
Implementation and Verification of a Realistic
Battery Model in the DEMKit Simulation Software

Bart Homan, Victor M.J.J. Reijnders, Gerwin Hoogsteen, Johann L. Hurink, Gerard J.M. Smit
Department of EEMCS, University of Twente, Enschede, the Netherlands

Corresponding author: b.homan@utwente.nl

Abstract—In this work we consider the implementation of
the DiBu-model, a realistic model for battery State of Charge
prediction, in DEMKit, a smart grid energy management toolkit.
The implementation is discussed in detail and the differences
between the ideal battery model previously used, and the new
realistic model are shown. Lastly the model and implementation
are validated by comparing the State of Charge predicted using
DEMKit to the State of Charge derived from measurements on
an actual battery. The predicted battery behavior matches reality
quite well, the difference between the predicted and measured
state of charge is generally less than 2%.

Index Terms—Storage, Predictive model, Smart grid, Energy
management, State of Charge

I. INTRODUCTION

Simulations of (smart) grids are used, for example, to
predict and investigate the behavior of grids that have yet
to be built [1], or to find weaknesses in existing grids. Grid
simulation frameworks, such as TRIANA [2], GridSpice [3],
and DEMKit [4] use models of the relevant devices, controllers
and cables in a (smart) grid to perform these simulations, with
and without smart grid control. The accuracy of (the results of)
a simulation crucially depends on the accuracy of the models
that are used in the simulation.

Batteries are an important part of smart grids. They are used,
for instance, as a backup power source, the main power source
for an electric car, or to (temporarily) store energy generated
by e.g. PV-panels or wind turbines. Hence to accurately
simulate a smart grid, accurate models for batteries, e.g. the
KiBaM model [5], the Schiffer Model [6] or the Dualfoil
model [7] can be considered as valid options. The current
DEMKit environment, however, does not use these accurate
models but make use of a too ideal battery model, e.g. the
actual behavior and tolerances of batteries are not considered.
In the simulations, performed using the DEMKit environment,
hundreds or even thousands of households are considered. If an
accurate but complex model, like one of the aforementioned
models, is used in these simulations the computation power
needed would be very large, and the computation time would
be extremely long. Hence, a simple yet accurate model for the
prediction of the battery State of Charge (SoC) is needed. The
DiBu-model for battery State of Charge prediction, [8], [9] has
been developed to allow to predict a more realistic behavior
of a battery in simulation tools, while being simple. In this
work*, this model is integrated and implemented using the

*Note that comparisons between our work (models and simulator) and other
possible solutions are beyond the scope of this work. These are covered in
previous publications [4], [8], [9], [10], [11].

optimization and simulation software for energy management
(DEMKit) and combined with the algorithm from [12].

This work is part of the GridFlex Heeten project, which
aims to realize a local energy market in which sharing and
usage of local energy is stimulated [13]. A neighborhood of
50 households participates in this project, 24 of which will be
equipped with a 5 kWh battery. These batteries are controlled
in a way to relieve stress in the network and to use generated
energy as local as possible. As batteries are an important
ingredient in this project, it is important to have accurate and
realistic models of batteries.

The main contributions of this paper are:
• Improved accuracy of simulations in DEMKit.
• Cyber-physical interaction between a battery model and

the control of the battery.
In Section II the background of the DiBU-model (Section

II-A) and of the DEMKit software (Section II-B) are discussed.
The implementation of the DiBu-model in the DEMKit sim-
ulation environment is discussed in Section III. In Section IV
the implementation of the model is tested in a simulation of
(part of) the neighborhood in Heeten. Furthermore, in Subsec-
tion IV-C the validity of the model and its implementation are
tested by comparing the predicted SoC and power of one of
the simulated batteries, to the SoC and power calculated from
measurements on the corresponding actual battery. In Section
V the conclusions and possible future work are discussed.

