1
o, h, [ Hicr F (1)) Zierm;

[SepConj]

[USepConij)

Figure 2.1: Semantics of formulas in permission-based separation logic

2.3. VerCors Toolset

To demonstrate the practical applicability of the verification techniques devel-
oped in this thesis, we implement them as part of our VerCors toolset. This
section briefly describes the high-level architecture of the toolset. Later in
each chapter, when it is necessary, we provide more information about the
implementation details. The open source distribution of the toolset is available
at [Verl7b].

The VerCors toolset was originally developed to reason about multi-threaded
Java programs. However, it has been extended to support the verification
of OpenCL kernels [BHM14| and a subset of OpenMP for C programs. The
toolset leverages the existing verification technology as discussed in this the-
sis: it encodes programs via several program transformation steps into Viper

programs [JKM™14]. Viper is an intermediate language for separation logic-

VerCors Viper
o |, | N

| Transformations | B
Silicon

OpenCL

OpenMP

PVL
Z3

Java

AR

Figure 2.2: VerCors toolset overall architecture

[Cond 1] [Cond 2]
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like specifications, used by the Viper (Verification Infrastructure for Permission-
based Reasoning) toolset [JKM ™14, Vip17]. Viper programs can be verified in
the Silicon verifier [JKM™14, HKMS13, MSS16] that uses the Z3 SMT solver
[DMBO8] to discharge logical queries. Figure [2.2| sketches the overall architec-
ture of our VerCors toolset.






CHAPTER 3 l

VERIFICATION OF
PARALLEL
LOOPS

“Begin with the simplest examples.”
— David Hilbert






ARALLELIZING compilers aim to detect loops that can be executed in par-
allel. However, this detection is not perfect. Therefore developers can
typically add compiler directives to declare that a loop is parallelizable.

Any loop annotated with such a compiler directive is assumed to be a parallel
loop by the compiler. In this method, a developer’s failure in providing correct
compiler directives misleads the compiler and results in a racy parallelization.

In this chapter we discuss how to verify that loops that are declared parallel
by a developer can indeed safely be parallelized. This is achieved by adding
specifications to the program that when verified guarantee that the program can
be parallelized without changing its behaviour. Our specifications stem from
permission-based separation logic as discussed in Chapter 2]

Concretely, for each loop body we add an iteration contract, which specifies
the iteration’s resources (i.e. the variables read and written by one iteration
of the loop). We show that if the iteration contract can be proven correct
without any further annotations, the iterations are independent and the loop
is parallelizable.

For loops with loop-carried data dependencies, we can add additional anno-
tations to capture the dependencies. These annotations specify how resources
are transferred from one iteration to another iteration of the loop. We then
identify the class of annotation patterns for which we can prove that the loop
can be vectorized because they capture forward loop-carried dependency.

We also discuss that how iteration contracts can be easily extended to capture
the functional behaviour of the loop. This allows to seamlessly verify the
functional correctness of the parallel loop together with its parallelizability.

Our approach is motivated by our work on the CARP project [CAR17]. The
project aims at increasing the programmability of accelerator processors such
as GPUs by hiding their low-level hardware complexity from the developers.

The content of this chapter is based on the following publications of the author: “Verification of loop
parallelization” [BDH] and “Verifying Parallel Loops with Separation Logic” [BDH14].

27
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As part of the project the PENCIL programming language has been developed
[BBCT15]. PENCIL is a high-level programming language. Its core is a
subset of sequential C which is extended with parallelization annotations. The
annotations are used by developers to hint to the compiler which loops are
parallelizable and how they can be parallelized. Our verification technique
is originally developed to reason about PENCIL's parallelization annotations.
However the technique is directly applicable to other programming languages
or libraries that have similar loop parallelization constructs, such as omp parallel
for in OpenMP [opel7d], parallel_for in C++ TBB [Thr] and Parallel.For in NET
TPL [Micb].

As another part of the CARP project, a parallelizing compiler has been
developed [VCJCT13] to take the PENCIL programs as input and generate low-
level GPU kernels. Later in Section [6.6l we discuss how the verified iteration
contract, including the specifications of functional properties, can be translated
into a verifiable contract for the generated low-level program, more specifically
the generated GPU kernel. As we discuss extensively in Chapter[6 the produced
kernel contract can be used to verify the generated kernel and to prove its
functional equivalence to its parallel loop counterpart.

The main contributions of this chapter are the following:

e a specification technique, using iteration contracts and dedicated permis-

sion transfer annotations that can capture loop dependencies;

e a soundness proof that loops respecting specific patterns of iteration
contracts can be either parallelized or vectorized; and

e tool support that demonstrates how the technique can be used in practice
to verify parallel loops.

Outline. The remainder of this chapter is organized as follows. After some
background information on loop dependencies and loop parallelization, Sec-
tion discusses how iteration contracts are used to specify parallel loops
and how the extra resource transfer annotations captures loop-carried data
dependencies. Section explains the program logic that we use to verify
parallel loops. The soundness of our approach is proven in Section To
demonstrate the practical usability of the proposed technique, in Section [3.5|we

describe how we implement the technique in our VerCors toolset. Finally we
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end this chapter by discussing related work in section [3.6|and conclusion and

some directions for future work in section B.71

3.1. Loop Parallelization

We provide some background on loop parallelization and we discuss how
different kinds of loop-carried data dependencies corresponds to different loop-
level parallelizations.

Loop-carried Dependencies. Given a loop, there exists a loop-carried depen-
dence from statement S, to statement S, in the loop body if there exist two
iterations i and j of that loop, such that: (1) ¢ < j, and (2) instance i of Sy, and
instance j of S, access the same memory location, and (3) at least one of these
accesses is a write. The distance of a dependence is defined as the difference
between j and i. We distinguish between forward and backward loop-carried
dependencies. When S;,.. syntactically appears before S, there is a forward
loop-carried dependence. When S,y syntactically appears before Sy, (or if they
are the same statement) there is a backward loop-carried dependence.

Example 3.1 (Loop-carried Dependence). The examples below show two different
types of loop-carried dependence. In (a) the loop has a forward loop-carried depen-
dence, where L is the source and Ly is the sink, as illustrated by unrolling iteration 1
and 2 of the loop. In general, the i*® element of the array a is shared between iteration i
and i — 1. In (b) the loop has a backward loop-carried dependence, because the sink
of the dependence (L) appears before the source of dependence (Ls) in the loop body.

(a) An example of forward loop-carried dependence

-1 iteration =2
Ly: a[2]=b[2]+1;

for (int i =0;i<N;i++){ iteration
Ly: a[i]=b[i]+1; Lq:
Lo: if (i >0) c[i]=ali —1]+2;} Lo:

c[1] :a[0]+2;

(b) An example of backward loop-carried dependence

for (int i =0;i<N;i++){ iteration = 2

iteration =1
Ly: ali]=b[i]+1; Ly: a[1]=b[1]+1;
Lo: if (i <N-1) c[i]=a[i+1]+2;} Ly: c[1] ' ;

Ly: c[2]=a[3]+2;
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Typically the loops are parallelized by assigning a thread to handle one
iteration or a chunk of loop’s iterations. In this way loops with no loop-carried
data dependences, called independent loops in this thesis, are embarrassingly
parallelizable. However, the parallelization of loops with loop-carried data
dependencies depends on the type of dependencies. More specifically, for loops
with forward loop-carried dependencies, parallelization is safely possible if the
sequential execution of data-dependent statements is preserved. This means
that, in the part (a) of the example above, statement L, in iteration i always
executes after statement L, in iteration ¢ — 1 no matter which thread interleaving
is chosen. In practice this can be implemented either by using appropriate
synchronizations (e.g. by inserting a barrier between statement L; and L) or by
vectorization of the loop. The statements of a vectorized loop are executed based
on Single Instruction Multiple Data (SIMD) execution model where the safe
execution order of data-dependent statements is preserved by definition. Later
in Section [6.6] we discuss how the loop with forward loop-carried dependence
in part (a) of the example above, is executed in the SIMD fashion by being
translated into a GPU kernel.

3.2. Specification of Parallel Loops with Iteration Con-

tracts

This section first introduces the notion of iteration contract and explains how it
captures different forms of loop-carried data dependence.

3.2.1 Specification of Loop-carried Data Dependencies

The classical way to specify the behaviour of a loop is by means of an invariant
that has to be preserved by every iteration of the loop. However, loop invariants
offer no insight into possible parallel executions of the loop. Instead we
consider every iteration of the loop in isolation. Each iteration is specified by its
iteration contract, such that the precondition of the iteration contract specifies
the resources that a particular iteration needs, and the postcondition specifies
the resources that become available after the execution of the iteration. In other
words, we treat each iteration as a specified block [Heh05]. For convenience,
we present our technique on non-nested for-loops with K statements that are
executed during N iterations; however, our technique can be generalized to
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Listing 1 Iteration contract for an independent loop

for (int i=0;i < N; i++)
/*@
requires Perm(a[i], 1) #*x Perm(b[i],1/2);
ensures Perm(a[i], 1) #* Perm(bli],1/2);
Q@x/
{ a[i]=2 = b[i];}

nested loops as well. Each statement \Sj, labeled by the label L;, consists of an
atomic instruction I, which is executed if a guard gy, is true, i.e., we consider
loops of the following form:

for (int j=0;j < N; j++){ body(j) }

where body(j) is Ly: if (g1) I1; ... Li: if (9x) Ik;

There are two extra restrictions. First, the iteration variable j cannot be
assigned anywhere in the loop body. Second, the guards must be expressions
that are constant with respect to the execution of the loop body, i.e., they may
not contain any variable that is assigned within the iteration.

Listing |1 shows an example of an independent loop extended with its
iteration contract. This contract requires that at the start of the iteration
i, permission to write a[i] is available, as well as permissions to read b[i].
Further, the contract ensures that these permissions are returned at the end
of the iteration 7. The iteration contract implicitly requires that the separating
conjunction of all iteration preconditions holds before the first iteration of the loop,
and that the separating conjunction of all iteration postconditions holds after the last
iteration of the loop. For example, the contract in Listing [1| implicitly specifies
that upon entering the loop, permission to write the first V elements of a must
be available, as well as permission to read the first IV elements of b.

To specify dependent loops, we need to specify what happens when the
computations have to synchronize due to a dependence. During such a synchro-
nization, permissions should be transferred from the iteration containing the
source of a dependence to the iteration containing the sink of that dependence.
To specify such a transfer we introduce two annotations: send and recv:

//@ Ls: if (9s(5)) { send ¢(j) to Lg, d; }
//@ Lg: if (gr(y)) { recv 9(j) from Lg, d; }

A send specifies that at label Lg the permissions and properties denoted by
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Listing 2 Iteration contracts for loops with loop-carried dependences

(a)

for (int i=0;i < N; i++4) /@
requires Perm(a[i], 1) ** Perm(b[i],1/2) =% Perm(c[i], 1);
ensures Perm(b[i],1/2) *x Perm(a[i],1/2) *x Perm(c[i], 1);
ensures i >0 ==> Perm(a[i—1],1/2);

ensures i==N—-1 ==> Perm(a[i],1/2); ©@x/

{
ali]=b[i]+1;
//@ LL:if (i< N—1) send Perm(a[i],1/2) to L2,1;
//@ L2:if (i>0) recv Perm(a[i—1],1/2) from L1,1;
if (i>0) cli]=ali —1]+2;

}

(b)
for (int i=0;i < N;i++) /+@
requires Perm(ali],1/2) sx Perm(b[i],1/2) *x Perm(c[i], 1);
requires i==0 ==> Perm(a][i],1/2);
requires i < N—1 ==> Perm(a[i+1],1/2);
ensures Perm(ali], 1) #x Perm(b[i],1/2) sx Perm(c[i], 1); @©x/

//@ LL:if (i>0) recv Perm(ali],1/2) from L2,1;
a[i]=b[i]+1;

if (i < N-1) c[i]=ali+1]+2;

//@ L2:if (i < N—1) send Perm(ali+1],1/2) to L1,1;

formula ¢ are transferred to the statement labeled L in iteration ¢ + d, where
i is the current iteration and d is the distance of dependence. A recv specifies
that permissions and properties as specified by formula ¢ are received. In
practice, the information provided by either send or recv statement is sufficient
for the inference of the other annotation. So to reduce the annotation overhead,
only one of them can optionally be provided by the developer. However,
in this chapter to make the specifications more readable, we write the loop
specifications completely using the both send and recv annotations.

The send and recv annotations can be used to specify loops with both
forward and backward loop-carried dependencies. Listing[2lshows the specified
instances of the code in Example[3.1] These examples are verified in the VerCors
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toolset [Verl7al.

We discuss the annotations for part (a) in some detail. Each iteration i starts
with a write permission on a[i] and c[i], and a read permission () on b[i].
The first statement is a write to a[i ], which needs write permission. The value
written is computed from bl[i], for which a read permission is needed. The
second statement reads a[i —1], which is not allowed unless read permission
is available. This statement is not executed in the first iteration, because of the
condition s > 0. For all subsequent iterations, permission must be obtained.
Hence a send annotation is specified before the second assignment that transfers
a read permission on a[i] to the next iteration (and in addition, keeps a read
permission itself). The postcondition of the iteration contract reflects this: it
ensures that the original permission on cfi] is released, as well as the read
permission on ali], which was not sent, and also the read permission on ali-
1], which was received. Finally, since the last iteration cannot transfer a read
permission on ali], the postcondition of the iteration contract also specifies that
the last iteration returns this non-transferred read permission on ali].

The send annotations indicate an order in which the iterations have to be
executed, and thus how the loop can be parallelized. Any execution that
respects this order yields the same behaviour as the sequential execution of
the loop. For the forward dependence example, this means that it can be
vectorized, i.e. we have to add appropriate synchronization to the parallel
program to ensure permissions can be transferred as they are specified or
the loop body can be executed in lock-step fashion using SIMD instructions.
However, for the backward dependence example, only sequential execution
respects the ordering; meaning that the loop is inherently sequential and cannot
be parallelized. This is because of the fact that in the presence of backward loop-
carried dependence the computations in the iteration ¢ use the result produced

in one of the previous iterations (e.g. the iteration i — 1 in the example).

Generalization for Nested Loops. As mentioned before, the technique can be
applied to nested loops as well. For a nested loop, each loop is specified with its
own iteration contract. Assume the loop LP; has n nesting levels (i.e. there are
n — 1loops inside LP; nested one into the other) and each loop has an iteration
variable iy, ..., respectively. Using our method each loop is specified with
its own iteration contract. The iteration contract of LP,, the inner-most loop,

is parameterized by the iteration variable of LP, (i.e. i,) while the iteration
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Listing 3 Extended iteration contract with the specification of functional

properties

for (int i=0; i<N; i++) /«@
requires Perm(a[i], 1) *x Perm(b[i],1/2) =x Perm(c[i], 1);
requires b[i]==i;
ensures Perm(a[i],1/2) sx Perm(b[i],1/2) *x Perm(c[i], 1);
ensures i >0 ==> Perm(a[i—1],1/2);
ensures i ==N—-1 ==> Perm(a[i],1/2);
ensures a[i]|==i+1 && b[i]==i && (i>0 ==> c[i]==i+2); ©x/
{
a[ i ] =b[i] +1;
//@ L1:if (i< N-—1) send Perm(ali],1/2) *x a[i]==i+1 to L2, 1,
//@ L2:if (i>0) recv Perm(a[i—1],1/2) *x a[i —1] ==i from L1, 1,
if (i>0)c[i] =a[i-1]+2
}

contract of LP,,_; is parameterized by the iteration variable of LFP,_; (i.e. i,,—1)
and is quantified over i,. This continues, up to the iteration contract of the
outer-most loop LP; that is parameterized by its own iteration variable i; and
quantified over the iteration variables of all inner loops (i.e. s,...,%,). The
data-dependencies that can appear in different nesting levels, are captured by
send/recv annotations as discussed. Note that the application of our technique
to nested loops requires the statement labeling method to be defined such that

all statement instances at different nesting levels become uniquely identifiable.

3.2.2 Specification of Functional Properties

In addition to the specification of loop-carried data dependencies, iteration
contracts can be extended to specify the functional behaviour of loops. This
allows us to combine the reasoning about the parallelizability of loops with
the reasoning about their functional correctness. To do this, the pre- and
postcondition of iteration contracts are extended with first order logic formulas.
They specify the state of the shared memory just before starting an iteration of
the loop and the state of shared memory at the end of the execution of that
iteration. Thus they capture the contribution of each iteration of the loop. At
the end, the universal conjunction over pre- and postcondtion of all iterations

specifies the functional behaviour of the loop.
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As an example Listing [3| shows the extended iteration contract of the loop
with forward-loop carried dependence in Listing 2l Note that to prove the
postcondition c[i |==i+2 the prover needs to know about the value of a[i —1] that
is determined only after the execution of a[i]=bli]+1 in the previous iteration
and transferred to the next iteration through the send/recv channel.

3.3. Verification of Iteration Contracts

This section discusses how the parallelizbability of a loop can be verified by
checking the loop against its iteration contract. To prove the correctness of an
iteration contract, we propose appropriate program logic rules. As mentioned
above, an iteration contract implicitly gives rise to a contract for the loop. The
following rule says that if the iteration contract is correct for any execution of
the loop body then this contract is true:

{P(j)} body(5) {Q(5)} Vj.j €[0..N)
{%N5" P(j)} for (int j=0;j<Nij++){ body(j) } {% 5" Q(i)}

[ParLoop]

Note that this rule for a loop with an iteration contract is a special case of the
rule for parallel execution, which allows arbitrary blocks of code to be executed
in parallel (see e.g. [O'HO7]).

The rules for the send and recv are similar in spirit to the rules that are
typically used for permission transfer upon lock releasing and acquiring, (see
e.g. [HHHO8]). In particular, send is used to give up resources that the recv
acquires. This is captured by the following two proof rules:

[send] [recv] 3.1)
{P} send P to L,d {true} {true} recv P from L,d {P} :

Receiving permissions and properties that were not sent is unsound. There-
fore, send and recv annotations have to be properly matched, meaning that:

(i) if S, is the statementif (g.(j)) recv(j) from L, d; then S; is the statement
if (gs(])) send ¢(.7) to L, d;

(ii) if the recv is enabled in iteration j, then d iterations earlier, the send should
be enabled, i.e.,

Vj€[0.N).g:(j) = j=dNgs(j—d) 3.2)
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(iif) the information and resources received should be implied by those sent:

Vj€[d.N).o(j —d) = ¥(j) (3.3)

In other words, the rules in Equation [3.1| cannot be used unless the syntactic

criterion (i) and the proof obligations (ii) and (iii) hold.

3.4. Soundness

Next, we show that a correct iteration contract capturing a loop independence
or a forward loop-carried dependence indeed implies that a loop can be par-
allelized or vectorized, while the behaviour of its sequential counterpart is
preserved.

To construct the proof, we first define the semantics of the three loop
execution paradigms: sequential, vectorized, and parallel. We also define the
instrumented semantics for a loop specified with an iteration contract. Next, to
prove the soundness of our approach we show that the instrumented semantics
of an independent loop is equivalent to the parallel execution of the loop, while
the instrumented semantics of a loop with a forward dependence is an extension
of the vectorized execution of the loop. The functional equivalence of the two
semantics is shown by transforming the executions in one semantics into the
executions in the other semantics by swapping adjacent independent execution
steps.

3.4.1 Semantics of Loop Executions

To keep our formalization tractable, we split the loop semantics into two layers.
The upper layer determines which sequences of atomic statements, called
executions, a loop can have. The lower layer defines the effect of each atomic
statement, and we do not discuss this further here, as it is standard.

As above, we develop our formalization for non-nested loops with K guarded
statements. We instantiate the loop body for each iteration of the loop, so we

th jteration

have (Lf : if(gf ) I f ;) as the instantiation of the i*" statement in the j
of the loop. We refer to this instance of statements as S7. The semantics of a
statement instance [[Sf ] is defined as the atomic execution of the instruction I f
labeled by L’ provided its guard condition g/ holds, otherwise it behaves as a

K2

skip. If we execute iterations one by one in sequential order and we preserve the
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program order of the loop body, we will have a sequence of statement instances
starting from S? and ending at S§ '. Intuitively this is the semantics of the
sequential execution of the loop.

Definition 3.1. An execution c is a finite sequence t1, ta, ..., t,, of statement instances
such that t; is executed first, then t, is executed and so on until the last statement t.,.

