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AbstrAct

The complexity of wireless and mobile net-
works is growing at an unprecedented pace. 
This trend is proving current network control 
and management techniques based on analytical 
models and simulations to be impractical, espe-
cially if combined with the data deluge expected 
from future applications such as augmented real-
ity. This is particularly true for software-defined 
wireless local area networks (SD-WLANs). It is 
our belief that to battle this growing complexity, 
future SD-WLANs must follow an artificial intel-
ligence (AI) -native approach. In this article, we 
introduce aiOS, which is an AI-based platform 
that builds toward the autonomous management 
of SD-WLANs. Our proposal is aligned with the 
most recent trends in in-network AI promoted 
by the ITU Telecommunication Standardization 
Sector (ITU-T) and with the architecture for disag-
gregated radio access networks promoted by the 
Open Radio Access Network Alliance. We vali-
date aiOS in a practical use case, namely frame 
size optimization in SD-WLANs, and we consider 
the long-term evolution, challenges, and scenarios 
for AI-assisted network automation in the wireless 
and mobile networking domain.

IntroductIon
Network softwarization refers to the decoupling 
of the software implementing a network function 
from the hardware running it. The arguments in 
favor of network softwarization are manifold. 
First, it reduces the deployment cycles for new 
network functions. Second, by standardizing 
the underlying hardware and accessing it using 
well-defined abstractions, network control and 
management are made easier. Third, the physical 
network becomes an open arena for innovation, 
which leads to advances in the existing services 
and the creation of new ones. Software-defined 
networking (SDN) [1] is a key enabler of network 
softwarization.

SDN is essential for the control and manage-
ment of wireless networks and, in particular, for 
wireless LANs (WLANs), which today constitute 
the most popular form of wireless access connec-
tivity due to their performance and low deploy-
ment cost. In fact, a four-fold increase in the 
number of hotspots is foreseen by 2023, resulting 
in a total of 628 million public hotspots. In addi-
tion, the average Wi-Fi speed will exceed 91.6 
Mb/s by 2023 [2]. Therefore, it is crucial to max-
imize resource utilization and efficiency in soft-
ware-defined WLANs (SD-WLANs), thus ensuring 

that future applications and services can be effi-
ciently consumed by mobile users. 

The literature on SD-WLANs is ample, and 
is excellently reviewed in [3]. Nevertheless, the 
promise of SDN to deliver a more manageable 
network, whose behavior could be specified 
through high-level applications running on top 
of a logically centralized controller, led to the 
proliferation of complex approaches to solve 
highly specific problems, and to the creation of 
a multitude of network configurations. Although 
the global network view at the SDN controller 
enables data-driven network management based 
on artificial intelligence (AI) and machine learning 
(ML) approaches [4], how these solutions should 
be integrated into the existing networks without 
increasing their complexity remains an open ques-
tion.

By learning from the success of the Internet 
obtained through layering and standardized inter-
faces, we argue that the design of the next-genera-
tion AI-enabled SD-WLANs should follow a similar 
path, namely high-level abstractions, unified data 
models, and well-defined interfaces. This trend is 
also promoted by the International Telecommu-
nication Union Telecommunication Standardiza-
tion Sector (ITU-T) [5] and the Open Radio Access 
Network (O-RAN) Alliance [6]. In this work, we 
introduce aiOS, the first open source  O-RAN near-
real-time RAN intelligent controller (RIC).1 We 
extend our previous work [7] as follows:
• First, we provide an overview of the state of 

the art of ML-based network management 
schemes for WLANs.

• Second, we describe the challenges, require-
ments, and architecture of the aiOS network 
automation platform.

• Third, by focusing on a practical use case, 
namely frame aggregation in SD-WLANs, we 
show how aiOS improves network goodput 
by up to 55 percent.

• Fourth, we discuss the future challenges and 
applications for automation in wireless and 
mobile networks.

ArtIfIcIAl IntellIgence In  
softwAre-defIned wIreless networks

By reinterpreting the concept of control and user 
plane separation, and by introducing a logically 
centralized controller and the associated control 
applications, SDN has played a key role in taming 
the complexity of current networks. However, full 
control and user plane separation in SD-WLANs 
is not trivial. This is because in SD-WLANs it is 

Estefanía Coronado, Suzan Bayhan, Abin Thomas, and Roberto Riggio

Estefanía Coronado is with i2CAT Foundation; Suzan Bayhan is with the University of Twente; Abin Thomas is with  
Fondazione Bruno Kessler; Roberto Riggio is with i2CAT Foundation and RISE Research Institutes of Sweden AB.