II. BACKGROUND

A. The DiBu-model

The Diffusion Buffer model for battery State of Charge
prediction (DiBu-model ), has been introduced in [8] and has
been improved and further verified in [9]. The state of charge,
expressed as a percentage of the maximum SoC, is predicted
by predicting the battery voltage during a charge, discharge or
idle step in a future time interval. More precisely, the state of
charge (SoCt), at a time (t) in the future is calculated using
the following equation:

SoCt = SoCt−1 +
Ut · It ·∆t
Emax

, (1)

where SoCt−1 is the SoC at a time before t, (so this is either
a starting condition or a previously estimated value for the
SoC), ∆t is the time difference between t and t−1 (typically
in the range of 1 second to 1 minute), It is the current at time t,
which is known because it is supplied to or demanded from the
battery, Emax is the battery capacity given by the manufacturer
and, lastly, Ut is the voltage at time t. To predict this voltage,978-1-5386-4505-5/18/$31.00 © 2018 IEEE
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Fig. 1. Schematic representation of the voltage behavior over time during the
various states of battery operation.

four states of battery operation are used in the model: charging,
discharging, idle after charging and idle after discharging, see
Fig. 1. The separation between idle periods after charging and
discharging is to account for the capacity recovery effect and
the rate capacity effect, which are explained in [9]. For each
of the four states an equation for Ut is derived, see (2a) -
(2d). These equations are used to model the battery voltage
during the mentioned different states of operation; discharging
(2a), idle periods after discharging (2b), charging (2c) and idle
periods after charging (2d).

Ut = Ut−1 +
α · It−1

SoCS0
(2a)

Ut = Ut∗0 + (Umax − Ut∗0 ) ·
(

1− e−
t−t∗0

β·(t−t∗0)+γ

)
(2b)

Ut = Ut−1 +
It−1

δ
(2c)

Ut = Ut−1 (2d)

In Equations (2a), (2c) and (2d), Ut−1 is the voltage at
a time t − 1 (before t), It−1 is the current at t − 1 which
is known, and SoCS0 is the state of charge of the battery
at the start of discharging. In (2b), t∗0 is the time at which
the idle step starts, Ut∗0 is the voltage at the start of the idle
step and Umax is the voltage at the start of the discharge step,
directly before the idle step. The parameters α, β, γ, and δ are
given constants and battery-specific. These parameters can be
determined from measurements at the battery and this process
has been thoroughly discussed in [8] and [9].

B. DEMKit overview
DEMKit (short for Decentralized Energy Management

toolKit) is a smart grid optimization and discrete time sim-
ulation software developed at the University of Twente [4]†.
The simulation framework follows a cyber-physical systems
approach, wherein the interaction between control (optimiza-
tion methods) and the physical devices and grids can be
analyzed. DEMKit provides a library with components that
model devices and grid assets. Furthermore, components con-
taining control and optimization algorithms are available. By
combining these components, a complete model of a smart

†DEMKit is the successor of the TRIANA smart grid simulation software,
also developed at the University of Twente. In recent publications ”DEMKit”
is used to refer to the simulation software, while in earlier publications
”TRIANA” is used.

grid of many households, equipped with e.g. batteries and
electric vehicles, can be created and its total energy profile
can be controlled and optimized.

Within DEMKit, the device components model the behavior
of a device, such as a battery or the stochastic behavior of a
load. Each device determines, based on the current state, its
power consumption in the next time interval. Furthermore, at
the start of a time interval, each device has the option to change
the internal state based on the power consumption of the last
interval. For example, a battery can update its SoC according
to the energy consumed/produced since the previous time
interval. All components are configurable through parameters,
such as e.g. the capacity of a battery or the load profile of a
device, such as e.g. for a washing machine. A controller can
be connected to a device component to influence its behavior.
Herein, the device model is leading to ensure that the device is
always operated in a valid state. The battery models currently
implemented in DEMKit are generally ideal and loss free.

Controllers within DEMKit have two main purposes,
namely offline optimization for e.g. a day-ahead market and
performing control on runtime to resolve deviations and distur-
bances. For the offline optimization the iterative profile steer-
ing heuristic [14] is used. This algorithm schedules a cluster
of devices for N future time intervals using a sliding window.
Hereby, the heuristic makes use of predictions and the afore-
mentioned device models. Within profile steering, each device
controller m receives a steering signal ~d = [d1, d2, . . . , dN ]T

containing the desired energy consumption for each of the N
intervals. The device controllers respond with an optimized
energy profile ~xm = [xm,1, xm,2, . . . , xm,N ]T . An efficient
algorithm to schedule batteries under these steering signals
is presented by Van der Klauw et al. in [12]. For more
background on the profile steering algorithm, we refer the
reader to [14] and [4].