To define the set of executions describing the parallel and vectorized se-
mantics of a loop, we define auxiliary operators concatenation and interleaving
over the sets of executions. We define two versions of concatenation, plain
concatenation (++) and synchronized concatenation (#), which prevents data

races between statements by inserting a barrier b that acts as a memory fence:

C1 ++ Oy {Cl - Co | c1 € C1,co ECQ}
Cl#CQ = {Cl‘b'62|01601,02602}

We lift concatenation to multiple sets as follows:

Concat? ,C; = Oy 4+ ++Cx
SyncConcaty ,C; = C1#---#Cx

Next, interleaving defines how to weave several executions into a single
execution. This is parametrized by a happens-before order <, in order not to vio-
late restrictions imposed by the program semantics. To define the interleaving
operator (Interleave.), we use an auxiliary operator that denotes interleaving
with a fixed first step of the i** execution: (Interleavei<):

Interleave™""¢; = Interleave_ (c1,--- ,cn) = vazl Interleave’ (1, - ,cn)
Interleave’ (e, - - - ,¢) = {e}
Interleavei< (c1, "+ ,Ci—1,6Cix1, +* ,cn) =0 ,if 3ejz; F# €
Interleavei<(ch~-~ ,81.¢' 5 eN) =

{s1-x | = € Interleave.(c1,--- ,¢;',-++ ,cn), Ps € .5 < 51}, otherwise

where € is the empty execution and s; is the first statement of ¢;. In each step s,
is extended with all possible interleaving of the other executions including the
remaining statements of ¢;, ¢;”. This recursively generates all the interleavings
which start with the statements of c;, the set Interleavei< (c1,-++ ,¢iy-++ ,cn). Note
that extending the statements of ¢; is allowed only if the extension does not
violate the happens-before order <. We overload the membership operator € to
be used also for sequences such that s € « means that the statement s is in the
sequence x.
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We use two happens-before orders: program order (PO), which maintains the
order of statements as if they are executed sequentially and specification order
(50), which extends the program order by enforcing that for every matching
pair of send and recv, the send statement happens-before the recv statement. Both
orders maintain the order between a barrier and the statements preceding and
following it.

Now we are ready to define the semantics of the different loop executions.
A sequential execution executes all loop iterations sequentially, parallel execution
allows any interleaving that preserves program order within the loop body and
vectorized execution runs multiple iterations in lock-step.

Definition 3.2. Suppose we have a loop LP in standard form.
e Its sequential execution semantics is [LP]%¢7 = Concaté\’:—o1 Concat!® | [$7]
e Itsparallel execution semantics is [LP] 7" = Interleave{f)o"N*lConcatiK:1 [57]
o [ts vectorized execution semantics for vector length V' is

[LP]VeetV) = Concatffi{)v)*1SyncConcatfi1 (Interleaveézvv"””v_l[[S'ij]])

We define the instrumented semantics to capture the behaviour of LP in the
presence of its specifications. This semantics contains all possible executions
respecting the specification order (SO). It is formalized by parameterizing the
interleaving operator with SO.

Definition 3.3. The instrumented semantics of a loop LP is

[[LP]] Spec — |nter|eaveégo"N71 Concatfil [[Sf]]

3.4.2 Correctness of Parallel Loops

In the previous section, we defined the semantics of parallelized and vectorized
executions in terms of possible traces of atomic steps. This section proves, under
certain conditions, that each of those traces is data race free and yields the
same result as the sequential execution yields. Equivalence is established by
considering traces modulo reordering independent steps and while ignoring
steps that make no modifications. First, we formally define these notions. Then
we present our correctness theorems.

To determine if two steps are independent and/or can cause a data race,
we need to know for every atomic step, ¢, which locations in memory it writes,
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write(t), which locations in memory it reads, read(t), and by which thread it is
executed. We define the set of accessed locations as access(t) = write(t) Uread(t).
Now we define a data race in a trace as a pair of statements that both access a
location, where at least one access is a write, and are not ordered by the happens-
before relation:

Definition 3.4. An execution contains a data race with respect to a happens-before
order <, if it contains two steps s and t, such that write(s) N access(t) # O A —(s <
tVit<s).

To reason about different execution orders, the equivalence of executions is
defined in terms of swapping the order of steps which are not in the happens-
before relation. The following proposition states that this does not change the
end result of a data race free execution.

Proposition 3.1. In a data race free execution, swapping two adjacent statements
which are unordered in the happens-before relation does not change the behaviour of
that execution.

Proof. Because the statements are unordered and the execution is data race free,
the set of locations written by one of the actions cannot affect the set of locations
accessed by the other. Hence neither step can see the effect of the other. O

The traces in the different semantics do not just differ by their order, but also
by steps that are used to enforce synchronization. To compare the functional
result of two threads, we only look at the steps in those traces that actually
modify locations that are relevant to the program semantics.

Definition 3.5. Given two executions c; and co. The executions c; and co are

functionally equivalent if mods(c1) = mods(cz), where

€ Jifc=¢€
mods(c) = ¢ mods(¢’) ,ifc=1t-c Awrite(t) =

0
t-mods(c), ifc=1-c Awrite(t) # 0

The correctness of the various loop semantics depends on the correctness of
the instrumented semantics:
Theorem 3.1. Given a loop LP with a valid specification.

1. All executions in [LP]?° are data race free.
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2. All executions in [LP]°P¢¢ and [LP]° are functionally equivalent.

Proof. 1. Because there is a valid specification, all invariants of permission-
based separation logic hold. In particular, for every location the sum
over the permissions held by all threads for that location cannot exceed
1. Suppose that a statement s occurs before ¢ where one writes a location
I and the other accesses it and they are not ordered by happens-before
(s £ t). Assume that s needs a fraction p permission on [ and ¢ needs a
fraction ¢ on the same location. Because s does not necessarily happens-
before t, they might be executed by two different threads implying that
p + ¢ < 1. This contradicts the assumption as either p = 1 and ¢ > 0 or

vice versa.

2. We prove that every execution in [LP]“P¢ is functionally equivalent to the
single execution [LP]%“¢, by showing that any execution can be reordered
until it is the sequential execution using Proposition 3.1}

Assume that the first n steps of the given execution are in the same order
as the sequential execution. Then step ¢,,41 in the sequential execution has
to be somewhere in the given sequence. Because each sequence contains
the same steps and the sequential execution is in happens-before order,
all of the steps that have to happen before ¢,,11 are already included in the
t1,- -+, t, prefix. Therefore data race freedom of all executions in [ L P]*7¢°,
proved in the first part, only implies that the step ¢, is independent of
all the steps after the prefix and before itself in the given sequence. Thus
t,+1 can be swapped with its prefix statements one-by-one until it is the
next step in the given sequence. We then repeat until the whole sequence
matches with the sequential order.

O

The correctness of the parallelization of independent loops is an immediate

corollary of this theorem.

Corollary 3.1. Given a loop with a valid specification, which does not make use of send

or recv.
1. All executions in [LP]F" are data race free.

2. All executions in [LP]T%" and [LP]%¢ are functionally equivalent.
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Proof. Because the specification does not make use of send or recv for each
execution in [LP] 7% there is a corresponding execution in [LP]“?*, as the pro-
gram order coincides with the specification order. The validity of specification
and Theorem [3.1| imply that all executions in [LP]*P* are data race free and
functionally equivalent to the single sequential execution [LP]%*? and thus so
for [LP] 7.

O

This proof is straightforward because in this case, the program order and
synchronization order coincide, thus the set of parallel executions is equivalent
to the set of instrumented executions. However, if the specifications use send
and recv then some parallel execution order may contain data races. But if the

send occurs before the matching recv in the loop then vectorization is possible.

Theorem 3.2. Given a loop with a valid specification, such that every send occurs before
the matching recv in the loop body, and V' that divides N.

1. All executions in [LP] V(Y are data race free.
2. All executions in [LP]V**V) and [LP]%° are functionally equivalent.

Proof. Because every send occurs before the matching recv, every execution that
may occur in [LP] (V) can also occur in [LP]°P. That is, we can construct
a specification order sequence in which the computational steps occur in the
same order and in which the happens-before relation on the vectorized sequence
are more restrictive than those in the specification order sequence. Hence all
vectorized sequences are data race free because all specification order sequences
are data race free (Theorem [3.I). Moreover, every vectorized execution is
functionally equivalent to a specification order sequence and thus functionally
equivalent to [LP]%¢ (Theorem[3.1). O

3.5. Implementation

This section explains how our verification approach is implemented as part of
the VerCors toolset. As discussed in Section [2.3| our toolset encodes the input
programs into Viper programs [JKM*14] that then are verified by the Silicon
verifier [JKM*14) |Vip17, HKMS13|, MSS16]. This section briefly describes how
this encoding works for the loops specified with an iteration contract.
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The main idea is to encode the loop specifications into method contracts. So
every loop LP annotated with an iteration contract is encoded by a call to the
method loop_main, whose contract encodes the application of the Hoare logic
rule for parallel loops, instantiated for the specific iteration contract.

/%@ requires (\forallx int j; 0<=j && j<N; pre(j));
ensures (\forallx int j; 0<=j && j<N; post(j)); O@x/
loop_main(int N, free(LP)));
where \forallx is the tool notation for the universal separating conjunction % ;_\7:—01
and the method free returns the list of all non-local variables in the loop LP.

We also need to verify that every iteration respects its iteration contract. This
is encoded by a method, parametrized by the loop variable, containing the loop
body, and specified by the iteration contract.

/%@ requires (0<=j && j<N) s pre(j);
ensures post(j); ©x/
loop_body(int j, int N, free(LP))){ body(j); }
where body(j) is the body of the loop LP and j is its iteration variable.

Within the body there may be send and recv statements in the following

general form:

//@ Ls:if (gs(j)) { send ¢(j) to Ly, d; }

//@ L. if (g-(5)) { recv ¥(j) from Ly, d; }

We keep the guards untouched, but the send and recv statements are replaced
by method calls as follows:

//@ Ls: if (gs(j)) { sends_tor (j, N, free(¢(4));
//@ L.: if (g-(j)) { recvstor (j, N, free(w(5));
where

//@ requires ¢(j); //@ ensures ¥(j);
send_s_to_r (int j, int N, free(LP))); recvs_tor (int j, int N, free(LP)));

}
}

Finally, we need to check that the proof obligations in Equation[3.2Jand .3]hold.

3.6. Related Work

Verification of High-level Parallel Constructs

Recently, almost all major programming languages have been extended to
support high-level parallelization constructs. Verification of these high-level
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constructs has been investigated in different ways. Salamanca et al. [SMA14]
present a runtime checker for loop-carried data dependences in OpenMP pro-
grams. Compared to their approach, we propose a static approach to detect
loop-carried dependencies. Thus issues can already be detected at compile-
time.

Radoi et al. [RD13] employ the restricted thread structure of parallel loops
to specialize a set of static data race detection techniques and make them
practical for verification of Java 8 loop-parallelism mechanism [Stal7]. In
comparison, their method cannot distinguish between vectorized and parallel
loop executions, while our approach proposes different specification patterns
for each of these executions. Also, they use a specialized data race techniques
for Java 8 collections, while we investigate the problem in a more general context.

Barthe et al. [BCG"13] propose a new program synthesis technique which
produces SIMD code for a given innermost loop. They exploit the relational
verification approach to prove the functional equivalence of the generated SIMD
code and the original sequential code, while we employ permission-based
separation logic to prove such an equivalence for both vectorized and parallel
loop executions.

Automated Loop Verification

Gedell et al. [GHO6] employ automated first-order reasoning in order to deal
with parallelizable loops instead of interactive proof techniques, such as in-
duction. They transform a loop into a universally quantified update of state
changes by the loop body. The extraction of quantified state update for a
particular loop iteration is intuitively similar to the idea of iteration contracts
in our method. Their technique only works for parallelizable loops where there
isno loop-carried dependence, while our iteration contracts idea addresses both
dependent and independent loops.

Parallelizing Compilers

From the parallelizing compilers perspective, our approach can complement
the current static dependence analysis techniques. Specifically, in case of
input-dependent semantics where static analysis cannot decide whether a loop is
independent or not [OR12} RPRO7].
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3.7. Conclusion and Future Work

This chapter presents how to verify compiler directives about loop paralleliza-
tion. Each loop is specified by its iteration contract and in the presence of
loop-carried dependences, additional send/recv annotations are added to the
iteration specifications to capture the loop-carried data dependences. We
prove that loops without send/recv annotations are parallelizable, and for
a specific pattern of send/recv annotations the loop is vectorizable. Using
iteration contracts, we are able to prove that if a specified loop is parallelizable,
vectorizable, or it is inherently sequential.

The described method is modular in the sense that it allows us to treat
any parallel loop as a statement, thus nested loops can be dealt with simply
by giving them their own iteration contract. In addition to the verification
of compiler directives, our approach can be employed to detect possible loop
parallelizations even where (in)dependence cannot be determined from static
analysis of program text (e.g. for loops with non-affine accesses).

As future work one can investigate how the verifier and the parallelizing
compiler can support each other. We believe this support can work in both
ways. First of all, the parallelizing compiler can use verified annotations to
know about dependencies without analyzing the code itself. Conversely, if the
compiler performs an analysis then it could emit its findings as a specification
template for the code, from which a complete specification can be constructed.
This might extend to a set of techniques for automatic generation of iteration

contracts.
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“The limits of my language means the limits of my world.”
— Ludwig Wittgenstein






ARALLEL programming is notorious for its error-proneness and difficulty
P [Lee06]. This becomes especially important when parallel programs
are used in critical systems. To parallelize a program, developers
must deal with a lot of low-level details to effectively utilize operating system
services (e.g. thread creation, termination, synchronization, and scheduling)
and hardware resources (e.g. processing and memory resources). In fact all
these low-level details might differ from one operating system and hardware
platform to another. One approach to alleviate the task of parallelization is
to simplify it by hiding low-level complexities from developers, so they only
need to focus on crafting the high-level parallelization model. This approach
is commonly used in developing high-performance financial and scientific
applications [JFY99, Opel7a, Opel7e| RB04, BAMMO5] and it is often called
deterministic parallel programming.

One way to write deterministic parallel programs is to augment a sequential
program with parallelization annotations (typically in the form of compiler
directives) that indicate which part of the code can be parallelized. In Chapter[3}
we particularly discussed the application of this approach for loop paral-
lelization. However, the approach is not restricted to loops. In fact, current
annotations libraries (e.g. OpenMP [opel7d] and OpenACC [opel7b]) are
sufficiently flexible to express parallelization over almost any partitioning of a
sequential program.

The high-level parallel program defined over the sequential program is
later consumed by a parallelizing compiler that generates a low-level parallel
program to be executed on a particular platform. A platform change often can
be easily handled only by re-compiling the high-level parallel program for the
new platform.

Despite the popularity of deterministic parallel programming, the semantics

The content of this chapter is based on the following publications of the author: “A Verification
Technique for Deterministic Parallel Programs” [DBH17a] and its extended version [DBH17b].
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of parallelization annotations is still informally described in natural language.
This results in the incorrect use of annotations and syntactic redundancies,
and also hinders the development of static analysis techniques. This chapter
formalizes the syntax and semantics of a core Parallel Programming Language
(PPL) that captures the main features of deterministic parallel programming.
This can be used as a basis for the development of static analysis techniques for
deterministic parallel programs; for instance in the next chapter we build up
our verification technique for deterministic parallel programming on top of this
formalization. In addition, the chapter discusses how OpenMP programs, as a
commonly used form of deterministic parallel programming, are translated into
PPL programs.
The main contributions of this chapter are the following:

o the syntax and an operational semantics of a core language, PPL, which
captures the main forms of parallelization constructs in deterministic
parallel programs; and

e an encoding algorithm for the translation of OpenMP programs into PPL
programs.

Outline. This chapter is organized as follows. We first give the required
background on the deterministic parallel programming by discussing some
OpenMP examples. Then Section explains the syntax and semantics of
PPL. Section presents how an OpenMP program is encoded into a PPL
program. Finally we end the chapter by discussing related work in Section [4.4]

and conclusion and future work in Section 4.5

4.1. Introduction to OpenMP

This section illustrates the most important OpenMP features by discussing four
examples.

OpenMP programs are sequential C or Fortran programs which are aug-
mented by OpenMP compiler directives (pragmas). In this thesis we focus on
the OpenMP programs that are written in C; however the encoding algorithm
and our verification technique can be extended to Fortran as well.

The pivotal parallelization annotation in OpenMP is omp parallel which
determines the parallelizable code block (called parallel region). Threads are



1

w

11

12

4.1. INTRODUCTION TO OPENMP 49

Listing 4 Sequential composition of parallel loops

void ShiftedAddition( int N,int a[ ],int b[ J.int ¢[ J.int d[] )
{
#pragma omp parallel
{
#pragma omp for
for(inti =0;i <N;i++ ) //Loop L1
{ci]=alil}
#pragma omp for
for(inti =0;i <N;i++ ) //Loop L2
{dli ] =cli+1]+0b[i] }

forked upon entering a parallel region and joined back into a single thread
at the end of the regiorﬂ There is a default number of threads for each
parallel region. This is modifiable by the developer via the OpenMP AP],
omp_set_num_thread. The code block inside a parallel region is parameterized
by thread identifiers and is shared among all the forked threads. Additional
OpenMP annotations are required, to precisely determine how this workload
is shared between the threads. We explain these additional annotations by
discussing them on four example OpenMP programs. Although we explain
the most popular parallelization annotations in OpenMP, we do not cover all
aspects of OpenMP. To learn more about OpenMP, we refer to [opel7d].

Sequential Composition of Parallel Loops. The example in Listing[#shows a
parallel region that contains two for-loops L1, L2. The loops are marked as omp
for. This means that the programmer believes that there is no loop-carried data
dependence between the iterations of the loop, thus it is safe to execute them in
parallel. Relying on this annotation, the OpenMP compiler distributes the loop
iterations among the threads of the parallel region.

By default, OpenMP assumes that there exists an implicit barrier at the
end of each parallel loop. Therefore no thread executing the loop L1 can

In practice threads might fork once and then be synchronized by inserting barriers at the end
of parallel regions. This avoids frequent forking and joining of threads and yields more efficient
execution of the program.
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Listing 5 Fusion of parallel loops

void add(int N, int a[ ], int b[ ], int ¢[ ], int d[ ]){
#pragma omp parallel
{
#pragma omp for schedule(static) nowait
for(inti =0;i <N;i++ ) //Loop L1
[eli]=ali]}
#pragma omp for schedule(static)
for(inti =0;i <N;i++ ) //Loop L2
fdli] =cli]+b[il]}

proceed to the loop L2, unless all threads executing L1 have already finished
their executions and reached the implicit barrier. This guarantees that two
parallel loops are executing sequentially, which is essential when there is a data
dependence between the two parallel loops. Without the implicit barrier, the
parallel execution of the iterations from the first and the second loop creates a
data race situation.

In OpenMP, all variables which are not local to a parallel region are consid-
ered as shared by default, unless they are explicitly declared as private (using
private clause) when they are passed to a parallel region.

Fusion of Parallel Loops. The example in Listing [5|shows a slightly different
version of the program discussed in Listing l] With this example, we explain
how OpenMP annotations can be extended with additional clauses. These
clauses help OpenMP users to have more precise control over the behaviour
of threads in the parallel region.

Compared to the previous example, the important change is that here
the data dependence on the array c is between the identical iterations of the
loop L1 and L2. This enables a more efficient execution, in which instead of
sequentializing the loops L1 and L2, only the identical iterations of the loops are
executed sequentially. This means that the implicit barrier at the end of the loop
L1 can be removed if we can guarantee that the same iterations in both loops are
executed by the same threads in the parallel region. This corresponds to the
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Listing 6 Vectorized loops in OpenMP

void add(int N,int M, int a[ ],int b[ ],int c[ ])
{
#pragma omp parallel
{
#pragma omp simd simdlen(M)
for(inti =0;i <N;i++ ) //Loop L1
{cli]=ali]=b[i]}
#pragma omp for simd simdlen(M)
for(inti =0;i <N;i++ ) //Loop L2
{edil=ali]=blil]}

parallel execution of the loop which is the result of the fusion of the loop L1 and
L2.