Digital Object Identifier:
10.1109/MCOM.001.2000895

AI-Empowered Software-Defined WLANs

NETWORK SOFTWARIZATION AND MANAGEMENT

The authors introduce aiOS, which 
is an AI-based platform that builds 
toward the autonomous manage-
ment of SD-WLANs. Their proposal 
is aligned with the most recent 
trends in in-network AI promoted 
by the ITU Telecommunication 
Standardization Sector (ITU-T) and 
with the architecture for disag-
gregated radio access networks 
promoted by the Open Radio 
Access Network Alliance.

1 aiOS is released under 
APACHE 2.0 License; 
http://5g-empower.github.
io/

CORONADO_LAYOUT.indd   54CORONADO_LAYOUT.indd   54 3/29/21   5:11 PM3/29/21   5:11 PM

Authorized licensed use limited to: UNIVERSITY OF TWENTE.. Downloaded on May 17,2021 at 13:45:58 UTC from IEEE Xplore.  Restrictions apply. 



IEEE Communications Magazine • March 2021 55

essential to draw a line between network control, 
which deals with fast timescale operations that 
cannot be offloaded to the logically centralized 
controller, and network management, which deals 
with monitoring and reconfiguration operations. 
In this section we first introduce the concept of 
AI for networks (including the standardization 
aspects). Then we discuss the challenges it rais-
es and describe a few deployment scenarios in 
which an AI-empowered SD-WLAN could provide 
benefits.

AI for networks
With the success of AI in many domains (e.g., 
computer vision), the idea of an intelligent net-
work that can observe its environment and adapt 
accordingly is gaining momentum. The broad 
consensus is that future wireless and mobile net-
works will need an increased level of intelligence. 
Nevertheless, it is still hard to see shared goals 
and methodologies when it comes to integrat-
ing AI/ML solutions into production networks. A 
key challenge is the availability of unified frame-
works supporting the various steps in an ML pipe-
line, namely data collection, filtering, analysis, 
and decision making [8]. Moreover, interfaces 
between the data sources and the ML models 
as well as between the ML models and the sink 
nodes must be standardized for faster deployment 
of new solutions. Prior works [4] have reported 
various successful approaches involving the use 
of ML techniques to address different network-
ing challenges, including resource scheduling at 
the medium access control (MAC) layer, mobility 
management at the network layer, and precise 
location at the application layer. Finally, there are 
plenty of examples highlighting the role that AI 
and ML will play in beyond 5G networks, includ-
ing 6G [9].

stAndArdIzAtIon
A recent proposal by ITU-T [5] aims to define a 
framework meeting several requirements for inte-
grating ML functions in wireless networks. These 
requirements are:
• Support for multiple data sources and com-

munication networks
• Distributed ML functionalities at various net-

work levels
• Flexible deployment of ML functionalities 

depending on the requirements and the 
available network resources

• Flexibility to change the data sources and 
sinks of the ML applications

• Standard syntax to define ML applications
ITU-T’s proposal is technology-agnostic and 

can be adapted to Wi-Fi networks. However, no 
such effort has been initiated in IEEE, and there 
is no planned amendment aimed at introducing 
network automation into the 802.11 family of 
standards. Conversely, academia actively looks 
into the application of AI/ML to various aspects 
of (SD-)WLANs. Due to space constraints, we 
mention only two particular works [7, 10]. The 
first study [10] introduces deep learning into 
the low-level Wi-Fi stack, while the second work 
[7] focuses on the higher resource management 
layers, such as enhanced distributed channel 
access (EDCA) optimization and mobility man-
agement. 

chAllenges
Several challenges must be tackled before ML 
techniques can be applied to SD-WLANs. First, 
collecting a sufficient volume of training data 
can take considerable time. Second, network 
operations can be negatively affected when the 
ML-based solutions are deployed on the produc-
tion network. Network simulators can help cope 
with these challenges by generating training data 
from a wide range of scenarios. Moreover, analyz-
ing the ML-based solutions on network simulators 
helps in assessing their performance and pitfalls 
prior to actual deployment on the production net-
work. 

