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Predicted burden could replace predicted risk in preventive strategies
for cardiovascular disease
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Abstract
Objectives: The objective of this study was to explore the extent of the differences in definitions of composite end points and assess
how these differences influence estimates of cardiovascular disease (CVD) burden.

Study Design and Settings: Data from a Dutch cohort study (n 5 19,484) was used to calculate 10-year risks according to four CVD
risk prediction models: Adult Treatment Panel (ATP) III, Framingham Global Risk Score (FRS), Pooled Cohort Equations (PCE), and
SCORE. Health loss was estimated based on the impact of event types included in the corresponding composite end points. Finally, each
prediction model was used to estimate the expected CVD burden in high-risk individuals, expressed as Quality-Adjusted Life Years (QA-
LYs) lost.

Results: The definition of the composite end points varied widely across the four models. FRS predicted the highest CVD risks, and the
composite end point used in SCORE was associated with the highest health burden. The predicted CVD burden in high-risk individuals was
0.23, 0.74, 0.43, and 0.39 QALYs lost per individual when using ATP, FRS, PCE, and SCORE, respectively.

Conclusion: The investigated CVD risk prediction models showed huge variation in definition of composite end points and associated
health burden. Therefore, health consequences related to predicted risks cannot be readily compared across prediction models, and esti-
mates of burden of disease depend crucially on the prediction model used. � 2017 Elsevier Inc. All rights reserved.
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1. Introduction

Cardiovascular disease (CVD) is one of the leading
causes of morbidity and mortality worldwide [1]. The
annual number of CVD-related deaths is expected to in-
crease from 17.3 million in 2008 to 23.6 million by 2030
[2]. The burden of disease including all CVD-related health
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loss gives an indication of the overall health loss due to
CVD in the population. This CVD burden can also be inter-
preted as the maximum health gain achievable by any pre-
ventive CVD intervention, such as lifestyle improvements,
and pharmacotherapy. To increase the effectiveness of pre-
vention strategies, these are increasingly based on CVD
risk stratification, that is, CVD risk prediction models are
used to allocate individuals to predefined risk categories
to tailor preventive interventions. Numerous CVD risk pre-
diction models have been developed for individualized
CVD risk prediction and risk classification [3e5]. For
example, the Framingham risk equation classifies individ-
uals with a �20% 10-year CVD risk as low risk and indi-
viduals with a O20% 10-year CVD risk as high-risk,
whereas the Pooled Cohort Equations (PCE) uses a 7.5%
10-year CVD risk threshold instead of 20% [3,6].
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What is new?

Key findings
� There is a wide variation in composite end points

used in cardiovascular disease (CVD) risk predic-
tion models, which complicates their use for as-
sessing burden of disease.

� Even for widely used CVD risk prediction models,
the definition of composite end points is not always
transparent.

What this adds to what was known?
� When the CVD burden is estimated using a risk

prediction model, results will highly dependent
on the prediction model used and should therefore
be interpreted with caution.

What is the implication and what should change
now?
� It is recommended that developers of CVD risk

prediction models with a composite end point
clearly describe the definition and incidence of that
composite end point, and its individual compo-
nents, in the development data.

� For assessing CVD burden and the potential impact
of preventive interventions, it is recommended that
CVD prediction models are used which cover a
broad range of CVD events instead of predicting
only a limited number of specific types of CVD
events. For example, Framingham Global Risk
Score and Pooled Cohort Equations are likely more
useful in this particular context than Adult Treat-
ment Panel and SCORE.