In OpenMP, this delicate behaviour is defined by the combined use of the
nowait and schedule(static) clauses. More specifically, the nowait clause removes
the implicit barrier at the end of the loop L1 and the schedule(static) clause

guarantees the static thread scheduling.

Parallel Composition of Parallel Loops. Listing |7| presents how the parallel
execution of two parallel regions is defined in OpenMP. The example consists
of three parallel regions: P; in lines 4-13, P> in lines 15-23, and P; in lines 25-27.
Similar to the previous examples, the behaviour of each thread is defined by
further OpenMP compiler directives. Here we use omp sections which defines
the blocks of the code (marked by omp section) which are executed in parallel.
For example, two threads are forked upon entering the parallel region P;, one
executes the method add and the other one executes the method mul. Note that
the bodies of the methods are parallel regions too. So the threads executing add
and mul methods, fork more threads upon entering the parallel region P, and
P5. The parallel region P, is our fusion example and the parallel region P is
a single parallel loop where omp parallel for is a shorthand for having an omp

parallel with a single omp for.
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The examples in Listing 4 [fland [7} demonstrate three different ways to com-
pose the parallel and sequential blocks in OpenMP. The next section presents
how these three forms of composition are captured by three block composition
operators in our parallel programming language.

Vectorization. Since OpenMP 4.0, the support for the Single Instruction Mul-
tiple Data (SIMD) execution model has been added to the OpenMP standard.
In this execution model, one instruction operates on a vector of data elements
instead of a single data element. This is a well-known technique to speed up
vector arithmetic, specifically in scientific applications. The number of data
elements that one vector instruction can handle, i.e. the vectorization size, varies
from one processor architecture to another.

Listing [6| shows two examples of loop vectorization in OpenMP. The first
example uses the omp simd annotation to vectorize the loop L1. Based on this
annotation, the iterations of the loop are partitioned into smaller chunks. The
size of each chunk is equal to the vectorization size given by the extra clause
simdlen (i.e. M in this example). Loop execution is defined as the sequential
execution of chunks where each chunk is executed in a vectorized fashion. The
second loop shows the other form of OpenMP vectorization using the omp
for simd annotation. In this case, the loop execution is defined in a similar
way; however, this time the iteration chunks are executed in parallel instead of
sequentially. In both forms, whenever M does not divide N, the loop is padded
with sufficient dummy iterations such that it becomes divisible by M.

4.2. Syntax and Semantics of PPL

This section discusses our parallel programming language, PPL, which is pre-
sented as a core language for deterministic parallel programming. In essence,
PPL is a language for composition of code blocks. We identify three kinds of
basic blocks: a parallel block, a vectorized block and a sequential block. Basic blocks are
composed by three binary block composition operators: sequential composition,
parallel composition and fusion composition where the fusion composition allows
two parallel basic blocks to be merged into one.
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Listing 7 Parallel composition of parallel regions

#define N 100

void main(){

inta[ N], b[N],c[N],d[N], e[N];
#pragma omp parallel

{

#pragma omp sections
{
#pragma omp section
add(N, a, b, ¢, d);
#pragma omp section
mul(N, a, b, e);
}
13
void add(int L, int a[ ], int b[ ], int c[ ], int d[ ]){
#£pragma omp parallel
{
#pragma omp for schedule(static) nowait
for(inti=0;i<L;i++ ) //Loop L1
fclil=alil}
#pragma omp for schedule(static)
for(inti = 0;i < L; i++) //Loop L2
{dli]=cli]+b[i] }
1}
void mul(int L, int a[ ], int b[ ], int ¢[ ]){
#pragma omp parallel for
for(int i=0; i<L; i++) //Loop L3
{cli]=ali]«b[i]}

4.2.1 Syntax

Figure [4.1| presents the PPL syntax. The basic building block of a PPL program
is a block. Each block has a single entry point and a single exit point. Blocks

are composed using three binary composition operators: parallel composition ||,
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Parallel Programming Language:

Block == (Block || Block) | (Block & Block) | (Block § Block) | Par(N) S| S
S = §S | skip

s u=ass | if (b) {S}else {S} | while (b) {S} | Vec(N) V

Vv = b= ass;V | skip

ass n= v := el v:= mem(e) | mem(e):= v

b n= bAb| bl e=e|e<e] ...

e = vl gv|n|le+e|e-el ...

v == thread local variables

gu := program global variables

n @= integer constants

Figure 4.1: Abstract syntax for Parallel Programming Language

fusion composition & and sequential composition §. The entry block of the program
is the outermost block. Basic blocks are: a parallel block Par (N) S; a vectorized
block Vec (N) V; and a sequential block S, where N denotes the number of parallel
threads, i.e., the block’s parallelization level, S is a sequence of statements and V
is a sequence of guarded assignments b = ass. N is a global variable of type

integer assumed to be positive, finite and constant within the program.

We assume a restricted syntax for fusion composition such that the operands
of the composition are parallel basic blocks with the same parallelization levels.
Each basic block has a local read-only variable tid € [0..N) called thread identifier
where N is the block’s parallelization level. We generalize the term iteration to
refer to the computations of a single thread in a basic block. So a parallel or
vectorized block with parallelization level N has N iterations.

For simplicity, threads have access to a single shared array, which we refer to
as shared memory, sh. To enable threads to share different regions in the shared
memory, we require the existence of a number of shared global variables which
are accessible to all threads. This we refer to as program store, . In this way
threads can effectively share which locations in the shared memory they use.
For example a user-defined shared array in the shared memory is modeled by
its base address, which is a global variable in the program store, and an offset
which is typically a thread local variable. For simplicity, we assume that the
program store remains constant throughout the program. The local variables

accessible to a single thread are modeled as a thread local store which we refer
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to as private memory, o.

A thread may update its local variables by performing a local computation
(v := e), or by reading from the shared memory (v := mem(e)). A thread
may also update the shared memory by writing one of its local variables to it

(mem(e) := v).

4.2.2 Semantics

The behaviour of PPL programs is described using a small-step operational se-
mantics. Throughout, we assume the existence of the finite domains: VarName,
the set of variable names, Loc, the set of memory locations, Val, the set of all
values including the memory locations, and [0..N) for thread identifiers. We
write +- to concatenate two statement sequences (S+-S). To define the program

state, we use the following definitions.

sh € SharedMem = Loc — Val shared memory
5 € Store = VarName — Val program store
o € PrivateMem = VarName — Val private memory

Now we define BlockState. We distinguish between various kinds of block
states: an initial state Init, composite block states ParC and SeqC, a state in which
a parallel basic block should be executed Par, a local state Local in which a
vectorized or a sequential basic block should be executed, and a terminated

block state Done.
BlockState 5 EB =

Init(Block)] initial block states
ParC(EB, EB)| SeqC(EB, Block)| composite block states
Par(LS)| parallel basic block states
Local(LS)] thread local states

Done terminated block state

The Init state consists of a block statement Block. The ParC state consists of
two block states, and the SeqC state contains a block state and a block statement
Block; they capture all the states that a parallel composition and a sequential
composition of two blocks might be in, respectively. The basic block state Par
captures all the states that a parallel basic block Par (N) S might be in during its
execution. It contains a mapping LS € [0..N) — LocalState, that maps each
thread to its local state, which models the parallel execution of the threads.

There are three kinds of local states: a vectorized state Vec, a sequential state
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Seq, and a terminated sequential state Done.
LocalState 3 LS =

Vec(X,E,V,0,9)| vectorized basic block states
Seq(a, S)| sequential basic block states
Done terminated sequential basic block states

The Vec block state captures all states that a vectorized basic block Vec (N) V
might be in during its execution. It consists of ¥ € [0..N) — PrivateMem,
which maps each thread to its private memory, the body to be executed V, a
private memory o, and a statement S. As vectorized blocks may appear inside
a sequential block, keeping ¢ and S allows continuation of the sequential basic
block after termination of the vectorized block. To model vectorized execution,
the state contains an auxiliary set E C [0..N) that models which threads have
already executed the current instruction. Only when E equals [0..N), the next
instruction is ready for execution. Finally, the Seq block state consists of private
memory ¢ and a statement S.

We model the program state as a triple of block state, program store and
shared memory (EB,~, sh) and thread state as a pair of local state and shared
memory (LS, sh). The program store is constant within the program and it
contains all the global variables (e.g. the initial address of arrays). To simplify
our notation, each thread receives a copy of the program store as part of its
private memory when it initializes (the rules Init Par and Init Seq). The
operational semantics is defined as a transition relation between program states:
—pC (BlockState x Store x SharedMem) x (BlockState x Store x SharedMem),
(Figure £.2), using an auxiliary transition relation between thread local states
—sC  (LocalState x SharedMem) x (LocalState x SharedMem), (Figure [4.3),
and a standard transition relation —,s,C (PrivateMem x S x SharedMem) x
(PrivateMem x SharedMem) to evaluate assignments, (Figure[4.4). The semantics
of expression e and boolean expressions b over private memory o, written &[e],
and B[b], respectively, is standard and not discussed any further. We use the
standard notation for function update: given a function f : A - B, a € A, and
be B:

f[a:zb]za:»—){b =

f(z), otherwise

Program execution starts in a program state (Init(Block),y, k) where Block
is the program’s entry block. Depending on the form of Block, a transition is
made into an appropriate block state, leaving the shared memory unchanged.
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[Init ParC]
Init(Block,||Blockz), v, sh —, ParC(Init(Block: ), Init(Blockz)), v, sh
[Init SeqC]
Init(Block; 3Blockz), v, sh —, SeqC(Init(Block), Blocks),~, sh
[Init Fuse]
Init(Par(N) S1 @ Par(N) S2), 7, sh —p Init(Par(N) S1 -H S2),~, sh
LS, sh —, LS', sh’
- [Lift Seq]
Local(LS),~, sh —, Local(LS"),, sh

LS £ At € [0..N).Seq(~[tid := ¢],S5)

[Init Par]|
Init(Par(N) S),~, sh —, Par(LS), v, sh

[Init Seq]
Init(S), v, sh —, Local(Seq(v]tid := 0],S)),, sh
EB1,~, sh —, EB1,, sh’
- [ParC Step1]

ParC(EB1, EB3), v, sh —, ParC(EB}, EB>), v, sh
EBs,~, sh —, EB5,, sh’
ParC(EB1, EB2),~, sh —, ParC(EB1, EB5), ~, sh

[ParC Donel [Local Done]
ParC(Done, Done), v, sh —, Done, v, sh Local(Done),~, sh —, Done,, sh

EB,~, sh —, EB’, v, sh’

- [ParC Step2]

[SeqC Stepl
SeqC(EB, Block), 7y, sh —, SeqC(EB’, Block), y, sh’

[SeqC Done]

SeqC(Done, Block), 7, sh —p Init(Block), v, sh

i € dom(LS) LS(i),sh —s LS, sh’ Vi € dom(LS).(ILS(7) = Done)
[Par Step] [Par Done]
Par(LS), v, sh —, Par(LS[i := LS']),~, sh’ Par(LS), 7y, sh —, Done, v, sh

Figure 4.2: Operational semantics for program execution

The evaluation of a ParC state non-deterministically evaluates one of its block
states (i.e. EB; or EB>), the evaluation of a sequential block is done by evaluating
the local state. The evaluation of a SeqC state evaluates its block state EB step
by step when this evaluation is done, the subsequent block is initiated.

The evaluation of a parallel basic block is defined by the rules Par Step
and Par Done. To allow all possible interleavings of the threads in the block’s
thread pool, each thread has its own local state LS, which can be executed
independently, modeled by the mapping LS. A thread in the parallel block
terminates if there is no more statement to be executed and a parallel block

terminates if all threads executing the block are terminated.
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[While]

Seq(a, while (b) {S};S"), sh —5 Seq(a, if (b) {S +- while (b) {S}} else {skip};S’), sh
B[b]»
Seq(o, if (b){S1 }else{S2};S), sh — Seq(o,S1 HS), sh
-B[b]~
Seq(o, if (b){S1}else{S2};S), sh — Seq(o,S2 HS), sh

! !
0,ass, sh —qss 0, Sh

[iftrue]

[iffalse]

[Seq Done]
7 [Ass] Seq(o, skip), sh —5 Done, sh

Seq(a, ass; S), sh —s Seq(o’,S), sh
¥ 2 Mt € [0..N).o[tid := {]

[Init Vec]
Seq(o, Vec(N) V;S), sh —, Vec(%,0,V,0,S), sh

i € dom(X)\E B[b]su) (i), ass,sh —rass o', sh’
Vec(Z,E, b = ass; V,0,S), sh —s Vec(Z[i := ¢'],EU{i},b = ass;V,0,5), sh
i € dom(X)\E -B[b]x)
Vec(3,E, b = ass; V,0,S), sh =5 Vec(Z,EU{i},b = ass; V,0,S), sh

- [Vec Step1]

[Vec Step2]

[Vec Syncl]
Vec(X,dom(X),b = ass; V, 0,S), sh =, Vec(2,0,V,0,S), sh

[Vec Done]

Vec(3, E, skip, 0,S), sh —5 Seq(o,S), sh

Figure 4.3: Operational semantics for thread execution

The evaluation of sequential basic block’s statements as defined in Figure
is standard except when it contains a vectorized basic block. A sequential
basic block terminates if there is no instruction left to be executed (Seq Done).
The execution of a vectorized block (defined by the rules Init Vec, Vec Step, Vec
Sync and Vec Done in Figure[d.3) is done in lock-step, i.e. all threads execute the
same instruction and no thread can proceed to the next instruction until all are
done, meaning that they all share the same program counter. As explained, we
capture this by maintaining an auxiliary set, E, which contains the identifier of
the threads that have already executed the vector instruction (i.e. the guarded
assignment b = ass). When a thread executes a vector instruction, its thread
identifier is added to E (rules Vec Step). The semantics of vector instructions (i.e.
guarded assignments) is the semantics of assignments if the guard evaluates to
true and it does nothing otherwise. When all threads have executed the current
vector instruction, the condition E = dom(X) holds, and execution moves on to

the next vector instruction of the block (with an empty auxiliary set) (rule Vec
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[LAss]
0,0 = e,8h =g o[v := E[€],], sh
[rdsh]
o,v = mem(e), sh =455 olv := sh(&]e],)], sh
[wrsh]
o,mem(e) := v, sh =455 0, sh[E]e], = V]

Figure 4.4: Operational semantics for assignments

Sync).The semantics of assignments as defined in Figure [4.4]is standard and

does not require further discussion.

4.3. OpenMP to PPL Encoding

This section discusses the encoding of OpenMP programs into PPL. Later in the
next chapter, we use this encoding to demonstrate how OpenMP programs as
an example of deterministic parallel programs are encoded into PPL and then
verified. Before discussing the encoding algorithm, we define a core grammar
which captures a commonly used subset of OpenMP [AF11], then we present
an encoding algorithm for that subset.

Figure[4.5 presents the OMP grammar which supports the OpenMP annota-
tions: omp parallel, omp for, omp simd, omp for simd, omp sections, and omp single.
An OMP program is a finite and non-empty list of Jobs enclosed by omp parallel.
The body of omp for, omp simd, and omp for simd, is a for-loop. The body of omp
single is either an OMP program or it is a sequential code block SpecS. The omp
sections block is a finite list of omp section sub-blocks where the body of each

OMP w= #pragma omp parallel [clause]* {Job'}
Job u= f#pragma omp for [clause]* {for-loop {SpecS}}

|
|
#pragma omp simd [clause]|* {for-loop {SpecS}} |
#pragma omp for simd [clause]* {for-loop {SpecS}} |

|

#pragma omp sections [clause]* {Section™}
#pragma omp single {SpecS |OMP}

Section = #pragma omp section {SpecS |OMP} |
SpecS = a list of sequential statements with a contract
clause = allowed OpenMP clause

Figure 4.5: OpenMP Core Grammar
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Def For as for(i..N*M){SpecS(i)} 2 = (map sec x,clause™)
Def Par as Par(N«M){SpecS(tid)} 23 sec(omp parallel clause®, Job™)
Def WhileVec as 24 = encode Job™
while(i € [0..N)) s sec(SpecS) = Par(1){SpecS}
Vec(tid € [0..M)) SpecS(ixM+tid) 2
Def ParVec as 27 par-able (P1,Al) (P2,A2) = nowait(Al)
Par(tid; € [0..N)) % fusiable (P1,A1) (P2,A2) =
Vec(tid2 € [0..M)) 2 omp_for(Al) A omp_for(A2) A
SpecS(tidixM+tids) 30 sched_static (A1) A sched_static(A2) A
nowait(Al)
encode p = compose (translate p) 31
translate xs = map m xs s2 bundle - _ [x] = [x]
m(omp for clause®,For) 33 bundle op cond x:y:ys
=(Par,omp for clause™) 34 =x:r , if I(cond x y)
m(omp simd simdlen(M) clause®,For) 35 = (op x (head r)) : (tail r), else
=(WhileVec,omp simd clause™) 36 where r = bundle op cond (y:ys)
m(omp for simd simdlen(M) clause®,For) 37 compose ys =
=(ParVec,omp for simd clause™) 38 let pl = bundle @ fusiable ys in
m(omp sections clause™, xs) 39 let p2 = bundle || par_able plin
= (fold || (map sec xs),clause™) 40 fold ¢ p2

m(omp single clause®,x)

Figure 4.6: Encoding of a commonly used subset of OpenMP programs into PPL
programs

omp section is either an OMP program or it is sequential code block SpecS.
Any OpenMP program which conforms to this grammar can be encoded
into a PPL program by the algorithm presented in Figure The encoding is
divided into a recursive translate step and a compose step. The translation step
recursively encodes all OMP Jobs into their equivalent PPL code blocks without
caring about how they will be composed. Later, the compose step conjoins the
translated code blocks together to build a PPL program. The translation step
is a map, which applies the function m to the list of input tuples and returns a
list of output tuples. Depending on the type of the OpenMP construct that is
translated, different mapping functions are applicable (line 13-25). Specifically
the translation of an OpenMP parallel loop, i.e. omp parallel for clause®, to a
parallel basic block in PPL is given in the lines 13-14. Note that for readability
purposes, we define For as a short form for a for-loop in OpenMP and Par as



4.3. OPENMP TO PPL ENCODING 61

the short form for a parallel basic block in PPL. All the short forms used in the
algorithm are defined in lines 1-9. The mapping functions for OpenMP sections,
i.e. omp sections clause®, (lines 19-20) and OpenMP single, i.e. omp single clause*,
(lines 21-22) call another mapping function sec which is defined in lines 23-25.

The input tuples are in the form (A, C') where A is an OpenMP annotation
and C'is a code block written in C. The tuple represents an annotated code block
in OMP programs. The output tuples are in the form (P, [A]) where P is a PPL
program and [A] is a list of OpenMP annotations.

The compose step takes as its input a list of tuples in the form (P, [A])
(the output of the translate step); then it inserts appropriate PPL composition
operators between adjacent tuples in the list provided certain conditions hold.
To properly bind tuples to the composition operators, the operators are inserted
in three individual passes; one pass for each composition operator, based on the
binding precedence of the operators from high to low as follows: § < || < &.

Operator insertion is done by the function bundle (lines 32-36). In each pass
bundle consumes the input list recursively. Each recursive call takes the two
first tuples of the list and inserts a composition operator if the tuples satisfy the
conditions of the composition operator; otherwise, it moves one tuple forward
and starts the same process again.

For each composition operator the conditions are different. The conditions
for parallel and fusion compositions are checked by the functions fusiable and
par_able. The fusion composition is inserted between two consecutive tuples
(P;, [A;]) and (Pj,[A;]) where both [A;] and [A;] are omp for annotations, the
clauses of both annotations include schedule(static), and the clauses of [4;]
include nowait. The parallel composition is inserted between any two tuples in
the program where the clauses of the first tuple include nowait. Otherwise, the
sequential composition is inserted. The final outcome is a single merged tuple
(P, [A]) where P is the result of the encoding and [A] can be eliminated.

For example, the OpenMP program in Listing[/]is encoded by the presented
encoding algorithm into the following PPL program:

(Par(L) cfi]=ali; @ Par(L) c[i]=c[i]+b[i; )
_B:_/ X

P I

Par(L) d[i]=ali]*b[i;
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Program P contains three parallel basic blocks B;, B, and B;. The fusion of
Bi and B, creates a composite block that is enclosed by the parentheses. Then
the composite block is composed with the basic block B3 using the parallel
composition operator.