While running, the device controller tries to realize the
energy consumption/production planned for each time inter-
val as specified in the offline optimization. Disturbances in
predictions or model inaccuracies often result in situations
where the scheduled energy consumption cannot be followed
exactly. Hence, a strategy to minimize deviations from the
schedule is required. To this end, the asynchronous event-
driven profile steering mechanism is developed [11], which
leverages the predictive nature of profile steering to balance
short-term disturbances and long-term flexibility of devices.
In this event-driven method, only one device is rescheduled
at a time when necessary, e.g. when a large deviation occurs.
This reduces the complexity and required computation time,
such that a new schedule is available within a few seconds.
The same steering signals and device optimization algorithms
are used within event-driven profile steering.

III. IMPLEMENTATION

To use the presented DiBu battery model (Subsection II-A)
in a smart grid simulation and optimization framework, such
as DEMKit, two steps need to be taken. The first step is to
implement a discrete time model of the battery model, which
is the behavioral description of the battery. And, secondly, an
optimization and control strategy suitable for the battery model
needs to be implemented. This section covers the implemen-
tation of these two aspects in the DEMKit framework.
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Fig. 2. Schematic representation of the battery state transitions.

A. Battery model
We model the battery by a state machine. Each state

corresponds to a different state of operation (as described in
the previous section). We determine the state transitions using
the requested current from the battery and the previous state
of the battery. In Fig. 2 the four states and the different state
transitions are given. The equations corresponding to state x
is given in Equation (2x), for x ∈ {a, b, c, d}.

At each time step of the simulator, the voltage of the battery
is updated based on the state of the battery. The following
assumptions are made in this process. As DEMKit works with
power, only the requested power from the battery is available,
not the current. To overcome this, we use the calculated
voltage of the battery to determine the charging/discharging
current from teh requested power (though voltage measure-
ments can be integrated easily).

At each time step the minimum and maximum possible
charging powers are updated according to the voltage of the
battery. If the power requested from the battery in the opti-
mization is either below the minimum or above the maximum
charging powers, we set the requested power to the minimum
or maximum possible charging power. If the voltage of the
battery reaches its maximum (6.9 volts for the battery used
in the simulations), we assure that the battery is no longer
charged, as this would ruin the battery. Also, if the battery
is empty (so if the SoC falls below a certain threshold), we
reset the voltage to its base value (5.5 volts for the battery
used in the simulations). Doing this allows for a re-calibration
of the model. At this point, we do not consider the battery
losses during (dis)charging, or when storing energy over a
longer period of time, beyond the losses that have already
been considered in the DiBu-model itself.

B. Battery controller
The aforementioned battery scheduling algorithm [12] is

not directly applicable to the improved, more realistic battery
model, introduced in this work, as this method is not able to
cope with the changing power constraints. With the realistic

TABLE I
CHARACTERISTICS AND PARAMETERS OF THE CONRAD BATTERY USED

FOR THE SIMULATIONS.

Conrad Battery
Type Lead-acid
Nominal voltage (V) 6,0
Rated capacity (Ah) 7,2
α (V/A) 3,030 x 10−5

β (-) 0,268
γ (s) 2,684
δ (A/V) 2,438 x 104

battery model, the battery voltage varies based on the state,
and therefore the maximum power consumption/production
changes over time. However, initial simulation studies show
that the difference in SoC between the ideal and realistic
battery model only drifts slightly over time. Therefore we
continue using the scheduling algorithm from [12], that was
based on an ideal battery model. However, we extend it with
functionality to frequently retrieve the current SoC of the
battery to track the mismatch between the current and the
scheduled state. If this mismatch becomes to large, synchro-
nization and rescheduling can be performed through signaling
an event.