These prediction models can be used to estimate the risk of
CVD for individuals but can also be used to estimate the CVD
burden in (sub)groups of individuals, for example, in individ-
uals classified as high-risk [7,8]. CVD burden estimates can
be derived by simply aggregating all risk estimates of individ-
uals in the (sub)group to get the expected total number of
CVDevents in that (sub)group.As long as the predictionmodel
used is calibrated to (sub)group of individuals, the total number
of CVD events can be validly estimated by the sum of the indi-
vidual risk estimates. Estimating the expected CVD burden
then requires deriving the expected health loss caused by these
CVD events. For example, experiencing a stroke may persis-
tently lower quality of life (QoL) or even lead to death. Howev-
er, different CVD risk prediction models may predict different
CVD events. In fact, these models are commonly developed
based on composite end points, includingmultiple and different
types of CVD events. For example, one CVD risk prediction
model may predict only (fatal or nonfatal) stroke, whereas
anothermaypredict only (fatal andnonfatal)myocardial infarc-
tion (MI). Often, even more complex composite end points are
used, in which O10 different types of CVD events are com-
bined. The use of composite end points may be favorable from
a clinical perspective because it is more relevant to predict a
range of CVD-related events rather than a single event and
may increase statistical power [9].However, the use of complex
composite CVD end points makes it hard to estimate the health
loss related to that end point, unless the included, separate CVD
events are considered. When, in addition, different CVD risk
prediction models use different composite end points, this
would further complicate the robust assessment of the expected
CVD burden in (sub)groups of individuals.

To explore the extent of this problem, the expected CVD
burden is estimated in a large cohort using four widely used
CVD risk prediction models. First, we investigate the defini-
tion and constitution of the composite end points used in these
CVD risk prediction models. Second, we estimate the CVD
risk for all individuals in the cohort, and the health loss of
the CVD events included in the composite end point, for each
prediction model. Finally, we assess how the identified differ-
ences in composite end points in the predictionmodels consid-
ered influence the estimated CVD burden in this cohort.
2. Methods

2.1. Constitution of composite end points in MORGEN

Seven widely used CVD risk prediction models were
initially selected for this study: Adult Treatment Panel
(ATP) III, Framingham Global Risk Score (FRS), PCE,
SCORE low (SCORE) model, PROCAM, QRISK, and
Reynolds risk score [3,10e16]. The models were chosen
based on their largely overlapping subsets of easy to mea-
sure and frequently available risk factors, for example,
gender, age, and systolic blood pressure. Furthermore, all
models were derived from general population cohorts. All
prediction models except SCORE are Cox proportional
hazards regression models, that is, semiparametric survival
models where the form of the baseline hazard is not spec-
ified. The SCORE model is a Weibull model, that is, a fully
parametric survival model. More information on these CVD
risk prediction models can be found in Appendix A. All
models estimate the absolute risk of a composite end point,
occurring within 10 years. The exact definition of the com-
posite end point was identified from background articles for
each prediction model [3,10e16] and translated in terms of
ICD-10 codes for each model (see Appendix B).

We compared the composite end points of the seven CVD
risk prediction models using a large population cohort
(MORGEN) in the Netherlands. The MORGEN cohort in-
cludes men and women aged 20e74 years at baseline, re-
cruited from the general population between 1993 and
1997 [17]. After a follow-up time of 10e15 years (average
12.3 years), participant information on vital status, cause
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of death, and comorbidity was obtained through municipal
registries, Statistics Netherlands, and from the National
Medical Registry, respectively. To apply the prediction
models, information on both the recruitment and follow-up
was required, leaving 19,484 individuals with adequate data
from the original cohort for the analysis. Information on the
composition of this cohort and exclusion criteria for the cur-
rent use of cohort data can be found in Appendix B.

To investigate the constitution of the composite end
points, the observed rates and distributions of the individual
components were determined for each model separately, us-
ing the set of ICD-10 codes comprising the composite end
point (Appendix B) [18]. As the different prediction models
have different composite end points, whether individuals
are registered as experiencing a CVD event thus depends
on the applied prediction model. Furthermore, due to
censoring mechanisms that vary per prediction model, the
observed rate for a specific CVD event may also vary per
prediction model. Interpretation of a first and secondary
event within individuals depends on whether such event
is included in the composite end point of each prediction
model.
2.2. Consequences of dissimilarities in composite end
points