4.4. Related Work

There is a long history of work on the formalization of parallelism and con-
currency. Compared to the abstractions such as Communicating Sequential
Processes (CSP) [Hoa78], Calculus of Communicating Systems (CCS) [Mil82]
and Algebra of Communicating Processes (ACP) [BK84] and other similar
formalizations, our work is less abstract. However, we believe the abstraction
level of PPL serves its purposes. On one hand it is sufficiently abstract to
capture the main forms of deterministic parallel programs and on the other
hand it is sufficiently concrete that it allows the real-world deterministic parallel
programming libraries such as OpenMP to be directly translated into PPL.

The need for the formalization of deterministic parallelization has also
been addressed by Lu and Scott in [LS11]. Their goal is to present a unified
formal definition for different types of determinism in the context of parallel
programming. For this purpose, they use a history-based-semantics that is
conceptually similar to the trace semantics that we developed to formalize
the semantics of loop parallelizations in Chapter {31 Compared to them we
present a syntax and an operational semantics for a core deterministic parallel
programming language while they do not present a specific programming
language. Our PPL language addresses practical parallel programming con-
structs such as vectorized blocks and fusion of parallel blocks that enable
our language to capture the behaviour of real-world parallel programming
constructs. This has been demonstrated by presenting an encoding algorithm
and an implementation for translating OpenMP programs into PPL. From this
perspective their work remains rather high-level and no direct encoding or
mapping to the real-world parallel programming languages has been presented.
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4.5. Conclusion and Future Work

We presented PPL, a core language for deterministic parallel programming.
PPL is defined as a language for the composition of code blocks. We distinguish
between three kinds of basic blocks: a parallel block, a vectorized block and a
sequential block. The basic blocks in PPL can be composed by three binary
block composition operators: sequential composition, parallel composition and
fusion composition to construct larger code blocks. A small-step operational
semantics was presented for PPL. Moreover, we illustrated how a commonly
used subset of OpenMP are encoded into PPL.

In the next chapter we discuss how data race freedom and functional
correctness are verified for PPL programs. We also explain how OpenMP
programs can be verified by first being translated into PPL using the encoding
algorithm presented in this chapter.

As future direction, the encoding algorithm can be extended to support
other popular deterministic parallel programming languages and libraries such
as Cilk [cli17]. The language itself may also be extended to support a wider
range of OpenMP programs. OpenMP task parallelism and atomic operations are
among those features that can be added to the language.






CHAPTER 5 l

VERIFICATION OF
DETERMINISTIC
PARALLEL
PROGRAMS

“When a task cannot be partitioned because of sequential constraints, the
application of more effort has no effect on the schedule. The bearing of a child
takes nine months, no matter how many women are assigned.”

— Fred Brooks






His chapter presents a verification technique to prove the data race
freedom and the functional correctness of deterministic parallel pro-
grams. We develop our verification technique over the core language

for deterministic parallel programming (PPL) that was formalized in the pre-
vious chapter. Moreover, we show the practical usability of our approach, by
presenting how the technique can be applied to the verification of a commonly
used subset of OpenMP programs. Particularly we discuss how the OpenMP
example in Listing [7]is specified, encoded into PPL and then verified using our
verification technique.

To be able to verify a PPL program, each basic block in the program has to be
specified by an iteration contract [BDH]. Additionally, the program itself should
also be specified by a global contract. Previously in Chapter [3|we used iteration
contracts to reason about the correctness of loop parallelizations. In this chapter
we use iteration contracts to specify the basic blocks in a PPL program.

To verify a specified PPL program, we show that the block compositions are
data race free. This is done by proving that for all independent iterations (i.e.
the iterations that might run in parallel) all accesses to shared memory are non-
conflicting, meaning that they are either disjoint or they are read accesses. Then
we show that given the data race freedom of all block compositions, the PPL
program can be linearized at the level of its basic blocks. This results in a variant
of the PPL program in which all the basic blocks are composed sequentially.
This reduces our verification problem to prove the data race freedom and
functional correctness of the linearized variant of the PPL program. The
linearized variant can be verified by showing that each basic block is data race
free and functionally correct with respect to its iteration contract and proving
the overall functional correctness of the PPL program using standard separation
logic rules for sequential programs.

The content of this chapter is based on the following publication of the author: “A Verification
Technique for Deterministic Parallel Programs” [DBH17al.

67
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The main contributions of this chapter are the following:

e a verification approach for reasoning about the data race freedom and

functional correctness of PPL programs;

e asoundness proof that all verified PPL programs are indeed data race free
and functionally correct with respect to their contracts; and

e tool supports that addresses the complete process from the encoding of
the OpenMP program into PPL to the verification of the generated PPL

programs.

Outline. This chapter is organized as follows. We first present our verification
approach in Section The soundness of our technique is discussed in
Section Then in Section we explain how our approach is applied to
the verification of OpenMP programs. Finally, we conclude with related work,
future directions and conclusion.

5.1. Verification Method

To verify PPL programs, we assume each basic block is specified by an iteration
contract. We distinguish between two kinds of formulas in an iteration contract:
resource formulas (in permission-based separation logic) and functional formu-
las (in first-order logic). For an individual basic block, if its iteration contract is
proven correct, then the basic block is data race free and it is functionally correct
with respect to its iteration contract.

To verify the correctness of the program, using standard permission-based
separation logic rules, the contracts of all composite blocks should be given.
However, our verification approach requires only the basic blocks to be specified
at the cost of an extra proof obligation that ensures that the shared memory
accesses of all iterations which are not ordered sequentially are non-conflicting
(i.e. they are disjoint or they are read accesses). If this condition holds,
the correctness of the PPL program can be derived from the correctness of
a linearized variant of the program. The rest of this section discusses the
formalization of our approach.

To verify a program, we require each basic block to be specified by an
iteration contract. An iteration contract consists of: a resource contract rc(¢),

and a functional contract fec(7), where i is the thread identifier of the block (i.e.
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the iteration variable). The functional contract consists of a precondition P(7),
and a postcondition Q(¢). We also require the program to be globally specified
by a contract G which consists of the resource contract of the program RCp and
the functional contract of the program F'Cp with the precondition Pp and the

postcondition Qp.

5.1.1 Verification of Basic Blocks

This section discusses how we verify a single basic block. In the next section we
discuss how the PPL programs that are constructed by the composition of basic
blocks are verified.

There are three types of basic blocks: a sequential block, a vectorized block
and a parallel block. Verification of sequential blocks using Hoare logic rules is
standard and we do not explain it any further. The parallel blocks are verified
by the rule ParBlock presented in Figure This is an adaptation of the rule
ParLoop (See Section[3.3). We use the same rule for the verification of vectorized
blocks in case there is no inter-iteration data dependences. Verification of
vectorized blocks in the presence of inter-iteration data-dependencies requires
an extension to the technique that enables inter-iteration permission transfer
only among the iterations inside the vectorized block and not with other blocks.
This would be quite similar to the permission transfer annotations developed
for the specification and verification of vectorized loops in Chapter

To verify basic blocks we extend the standard separation logic with the rule
ParBlock. In the rule, rc(7) is the resource contract and P(7) and Q(7) are
iteration’s pre- and postcondition of the basic block Par (N) S respectively. N
is the number of block’s iterations. S is the body of the parallel basic block and
S(i) is the body of the i‘" iteration of the parallel basic block. The rule states
that a parallel basic block is correct with respect to its iteration contract if each
iteration respects its contract and the universal separating conjunction over the
contracts of all iterations is satisfiable. Note that the presence of data race in the
basic block makes the universal separating conjunction unsatisfiable as the sum
over the permission fractions on the shared location exceeds one.

5.1.2 Verification of Composite Blocks

After discussing the verification of basic blocks, this section presents our

approach to reason about PPL programs.
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Vi € [0..N).{re(i) » P(4) }S(i ){7’0( )* Qi) }
{* -5 rc( * P(4)}Par(N )S{* 0 re(i)*x Q(i)}

[ParBlock]

Figure 5.1: Proof rule for the verification of basic blocks

Let P be the set of all PPL programs and P € P be an arbitrary PPL program,
assuming that each basic block in P is identified by a unique label. We define
Bp = {b;,bg,..., by}, as the finite set of the basic block labels of the program
P. For a basic block b with the parallelization level m, we define a finite set of
iteration labels I, = {0°, 1°,...,(m — 1)"} where i’ indicates the i** iteration of
the block b. LetIp = | beBp I, be the finite set of all iterations of the program
P.

To state our proof rule, we first define the set of all iterations which are not
ordered sequentially, the incomparable iteration pairs, 3% as:

3T = {(i%,%2)]i%, 5% € Ip A by # by A% £, %2 A G0 £, i)

where <.C Ip x Ip is the least partial order which defines an extended happens-
before relation. The extension addresses the iterations which are happens-
before each other because their blocks are fused. We define <, based on
two partial orders over the basic blocks of the program: <C Bp x Bp and
<o C Bp x Bp. The former is the standard happens-before relation of blocks
where they are sequentially composed by § and the latter is a happens-before
relation with respect to the fusion composition @. They are defined by means
of an auxiliary partial order generator function G(P,0) : P x {3,®} — Bp x Bp
such that: <= G(P, ) and <g= G(P, ®). We define G as follows:

GU{W, V)Y €Bp AY €Bpn}, fP=P eP" A=
G(P,8) =4 G, fP=P eP'  ANS+e
0, if P € {Par(N) S,S}

where G = G(P’,8) UG(P”,0).

The function G computes the set of all iteration pairs of the input program
P which are in relation with respect to the given composition operator 6. This
computation is basically a syntactical analysis over the input program. Now we
define the extended partial order <. as:

Vi, €lpi® <. ¥ & (b=b) vV ((b=eb) A (i=4))
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V(ib, 3%) € 3P (RCp = rey(i) *rey (4))
{RCP *Pp}blln(P){RCp *Qp}
{RCP *Pp}P{RC’p *QP}

[b-linearize]

Figure 5.2: Proof rule for the b-linearization of PPL programs.

This means that the iteration i’ happens-before the iteration ;¥ if b happens-
before v’ (i.e. b is sequentially composed with ') or if b is fused with ¥’ and ¢
and j are corresponding iterations in b and ¥’.

We extend the program logic with the proof rule b-linearize. We first
define the block level linearization (b-linearization for short) blin : P — P; as a
program transformation which substitutes all non-sequential compositions by
a sequential composition. We define P; as a subset of P in which only the
sequential composition § is allowed as a composition operator.

Figure [5.2| presents the rule b-linearize. In the rule, rc;(i) and rey (j) are
the resource contracts of two different basic blocks b and ¥ where i* € I,
and j* € Iy. Application of the rule results in two new proof obligations.
The first ensures that all shared memory accesses of all incomparable iteration
pairs (the iterations that may run in parallel) are non-conflicting (i.e. all block
compositions in P are memory safe). This reduces the correctness proof of P to
the correctness proof of its b-linearized variant blin(P).

The correctness of the program blin(P) is proved by the rule sequentialize
in Figure where Block;, denotes any basic block (of type parallel, vectorized,
or sequential) with label b € Bp. The use of the rule requires to prove that
(1) each basic block in P is correct against its iteration contract for which
the standard separation logic rules extended with the rule ParBlock can be
used, and (2) the sequential variant of P is correct with respect to the contract
of P (ie. {RCp*Pp}seq(P){RCp*Qp}). Sequential variant of P, seq(P)
is a version of blin(P) in which all parallel and vectorized basic blocks are
executed sequentially. A sequential execution of a parallel or a vectorized block
is defined as an execution in which all statements of the iteration i execute
before all statements of the iteration ¢ + 1. The correctness of seq(P) is proved
by the standard separation logic rules for sequential programs that are not
discussed any further. Note that we reduce the correctness proof of blin(P) to
the correctness proof of its sequential variant. Intuitively this is correct because
the functional behaviour of any proven correct basic block is equivalent to the

behaviour of its sequential execution. The next section formally proves this
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Vb € Bp.{Hkicio. ny)7c(i) }Blocks {Hicio. ny)res(i)}
{RCp x Pp}seq(P){RCp*Qp}
{RCp * Pp}blin(P){RCp+xQp}

[sequentialize]

Figure 5.3: Proof rule for sequential reduction of b-linearized PPL programs.

intuitive argument.

5.2. Soundness

Next we show that a PPL program with provably correct iteration contracts and
a global contract that is provable in the standard separation logic extended with
the rules ParBlock, sequentialize, and b-linearize is indeed data race free and
functionally correct with respect to the specifications. To show this, we prove
the soundness of the rules ParBlock, sequentialize, and b-linearize, as well as
the data race freedom of all verified programs.

For the soundness of the rule b-linearize, we show that for each program
execution there exists a corresponding b-linearized execution with the same func-
tional behaviour (i.e. they end in the same terminal state if they start in the same
initial state) if all independent iterations are non-conflicting. From the rule’s
assumption, we know that if the precondition holds for the initial state of the
b-linearized execution (which is also the initial state of the program execution)
then its terminal state satisfies the postcondition. As both executions end in
the same terminal state, the postcondition thus also holds for the program
execution. Then we prove that there exists a matching b-linearized execution for
each program execution: we first show that any valid program execution can be
normalized with respect to the program order, and second that any normalized
execution can be mapped to a b-linearized execution.

The soundness of the rule sequentialize relies on the soundness of the rule
ParBlock and the soundness of separation logic rules for sequential programs.
The soundness of the rule ParBlock is proved based on the rule’s assumption
that each iteration satisfies its iteration contract, and the fact that the universal
separating conjunction over all iterations of the block is satisfiable. The latter
implies that all accesses of all iterations of a verified basic block to the shared
locations are non-conflicting.

To formalize these arguments, we first define: an execution, an instrumented
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execution, and a normalized execution. We assume all program’s blocks including
basic and composite blocks have a block label and all program’s statements have
a statement label. There exists a total order over the block labels, which is the
order in which they appear in the program.

Definition 5.1. (Execution). An execution of a program P is a finite sequence of state
transitions Init(P), v, sh — Done, 7, sh’.

To distinguish between valid and invalid executions, we instrument our
operational semantics with shared memory masks. A shared memory mask
models the access permissions to every shared memory location. It is defined as
amap from locations to fractions 7 : Loc — Frac where Frac is the set of fractions
([0,1]). Any fraction (0, 1) is read and 1 is write permission. The instrumented
semantics ensures that each transition has sufficient access permissions to the
shared memory locations that it accesses.

To instrument the operational semantics of PPL, we first add a shared
memory mask = to all block state constructors (Init, ParC, SeqC and so on) and
local state constructors (Vec, Seq and Done). Then we extend the operational
semantics rules such that in each block initialization state with shared memory
mask 7, an extra premise should be discharged, which states that there are n > 2
shared memory masks 71, ..., T,, one for each newly initialized state, such that
¥ < 7; The shared memory masks are carried along by the computation and
termination transitions without any extra premises, while in the termination
transitions, shared memory masks of the terminated blocks are forgotten as they
are not required after termination.

Figure and [5.7] show the instrumented semantics of PPL. We use
—p.ir —s,is —Fass,i 10 denote program, thread and assignment transitions in the
instrumented semantics respectively. If a transition cannot satisfy its premises,
it blocks.

Definition 5.2. (Instrumented Execution). An instrumented execution of a program
P is a finite sequence of state transitions Init(P, ), v, sh —7 ; Done(r),, sh’ where
the set of all instrumented executions of P is written as IEp.

Lemma 5.1. Assuming that (1). - ¥(i®, j*) € 37.RCp = rey(i) xrey (5) and (2).
Vb € Bp.{%kicjo..n,)7c (1) }Blocks{ K ic(o..n,) b (7) } are valid for a program P (i.e.
every basic block in ‘P respects its iteration contract), for any execution E of the program
P, there exists a corresponding instrumented execution.
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Proof. Given an execution E, we assign shared memory masks to all program
states that the execution E might be in. The program’s initial state is assigned by
a shared memory mask 7 < 1. Assumption (1) implies that all iterations which
might run in parallel are non-conflicting which implies that for all Init ParC
transitions, there exist m; and 7 such that m; + m3 < 7’ where 7’ is the shared
memory mask of the state in which Init ParC evaluates. In all computation
transitions, the successor state receives a copy of the shared memory mask of
its predecessor. Assumption (2) implies that all iterations of all parallel and
vectorized basic blocks are non-conflicting. This implies that for an arbitrary
Init Par or Init Vec transition which initializes a basic block b, there exists
1, ..., T, such that ¥7m; < m, holds in b’s initialization transition, and in all
computation transitions of an arbitrary iteration ¢ of the block b the premises of
rdsh and wrsh transitions is satisfiable by ;. O

Lemma 5.2. All instrumented executions of a program P are data race free.

Proof. The proof proceeds by contradiction. Assume that there exists an in-
strumented execution that has a data race. Thus, there must be two parallel
threads such that one writes to and the other one reads from or writes to a shared
memory location e. Because all instrumented executions are non-blocking, the
premises of all transitions hold. Therefore, 71 (e) = 1 holds for the first thread,
and mz(e) > 0 for the second thread as it either writes or reads. Because the
program starts with one single main thread, both threads should have a single
common ancestor thread z such that 7, (e) + m,(e) < 7.(e) where  and y are
the ancestors of the first and the second thread respectively. A thread only gains
permission from its parent; therefore 7 (e) + m2(e) < m.(e) holds. Permission
fractions are in the range [0, 1] by definition, therefore 7 (e) + m2(e) < 1 holds.
This implies that if 71 (e) = 1, then m3(e) < 0 which is a contradiction.

O

Corollary 5.1. Assuming that {¥;c[o..n) rc(i)}Block{%c(o.n) 7c(i)}, for any
execution of the basic block Block there is an instrumented execution and the basic block
Block is data race free.

Proof. The first property follows by instantiating Lemma [5.1) with a program
where the PPL program P is a single basic block Block. The second part is
concluded from Lemma[5.21 O
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A normalized execution is an instrumented execution that respects the
program order, which is defined using an auxiliary labeling function £ : T —
BH! x L where T is the set of all transitions, L is the set of labels {I,C, T}, and
B! is the set of block labels (including both composite and basic block labels).
We assume all loops are finite; thus the cardinality of B! is finite.

(LB(block), I), iftinitializes a block block
L(t) = ¢ (LB(s),C), if t computes a statement s
(LB(block), T'), if ¢t terminates a block block

where LB accepts both a block or a statement as its input. In the first case, it
returns the label of its input block and in the second case it returns the block
label to which its input statement belongs. We assume the precedence order
I < C < T over L. We say the transition ¢ with label (b,!) is less than ¢’ with
label (b',1")if (b < V')V (b >V — (I' = TANb € LBgu(b'))) where LBgy,(b)
returns the label set of all blocks of which b is composed. Note that the block
label of a composite block is less than the block label of all the blocks from
which it composed of. However, the termination transition of the composite
block should come after the termination transitions of all the blocks of which
it is composed. This is what we describe by the second disjunctive part of the
mentioned condition, i.e. (b > b — (I' =T Ab € LBy (b))).

Definition 5.3. (Normalized Execution). An instrumented execution labeled by L is
normalized if the labels of its transitions are in non-decreasing order.

We transform an instrumented execution into a normalized one by safely
commuting the transitions whose labels do not respect the program order.

Lemma 5.3. For each instrumented execution of a program P, there exists a normalized
execution such that they both end in the same terminal state.

Proof. Given an instrumented execution IE = (s1,t1) : (s2,t2) : IE', if L(t1) >
L(t2), a state s, exists such that a new instrumented execution IE"” = (s1,t2) :
(sg,t1) : IE' can be constructed by swapping two adjacent transitions ¢; and
to. As the swap is on an instrumented execution which from Lemma is
data race free, any accesses of ¢; and t; to a shared memory location must be
reads. Because ¢; and ¢, are adjacent transitions, no other write may happen in
between; therefore the swap preserves the functionality of IF, yielding the same

terminal state for IE and IE”. Thus, the corresponding normalized execution
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of IE, obtained by applying a finite number of such swaps, yields the same
terminal state as /F. O

Lemma 5.4. For each normalized execution of a program P, there exists a b-linearized
execution blin(P), such that they both end in the same terminal state.