In order to signal events for rescheduling, we determine the
the mismatch based on the SoC. For this, we use the planned
battery power profile ~xb = [xb,t+1, xb,t+2, . . . , xb,t+N ]T ,
which is created at a time t, to determine the planned SoC in
the future time intervals. Together with the initial SoC (SoCb,t)
at the time of the planning (t) the planned SoC (SoCb,τ ) at
time interval τ > t is then given by:

SoCb,τ = SoCb,t +
τ−1∑
i=t

xb,i+1

Emax
, (3)

When the current state of charge of the battery (SoCb)
differs too much from the scheduled SoC at a time interval
τ , i.e. SoCb < SoCb,τ −d or SoCb > SoCb,τ +d, an event is
signaled to perform rescheduling. Hereby, parameter d can be
chosen arbitrarily to define the maximum allowed mismatch.
In our simulations, we use d = 0.05. Subsequently, the
battery controller receives an updated desired profile ~d from
its parent controller running profile steering. Furthermore, the
controller synchronizes the maximum power consumption/pro-
duction values with the battery model, which depend on the
current battery voltage. Subsequently, the controller re-plans
the operation of the battery based on the updated constraints
and the new steering signal.

IV. RESULTS

To validate the implemented battery model and control
strategy, simulations are used. For this, one of the (optimized)
battery charging profiles from the simulation with DEMKit
is programmed in the battery test equipment to compare and
validate the simulated profile with measurements from a real
battery.

A. Simulation setup
Simulations are performed within the DEMKit simulation

toolkit. A small neighborhood, representing a part of the



test area in Heeten, (10 households) was modeled using
the artificial load profile generator presented in [10]. This
neighborhood consists of 5 families with children, 4 young
couples and 1 retired couple, all without flexible loads, such
as electric vehicles or smart appliances. Each of the 10
households was assigned one battery with the specifications
as presented in Table I. Furthermore, to test the energy
sharing concept, 5 households got a PV setup, with the
intention that a surplus of renewable energy generation of
these PV installations is allowed to flow into all 10 batteries.
Each household uses a Home Energy Management System
(HEMS) running the profile steering algorithm to optimize
the household power consumption. The load, PV and battery
controllers communicate with the local HEMS. A cluster
controller (also using profile steering) coordinates the energy
profiles of each household to allow energy sharing among
the households. The desired profile for the neighborhood is a
zero-profile, ~p = [0, 0, . . . , 0]T , which implies that the goal
is to achieve a balanced cluster where the sum of power
consumption/production among households is zero for each
interval. Furthermore, to avoid extreme peaks if total balance
is not possible, the optimization objective is to minimize
the Euclidean distance between this desired profile and the
aggregated profile of all devices (~x), i.e. to

minimize ||~p− ~x||2. (4)

We refer the reader to [14] for more details on the opti-
mization method and profiles.

The battery available for verification has a capacity of
43.2 Wh (6 V × 7.2 Ah), which is significantly lower then
the batteries to be used in the Heeten project, which will have
a capacity of 5 kWh. To take this difference into account, we
scale down the household load by dividing the load profiles
by 115.7 (43.2 Wh / 5 kWh).

Two simulations are run, one with the original ideal battery
model for comparison and one with the realistic battery model
presented in this paper. Each simulation considers one week
(week 13 from the generated profile) in discrete time intervals
of 1 minute. Optimization is performed in intervals of 15
minutes where a sliding window approach is used. Each day,
the energy profile for two days into the future (192 intervals)
is optimized to avoid boundary effects.

B. Simulation results

Firstly we evaluate the performance of the realistic model,
by comparing the results of the two simulations. The two
models result in slightly different optimization results, where
the realistic case favors charging the battery a bit more on
average, which results in a slightly higher average power
consumption (Pavg) for the whole neighborhood of 10 houses
and an higher average SoC (SoCavg). In Table II an overview
of the simulation results for the simulation with the ideal
battery model (ideal) and the presented model (realistic) is
given. Furthermore Fig. 3 shows that the SoC of the realistic
battery model is generally higher than that of the ideal battery
model, however both profiles follow the same daily pattern.
In this figure we also observe that the SoC of the batteries
gradually rise, due to a surplus of energy in the neighborhood.
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Fig. 3. Average state of charge of the batteries