Assessment of dissimilarities in the consequences of the
composite end points requires estimations of the predicted
risks and consequences of the included individual compo-
nents. As evidence on certain risk factors, such as family
history of CHD, C-reactive protein, and social deprivation,
was not available within the MORGEN cohort, the pre-
dicted risks according to prediction model QRISK, PRO-
CAM, and Reynolds could not be estimated. Hence, these
three models were excluded from further analyses. To
assure accurate predicted risks, we first validated and reca-
librated the remaining four CVD risk prediction models
ATP, FRS, PCE, and SCORE to the cohort data. For the sur-
vival data (time-to-event data) considered in this study, re-
calibrating a prediction model typically involves updating
the baseline hazard and adjusting the mean values of the
predictors (the linear predictor of the ‘‘average’’ patient)
[19]. Note that this was only to ensure that the model
was well fitted, as we do not focus on statistical
performance.

The selected prediction models all result in a predicted
risk for a 10-year time horizon; therefore, follow-up time
was truncated at 10 years prior to validation, recalibration,
and subsequent analyses. The overall performance of the
original and recalibrated models was expressed in the Brier
Score [19]. Furthermore, the calibration of both the original
and recalibrated models was assessed and expressed in
terms of a calibration plot, including estimating the slope
and intercept of each plot and Hosmer-Lemeshow chi-
square statistic [19]. The discrimination of the original
and recalibrated models was also assessed, using Harrell’s
c-statistic [20]. The discrimination measure indicates the
accuracy of the model by ordering individuals by their risk,
that is, a subgroup with high-risk individuals should exhibit
higher event rates than a low-risk subgroup [21].

The original CVD risk prediction models were devel-
oped with other data that used for this study; hence, only
for the recalibrated models, the 10-year CVD risks were
predicted per individual in the MORGEN cohort and pre-
sented for six risk categories: 0e2%, 2e4%, 4e6%,
6e8%, 8e10%, and O10%. Although age is included
as a risk factor in all models, the actual effect of age dif-
fers per model. As age was skewed to the right, it was not
possible to use age values expressed in whole years to
create deciles. Therefore, the comparison of predicted
risks according to the different models was also presented
for deciles of age: 20.1e26.5, 26.6e32.1, 32.2e36.7,
36.8e40.4, 40.5e43.5, 43.6e47.0, 47.1e50.3,
50.4e53.5, 53.6e57.4, and 57.5e73.7 years. We defined
low-risk individuals as those with the lowest 25% pre-
dicted risks and high-risk individuals as those with the
highest 25% predicted risks, regardless of their absolute
predicted risk, per prediction model. Reclassification ta-
bles were constructed to determine whether high-risk indi-
viduals correspond among the CVD risk prediction
models.

For measuring the consequences, that is, the individual-
ized (weighted) impact, of a ‘‘composite end point,’’
Quality-Adjusted Life Years (QALYs) were used. The
QALY is a measure combining the length of life and QoL
of individuals [22]. As morbidity and mortality due to dis-
ease decrease the number of QALYs experienced by individ-
uals, burden of disease can be expressed in terms of QALY
loss. To correct a year of life lived in a suboptimal health sta-
tus, that is, following a CVD event, life years were weighted
by a utility (value) for the QoL during that year. Evidence on
QoL following different CVD event types was collected
from a clinical guideline defined in 2014 by the National
Institute for Health and Care excellence [23]. This guideline
presents utilities for different health states after a CVD event
and a baseline utility for normal health by age (see Appendix
C). The ICD-10 codes used to define all CVD events were
linked to corresponding utilities. Furthermore, information
from Statistics Netherlands was used to determine the sur-
vival rates per gender and age category, for the years
2007e2012, after excluding mortality due to CVD events.
These survival probabilities were applied to establish the
average life expectancy per gender and for each age cate-
gory, in absence of CVD.