Proof. An execution of blin(P) is constructed by applying the map M : BlockState
— BlockState to each state of a normalized execution. M is defined as:

Init(blin(P)), if s = Init(P)
SeqC(M(EBy), Blockz), if s = ParC(EBy, Init(Blocks))
M(s) = ¢ M(EBy), if s = ParC(Done, EB>)

SeqC(Par(LLS1), Blocks), if s = Par(ILS; -+ LS9)

s, otherwise

where LS} is the initial mapping of thread local states of Blocks and Par(LLS; +
LS9) indicates the state of two fused parallel blocks Par(LS;) and Par(LS})
where + is overloaded and indicates the pairwise concatenation of statements
in the local states LS; and ILSg (i.e. S1 H So).

O

Next, we prove that the functional behaviour of any data race free basic block
is equivalent to the functional behaviour of its sequential variant. First of all we
assume all statements of the basic block are labeled and there is a function LS
that returns the label of a particular statement. As we only execute one single
basic block, each execution either starts with an Init Par transition and ends with
Par Done or starts with an Init Seq following by Lift Seq transitions and ends
with a Local Done transition. Between these fixed transitions all computation
transitions occur. Different executions, including the sequential execution, are
essentially different orderings of these computation transitions.

To define the sequential execution of a basic block, we use the following
labeling function £ : T — [0..N) x SL where T is the set of all computation
transitions, SL is the set of statement labels and [0..V) is the range of thread
identifiers of the basic block Block.

L'(t) = (i,LS(s)), iftcomputes a statement s

we say transition ¢ with label (i, 1) is less than ¢’ with label (i',1") if (1 < ')V (i =
i) = (I<).
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Lemma 5.5. For any instrumented execution E of the basic block Block (i.e. Init(Block), 7,
sh — ; Done, v, sh'), there exists a sequential execution (i.e. Init(seq(Block)), v, sh —
Done, v, sh') such that they both end in the same terminal state.

Proof. Apart from using a different labeling function £’, the rest of the proof is
similar to the proof of Lemma O

Definition 5.4. (Validity of Hoare Triple). The Hoare triple {RC'p x Pp} P{RCp * Qp}
is valid if for any execution E (ie. Init(P),7,sh —; Done,v, sh’) if v,sh,m F
RC'p % Pp is valid in the initial state of E, then ~y, sh’, 7 E RCp xQp is valid in its
terminal state.

The validity of v, sh,m E RCp * Pp and ~, sh’, 7 E RCp x Qp is defined by the
semantics of formulas presented in Section[2.2}

Theorem 5.1. The rule ParBlock is sound.

Proof. For any execution E (i.e. Init(Par(N) S),~,sh —7 Done, v,sh’), assume
(1) v, sh, ™ E Ykicpo..n) rc(i) x P(i) holds, and (2) Vi € [0..N). {rc(i) x P(i)}S(4)
{rc(i)» Q(i)} where S(i) is the body of the i'" iteration of the parallel basic
block Par (N) S and ¢ is the block’s iteration variable. Suppose that v, sh/, 7
*ico..nv) rc(i) x Q(7) does not hold which means that there exists an iteration
i in Par (N) S with the body S(i) for which r¢(i) * Q(7) does not hold or the
universal separating conjunction over all resources is invalid (i.e. v,sh/,7 ¥
*ico..nv) 7c(i)). The first case contradicts with assumption (2) and the second
case contradicts with assumption (1).

O

Theorem 5.2. The rule sequentialize is sound.

Proof. From assumption (1), Corollary [5.1] and the soundness of the rule Par-
Block, we conclude that there is an instrumented execution IE}, for each basic
block b € Bp. This implies that there is a corresponding instrumented execution
IE for any execution of blin (P) as blin (P) is the sequential composition of all
basic blocks by definition. From Lemma there is a sequential execution
E,, for each basic block such that IE, and E, both end in the same terminal
state. Given the only execution E of seq (P) (i.e. the sequential execution of P),
because both /F and E by definition execute the same basic blocks in the same
order if they both start in the same initial state, they both are in the same state

after the execution of the same number of basic blocks. Therefore they are in the
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same terminal state at the end of their executions. The initial state of IE and E,
satisfy the precondition { RC’» « Pp}. From assumption (2) and the soundness
of Hoare logic, { RCp x @p} holds in the terminal state of £ which thus also
holds in the terminal state of IE as they both end in the same terminal state. [J

Theorem 5.3. The rule b-linearize is sound.

Proof. Assume (1). + V(i®j*) € IT.RCp = rey(i)xrey(j) and (2). F
{RCpxPp} blin(P){RCp +xQp}. From assumption (2) and the soundness of
the rule sequentialize, we conclude (3). Vb € Bp.{%;c[0..n,)rcs(é)}Blocks
{*icp..v,)ren(i)}. Given a program P, implication (3), assumption (1) and,
Lemma imply that there exists a corresponding instrumented execution
IFE for any execution of P. Lemma and Lemma imply that for each
instrumented execution IF, there exists a b-linearized execution E’ such that
both IE and E’ end in the same terminal state. The initial states of both IF
and E’ satisfy the precondition {RCp * Pp}. From assumption (2) and the
soundness of the rule sequentialize, { RCp x Qp} holds in the terminal state
of E’ which thus also holds in the terminal state of IE as they both end in the

same terminal state. O
Finally, we show that a verified program is indeed data race free.
Proposition 5.1. A verified program is data race free.

Proof. Given a program P, with the same reasoning steps mentioned in the
Theorem we conclude that there exists an instrumented execution /F for
P. From Lemma all instrumented executions are data race free. Thus, all
executions of a verified program are data race free. O

5.3. Verification of OpenMP Programs

Finally, this section discusses the practical applicability of our approach, by
showing how it can be used for the verification of OpenMP programs. We
demonstrate this in detail on the OpenMP program presented in Section
More verified OpenMP examples are available onlimﬂ In Section we
precisely identified a commonly used subset of OpenMP programs that can be
encoded into PPL programs, that also identifies the subset of OpenMP programs
that can be verified with our approach.

1See the online version of the VerCors toolset at http://www.utwente.nl/vercors/,
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Program Contract (PC):

/*@ invariant a != NULL && b != NULL && c != NULL && d != NULL && L>0;
invariant \length (a)==L && \length(b)==L && \length(c)==L && \length(d)==L;
context \forallx int k; 0 <= k && k < L; Perm(a[k],1/2);

context \forallx int k; 0 <= k && k < L; Perm(b[k],1/2);

context \forall+ int k; 0 <= k && k < L; Perm(c[k],1);

context \forallx int k; 0 <= k && k < L; Perm(d[k],1);

ensures \forall int k; 0 <= k && k < L; c[k]==a[k]+b[k] && d[k]==a[k]xb[k];@*/

Iteration Contract 1 (ICy) of loop L1: Iteration Contract 2 (IC3) of loop L2:
/*@ context Perm(c[i],1) ** Perm(a[i],1/4); | /*© context Perm(c[i] 1) *x Perm(bl[i],1/4);
ensures c[i]==ali]; ©*/ ensures c[i]==\old(c[i]) +b[i]; @*/

Iteration Contract 3 (IC3) of loop L3:
/*@ context Perm(d[i],1) s Perm(a[i],1/4) s Perm(b[i],1/4);
ensures d[i]==ali]xb[i]; ©@*/

Figure 5.4: Required contracts for verification of the OpenMP example

We verify OpenMP programs in the following three steps: (1) manually
specifying the program (i.e. providing an iteration contract for each loop and
writing the program contract for the outermost OpenMP parallel region), (2)
automatically encoding of the specified OpenMP program into its PPL coun-
terpart (carrying along the original OpenMP specifications), (3) automatically
checking the PPL program against its specifications. Steps two and three have
been implemented as part of the VerCors toolset [BH14, BDHO17, |Ver17al]. The
details of the encoding algorithm are discussed in Section

Figure shows the required contracts for the parallel composition of
the parallel regions presented in Listing [7| of Section There are four
specifications. The first one is the program contract which is attached to the
outermost parallel block. The others are the iteration contracts of the loops L1,
L2 and L3. The requires and ensures keywords indicate pre- and postconditions
of each contract, whereas the context keyword is a shorthand for both requiring
and ensuring the same predicate. We use *x and \forall* to denote separating
conjunction * and universal separating conjunction % ;c; respectively. Before
verification, we encode the example into the following PPL program P:
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/+@ Program Contract @x/
(Par(L) /*@IC,@*/ c[i]=ali]; & Par(L) /*@IC,@*/ c[i]=c[i]+b]i];)

Bl BZ

P I

Bs

Par(L) /*@IC50*/ d[i]=a[i]*b]i;

Program P contains three parallel basic blocks By, B, and B3 and is verified by
discharging two proof obligations: (1) ensure that all shared memory accesses
of all incomparable iteration pairs (i.e. all iteration pairs except the identical
iterations of By and B;) are non-conflicting which implies that the fusion of B;
and B, and the parallel composition of B; @ B, and B3 are memory safe (2)
prove that each parallel basic block by itself satisfies its iteration contract Vb €
{1,2,3} {icp0..0)/Cu(7) } Bb {Hic[0..2)Cb (i)}, and (3) prove the correctness of
the b-linearized variant of P against its program contract { RCp x Pp} B B ¢
Bs{RCpxQp}.

We have implemented a slightly more general variant of PPL in the tool
that supports variable declarations and method calls. To check the first proof
obligation in the tool we quantify over the pairs of blocks that allows the number
of iterations in each block to be a parameter rather than a fixed number.

5.4. Related Work

Botincan et al. propose a proof-directed parallelization synthesis, which takes
as input a sequential program with a proof in separation logic and outputs a
parallelized counterpart by inserting barrier synchronizations [BDJ12, [BDJ13].
Hurlin uses a proof-rewriting method to parallelize a sequential program’s
proof [Hur09a]. Compared to them, we prove the correctness of parallelization
by reducing the parallel proof to a b-linearized proof. Moreover, our approach
allows verification of sophisticated block compositions, which enables reason-
ing about state-of-the-art parallel programming languages (e.g. OpenMP) while
their work remains rather theoretical.

Raychev et al. use abstract interpretation to make a non-deterministic pro-
gram (obtained by naive parallelization of a sequential program) deterministic
by inserting barriers [RVY13]]. This technique over-approximates the possible

program behaviours which ends up in a determinization whose behaviour is
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implied by a set of rules which decide between feasible schedules rather than the
behaviour of the original sequential program. Unlike them, we do not generate
any parallel program. Instead we prove that parallelization annotations can
safely be applied and that the parallelized program is functionally correct and
exhibits the same behaviour as its sequential counterpart.

Barthe et al. synthesize SIMD code given pre- and postconditions for loop
kernels in C++ STL or C# BCL [BCG™13]. We alternatively enable verification
of SIMD loops, by encoding them into vectorized basic blocks. Moreover, we
address the parallel or sequential composition of those loops with other forms
of parallelized blocks.

Dodds et al. introduce a higher-order variant of Concurrent Abstract
Predicates (CAP) to support modular verification of synchronization constructs
for deterministic parallelism [DJP11]. Their proofs use nested region assertions
and higher-order protocols, but they do not address the semantic difficulties
introduced by these features which make their reasoning unsound.

Salamanca et al. [SMA14] propose a runtime loop-carried dependence
checker as an extension to OpenMP which helps programmers to detect hidden
data dependencies in omp parallel for. Compared to them, we statically detect any
violation of data dependencies without any runtime overhead and we address

a larger subset of OpenMP constructs.

5.5. Conclusion and Future Work

We have presented a verification technique to reason about the data race
freedom and functional correctness of PPL programs. To do so, we extend
separation logic with the rules ParBlock, sequentialize and b-linearize. The
rule ParBlock is used to prove that a single basic block is correct with respect to
its iteration contract. The rule sequentialize is used to reduce the correctness
of b-linearized variant of a PPL program to its sequential counterpart, given the
assumption that all basic blocks in the PPL program are correct with respect to
their iteration contracts. Finally the rule b-linearized proves that the correctness
of PPL program can be reduced to the correctness of its b-linearized variant, if all
incomparable iterations are non-conflicting. So the correctness of PPL program
is reduced in two steps to the correctness proof of its sequential counterpart,
which then is provable using the standard separation logic rules for sequential

programs.
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We illustrated the practical applicability of our technique by discussing
how a commonly used subset of OpenMP can be verified using the presented
technique.

As future work, we plan to look into adapting annotation generation tech-
niques to automatically generate iteration contracts, including both resource
formulas and functional properties. This will lead to fully automatic verification
of deterministic parallel programs. Moreover, our technique can be extended
to address a larger subset of OpenMP programs by supporting more complex
OpenMP patterns for scheduling iterations and omp task constructs. We also
plan to identify the subset of atomic operations that can be combined with our
technique that allows verification of the widely-used reduction operations.



5.5. CONCLUSION AND FUTURE WORK 83

m e <7

[Init ParC]
Init(Blocky ||Blocks, ), 7, sh —; ParC(Init(Blocky, 1), Init(Blocks, m2), ), v, sh
[Init SeqC]
Init(Blocks §Blocka, ), 7, sh —,.; SeqC(Init(Blocky, 7), Blocka, ), 7y, sh
[Init Fuse]

Init(Par(N) S1 @ Par(N) S, 7), v, sh —p; Init(Par(N) S1 + So,7),7, sh
LS, sh —s; LS, sh’
Local(LS, ), , sh —,; Local(LS, ), , sh’

[Lift Seq]

LS = M € [0..N).Seq(~[tid := #],5,7m;) EN,m <7
Init(Par(N) S, ), v, sh —,; Par(LS, 7),~, sh

[Init Par|

[Init Seq]

Init(S, ), v, sh —,,; Local(Seq(v[tid := 0],S,7),m),7, sh
EB1,7, sh —,; EB, v, sh’
ParC(EBy,EBs, 7), 7, sh —,; ParC(EB}, EBa, ), ~, sh
EB2,7, sh —,.; EBY, v, sh’
ParC(EBy,EBs, 7), 7, sh —,; ParC(EBy, EB), ), ~, sh

> [ParC Step1]

> [ParC Step2]

[ParC Donel
ParC(Done(my ), Done(ms), ), 7y, sh —,; Done(n),, sh

[Local Done]

Local(Done(r), 7),~, sh —,; Done(w),~, sh

EB, v, sh —,; EB' v, sh’
SeqC(EB, Block, ),, sh —,; SeqC(EB’, Block, ), ~, sh
[SeqC Done]

- [SeqC Step]

SeqC(Done(n), Block, ), v, sh —p,; Init(Block, ), v, sh
i € dom(LS) LS(i),sh —s,; LS, sh’
Par(LS, 7),v, sh —,; Par(LS[i := LS'],7),, sh’
Vi € dom(LS).(LS(z) = Done(m;))
Par(LS, x), v, sh —,,; Done(w),~, sh

[Par Step]

[Par Done]

Figure 5.5: Instrumented operational semantics for program execution
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[While]

Seq(o, while (b) {S};S', ), sh —s.; Seq(a, if (b) {S -+ while (b) {S}} else {skip}; S, 7), sh
B[b]»

Seq(o, if (b){S1 }else{S2}; S, 7), sh —s,; Seq(o,S1 H S, ), sh
-B[b]»

Seq(o, if (b){S1}else{S2}; S, ), sh —s,; Seq(c,S2 H S, ), sh

/ !
0,ass,sh, ™ —qss,s 0 ,Sh', T

[iftrue]

[iffalse]

[Ass] [Seq Done]

Seq(o, ass; S, ), sh —s,; Seq(o”, S, ), sh Seq(o; skip, ), sh —s,; Done(w), sh

S 2N e[0.N).oftid ;== ¢] T2 Me[0.N).m SN @) <n
Seq(c, Vec(N) V; S, ), sh —5; Vec(X,0,V,0,S,11, ), sh
i € dom(Z)\E B[b]su) I(4),ass, sh,I1(i) —rass,i 0, sh', I1(3)
Vec(Z,E,b = ass;V, 0,5, 11, ), sh —s,; Vec(X[i := ¢'],EU{i},b= ass;V,0,S,II,7), sh
i € dom(X)\E -B[b]s)
Vec(3,E, b = ass; V,0,S,11, 1), sh —,; Vec(X,EU {i}, b= ass; V,0,S,11,7), sh

[Init Vec]

- [Vec Step1]

[Vec Step2]

[Vec Sync]
Vec(X,dom(X),b = ass; V, 0,5, 11, ), sh —s; Vec(X,0,V,0,S,11, ), sh

[Vec Done]

Vec(3, E, skip, 0, S, 1, ), sh —5,; Seq(c,S, ), sh

Figure 5.6: Instrumented operational semantics for thread execution

[LAss]

0,0 = e,8h, T —assi o[v := E[€]o], sh, 7
l=C&[e]s =) >0
[rdsh]
o,v := mem(e), sh, T —qss,i olv := h(E[e]s)], sh,
I=CEe]le w()=1
L] ( [wrsh]

o,mem(e) 1= v, Sh, T —>qss,i 0, sh[E]e]s = v], 7

Figure 5.7: Instrumented operational semantics for assignments



CHAPTER 6 l

VERIFICATION OF
GPGPU
PROGRAMS

“The most fundamental problem in software development is complexity. There
is only one basic way of dealing with complexity: divide and conquer.”
- Bjarne Stroustrup






N previous chapters, we discussed how high-level parallelization approaches

I in the form of parallel loops and deterministic parallel programs can be

verified. However, execution of those high-level programs requires a
translation to lower-level programs that depending on the hardware platform
can be multihreaded programs written for example in C, Java, or GPGPU
programs. To complete the story, in this chapter we discuss how permission-
based separation logic can be used to reason about low-level programs, in
particular GPGPU programs.

Graphics processing units (GPUs) originally have been designed to support
computer graphics. Their architecture supports fast memory manipulation, and
a high processing power by using massive parallelism, making them suitable to
efficiently solve typical graphics-related tasks. However, this architecture is also
suitable for many other programming tasks, leading to the emergence of the
area of General Purpose GPU (GPGPU) programming. Initially, this was mainly
done in CUDA [JS10], a proprietary GPU programming language from NVIDIA.
However, from 2006 onwards, OpenCL [opel7c] has become more and more
popular as a new platform-independent, low-level programming language for
GPGPU programming. Nowadays, GPUs are used in many different fields
such as media processing [CK11], medical imaging [SHT 08|, and eye-tracking
[Mul12].

GPGPU programming is based on the notion of kernels. A kernel consists of
a large number (typically hundreds) of parallel threads that all execute the same
instructions. The GPU execution model is an extension of the Single Instruction
Multiple Data (SIMD) execution mode]ﬂ in which each thread executes the same
instruction but on different data. For efficiency reasons, threads on a GPU

device are grouped into work groups. Each work group has its own local memory,

The content of this chapter is based on the following publications of the author: “Specification and
verification of atomic operations in GPGPU programs” [ADBH15|.

ITo be precise, the GPU execution model is Single Instruction Multiple Thread (SIMT), which
extends SIMD with more flexibility in the control flow.

87
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shared among all threads in the work group. Further, the kernel has a global
memory, which is shared among all threads on the GPU device.

Threads within a work group usually synchronize by barriers. Atomic
operations provide asynchronous updates on shared memory locations (either
in global or local memory) and are the only mechanism to support inter-
group synchronization in GPU programs. Moreover, atomic operations are also
sometimes used for synchronization within a work group, because they enable
more flexible parallel behaviours than using barriers alone. For example, the
Parallel add example in Section and the Histogram example in the Parboil
benchmark [SRS*12] benefit from the flexible parallel behaviour of atomic
operations.

GPGPU programming enables programmers to use the power of massively
parallel accelerator devices to solve computationally intensive problems with
a significant speed up. However, the use of massive parallelism also makes
the GPU program highly prone to errors such as data races. In GPGPU pro-
gramming these errors could be very subtle, so that even expert programmers
sometimes fail to detect themP]

Recently, different verification techniques have been developed to reason
about data race freedom of GPGPU kernels. We are specifically interested in the
technique presented by Blom et al. [BHM14] which besides proving data race
freedom, can reason about the functional correctness of GPU kernels. However,
the technique lacks the support for atomic operations. In this chapter, we
discuss how we extend the technique to reason about kernels that also use
atomic operations. The main idea of our work is to adapt the notion of resource
invariants, as originally introduced for Concurrent Separation Logic (CSL) by
O’Hearn, to reason about the behaviour of atomic operations with respect to
the GPU memory hierarchy.