Network simulators differ significantly from the 
tools that are typically used in AI communities. 
There is thus the need for interfaces and abstrac-
tions that hide the complexity of one domain 
from the other if in-network AI becomes a reality. 
Works aiming to provide well-defined ML libraries 
for network simulators can already be found. A 
notable example is ns3-gym [11], which integrates 
ns-3 with a widely used toolkit for reinforcement 
learning named OpenAI Gym. This allows the use 
of the AI functions implemented in OpenAI Gym 
by any ns-3 protocol. The authors in [12] go fur-
ther and discuss the integration of simulators in 
ITU-T’s architecture to provide the data for train-
ing and testing ML models.

In this work, we take a fundamental step for-
ward in network intelligence by presenting aiOS, 
which is an AI-based platform for the control and 
management of SD-WLANs. aiOS embeds state-
of-the-art ML toolboxes to provide a full intel-
ligence platform, whose design is driven by AI 
and aims to drive future AI-powered networking 
applications and services. Like [11], the power of 
aiOS is that the AI/ML tools are hidden behind 
high-level programming abstractions that allow 
network experts to build novel and effective 
resource control policies with limited knowledge 
of the underlying AI/ML machinery. Nevertheless, 
a basic understanding of data filtering and the ML 
models used is needed.

deployment scenArIos
The range of services that Wi-Fi networks can 
deliver is extremely diverse and spans from broad-
band Internet access to Industry 4.0. AI-empow-
ered network operations are the key to unlocking 
the full potential of SD-WLANs in such scenarios. 
In this section, we discuss three use cases (depict-
ed in Fig. 1) in which aiOS can bring tangible ben-
efits.

Residential Deployments: A residential Wi-Fi 
network typically comprises several access points 
(APs) and various stations consuming delay-sensi-
tive services (e.g., online gaming) and delay-toler-
ant services (e.g., web browsing). In this scenario, 
aiOS could be deployed at the Internet service 
provider (ISP)’s premises, managing multiple res-
idential deployments. Hierarchical solutions, in 
which a local aiOS instance runs at the customer 
site while a second-tier instance aggregates infor-
mation at the ISP, can also be envisioned. In both 
cases federated learning approaches can be used 
to train the SD-WLAN control applications across 
a wide number of deployments.

Enterprise Deployments: As opposed to res-
idential networks, enterprise deployments are 

Network simulators differ 
significantly from the tools 
that are typically used in AI 
communities. There is thus 
the need for interfaces and 
abstractions that hide the 
complexity of one domain 

from the other if in-network 
AI becomes a reality. 

Works aiming to provide 
well-defined ML libraries 

for network simulators can 
already be found.
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typically planned. In this scenario, we can envi-
sion aiOS running at the customer’s site, adapt-
ing the network configuration to the changing 
environment. Nevertheless, a second-tier aiOS 
instance can still be used as a way to collect (in 
a privacy preserving fashion) training data from a 
more diverse set of scenarios, thus improving the 
accuracy of the ML models (privacy and security 
aspects need to be carefully considered in this 
case).

Industrial Deployments: Industrial Wi-Fi 
deployments may consist of cyber-physical sys-
tems with numerous sensors, controllers, and 
actuators coexisting with human users [13]. Indus-
trial applications are often time-sensitive and 
require ultra-reliability. Moreover, the amount 
of data exchanged can vary depending on the 
application (control system or failure prediction). 
While such challenges may seem more suitable 
for 5G networks, in May 2019 the IEEE 802.11be 
Extremely High Throughput Task Group started 
work on extending Wi-Fi into the time-sensitive 
network domain [14]. In this context, aiOS can be 
the element on top of which data-driven optimi-
zation tasks such as traffi  c prediction, failure anal-
ysis, and demand-attentive resource management 
can be implemented.

the AIos system
Early works on SDN attempted to tame network 
complexity by putting into the hands of network 
programmers powerful abstractions and languag-
es to control SDN networks [15]}. Such attempts 
resulted in solutions that either hid too many 
aspects of the network, up to the point of prevent-
ing the implementation of any meaningful task, or 
exposed too many low-level details to the net-
work programmer. While SDN, instead of intro-
ducing new concepts, proposed a different way 
of arranging network capabilities, the aim of aiOS 
is to provide a coherent, practical, and data-driven 
AI platform for SD-WLANs. It is our belief that 
this approach is pivotal in enabling reutilization 
of the best practices in AI within the networking 

domain and in leveraging the huge amount of 
data that will be generated by applications. While 
our work focuses on SD-WLANs, since they are 
the most popular wireless access technology, the 
same principles can also be extended to 5G net-
works and beyond.