Furthermore, for simplification, a persistent, lifetime
impact of events was estimated based on the observed
QoL following (partial) recovery of a CVD event (see
Appendix C). The occurrence of multiple (recurrent)
CVD events or other diseases was not taken into account.
In addition, it was assumed that the CVD events (according
to the predicted risks) occurred, on average, after 5 years
(for details see Appendix C).
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The overall estimated CVD burden of disease was as-
sessed by combining predicted absolute (individualized)
risks of an event with the consequences of the composite
end point. The estimated overall CVD burden from each
prediction model gives an indication of the expected health
loss due to CVD events per individual and can also be in-
terpreted as the maximum health gain achievable by any
preventive CVD intervention, according to the correspond-
ing prediction model. In addition to assessing the CVD
burden based on the consequences of the composite end
point as defined per model, this burden was also assessed
using the most comprehensive end point used in the four
models.
3. Results

3.1. Constitution of composite end points in MORGEN

Table 1 (columns 1 and 2) shows that composite end
points of the investigated prediction models are very
different with varying types of individual components
included. The definition and ICD-10 code per component
is shown in columns 1 and 2. Per prediction model, the type
of individual components and observed number of individ-
uals experiencing this component (event) are shown in
Table 1 (columns 3e16). FRS and QRISK had the highest
observed numbers and largest variety in individual compo-
nents as compared to the other CVD risk prediction models.
All models include MI, either alone (ATP) or in combina-
tion with different sets of other manifestations of CVDs
(Fig. 1). There was also a clear difference in the severity
of the different components included, most notably mortal-
ity and morbidity. Furthermore, absolute numbers for
SCORE were about eight times smaller than FRS, as
SCORE only predicts fatal CVD events.

3.2. Consequences of dissimilarities in composite end
points

Calibration and discrimination results for the original
ATP, FRS, PCE, and SCORE models and the recalibrated
models, based on the end points as defined in Table 1,
can be found in Appendix D. The performance of the four
models is good and very similar, c-statistic of 0.81, 0.78,
0.78, and 0.81 for ATP, FRS, PCE, and SCORE, respec-
tively. Moreover, the predicted number of events now
closely matches the observed number of events, for each
of the four models (Appendix DeTable 2).

However, the observed differences in the definition of
the composite end points, and type and number of individ-
ual components, directly led to large differences in pre-
dicted risks, as shown in Fig. 2. Incorporation of more
individual components into the composite end point auto-
matically lead to higher predicted risks and prediction
models focusing only on more severe events, that is,
SCORE provided lower predicted risks due to a lower inci-
dence of such events. For the SCORE model, 90% of the
individuals had a predicted risk lower than 2%, while ac-
cording to FRS, only 33% of the individuals were classified
into this lowest risk category. The average predicted risks
for the four prediction models are 1.4%, 5.9%, 2.2%, and
0.7% for APT, FRS, PCE, and SCORE, respectively.

Fig. 3A shows that differences in mean values of the
predicted risks were already present at a young age and
became more pronounced at older age. Furthermore, the
predicted risk increased supralinear for all models, except
ATP. Reclassification tables showed, however, that indi-
viduals identified as low- and high-risk still mostly corre-
spond among the prediction models (Appendix E). The
consequences of the composite end point (in terms of QA-
LYs lost) according to prediction model SCORE were ex-
pected to be highest due to the severity of the incorporated
individual components, that is, only fatal CVD events. For
the other models, the consequences of the composite end
points were much lower and in the same order of magni-
tude. For all models, the risk and consequences of the
composite end point were assessed per individual, based
on age- and gender-dependent CVD patterns. For
example, CVD burden decreased with age, even though
the risk of fatal versus nonfatal events increases with
age, due to decreasing life expectancy (see Appendix F).
SCORE showed the most rapid decrease in consequences
of the composite end point (Fig. 3B). Fig. 3C illustrates
the results for the predicted individualized CVD burden
per individual, that is, the maximum potentially prevent-
able health loss per individual from CVD, as function of
age. The predicted CVD burden is highest for FRS, at
all ages, and is relatively stable with age for ATP and
PCE. The predicted CVD burden for SCORE was highly
age dependent, resulting in a very low predicted burden
at young age, which was even lower than ATP. At older
age, the predicted burden for SCORE was substantial
much higher than ATP and PCE.