Resource invariants capture the properties of shared memory locations.
These properties only may be violated by a thread that is in the critical section,
and thus has exclusive access to the shared memory locations. Before leaving
the critical section, the thread has to ensure that the resource invariants are re-
established. Because of the GPU memory hierarchy, shared memory locations
can be both in local memory (shared between threads in a single work group)
and in global memory (shared between all threads). Therefore, in our approach

2 An example of these subtle bugs is the data race bug in N-body example shipped with version
2.3 of the CUDA SDK [BCD™15].
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we use group resource invariants that capture the properties for local shared
memory locations, and kernel resource invariants to capture the properties for
global shared memory locations. For each kernel, there always is a single
kernel resource invariant, while for each work group there is a group resource
invariant. However, by parameterizing the group resource invariant with the
group identifier, this can be specified with a single formula.

Moreover, we discuss how the specifications provided for high-level pro-
grams (i.e. iteration contracts) can be translated into low-level kernel specifi-
cations. This enables us to verify the semantic equivalence of the high-level
program and its low-level translation. It also reduces the annotation overhead
as it allows to reuse high-level specifications for low-level code.

To conclude, the main contributions of this chapter are:

a specification and verification technique that adapts the notion of CSL
resource invariants to the GPU memory model and enables us to reason
about the data race freedom and the functional correctness of GPGPU
kernels containing atomic operations;

e a soundness proof of our approach;

¢ ademonstration of the usability of our approach by developing automated
tool support for it; and

e a translation method to encode iteration contracts into kernel specifica-
tions.

Outline. The remainder of this chapter is organized as follows. After some
background information on GPGPU programming in Section Section
discusses the syntax and semantics of Kernel Programming Language (KPL).
Based on that Section explains how that logic and specification language
is extended to support atomic operations in GPGPU programs. Section
formalizes our approach and presents its soundness. Section [6.5discusses how
the approach is implemented in our VerCors toolset. Section reveals the
connection between iteration contracts and kernel specifications. Finally we
conclude this chapter with related work and conclusion in Section [6.7] and
respectively.
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Listing 8 A basic example of a GPU kernel

_kernel void shift (__global int x a, __global int * b){
Itid = get_local.id (0);

gsize = get_local_size (0);

a[ Itid ]| =ltid;

barrier (CLK_.GLOBAL_MEM_FENCE);
b[ Itid | = a[ (Itid +1) % gsize |;

6.1. Concepts of GPGPU Programming

A GPU runs hundreds of threads simultaneously. All threads within the same
kernel execute the same instruction, but on different data: the Single Instruction
Multiple Data (SIMD) execution model. GPU kernels are invoked by a host
program, typically running on a CPU. Threads are grouped into work groups
and are identified by thread IDs. There are two different numberings for thread
IDs: a global thread ID which determines the identifier of thread with respect
to all the running threads and a local thread ID, which does so with respect to
a single work group. Both values can be retrieved at any point in the kernel via
calling corresponding API functions.

GPUs have three different memory regions: global, local, and private memory.
Private memory is local to a single thread, local memory is shared between
threads within a work group, and global memory is accessible to all threads
in a kernel, and to the host program. Through some configurations in the host
program, the data and the kernel source code is moved to the device memory.
The host code also determines the number of work groups and the number of
threads which are supposed to execute the kernel. The host code launches the
kernel and collects the results at the end of its execution.

Threads within a single work group can synchronize by using a barrier. This
ensures that no thread in the work group can pass the barrier unless all threads
reach the barrier. In addition to their synchronization function, barriers in GPU
programming also act as memory fences on the local or global memory (or
both of them). So passing the barrier ensures that all memory writes on the
shared memory have been committed. The memory level to which memory
fence function of the barrier applies, can be determined by the programmer via
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setting the appropriate barrier flag. The threads within different work groups
cannot be synchronized. However, it is possible for all the threads on the device
to atomically access to the shared locations in global and local memory. In
OpenCL atomic operations are supported by atomic functions (See the list of
OpenCL atomic functions [Khr]).

Listing [§| shows the code of a kernel that initializes an array b on the global
memory in such a way that the position i of the array contains i + 1 modulo the
length of the array (assumed to be equal to the work group size gsize). To do this,
each thread first assigns its thread ID, Itid, to the position i of a temporary array
a on the global memory. All threads wait at the barrier and then the position i
of array b is assigned by the value of the position ¢ + 1 modulo the work group
size, gsize of the array a. If the barrier would be removed, there would be a data
race on ali].

Note that although arrays are stored in global memory, the execution of
kernel with multiple work groups, when the global thread identifier is used, can
result in a data race because the barrier, can not synchronize threads running in
different work groups.

6.2. Kernel Programming Language

This section discusses our core kernel programming language that formalizes
the main features of GPGPU programming languages (namely OpenCL). The
language is an extension of the Kernel Programming Language (KPL) [BCD"12]
with support for atomic operations. Over this language, we present our
verification technique for reasoning about GPGPU programs.

6.2.1 Syntax

Figure presents the syntax for our kernel programming language. For
simplicity, in this language, global and local memory are assumed to be single
shared arrays. There are two local memory access operations: read from
location e; in local memory (v := rdloc(eq)), and write e to location e; in local
memory wrloc(eq, e2). Similarly, read and write operations in global memory
are represented by (v := rdglob(e)) and wrglob(ey, e2), respectively.

With respect to the original KPL language, barriers are different. They
are labeled with barrier identifiers bid, which are used to distinguish between

different barrier instances. They are also extended with statement bodies to be
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Reserved global identifiers (constant within a thread):
gtid Global thread identifier with respect to the kernel
gid Group identifier with respect to the kernel
ltid Local thread identifier with respect to the work group
tcount The total number of threads in the kernel
gsize  The number of threads per work group

ks The number of groups in the kernel
Kernel language:

b = boolean expression over global constants and private variables

e u= integer expression over global constants and private variables

S = wv:=elv:= rdloc(e) |v := rdglob(e) |wrloc(eq, e2) |wrglob(eq, e2)
| skip|S1;S2|if (b) {S1} else {Sa} | while (b) {S}
| atomic(F){S} | bid : barrier(F){S}

F == local | global

Figure 6.1: Syntax for Kernel Programming Language

executed atomically by all threads as soon as they all reach the barrier. Barriers
accept a flag F that denotes which memories are accessed by the body of the
barrier. Note that this is different from the barrier flag used in OpenCL where
they determine the memories on which the memory fencing function of the
barrier applies. However, in our language all memory writes and reads happen
immediately; so there is no need to capture that behaviour in our semantics.

Further, we add an atomic block statement to the language, again with a
flag F to denote whether it accesses locations in the global or local memory.
The OpenCL atomic operations can be easily embedded into this atomic block
statement.

6.2.2 Semantics

To describe the behaviour of kernels, we present a small-step operational
semantics. Threads on a GPU are executed in lock-step fashion. Intuitively,
this means that all threads execute the same instruction and no thread can
proceed to the next instruction until all are done. So they all share the same
program counter. In practice, the model is a bit more complicated. The number
of threads, and number and size of work groups are typically larger than the
number of actual physical processing units on the device. Therefore, only a
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subset of threads in a work group, known as warp in NVIDIA architecture [TC13)}
NVI] or wavefront in AMD architecture [AMD, ROA12], execute the same
instruction at the same time. The size of this subset (i.e. the number of
threads) varies from one vendor to another and from one hardware architecture
to another one. This execution model results in the most efficient execution,
because in the meantime, data that is used by the next subset of threads can
be fetched from or written to memory. However, the specific details of this
execution are hardware-specific. As we intend our operational semantics to
describe the most general behaviour possible, we therefore consider all possible
interleavings between two barriers. The soundness of our verification approach
is proven with respect to this most general behaviour, thus any verified property
holds for any possible implementation.

Throughout, we assume that we have the sets Gid, T, and Bid of work
group, thread and barrier identifiers, with typical members gid, gtid, and bid,
respectively. Global and local memory are modeled as a single shared array. We
assume the existence of the finite domains: VarName, the set of variable names,
and Val, the set of all values, which includes the memory locations, Loc, the set

of memory locations.

o € GlobalMem = Loc — Val global memory

(accessible to all threads)
§ € LocalMem = Loc — Val local memory

(accessible to a work group)
~ € PrivateMem £ VarName — Val private store

(accessible to a single thread)

The state of a kernel KernelState consists of the global memory, and all its
group states. The state of each group GroupState consists of local memory, and
all its thread states. Finally, the state of a thread ThreadState consists of an
instruction, its private state and a tag whether it is running R, or waiting at
the barrier bid € Bid, Wy;4. Formally, this is defined as follows:

KernelState = GlobalMem x (Gid — GroupState)

GroupState = LocalMem x (Lid — ThreadState)

ThreadState 2 Stmt x PrivateMem x BarrierTag
A

BT € BarrierTag R | Whpiq

Below, updates to group and thread states are written using function up-
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dates, defined as follows: Given a function f : A — B,a € A,and b € B:

f[a:—b]—zr—>{b ,z:a.
f(x), otherwise

The operational semantics of kernel behaviour is defined by the following
three relations:

C  (KernelState)?
—g.gia C (GlobalMem x GroupState)?
C  (GlobalMem x LocalMem x ThreadState)?

—K

—T,gtid

Figure 6.2 presents the rules defining these relations. As mentioned above, the
operational semantics defines all possible interleavings. Therefore, the kernel
state changes if one group changes its state (the rule Kernel Step). A group
changes its state if one thread changes its state (the rule Group Step). A thread
can change its state by executing an instruction according to the standard opera-
tional semantics rules for imperative languages (the rules Assign, Global/Local
Read/Write). Figure only gives the rules for sequential composition (the
rules Sequential Composition 1 and 2); the rules for conditionals and loops
are omitted as they are standard. If a thread enters a barrier (the rule Barrier
Enter), it enters the “waiting at barrier” state. This is denoted by a thread state
with the barrier tag Wy;; where bid is the barrier identifier on which the thread
is blocked. At this state all threads in the group are waiting to aformically execute
the body of barrier S followed by the rest of kernel statements. Once, at the
group level, all threads have entered, the states are simultaneously switched
back to running (the rule Barrier Synchronize). A thread can also atomically
perform all statements in an atomic(F){S}. The operational semantics of an
atomic block is defined by the rule Atomic Step. The semantics of expression e
over the private store v in thread gtid is denoted [e]g”d ; its definition is standard
and not discussed further. In the kernel’s initial state, all memories are empty,
and all threads contain the full kernel body as the statement to execute.

6.3. Specification of GPGPU Programs

We first explain our specification method and then we demonstrate it by
discussing three example kernels. The first example is a simple kernel with
barrier. This explains the method introduced in [BHM14]. Then the second and
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third examples discuss how the kernels with atomic operations are specified.
In particular, the second example uses a single atomic add operation, while the
third example illustrates a kernel that uses both a barrier and atomic operations

for synchronization.

A(gid) = (6,T) 0,0,T =g giao’, 6", T’
o, A =i o', Algid := (§',T")]
I(itid) = (S,7,BT)  0,8,(S,7, BT) =7, gid-gsizetitia 0,8, (S',7', BT)
0,8, 1 =g gia 0,8, T[ltid := (S',+,BT')]

[Kernel Step]

[Group Step]

[Barrier Enter]

0,9, (bid : barrier(F){S1};S2,v, R) =7 gtia 0,9, (atomic(F){S1};S2,v, Weia)
Vitid € Lid.I'(Itid) = (atomic(F){S1}; Sz, Yitids Whid)
0,0,T —g.gia 0,0, Altid € Lid.T[Itid := (atomic(F){S1}; S2, Yuia; R)]
7,0,(S,7,R) =7 g1ia o', 8", (,7,R)

[Barrier Synchronize]

[Atomic Step]

ag, 57 (atomlc(F){S}, '7’ R) _>7—,gt7fd U/a 6/5 (67 fylv R)
[Assign]

g, 67 (’U =€,7, R) _>T,gtid g, 67 (67 ’Y[U = [e]g/tid]? R)
[Global Read]

0,6, (v :=rdglob(e), v, R) =7 guia 7,6, (,7[v := o ([e]2"))],R)
[Local Read]

0,9, (v:=rdloc(e),v,R) =7 guid 0,9, (¢,7y[v := 5([6]3”51)], R)
[Global Write]

ag, 57 (Wrglob(el, 62), Y, R) _>T,gtid U[[el]lgtid = [eQ]IgtidL 6; (67 v, R)

[Local Write]

0,0, (wrloc(e1, €2),7,R) =7 giia 0, 6[[e1)]™ := [e2]977], (e, 7, R
a,6, (51,7, BT) =7 gtia 0,0, (S1,7,BT)

8,0, (51;S2,7, BT) =7 gtia o', 8", (S1;52,7, BT')
0,8, (51,7, BT) =7 gtia 0,8, (6,7, BT)

0,6, (51;52,7, BT) =7 gtia o', 8", (S2,7,BT')

[Sequential Composition 1]

[Sequential Composition 2]

Figure 6.2: Small-step operational semantics rules
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6.3.1 Specification Method

To support our verification technique, the user needs to provide the following
specificationsﬂ

o The kernel specification is a triple (Kpre, Kpost; Kriny). The Kpre and Kpos
specify the kernel pre- and postcondition, respectively. An invocation of a
kernel by a host program is correct if the host program holds the necessary
resources and fulfills the preconditions. The kernel resource invariant Ky,
specifies all the resourcesﬂ that are accessed in an atomic operation or
a barrier block. The specified resources are accessible for a thread only
when it is inside an atomic block.

o The group specification is a triple (Gpre, Gpost; Grinv), Where Gpre and G pos:
specify the pre- and postcondition, respectively and G, specifies the
group resource invariant which is parameterized by group identifier. Notice
that locations in local memory are only accessible from within the work
group and thus the work group always holds write permissions to these
locations.

e Permissions and conditions in the work group are distributed over the
work group’s threads by the thread specification (Tpre, Tpost). Because
threads within a work group can exchange permissions (at barriers), the
resources before and after execution might be different.

o A barrier specification (Bpre, Bpost) specifies resources, and a pre- and
postcondition for each barrier in the kernel. Besides the functional state
right before and after barrier, they also specify how permissions are
redistributed over the threads (depending on the barrier flag, these can
be permissions on local memory only, on global memory only, or a
combination of global and local memory). The barrier precondition By,
specifies the functional property and resources that have to hold when a
thread reaches the barrier. The barrier postcondition B, specifies the
functional property and resources that are allowed to be assumed after
the execution of the barrier to continue the verification of the thread.

Note that the user only has to annotate a kernel resource invariant Ky,

30nly group and kernel resource invariants are the contribution of this thesis. However, because
they are necessary for understanding the content of this chapter, we discuss the other parts of the
specification briefly. For further examples and discussions, we refer to [BHM14].

4As introduced earlier in Chapter [2] resources are permission formulas in permission-based
separation logic specifying the ownership of threads over the memory locations.
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a group resource invariant G;,,, a thread’s pre- and postcondition 7, and
Tpost and barrier’s pre- and postcondition By, and By,s:. We can derive the
work groups’ pre- and postconditions, i.e. Gy and Gy, as the separating
conjunction of the pre- and postconditions of all threads belonging to the
work group and the work group’s resource invariant. Similarly, the kernel’s
pre- and postcondition, i.e. K. and K., can be derived automatically as
the separating conjunction of the pre- and postconditions of all work groups
belonging to the kernel and the kernel’s resource invariant.

6.3.2 Syntax of Formulas in our Specification Language

The basis of our specification language is permission-based separation logic
discussed previously in Section However, to use that language for speci-
fication of GPU kernels, we need to adapt it to support GPU memory model.
To do so, instead of one permission predicate to capture thread accesses to the
shared memory locations, we use two permission predicates one for the accesses
to local memory and the other one for the accesses to global memory. The
expressions are also need to be separated based on the reads from the local or
global memory.

The syntax of formulas in our specification language is in the following form:

E = expressions (in first-order logic) over global constants,
private variables, rdloc(E), and rdglob(E).
R == true| E|LPerm(E,p)| GPerm(E,p) | Ri*xRs | E= R| % R(v)

v:E(v)
LPerm(E,p) and GPerm(E,p) capture thread’s accesses to local memory and

global memory, respectively. The formulas can be conjoined using separating
conjunction, guarded by expressions, or quantified over the set of values v for
which E(v) is true.

6.3.3 Specification of a Kernel with Barrier

The example in Listing 9] illustrates the specification technique that is used in
[BHM14] for reasoning about kernels where barriers are the only synchroniza-
tion mechanism. The example contains a kernel program annotated with a
thread specification, plus a barrier specification for each barrier. For simplicity, it
has a single work group.

The specifications use the keywords Itid to denote the local thread identifier,
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Listing 9 An example of a kernel with specifications

/%@ requires Perm(alltid ], write ) sx Perm(b[ltid ], write );
ensures Perm(a[ltid |, write ) *x Perm(b][ltid ], write );
ensures b[ Itid | == (Itid4+1) % gsize;

O/

__kernel void rotate (__global int * a, __global int x b){

Itid = get_local.id (0);
gsize = get_local_size (0);
a[ Itid ]| =ltid;
barrier (CLK_GLOBAL_MEM_FENCE)
/x@ requires Perm(a[ltid ], write) xx Perm(b[ltid ], write);
requires a[ Itid | == ltid;
ensures Perm(a[ltid ],1/2) =x Perm(a[(Itid +1) % gsize],1/2)
xx Perm(b[ltid ], write );
ensures a[ (ltid +1) % gsize | == (ltid+1) % gsize;
©x/{}
b[ Itid ] = a[ (Itid +1) % gsize |;

and gsize to denote the number of threads in each work group. A thread
specification specifies the permissions a thread should hold before and after
execution, together with the thread’s functional behaviour. In the example,
write permission to the position Itid of both array a and b is required and it
is ensured that the position Itid of array b can be written and contains (Itid+1)
% gsize. To illustrate the use of a barrier, the kernel is implemented in such a
way that first Itid is assigned to a[ltid] and then access to the array is rotated by
synchronization on a barrier, after which the thread reads a[(Itid+1) % gsize].
This rotation is specified with a barrier specification, which specifies: (1) how
permissions are redistributed over the threads in the work group, and (2) the
functional pre- and postconditions that must hold before and after execution of
the barrier.

Group specifications capture the resources in global memory that can be
used by the threads in a particular work group, including its pre- and postcondi-
tion. Notice that the locations defined in local memory are only valid inside the

work group and thus the work group always holds write permissions for these
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Listing 10 Specification of parallel add in a work group.

/*@ given int cont[gsize];
group invariant Perm(x,write)+xPerm(cont[*],1/2)*xx==(\sum cont[*]);
requires Perm(values[ltid ],1/2) x«Perm(cont]ltid],1/2)*xcont[ltid]==0;
ensures Perm(values|ltid ],1/2) *xPerm(cont[ltid],1/2)xx
cont[ltid|==values][ltid]; @/

__kernel void gpadd(__local int % x, __local int x values)
{

Itid = get_global_id (0);

atomic_add(x,values[ltid ]) /%@ then { cont[ltid |=values[ltid |; } ©x/;

locations. In the kernel specification, resources that are required from the host
program along with the necessary preconditions and provided postconditions
are specified. An invocation of a kernel by a host program is correct if the host
program transfers the necessary resources and fulfills the kernel preconditions.

6.3.4 Specification of a Kernel with Parallel Addition

Listing [10| contains an annotated parallel add kernel, where ltid indicates the
local thread identifier. For simplicity, in this example we assume that we have a
single work groupﬂ later we extend our technique also to multiple work groups.
We first explain the permission specifications, followed by an explanation of the
functional properties (the highlighted annotations).

In Listing each thread atomically adds its contribution (stored in val-
ues[ltid]) to the shared variable x. The requires and ensures clauses express a
single thread’s pre- and postconditions. The precondition specifies that each
thread needs to have read permission on its corresponding index of values.
Additionally, we specify a group resource invariant for the local shared memory
variable x, which expresses that the thread executing the atomic add operation
has exclusive write access to x. With this specification, it is straightforward to
prove that the program is free of data races, as it is guaranteed that there is only
one thread executing the atomic operation and exclusively accessing the shared
variable.