TABLE II
NUMERICAL RESULTS OF THE SIMULATION CASE STUDIES

Pmax Pmin Pavg SoCavg

Ideal 25.0 W -127.5 W -5.5 W 42.4 %
Realistic 27.3 W -132.1 W -5.3 W 49.2 %

Secondly, we evaluate the performance of the realistic
battery model with the planning made by the optimization
process. In Fig. 4 the planned power profile (ppplanned) and
the realized power profile with the realistic (pprealistic) battery
model for the whole cluster are shown. Additionally, the
power profile with the ideal battery model ppideal is also
shown for comparison. Larger deviations between ppplanned
and pprealistic are mainly observed in the first days of the
simulation. Over the course of a couple of days, the mismatch
is reduced significantly. Moreover, mismatches in the SoC
do not affect the cluster performance as the capacity of the
batteries is never completely utilized. Thus, despite these
mismatches in SoC, the batteries always provide flexibility
to resolve planning inaccuracies. As a result, the planning for
the neighborhood as a whole can be followed accurately.

A comparison between the power values and the resulting
SoC of the planning and the realistic battery model is given
in Table III. For both characteristics the mean absolute error
(MAE) and the root mean square error (RMSE) is given per
day of the complete week. We observe that the error is smallest
on the fifth day. Few event-driven replanning operations are
required as the SoC of the realistic batterie models do not
differ significantly from the planned SoC.

In Fig. 5 the power profile, averaged over all batteries, is
shown. It is immediately clear that the realistic battery model
is able to closely follow the planned power output. The power
constraints of the realistic battery model depend on the SoC
and voltage, which match the specification (Table I) at a SoC
of 50%. The daily executed optimization process uses the
power constraints as communicated by the realistic battery
model when creating a new planning. Hence, we observe
smaller errors with a balanced planned power profile created
when the SoC is close to 50%.

This result can be explained because of the daily optimiza-
tion performed at the start of each day.



TABLE III
MISMATCHES BETWEEN THE PLANNING AND THE REALISTIC BATTERY

Day PMAE PRMSE SoCMAE SoCstart

1 5.61 W 6.48 W 0.93 % 0.0 %
2 2.80 W 4.09 W 0.95 % 21.8 %
3 2.14 W 3.20 W 0.97 % 31.6 %
4 1.00 W 1.46 W 0.77 % 43.3 %
5 0.62 W 1.02 W 0.87 % 52.3 %
6 0.92 W 1.42 W 0.91 % 51.4 %
7 1.08 W 1.41 W 1.04 % 45.6 %

All 2.03 W 3.30 W 0.92 % -
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Fig. 4. Power profile of the neighborhood of 10 scaled households including
the planning for the realistic battery model case.

C. Validation
Next, the performance of the implemented DiBu-model

itself is evaluated. The simulation yields a realized power
profile for the batteries (Fig. 5), which can be used to predict
the SoC of the battery (Fig. 3). To validate these simulation
results, a comparison was made between the predicted SoC and
power, and the SoC and power derived from measurements on
the actual battery. The battery, which specifications are given
in Table I, was subjected to the desired power profile, and the
voltages and currents were measured and used to derive the
actual power profile and the actual SoC. Note that the desired
power profile for the battery is the realized power profile from
the simulation results.

All measurements are done using a CADEX C8000 battery
analyzer [15]. This device has to be programmed manually,
therefore the power profile for only one day (day 5) was
chosen for this validation. The desired power profile, that was
obtained from the simulation in DEMKit and used in this
validation is displayed in Fig. 6. However, to accommodate
the sensitivity of the battery analyzer the programmed supplied
and demanded currents were rounded to the nearest 10 mA.
Moreover the sensitivity of the battery analyzer was such
that charge or discharge currents below 50 mA could not be
achieved accurately. To remedy this, currents of 25 mA and
lower were set to 0 A and currents between 25 mA and 50
mA were set to 50 mA.

In Fig. 6 the desired power profile and measured power
profile are displayed. Between time index 8:00 and 17:30
and between time index 19:00 and 8:00 the desired power
profile and the measured power profile are nearly identical.

1 2 3 4 5 6 7 END
−10

−8

−6

−4

−2

0

2

4

Time [days]

Po
w

er
[W

]

Planning Ideal Realistic

Fig. 5. Average power consumption and production of the batteries, including
the planned power profile for the realistic battery model case.
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Fig. 6. Desired power profile of one battery in the neighborhood, compared
to the power profile for the same battery, derived from the measurements.