The expected CVD burden in the high-risk individuals is
0.23, 0.74, 0.43, and 0.39 QALYs lost per individual for
ATP, FRS, PCE, and SCORE, respectively (Appendix F).
Hence, FRS predicts a CVD burden 1.9 times as high as
SCORE. This large variation in burden is caused by the dif-
ferences in composite end points. Fig. 4A illustrates that a
predicted risk according to ATP results in a lower CVD
burden per individual than a similar predicted risk accord-
ing to PCE due to the different composite end points. Of the
four models considered, the Framingham model used the
most comprehensive end point (Table 1). Using the Fra-
mingham composite end point to predict the CVD burden
in the high-risk individuals resulted in 0.74, 0.74, 0.72,
and 0.65 QALYs lost per individual for ATP, FRS, PCE,
and SCORE, respectively (Fig. 4B).



Table 1. Individual components and structure of composite end points in cohort

Individual components ICD-10 code

ATP FRS PCE SCORE QRISK PROCAM Reynolds

# # # # # # #

Morbidity
Myocardial infarction (MI) I21, I22 X 232 X 208 X 223 X 208 X 217 X 223
Other coronary heart

disease (OCHD)
I20, I23, I24, I25 X 435 X 435

Cardiac arrest, sudden death I46, R96 X 4 X 4 X 4
Hemorrhagic stroke (CVAH) I60, I61, I62 X 41 X 41 X 41 X 41
Ischemic stroke (CVAI) I63, I65 X 72 X 76 X 72 X 76
Other stroke (OCVA) I64, I66 X 33 X 34 X 33 X 34
Other cardiovascular

diseases (OCVD)
G45, I67, I69,
I70-I74,I50

X 267 X 267

Total observed events 232 1,060 374 0 1,060 221 374
Mortality
Myocardial infarction (MI) I21, I22 X 50 X 43 X 50 X 61 X 43 X 50 X 50
Other coronary heart

disease (OCHD)
I20, I23, I24 X 6 X 17 X 6

Cardiac arrest, sudden death I46, R96 X 10 X 13 X 10 X 91
Hemorrhagic stroke (CVAH) I60, I61, I62 X 6 X 6 X 16 X 6 X 6
Ischemic stroke (CVAI) I63, I65 X 3 X 3 X 6 X 3 X 3
Other stroke (OCVA) I64, I66 X 2 X 3 X 3 X 2 X 3
Other cardiovascular

diseases (OCVD)
G45, I67, I69,
I70-I74, I50

X 18 X 25 X 18

Total observed events 50 88 62 141 88 141 62
Composite end points (morbidity þ mortality)
Ischemic heart disease (IHD) I20-I25
Coronary heart disease (CHD) I20-I25, I46, R96
Cerebrovascular

accident (CVA)
I60-I66 X X

Cardiovascular disease (CVD) I20-I26, I46, R96,
G45, I60-I67, I69,
I70-I74, I50

X X (only
fatal
events)

X

Overall observed events 282 1,148 436 141 1,148 362 436

Abbreviations: ATP, Adult Treatment Panel; FRS, Framingham Global Risk Score; PCE, Pooled Cohort Equations; SCORE, Systematic COronary
Risk Evaluation risk score; PROCAM, Prospective Cardiovascular Munster study; QRISK, cardiovascular disease risk algorithm for UK.
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4. Discussion