5The number of work groups is determined in the host code before launching the kernel.
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To reason about functional properties, the specification expresses the accu-
mulative contributions of the threads on the shared variable. To track these
contributions, we use an array cont[], added as a ghost variable (line 1) to the
kernel. A ghost variable (a.k.a. as auxiliary variable) is a specification-only
variable, which does not change the control flow of the program and is used
only for verification. The idea is that the contribution of each thread (cont][ltid])
is 0 before it executes and is values[ltid] after it finishes, while the invariant

gsf ' cont[i] = x is maintained in order to prove that the kernel computes the
si;r(r)l of the values. To make this work, the thread’s precondition (line [3) states
that each thread obtains a read permission on cont[ltid], in order to be able to
use cont in the specifications. Each thread has to track its contribution towards
the total amount of x in its own location in the array cont. This is done during the
atomic operation by injecting an assignment statement as ghost code (specified
as a then clause, line ). The thread executing atomic_add first adds values[Itid]
to x, and then executes the injected ghost code, i.e. cont[ltid]=values|ltid]. To
achieve this, the group resource invariant is extended with a half permission on
all elements of cont, written Perm(cont[*],1/2) where cont[*] is syntactic sugar
for the universal quantification of the permissions over all the indices of cont]].
Thus, when the thread Itid at the beginning of the atomic body obtains the
resource invariants, it has twice a read permission Perm(cont[ltid],1/2), which
can be combined into a single write permission Perm(cont][ltid],write).

6.3.5 Parallel Addition with Multiple Work Groups

As a next example, we discuss the specification of a kernel with multiple work
groups, which employs both barriers and atomic operations for synchroniza-
tion. This is a common pattern to avoid bottleneck in the global memory
accesses: first all threads in a work group compute an intermediate result in
local memory, then the intermediate result is combined with the global result
in global memory. It is used, for example, in the parallel implementation
of BFS in the Parboil benchmark [SRST12]. The kernel in Listing is an
extension of the previous example, using multiple work groups and a barrier,
where ksize denotes the number of work groups. The kernel is implemented
by the following steps: (1) each thread atomically adds its element of the global
array values to its local accumulator, i.e. alocally shared variable x; (2) all threads
within a work group are synchronized by a barrier (line[16); (3) after all threads
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Listing 11 Specification of global parallel add.

/+@ given global int sums[ks]={0}; given local int cont[gsize]={0}, region=0;
kernel invariant Perm(r,write)++Perm(sums[*],1/2)+*r==(\sum sums[*]);
group invariant Perm(region,1/(gsize+1))**Perm(x,region==0?1:1/2)xx

Perm(cont[*],1/2)++x==(\sum cont[*]);
requires Perm(region,1/(gsize+1))««Perm(values[gtid],1/2);
requires Perm(cont[ltid],1/2)**cont[ltid]==0;
requires ltid==0 = Perm(sums[gid],1/2)**sums[gid]==0;
ensures Perm(region,1/(gsize+1))s«Perm(values[gtid],1/2);
ensures Perm(cont[ltid],1/4)**cont[ltid]==values[gtid];
ensures ltid==0 = Perm(cont[*],1/4)**Perm(sums[gid],1/2);
ensures ltid==0 = sums[gid]==(\sum cont[*]); @x/
_kernel void KParallelAdd(-local int * x, __global int * values, __global int * r)
{
gtid = get_global_id (0);
Itid = getlocalid (0);
atomic_add(x,values[gtid]) /@ then { cont[ltid |=values[gtid]; } @x/;
barrier (CLK_LOCAL_MEM _FENCE)/ «@
requires Perm(region,1/(gsize+1))xxregion==0}x+Perm(cont[ltid],1/4);
ensures Perm(region,1/(gsize+1))++region==1;
ensures ltid==0 = Perm(cont[*],1/4)**x==(\sum cont[*]); @x/
{ /+@ region=1; @«/ }
if (1tid ==0)
atomic_add(r,x)/+@ then { sums[gid]=x; } @« /;

have passed the barrier, one thread per work group (here Itid== 0) adds the
work group’s final value of x to a globally shared variable r (line[22). Eventually, r
contains the collective contributions of all the threads in the kernel.

Similar to the single work group example, to track the contributions at each
step, the kernel program uses ghost arrays cont and sums, with all elements
initialized to zero. We use cont to specify the current value of the local variable x
. Similarly, the array sums is used to sum up the total accumulated contributions
of the work groups. Updating the local cont is explained in the previous
example. In a similar way, using the ghost code at line [22} in each work group,
the thread with Itid== 0 stores its contribution (the final value of x) to the

global sums[gid] (i.e. the index corresponding to the executing work group from
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the sums array).
In Listing L1} there are two resource invariants that capture the functional
behaviour of the kernel:

gsize—1
1. > cont[i] = x for each work group; and
i=0
ksize-1
2. > sums[i] = r for the kernel.
i=0

After termination of work group gid, we use the group invariant to conclude

that:
gsize X gid+gsize—1

sums|gid] = Z values[i] .

i=gsize X gid

Hence after termination of all work groups we can prove that:

ksize-1 ksize-1 (j+1)xgsize—1
r= E sums[i] = E E values]i]
1=0 7=0 i=j X gsize

Again, we first explain the permission specifications. The permission specifica-
tions for values are similar to the specifications in Listing[10} The barrier divides
the program into regions, and within a region the distribution of permissions
over the threads and the resource invariants does not change. Only when all
threads reach the barrier, permissions may be redistributed. This means in
particular that a variable that is treated as a shared memory variable in one
region, may become unshared in a next region (or vice versa). Thus, resource
invariants often depend on the current barrier region. To keep track of the
current barrier region, we use a ghost variable region initialized at 0 (line [T).
Each thread at all times has read access to this region variable, and whenever all
the threads go through the barrier, the region is updated (line 20). The group
resource invariant (lines 3-4) specifies that within region 0 (before the barrier),
variable x is shared, while in region 1 (after the barrier), x is not shared any more
as it is only accessed by the thread with local thread identifier zero, in each
work group. The kernel resource invariant (line [2)) specifies the write access to
the variable r that is a shared variable in global memory. However, only threads
with a local thread identifier 0 are able to update r without violating the kernel
resource invariant (namely r==(\sum sums[«])). The reason is that only those
threads can construct a write permission on sums|gid] to store the contributions.
The write permission is constructed by merging two read permissions, one
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provided by the kernel resource invariant and the other one by the thread’s

precondition (in lines[2]and [7]respectively).

[Assign]
Krinva Gmnv(gZd) - {R[U = 6]} vi=e€ {R}

Krinv, Griny(gid) F {LPerm(e, m) x R[v := Lle]]} v := rdloc(e) {LPerm(e, 7) * R

Kriny, Grinv(gid) F {LPerm(ey, 1) x R[L[e1] := ea] } wrloc(ey, e2) {LPerm(e1, 1) x R

Kriny, Grino(gid) - {GPerm(e, 7) x R[v := Lle]]} v := rdglob(e) {GPerm(e, 7) x R}

Kriny, Griny(gid) B {GPerm(eq, 1) * R[L[e1] := e2]} wrglob(eq, e2) {GPerm(ey, 1) x R}

S refers to local memory only.
Km'nv F {P(t) * Gm’nv(gid)} S {Grmv(gld) * Q(t)}

[LAtomic]
Kriny , Grino(gid) = {P(t)} atomic(local){S} {Q(¢)}
S refers to global memory only.
Grinv d F P t Krinv S Kri'rw t
(9id) - {P() * Ko} S (i < Q1)) CAtomic]

Kriny , Grino(gid) = {P(t)} atomic(global){S} {Q(t)}

S, R, and F refer to local memory only.
Krinv F { * R(t) * Grinv(gid)} S {Grinv(gid) * * E(t)}

te0.. gsize) tEL0-gsize) [LBarrier]
{P(t)R(t)}
Kriny , Grino(gid) = barrier(local) req R(t); ens E(t); {S}
{P(t)*E(t)}
S, R, and E refer to global memory only.
Grinv(gid> + { * R(t) *KTWU} S {Krinv* * E(t>}
te[0..gsize) tE[0. gsize) [GBarrier]
{P(t)* R(t)}
K riny , Grino(gid) = barrier(global) req R(t); ens E(t); {S}
{P@)~E(1)}

Figure 6.3: Important proof rules

[LRead]

[LWrite]

[GRead]

[GWrite]
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The barrier specification expresses that threads keep read access on region
and that the value of region is updated to 1. Moreover, the specification asserts
that upon entering the barrier each thread gives up 1/4 permission to access its
contribution element, i.e. cont[ltid]. The barrier redistributes these permissions
to the thread with ltid== 0, which ensures that the thread with Itid== 0
has sufficient permissions to frame (\sum cont[]) in the barrier postcondition.
Notice that when all threads have reached the barrier, all read accesses on region
together (including the group resource invariant) can be combined into a write
permission on region, thus enabling the update of this ghost variable within the
barrier.

Next, we discuss the functional property specifications. As explained
before, the two resource invariants specify the values of the shared variables:
(1) the local shared variable x must always express the accumulation of the
contributions of the threads executing the first atomic operation (line[), and (2)
the global shared variable r must always express the accumulation of x’s final
value in each work group which is stored in sums]gid] (line 2). To prove these
invariants, each thread must ensure that it correctly stores its contribution as
specified in line[9] Moreover, the barrier must ensure that the thread with Itid==
0 knows the final value of x as specified by x==(\sum cont[*]) in the barrier’s
postcondition. Finally, the thread with Itid== 0 must guarantee that the final
value of x is stored in sums][gid] (line [IT). Therefore, the verifier can prove that
the value of r is the collective contributions of all the threads in the kernel.

6.4. Verification Method and Soundness

The previous section illustrated how we specify resources and functional prop-
erties of different kernels in the presence of atomic operations and barriers on
several examples. This section presents permission-based separation logic rules
for proving data race freedom and functional correctness. We also discuss the

soundness of the proof rules.

6.4.1 Verification Method

Given a fully annotated kernel, verification of the kernel with respect to its
specification essentially boils down to verification of the following properties:

o Each thread is verified with respect to the thread specification. This means
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that given the thread’s code T},4,, the following Hoare triple
Krinm Gmnv(gld) = {Tpre} Tbody {Tpost}

should be verified using the permission-based separation logic rules
defined in Figure Each barrier is verified as a method call with
precondition B, and postcondition Bs;.

e The kernel resources are sufficient for the distribution over the work
groups, as specified by the group resources.

e The kernel precondition implies the work group’s preconditions.

e The group resources and accesses to local memory are sufficient for the
distribution of resources over the threads.

e The work group precondition implies the thread’s preconditions.

e Each barrier redistributes only resources that are available in the work
group.

e For eachbarrier the postcondition for each thread follows from the precon-
dition in the thread, and the separating conjunction of the preconditions
of all other threads in the work group.

e The universal quantification over all threads” postconditions implies the
work group’s postcondition.

e The universal quantification over all work groups’ postconditions implies
the kernel’s postcondition.

Figure shows the most important proof rules to reason about kernel
threads. Rule [Assign] describes the updates to the thread’s private memory.
Rules [LRead] and [LWrite] specifies read and write of local memory. Le]
denotes the value stored at location e in the local memory array, and substitution
is as usually defined for arrays [Apt81]:

Lle][L[e1] := e2] = (e = e1)?eq : Lle]

Similarly the rules [GRead] and [GWrite] describe read and write of global
memory. The rules [LAtomic] for local and [GAtomic] for global atomic
operations are the simple instances of the CSL rule using the group resource
invariant and kernel resource invariant, respectively. The rules for sequential
composition, conditionals, loops, and weakening are standard and not men-
tioned in the figure.

The rule [LBarrier] reflects the functionality of the barrier. It acts similar to

the CSL rule for the group resource invariant but at the same time it collects
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resources and knowledge from all threads and redistributes these resources
and knowledge. To do so, it requires that the block S can be executed given
the resources provided by the invariant (G4,.) and all threads in the work

group (% R(t)). Moreover, it ensures that all resources are given back
te(0..gsize)

( % E(t)) and the invariant is re-established (G in,). The rule also says
te[0..gsize)
that the effect of passing through a barrier on a thread is to give up resources

R(t) and get E(t) in return. Note that there is a side-condition that S, R and
E can only refer to local memory, as this would otherwise potentially create a
data race: a local barrier works as a memory fence on local memory, thus it
can only exchange information about local memory locations, but not about the
global memory locations. The [GBarrier] rule is symmetric in the use of local
vs. global memory and invariants. Note that the local or global flag only affects
memory accesses and for both flags the barrier can only synchronize the threads
within a single work group.

In our verification technique barrier divergence is not taken into consider-
ation. This means that if threads in a work group arrive at a barrier they all
arrive at the same one. This is a realistic assumption: according to the OpenCL
semantics, the behaviour of programs with barrier divergence is unspecified
[NVI13]. Therefore, we add some additional syntactical restrictions that ensure
that some private variables have the same value in all threads. With this
restriction, our kernels do not suffer from barrier divergence and we can use
these private variables in barrier specifications. Note that the conditions are
similar to the checks for control flow uniformity used in the Microsoft C++ AMP
compiler [GM12] (See Section 8.1.1 in Microsoft C++ AMP Specification [Mical).
A detailed discussion about barrier divergence in GPGPU kernels and an
approach to verify divergence freedom has been presented in [BCD"12].

6.4.2 Soundness

This section discusses the soundness of our verification technique.

Theorem 6.1. Given a barrier divergence free kernel, for which the thread level Hoare
triples are provably correct. Then every possible execution of the kernel starting in a state
that satisfies the kernel precondition is data race free and ends in a state that satisfies the
kernel postcondition.

Proof. We are given a finite trace of executions.
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Listing 12 PVL translation for the example in Listing 9}

class ref {
invariant a !=null *x b !=null *x N > 0 %x
\array (a, N) *x \array(b,N);
context (\forall* int i; 0 <=i && i < N; Perm(b[i],write));
context (\forall* int i; 0 <=1i && i < N; Perm(a[i],write));
context (\forall* int i; 0 <=1i&& i < N; b[i] == (i+1)%N);
void shift (int N, int[N] a, int[N] b){
par kern(int g =0 .. 0)
context (\forall* int i; 0 <=1i && i < N ; Perm(ali],write));

{
par workgroup(int t =0 .. N)
requires Perm(a[t], write );
ensures Perm(aft],1/2);
{
a[ t] =t
barrier (workgroup)
requires Perm(blt], write) #x Perm(a[t],1/2) ** a[t]==t;
ensures Perm(a[t],1/2) #* Perm(a[(t+1) % NJ],1/2) xx Perm(b[t],write);
ensures  a[(t+1)%N] == (t+1)%N;
{
b[ t ] =a[ (t+1) % N];
1333

In this trace every thread tgq4 ;¢ makes a finite number of steps Ny;q i1id,
where atomic blocks and barriers count as one step. Because a Hoare logic proof
of the thread exists, we can find formulas Py, ;4 - ,ngﬁﬁj that are valid
before, between and after these steps, where Py, .., is the precondition of the

Nyia,ia ., ; o
thread and P, ;" is its postcondition.

All states 0y, - - - , oy in the finite global trace of N steps can be described by
a function f that maps each global trace position to the positions in the local
threads. We do not know in which order the steps of the threads are executed,
but we know they all start in the position 0, so f(0, gid, ltid) = 0. We also know
they end in their last state, so: f(N, gid, ltid) = Ngiq,isiq-

We claim that before and after every step in the trace the state satisfies a



108 6. VERIFICATION OF GPGPU PROGRAMS

specific separation logic formula.

Vi=0,--,N: o, F Krimvx k (Grinv(gid) x % P;;gﬁfi’md))
gidel0..ks) ltide(0..gsize)
This claim is proven by induction on i. For i = 0 this is precisely the given
precondition. Assuming that the claim is correct for 0 < i < N, there are three
cases. If the step is a plain step or an atomic step, by correctness of the standard
CSL Hoare triple used to prove that step, the validity for ¢ + 1 follows.

The interesting case is the barrier step, in which all threads of a group are
involved. The Hoare triple for each thread is valid so each thread starts knowing
P(t)* R(t) and ends knowing P(¢)x E(t). Because of the correctness of the
standard CSL Hoare triple for the barrier statement S, the change to the state is
from % R(t) * Grinp(gid) to % E(t) * Grinv(gid), which is precisely

te0..gsize) te(0..gsize)
the change in the formulas, so i + 1 is established.

The last statement is precisely the kernel postcondition which proves that
the end state satisfies the kernel postcondition.

A data race happens if: there is an access to a location [ in step i; by thread
t1, followed by an access to the same location in step i3 by thread ¢, there is no
memory fence in between these accesses, and one of these accesses is a write.
Suppose that the thread ¢; used the fraction p; for the access and the thread ¢,
used the fraction p>. Because one of the accesses is a write, p; + ps > 1. Because
there is no memory fence, that is no barrier or atomic in between, at time ¢; the
thread t, must have already owned the fraction p,. Thus at time 4,, the fraction
p1 + p2 permission for location [ existed, which leads to a contradiction. O

6.5. Implementation

This section discusses how our verification technique is implemented in the
VerCors toolset. First, OpenCL programs are encoded into internal language of
VerCors called Prototypal Verification Language (PVL). Second, the generated
PVL program is encoded into Viper [JKM™14] and then verified by the Silicon
verifier. Viper is an intermediate language for separation logic-like specifica-
tions used by Viper project [JKM ™14, |Vip17,[HKMS13, MSS16].

Listing and [16| show the encoding of the OpenCL examples in List-
ing 9] [10] an [T1] respectively. The kernels are encoded into two nested parallel
blocks in PVL where the parallel block kern (lines 8-22 in Listing encodes
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Listing 13 PVL translation for the example in Listing[10]

class Ref {
invariant values != null sx temp != null *x N > 0 % \array(values, N)
s« \array (x, write );

context  (\forall* int i; 0 <=i&& i < N; Perm(values[i],1/2));
context Perm(x[0], write );
void do_sum(int N, int [N] values, int[1] x)
{

x{ 0] =0;

invariant inner (Perm(x[0], write )

wxk (\forall* int j; 0 <=j && j < N; Perm(values[j],1/2)))

par workgroup(int t =0 .. N)
context Perm(values[t],1/2);

{ atomic(inner){ x[0] = x[0] + values[t]; } }

H

the work groups. The parallel block workgroup (lines 11-22 in the same Listing)
encodes the threads in a particular work group. The kernel in Listing [12) uses
only one single work group because barriers can only synchronize the threads
of a single work group. All variables defined outside of the kernel parallel block
kern are taken as global variables, while all variables inside are assumed to be
local variables. The variables defined inside the parallel block workgroup are
assumed to be thread private variables.

Listing [13| shows how atomic operations, in this case OpenCL’s atomic_add
operation, are encoded into an atomic block (line 14 in Listing [13|and lines 21,
30, and 31 in Listing[16). The kernel and group resource invariants are encoded
into PVL's invariant block invariant(¢){. . . } where ¢ is the invariant formula and
{...} is the block of code in which the invariant holds. The PVL translation
in Listing [13| uses one inner invariant block which captures the group resource
invariant while the example in Listing [16| needs two resource invariants outer

and inner to capture both kernel and group resource invariants respectively.

In Listing the variable res is defined in global memory; because it is
accessible to all threads in all work groups. The properties over res is specified
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Listing 14 Vectorization of a loop with a forward loop-carried dependence

for (int j=0;j < N; j++) requires ¢(tid );
requires & (j); ensures  (tid );
ensures  Y(j); __kernel loop(...)
{ {
Ly i (91() { 1(9): } - Cy(tid );
L if (9x () { Ix(5): } Ci(tid );

} }

by the kernel resource invariant. Similarly, temp is stored in local memory,
which is accessible only to the threads in the same work group, so the properties
over temp are specified in the group resource invariant. For brevity, Listing
and|[L6]shows only the specifications required for reasoning about the data race
freedom of the kernel examples.

As discussed before in Section to verify a kernel our method gives rise

to the following proof obligations:

1. several global properties to ensure that the correct relation between dif-
ferent levels of specifications (e.g. all kernel resources are properly
distributed over a work group, and the universally quantified barrier
precondition implies the universally quantified barrier postcondition);

2. the correctness of a single arbitrary thread with respect to its specifica-
tions; and

3. ensuring the correct framing of each pre- and postcondition.