The maximum difference between the desired power profile
and the measured power profile is 0.46 W, at 17:00. After
19:00 the maximum difference is about 0.1 W. Between time
index 17:30 and 19:00 there is no measured power, this is
caused by a problem during the measurement. At the start of
the indicated time interval the battery voltage was too high,
this prompted the equipment to protect the battery by skipping
to the next discharge step. This has been indicated in the graph,
by a missing part of the line. It is likely that the high voltage is
caused by degradation of the battery, as this battery has been
used for many measurements.

The predicted SoC (SoCpred) and the SoC calculated from
the measurements (SoCmeas) are compared in Fig. 7. Apart
from the interval between 17:30 and 19:00 the SoCmeas
matches the SoCpred very well. From 8:00 to 17:30 the differ-
ence between the SoCpred and the SoCmeas is negligible. The
largest deviation between the SoCpred and the SoCmeas (6,6
%) is observed around 19:30. At this moment a power peak
of 10 W is drawn from the battery. From 19:30 onward the
difference decreases and between 5:00 and 8:00 the difference
is no larger than 1.5%.

So the measured power matches the desired power profile
quite closely. So the results from the simulation using the
realistic battery model give a realistic view on the behavior
of the battery.
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Fig. 7. Predicted SoC of one battery in the neighborhood, compared to the
SoC of the same battery, calculated from the measurements.

D. In conclusion

The DiBu-model is quite suitable for use with the DEMKit
simulation software. It was demonstrated (Fig. 4 and 5) that the
power profiles realized with the DiBu-model flow match the
planned power profiles quite closely, in some instances even
more closely than the power profiles realized with the ideal
model. It was also demonstrated (Fig. 6) that the power profiles
realized with the DiBu-model match the realistic behavior of
the battery quite well. The difference between the planned
power profile, and realized power profile using the realistic
model is largest when the battery is nearly full or nearly
empty. An adaption to the optimization model could be made
to improve on this. If stricter minimum and maximum power
bounds are used as input to the scheduling algorithm, the
scheduling algorithm is prevented from fully using the battery
potential. However, this would result in reduced peak shaving
performance. On the other hand, the unused capacity and
power headroom can be used to resolve differences between
the ideal battery used for scheduling and the presented realistic
battery model. A minimum mismatch is essential in cases
where contracts bind flexibility providers, such as aggregators,
to their submitted profile plans on the day-ahead market.

V. CONCLUSIONS & FUTURE WORK

In this work we presented the integration of a realistic
battery model within the simulation and optimization software
DEMKit. The realistic battery model results in an improved
accuracy of the simulation results. Furthermore, the previ-
ously developed battery scheduling algorithm is, with minimal
changes, able to create operation schedules for a battery in
the realistic model. Thereby, the complexity (and required
computational time) can be kept low. Deviations from the
day-ahead planning and the actual realization on runtime are
generally low.

Comparisons between the predicted SoC and the SoC cal-
culated from measurements show that the predictions made
using the DiBu model match reality very well. The difference
between the DiBu-model prediction and the SoCmeas is gen-
erally less than 1,5 %. Only in the time interval where the
largest amount of power is demanded from the battery, the
deviation between the predicted SoC and SoCmeas increases.

For future work, the battery scheduling algorithm can be
improved further with the presented results in mind. One
observation is that the battery schedules are followed more
accurately when the initial voltage (and SoC) at the moment
of scheduling is close to the nominal value and specifications.
It is expected that better initial values for the voltage van
SoC, and the use of less than the full battery capacity for
scheduling, would result in a planning that can be followed
more accurately.

Future work should also be dedicated to a further validation
of the DEMKit simulation environment, and the DiBu-model
by comparing predictions for the neighborhood in Heeten, to
measurements obtained from the actual neighborhood.

Furthermore it was observed that the battery analyzer equip-
ment could not set charge or discharge currents below 0,05 A.
It is expected that the Battery Management Systems (BMS)
used in the Gridflex Heeten project has similar limitations.
This could mean that the BMS is unable to carry out the
planning made by DEMKit. Future work should be dedicated
to investigating this, and adapting the DEMKit software to
account for this.
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