In this study, the definitions and constitution of compos-
ite end points for four widely used CVD risk prediction
models, ATP, FRS, PCE, and SCORE, have been investi-
gated regarding both the number and type of CVD events
included. Results indicate that these CVD risk prediction
models vary substantially regarding the definition of their
composite end point, that is, they include different sets of
CVD event types (individual components). This variation
in individual components induces large differences in pre-
dicted risk, that is, individuals in our cohort have different
predicted CVD risks according to these four prediction
models. However, the group of individuals classified as
high-risk is very similar when different prediction models
are used. The variation in included individual components
also induces a large variation in the expected health loss
associated with the occurrence of a composite end point
across prediction models. In addition, the estimated CVD
burden is highly age dependent when applying SCORE
[11,13]. Consequently, the estimated CVD burden in indi-
viduals classified as high-risk in our cohort varies widely,
with FRS predicting a 1.9 times higher burden than
SCORE.
Previous (clinical) research has shown that the use of com-
posite end points in studies may be more relevant to patients
and clinicians as they cover more aspects and outcomes of
the disease [24]. The usefulness of composite end points in
the context of randomized trials, however, is still debated,
due to the ensuing difficulty of interpreting differences in
‘‘sets of outcomes’’ [25e31]. Moreover, even commonly
used prediction models, such as the four models considered
here, often have hard to find, or unclear, definitions of the
composite end point in terms of ICD codes included. This
affects a direct comparison of CVD risk prediction models,
as each different composite end point has to be unraveled into
its individual components, and each component has to be
linked to a unique disease code. This process complicates
the statistical analysis, for example, evaluation, comparison,
and external validation of prediction models. Still, a trans-
parent description of the composite end point and incorpo-
rated components is unavoidable to (1) translate changes in
statistical prediction performance to expected health benefits
for individuals and (2) estimate the expected health benefits
from new risk-based preventive interventions [32e34]. For
example, assuming that preventive statin treatment reduces
the risk of a composite CVD end point by a certain percent-
age will result in estimated health benefits which are highly



Fig. 1. Overall distribution of included individual components per CVD risk prediction model. MI, myocardial infarction; CHD, coronary heart dis-
ease; CVAH, hemorrhagic stroke; CVAI, ischemic stroke; CVA, cerebrovascular accident; CVD, cardiovascular disease; ATP, Adult Treatment Panel;
FRS, Framingham Global Risk Score; PCE, Pooled Cohort Equations; SCORE, Systematic COronary Risk Evaluation risk score; PROCAM, Prospec-
tive Cardiovascular Munster study; QRISK, cardiovascular disease risk algorithm for UK.
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dependent on the prediction model used [35]. Appropriate
impact analysis of risk-based preventive interventions re-
quires evidence of (1) the initial risk of different types of
CVD events, (2) their consequences, and (3) how the inter-
vention reduces these risks. Finally, standardization of impact
analysis in a single disease area also requires including the
exact same (broad set of) event types in all such analyses,
to make impact aspects comparable.
4.1. Strengths

Four widely used CVD risk prediction models are
compared regarding their composite end points, their risk
Fig. 2. Distribution of individuals per risk category and CVD risk prediction
Score; PCE, Pooled Cohort Equations; SCORE, Systematic COronary Risk E
estimates, and the associated burden of disease. Further-
more, this study unambiguously links all CVD end points
of interest to ICD-10 codes, thereby improving clarity
and ensuring replicability of the analyses in other cohorts.
In addition, the size of the data set used allowed for strati-
fied analyses per risk and age category. Finally, following
from the recalibration, the prediction models considered
have similar statistical performance, and the group of indi-
viduals categorized as high-risk is very similar across the
prediction models. The large differences regarding pre-
dicted CVD risks and CVD burden can therefore reliably
be attributed to differences in the constitution of their com-
posite end points.
model. ATP, Adult Treatment Panel; FRS, Framingham Global Risk
valuation risk score; CVD, cardiovascular disease.



Fig. 3. Three figures as function of age, with plot (A) the 10-year CVD predicted risks, plot (B) the expected (lifetime) consequence of a composite
end points per individual, and plot (C) the expected (potentially preventable) CVD burden per individual. Distribution of individual components was
evaluated per age category, except for ATP where this distribution was assessed in the entire population due to limited number of included end
points. ATP, Adult Treatment Panel; FRS, Framingham Global Risk Score; PCE, Pooled Cohort Equations; SCORE, Systematic COronary Risk Eval-
uation risk score; CVD, cardiovascular disease; QALY, Quality-Adjusted Life Year.
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4.2. Limitations