To verify the PVL translation of a kernel, the above-mentioned proof obli-
gations are encoded into Viper. To do so, for each proof obligation of the
form “¢ implies ¢”, an annotated Viper method with precondition ¢ and
postcondition 3 and an empty method body is generated. Then the encoded
proof obligation is verified by passing the annotated method to the Silicon
verifier [JKM ™14, HKMS13,|MSS16| Vip17]. For example, consider the kernel in
Listing [9]and its PVL translation in Listing[12] It is executed with a single work
group setting; therefore the only work group has exactly the same resources as
the kernel. To verify if the group resources are properly distributed over the
threads at the barrier, the following Viper encoding is generated:
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requires (\forall* int tid; O<=tid && tid<gsize;
acc(getVCTOption(a)tid]. Integer_item , write ));

requires (\forall* int tid; O<=tid && tid<gsize;
acc(getVCTOption(b)[tid]. Integer_item , write ));

ensures (\forall* int tid; O<=tid && tid<gsize;
acc(getVCTOption(a)[(tid+1)%gsize].Integer_item,1/2));

ensures (\forall* int tid; O<=tid && tid<gsize;
acc(getVCTOption(b)[tid]. Integer_item ,1/2));

void main_resources(int tcount, int gsize, int gid){}

where acc is the keyword for permission predicates in the Viper intermediate
language, this is equivalent to the Perm keyword in our notation. The function
getVCTOption is the specific support to encode arrays into Viper sequences.
Arrays are not present as a separate primitive in Viper; so special treatment is
required to deal with them. The implementation of this encoding is available in

the open source version of our toolset [Ver17b].

6.6. Compiling Iteration Contracts to Kernel Specifi-

cations

In Chapter 3| we discussed verification of loop parallelizability in high-level
sequential programs. Typically, we want to be sure that when we parallelize
the program, the resulting low-level parallel code is still correct. To support
this, we define how a specification of the original program can be translated
into a specification of the low-level code. In particular, this section shows
how iteration contracts are translated into OpenCL kernel specifications, such
that if the code is compiled using a basic parallelizing compiler, without
further optimization, the compiled code is correct with respect to the compiled
specification.

Independent Loops. Given an independent loop, the basic compilation to
kernel code is simple: create a kernel with as many threads as there are loop
iterations and each kernel thread executes one iteration. Moreover, the iteration
contract can be used as the thread contract for each parallel thread in the kernel
directly. The size of the work group can be chosen at will, because no barriers
are used.
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Forward Loop-carried Dependencies If the loop has forward dependencies
then the kernel must mimic the vectorized execution of the loop. Consider the
specified loop on the left side of Listing 14} for simplicity, we assume that both
the number of threads and the size of the work group are N. Basic vectorization
generates the kernel on the right side of the listing, where:

o if I};(j) is a send statement then it is ignored: C(j) = {}

o if I};(j) is a recv statement with a matching send statement at L;, then it is
replaced by a barrier Cy(j) =

barrier (...) requires g;(j) = ¢s(j); ensures gr(j) = or(4); {}

where the barrier contract specifies how the permissions are exchanged
at the barrier. The barrier flag in the generated kernel can be set to the
combination of local and global memory flags.

o if I};(j) is any other statement then it is copied:

Cr(7) =if (96 () e (): }

Listing 15/ shows the kernel that is derived in this way from the forward
dependence example in Listing [2(a).

6.7. Related Work

Bardsley et al. propose additional support in GPUVerify [BCD"12] for rea-
soning about GPU kernels where warps and atomic operations are used for
synchronization [BD14]. In GPUVerify the user does not need to manually
add specifications, because the tool internally speculates and refines kernel
specifications [BCD'12]. However, GPUVerify is not able to reason about the
functional properties of kernels, it can only prove the absence of data races. As
future work, we would like to investigate if GPUVerify could be used to infer
some of the annotations that we need.

Concerning verification of GPU kernels, we should also mention the work of
Li and Gopalakrishnan [LG10]. They verify CUDA programs by symbolically
encoding thread interleavings. They were the first to observe that to ensure
data race freedom it was sufficient to verify the interleavings of two arbitrary

threads. For each shared variable they use an array to keep track of read and
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Listing 15 Kernel implementing the loop with forward dependence

/*@
requires Perm(a[tid], write) #x Perm(b[tid],1/2) #* Perm(c[tid], write)
x* b[tid |==tid;
ensures Perm(a[tid],1/2) #x Perm(b[tid],1/2) ** Perm(c[tid], write);
ensures (tid >0) ==> Perm(a[tid—1],1/2);
ensures (tid==tcount—1) ==> Perm(a[tid],1/2);
ensures a[tid |==tid+1 *x* b[tid |[==tid *x (( tid >0) ==> c[tid]==tid+2);
@x/
_kernel void ForwardDepKernel(__global int * a, __global int * b,
__global int * c)

{
al tid | =b[ tid ] +1;
barrier (CLK_.GLOBAL MEM_FENCE | CLK_LOCAL_-MEM_FENCE)
/*x@
requires (tid <tcount—1) ==> Perm(a[tid],1/2) *x* a[tid]==tid+1;
ensures (tid >0) ==> Perm(a[tid—1],1/2) ** (tid>0) ==>a[tid—1]==tid;
@«/{}
if (id>0) ¢[ tid ] =a[ tid—1] +2;
}

write accesses, and where in the code they occur. By analyzing this array, they
detect possible data races. However, they do not consider atomic operations.

Chiang et al. present a formal bug-hunting method for GPU kernels
[CGLR13]. Their method extends the GKLEE tool [LLS™12] with the analysis of
CUDA kernels that use both barriers and atomics. To detect a potential conflict
involving atomic accesses, thread schedules are enumerated in order to find
a counterexample to correctness. Delay bounding is used to limit schedule
explosion. Although their method is effective in finding defects, it cannot be
used to verify the absence of data race; while our approach is able to prove
race freedom of GPU kernels. Moreover, they do not support verification of
functional properties for the GPU kernels that use both barriers and atomic
operations.

In the verification of (general) concurrent programs synchronized with
barriers, Hobor et al. [HG11] propose a sound extension of CSL for pthreads-
style barriers. The simplicity of the OpenCL barriers makes our specification
simpler. Additionally, we support barriers in the presence of atomic operations.
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Listing 16 PVL translation for the example in Listing [}

class Ref {
int r;
invariant values != null #x N > 0 %%« M > 0 xx \array(values,MxN);
context  Perm(r,write)

% (\forall* int i; 0 <=1i && i < MxN; Perm(values[i],1/2));

requires r==0;

void do_sum(int M,int N, int [M«N] values){

invariant outer(Perm(r,write))

{

par kern(int g =0.. M)

133333,

context (\forall* int k; 0 <= k && k < N; Perm(values[gxN+k],1/2));

int [1] x = new int[l]; x[ 0] =0;

inner (\array (x,1) *x Perm(x[0], write))

par workgroup(int t =0 .. N)

requires Perm(values[gxN+t],1/2);
ensures (t == 0) =
(\forall* int k; 0 <= k && k < N; Perm(values[gxN-+k],1/2));

atomic(inner){ x[ 0] =x[ 0] + values[ gxN+t]; }
barrier (workgroup)
requires Perm(values[gxN-+t],1/2);
ensures (t == 0) =
(\forall* int k; 0 <=k && k < N; Perm(values[gxN+k],1/2));

{3
if (t==0)
{
int tmp;
atomic(inner){ tmp =x[0]; }
atomic(outer){ r = r + tmp; }
}

6.8. Conclusion and Future Work

This chapter presents an approach to specify and verify GPGPU programs in

the presence of atomic operations and barriers. The main characteristics of

the approach are that it can be used to prove both data race freedom and

functional correctness. To specify the shared memory accesses, the notion of

resource invariant from CSL is lifted to the GPU memory model, distinguishing
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between kernel and group resource invariants. An appropriate Hoare logic is
proposed and proven sound to reason about GPGPU programs using atomic
operations and barriers. The approach is illustrated on some examples, and
supported by an implementation in the VerCors toolset. Moreover, we discuss
how the iteration contracts can be translated into kernel specifications. This
is specifically useful in automatic loop parallelization where ensuring the
semantical equivalence of the original parallel loops and the generated GPGPU
kernels is essential.






CHAPTER : l

CONCLUSION

“When done well, software is invisible.”
— Bjarne Stroustrup






HE current trend in high-performance computing is to exploit the enor-
mous computing power provided by modern multi-core and many-
core processors. At software level this can only be achieved by writing

parallel programs. As a result, nowadays parallel programming is omnipresent
in almost any scientific and business application, even in critical systems where
the smallest errors might endanger human life or cause substantial economic
damages. However, the hindering challenge is that, in contrast to sequential
programs, parallel programs are notoriously error-prone. In this thesis we
tackled this challenge by developing novel axiomatic verification techniques
that make parallel programming safer and more reliable. Specifically we
developed verification techniques based on permission-based separation logic
to reason about data race freedom and functional correctness of parallel loops,
deterministic parallel programs, and GPGPU kernels. We also demonstrated
the practical applicability of the developed techniques by implementing them as
part of our VerCors toolset. At the end, we briefly discussed how the verification
techniques of this thesis are connected by presenting how iteration contracts can
be translated into kernel specifications. This chapter presents the summary of
the main contributions of this thesis and ends with discussing future research
directions.

7.1. Verification of Loop Parallelization

The first main contribution of this thesis is a technique for reasoning about loop
parallelization. With this technique we are able to prove whether a loop that is
claimed to be parallel is indeed parallelizable. For this purpose, we developed
the notion of iteration contract that specifies the resources (i.e. the memory
locations read and written) that are accessed by each iteration of the loop. To
prove that aloop is parallelizable we show that its iteration contracts are disjoint,
i.e. each iteration accesses to a separated part of memory.

119
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Next we discussed how the technique supports the specification of loop-
carried data dependencies by extending iteration contracts with extra annota-
tions. The annotations capture how resources are transferred from one iteration
to another iteration of the loop. The loops with loop-carried data dependencies
are either inherently sequential (in the case of a backward loop-carried depen-
dency) or they can be parallelized if they are properly synchronized (in the case
of a forward loop-carried dependency). The technique is able to distinguish
between either of these cases and in the latter case, the extra annotations indicate
where in the loop the additional synchronization should be added.

Moreover, iteration contracts can be extended further such that they specify
the functional behaviour of each iteration. This allows to seamlessly verify
the functional correctness of the parallel loop together with its parallelizability.
Finally we explained how the technique is implemented as part of our VerCors
toolset.

7.2. Reasoning about Deterministic Parallel Programs

As the second main contribution of the thesis, in Chapters@d]and [fwe presented
a novel technique for the verification of deterministic parallel programs. First
we captured the core features of deterministic parallel programming in the
Parallel Programming Language (PPL). PPL is a language for the composition
of code blocks. We distinguished between three kinds of basic blocks: a
parallel block, a vectorized block and a sequential block. Basic blocks are
iterative blocks; assuming that the sequential basic block only has one iteration.
Basic blocks can be composed by three binary block composition operators:
sequential composition, parallel composition and fusion composition. A small-
step operational semantics was presented for PPL.

A PPL program defines a partial ordering over its basic blocks from which a
partial order over the iterations can be inferred. From these partial orderings a
set of independent (incomparable) iterations is statically computed. We showed
that if each basic block is data race free and all incomparable iterations are non-
conflicting (i.e. they access to disjoint memory partitions) then the PPL program
is data race free.

Next we discussed how iteration contracts extended with functional specifi-
cations are used to reason about the functional correctness of the PPL program.
For this purpose, we first showed that if the program is data race free, it can
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be linearized; thus the functional correctness of a data race free program can
be proven over its linearized variant, to which the standard separation logic for
sequential programs is applicable.

Finally we illustrated the practical applicability of the technique by dis-
cussing how a commonly used subset of OpenMP can be encoded into PPL
and then verified. The complete process from the encoding to the verification is
implemented as part of the VerCors toolset.

7.3. Verification of GPGPU Programs

As the third main contribution, a previous technique for the verification of
GP-GPU programs was extended to support atomic operations. To be able to
specify the shared memory accesses of atomic operations, the notion of resource
invariant is lifted to the GPU memory model. We distinguish between kernel
and group resource invariants. An appropriate Hoare logic is proposed and
proven sound to reason about GPGPU programs using atomic operations and
barriers. The approach is illustrated on some examples and prototyped in our
VerCors toolset.

In Section[6.6l we also showed how iteration contracts can be translated into
kernel specifications. This is especially interesting when parallel loops as a
high-level parallel program are transformed into kernels as a low-level parallel
program. Therefore, specifications may be provided once only on the high-level
program and then can be reused for the low-level kernel via translation. In this
way we are able to not only reason about the correctness of parallel loops and
kernels but also to reason about the correctness of the parallelization framework

as a whole; including all intermediate transformations.

7.4. Future Work

This section summarizes future research directions.

Verifiers and Parallelizing Compilers. As discussed previously in Chapter
there are connections between verifiers and parallelizing compilers. One of
the possible future directions is to investigate how verifiers and parallelizing
compilers can support each other. We believe this support can work in both

ways. First of all, parallelizing compilers can use verified annotations to
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know about dependencies without analyzing the code itself. Conversely, if the
compiler performs an analysis then it could emit its findings as a specification
template for the code, from which a complete specification can be constructed.
This might be extended to a set of techniques for automatic generation of
iteration contracts. Moreover, some techniques in parallelizing compilers (e.g.
polyhedral compilation [Bas04) BPCB10]) perform specific loop transformations
in order to make loops more suitable for parallelization. Thus it could be studied
further how iteration contracts can be in a similar way transformed such that

they are still valid for the transformed loop.

Fully Automatic Verification of Deterministic Parallel Programs. In Chap-
ter[5| we showed that for PPL programs to be verified we only need to provide a
program contract and an iteration contract for each basic block in the program.
So the burden of specifying all block compositions has already been removed.
As a next step towards more automated verification technique, the iteration
contracts (more specifically the resource formula part of the contracts) can be
generated automatically. If it is achieved, data race freedom of deterministic
parallel programs can be fully automatically verified. We believe that we took
the first steps towards this goal, by presenting an instrumented operational
semantics for PPL in Section[5.2} This provides the required formalism to calcu-
late the memory masks in different program states from which the permission
fractions of the resource formulas can be extracted.

Extensions of PPL. Our verification technique for deterministic parallel pro-
grams is presented over the PPL language. The language covers the core
features of deterministic parallel programming. As the next step, PPL can
be extended to address more deterministic parallel programming features. In
particular, OpenMP task constructs and atomic operations (when they comply

with reduction patterns) can be considered.

Chaining the Verification Techniques. The verification techniques presented
in this thesis can be used independently. Moreover, they can also be chained
together to be used as a holistic verification solution for a complete paral-
lelization framework where programs are written in a high-level parallel pro-
gramming language with native parallelization constructs such as OpenMP
and then automatically compiled into low-level parallel programs such as GPU

kernels or multi-threaded programs. To make this happen, the specifications
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in the high-level language should also be translated automatically into the
specification of the low-level language. In Section [6.6| we took the first step in
this direction by demonstrating how iteration contracts can be translated into
kernel specifications. This can be explored even further for cases where the low-
level programming language is a multi-threaded program or when the high-
level parallel program is a deterministic parallel program that uses a diverse set
of parallelization constructs. This holistic verification solution is particularly
interesting because it checks not only the correctness of high-level program and
its low-level counterpart, but also it verifies the correctness of the intermediate
transformations by checking the semantics equivalence of the high-level and
low-level programs.
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Summary

This thesis presents novel formal verification techniques to improve the re-
liability of parallel programs and to prove their functional correctness. For
this purpose we use axiomatic reasoning techniques based on permission-
based separation logic. Among different parallel programming paradigms,
we specifically focus on the deterministic parallel programming where the
parallelization is expressed over a sequential program using high-level paral-

lelization constructs (e.g. parallel loops).

After a brief introduction to permission-based separation logic in Chapter[2
Chapter[8|presents a verification technique to reason about loop parallelizations.
We introduce the notion of an iteration contract that specifies the memory
locations being read or written by each iteration of the loop. The specifica-
tions can be extended with extra annotations that capture loop-carried data-
dependencies and functional behavior of the loop. A correctly written iteration
contract can be used to draw conclusions about the functional correctness and

the safety of a loop parallelization.

Chapter [f| presents a novel technique to reason about deterministic parallel
programs. To do that, we first in Chapter 4] formally define the Parallel Pro-
gramming Language (PPL) as a core language that captures the main forms of
deterministic parallel programs. This language distinguishes between three
kinds of basic blocks: parallel, vectorized and sequential blocks, which can be
composed using three different composition operators: sequential, parallel and
fusion composition. We show that it is sufficient to have contracts for the basic
blocks to prove the correctness of PPL programs, and moreover when a PPL
program is data race free, the functional correctness of the sequential program
implies the correctness of the parallelized program.

In Chapter[6] we propose a specification and verification technique to reason
about the data race freedom and functional correctness of GPGPU kernels that
use atomic operations as a synchronization mechanism. For this purpose we

adapt the notion of resource invariant to the GPGPU memory model such that
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group resource invariants capture the behaviour of atomic operations that access
locations in local memory while kernel resource invariants capture the behaviour
of atomic operations that access locations in global memory. Finally, Chapter|7]
concludes the thesis and presents some future directions.



Samenvatting

Dit proefschrift presenteert nieuwe formele verificatietechnieken om de be-
trouwbaarheid van parallelle programma’s te verbeteren, en hun functionele
correctheid te bewijzen. Voor dit doel gebruiken we axiomatische redenering-
stechnieken, gebaseerd op permissie-gebaseerde separatie logica. We kijken in
het bijzonder naar deterministisch parallel programmeren, waarbij de paral-
lellisatie van een sequentieel programma wordt gekarakteriseerd door hoog-

niveau parallellisatie constructies (bijvoorbeeld parallelle lussen).

Na een korte introducie van permissie-gebaseerde separatie logica in Hoofd-
stuk 2, presenteert Hoofdstuk 3 een verificatietechniek om te redeneren over lus-
parallellisaties. We introduceren het begrip “iteratiecontract’, om te specificeren
welke geheugenlocaties geschreven of gelezen worden voor elke iteratie van
de lus. De specificaties kunnen uitgebreid worden met extra annotaties die
zowel lus-gerelateerde data-afhankelijkheden karakteriseren, als functionele
eigenschappen van de lus. Een correct iteratiecontract kan gebruikt worden
om conclusies te trekken over de functionele correctheid van de lus, en over
de veiligheid van de lusparallellisatie.

Hoofdstuk 5 beschrijft een nieuwe techniek om over deterministische par-
allelle programma’s te redeneren. Daarvoor introduceren we in Hoofdstuk 4
de taal PPL (Parallel Programming Language) als een kerntaal die de belan-
grijkste vormen van deterministische parallelle programma’s karakteriseren.
Deze taal onderscheidt drie soorten basisblokken: parallelle, gevectoriseerde
en sequentiéle blokken, die gecombineerd kunnen worden met behulp van
drie verschillende compositie-operatoren: sequenti€le, parallelle en fusie com-
positie. We laten zien dat het voldoende is om contracten te geven voor
de verschillende basisblokken om correctheid van een PPL programma te
bewijzen. Boven, als een PPL programma geen data races bevat, dan zal de
functionele correctheid van het sequentiéle programma de correctheid van het

geparallelliseerde programma impliceren.

In Hoofdstuk 6 presenteren we een specificatie- en verificatietechniek om
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te redeneren over afwezigheid van data races en functionele correctheid van
GPGPU kernels die atomaire operaties gebruiken als synchronisatiemecha-
nisme. Voor dit doel passen we het begrip ‘resource invariant’ aan aan het
GPGPU geheugen model, zodat resource invarianten voor groepen het gedrag
van atomaire operaties op het lokale geheugen beschrijven, terwijl kernel re-
source invarianten het gedrag van atomaire operaties op het globale geheugen
beschrijven.

Hoofdstuk 7 tenslotte, concludeert dit proefschrift en beschrijft een aantal

richtingen voor toekomstig onderzoek.
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This thesis presents a set of
verification techniques
based on permission-
based separation logic to
reason about the data race
freedom and functional
correctness of program
parallelizations. Our
reasoning techniques
address different forms of
high-level and low-level
parallelization including
parallel loops, deterministic
parallel programs (e.qg.
OpenMP) and GPGPU ker-
nels.

Moreover, we discuss how
the presented techniques
are chained together to
verify the semantic
equivalence of high-level
parallel programs and their
low-level counterparts.
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