The actual results from this study are dependent on the
data set used, that is, the observed differences between
CVD risk prediction models may be different in other data
sets and populations. The cohort used consists of relatively
Fig. 4. Individualized CVD burden (the CVD burden was estimated for cate
original end point and plot (B) comprehensive end point (Framingham mode
PCE, Pooled Cohort Equations; SCORE, Systematic COronary Risk Evaluation
Years.
young and healthy individuals, so even high-risk individ-
uals have few CVD events. Thus, all predicted absolute
risks are low compared with typical categories for high-
risk individuals. However, the presented analyses can
easily be generalized to other populations. Moreover, the
methodology can also be applied to other disease areas in
gories based on risk quartiles) (QALYs loss) according to plot (A) the
l). ATP, Adult Treatment Panel; FRS, Framingham Global Risk Score;
risk score; CVD, cardiovascular disease; QALYs, Quality-Adjusted Life
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which composite end points are common such as for
example the C-WATCH risk score for upper gastrointestinal
bleeding [36]. Further analyses in other disease areas
require large individual patient data sets with long
follow-up and accurate registration of all event types
included in the prediction models, as well as registration
of sequences of events in individuals.

For the translation of composite end points into ICD-10
codes, certain assumptions are required due to unclear def-
initions of the composite end points in the original publica-
tions. For PCE and ATP, the defined end points ‘‘nonfatal
MI and CHD death’’ are translated in ‘‘nonfatal and fatal
MI’’ for consistency reasons. CVD risk prediction models
PCE and ATP are both based on a formal Framingham pre-
diction model, with ATP defining composite end points
‘‘hard CHD’’ as developing an MI or MI death event,
whereas PCE does not clearly specify the definition of
‘‘hard CHD.’’ These assumptions may have led to slight un-
derestimations of predicted risks and consequences, and
therefore, the overall predicted CVD burden. They are,
however, unavoidable when unclear definitions of events
need to be linked to unique disease codes. In this study,
we only accounted for the first CVD event in individuals
even though in practice individuals may experience multi-
ple CVD events. This limitation will lead to underestima-
tion of the CVD burden but was necessary because the
CVD risk prediction models considered are only validated
for predicting first CVD events and are not appropriate
for estimating the risk of recurrent CVD events [37].
4.3. Recommendations

First, it is recommended that developers of CVD risk
prediction models with a composite end point clearly
describe the definition of that composite end point, as well
as all its individual components, and their incidence in the
development cohort. Second, studies comparing (the per-
formance of) different prediction models should clearly
describe the data set(s) used and the link defined between
the composite end points and the disease codes, preferably
using the most recent ICD codes. Finally, impact assess-
ments of preventive interventions should separate the indi-
vidual components and include their respective health
consequences and costs, rather than focus on the composite
end point.
5. Conclusions

Our results suggest that the number of different compos-
ite end points and included individual components used in
CVD risk prediction models may almost be as large as the
actual number of models itself. Furthermore, many CVD
risk prediction models have unclear or hard to establish def-
initions of the composite end point in terms of ICD codes
included. Hence, estimating the CVD burden using risk
prediction models is not straightforward, and results should
be interpreted with caution as they are highly dependent on
the prediction model used. When using prediction models
that include only a very limited set of CVD events, such
as SCORE (fatal events only) and ATP (only MI), both
the estimated CVD burden and the health benefits from pre-
ventive intervention will be underestimated. Moreover, the
estimated health impact of preventive interventions may be
biased if too narrow composite outcomes are used to esti-
mate health benefits, or too narrow end points are used to
reflect risks and side effects from such treatments. Whereas
a broad common set of end points may be defined to reflect
health benefits of preventive strategies in CVD, this may
not be feasible or useful for the negative consequences of
treatment, as different treatments may have widely different
negative side effects. More comprehensive prediction
models, such as FRS and QRISK, cover more manifesta-
tions of CVD and might therefore yield more meaningful
estimates regarding the (preventable) burden of CVD.
Supplementary data

Supplementary data related to this article can be found at
https://doi.org/10.1016/j.jclinepi.2017.09.014.
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