The aiOS design leverages the ML pipeline 
concept proposed by ITU-T [5] and the intelligent 
and disaggregated RAN principles put forward 
by O-RAN [6]. In this section, we review the key 
challenges, both ML-related and network-relat-
ed, limiting the deployment of ML in wireless net-
works, and then we discuss the aiOS architecture.

ml-relAted chAllenges
Dataset Availability and Labeling (ML-1): The 

availability of datasets is an integral part of the 
success of ML and, in particular, of supervised 
and semi-supervised learning in SD-WLANs. How-
ever, labeled datasets are usually diffi  cult to obtain 
for two main reasons:
• High-quality datasets usually come from 

operational networks, and operators can be 
very reluctant to share them as they do not 
wish to provide competitors with valuable 
insights into their business strategy.

• Significant amounts of time and resources 
are needed to collect and label datasets, 
which are typically collected using fi eld mea-
surements.

Nevertheless, some open datasets are publicly 
available, and synthetic ones can be generated 
using network simulators (prior to validation on a 
real deployment).

Support for Heterogeneous Data Sources 
(ML-2): To be successful, ML-based network man-
agement solutions need to pull data not only from 
the network stack but also from the applications 
and services running on the network so that the 
impact of such applications (e.g., tele-medicine) 
on network confi guration or optimization can be 
assessed. Future IEEE 802.11ax-based WLANs will 
by themselves be a huge source of highly distrib-
uted monitoring data. Given the expected num-

FIGURE 1. Residential, enterprise, and industrial aiOS deployment scenarios.
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ber of hotspots in the coming decades, this could 
easily outpace the data generated by 5G and 
beyond networks. It is also worth mentioning that 
different data gathering systems may deal with 
different constraints in terms of data timestamping 
and retention, which are two key aspects to con-
sider for training/updating ML models.

Support for Current and Future ML Tool-
boxes (ML-3): The success of ML in many fields 
has led to a rich set of libraries that simplify the 
application of ML solutions to a variety of prob-
lems. Such libraries also shield programmers from 
the complexities of the hardware acceleration 
tools, such as graphics processing units (GPUs) 
or field programmable gate arrays (FPGAs). On 
the downside, due to their success, these libraries 
evolve at a very high pace. Hence, it is crucial for 
an AI-based resource management platform for 
SD-WLANs to shelter network experts from the 
low-level details of the ML toolkits. Conversely, 
great care is required in abstracting the expected 
outputs (i.e., the knobs of the network configu-
ration that the ML solutions must turn and tune).

Training Time (ML-4): Training time refers 
to the time needed to build an ML model from 
the available datasets. This includes offline train-
ing and re-training while new data are gathered. 
This process can be slow, especially if the initial 
training set is big. Moreover, due to the stochas-
tic nature of the channel, the behavior of wire-
less networks is highly volatile, which can cause 
offline trained models to fail to generalize when 
deployed in the field. One way to address this 
problem is by using federated learning to train 
different models at distributed sites, consolidate 
them at a central site, and then redistribute the 
consolidated model. Another option is to leverage 
reinforcement learning, which, instead of retrain-
ing, adapts its behavior on the basis of past deci-
sions following the punishment/reward model.

network-relAted chAllenges
Ease of Use (N-1): In order for AI-empow-

ered SD-WLANs to be adopted in a wide range 
of use cases and scenarios, popular AI concepts 
and tools need to become an integral part of the 
development pipeline of SDN experts. If we draw 
a parallel with the everything-as-a-service concept 
that reshaped cloud computing by encapsulat-
ing the management of complex infrastructures 
behind a service-based model, we need an ML-as-
a-service model providing SDN developers with 
easier access to the most relevant ML toolkits for 
the problem they need to tackle. Such toolkits 
should also be integrated with the current net-
work management workflows and best practices.

Interpretability (N-2): One of the key chal-
lenges limiting the inclusion of ML in wireless 
and mobile networks is the interpretability of the 
results. Operators are reluctant to deploy black-
box solutions that make the network even harder 
to debug. State-of-the-art ML solutions impose a 
trade-off between highly accurate but non-inter-
pretable models (suitable for nonlinear relation-
ships and requiring long computation times) vs. 
interpretable but not very accurate models (suit-
able for linear relationships and more computa-
tionally tractable). The former category comprises 
approaches such as deep learning, while the latter 
covers regression and classification techniques. A 

particularly promising solution is random forest 
(and derivatives), which combines interpretability, 
fast training, and a relatively good ability to gener-
alize results [7].

Computational Complexity (N-3): It refers to 
the complexity of using a trained model. Some 
techniques, such as deep learning, are very 
demanding in terms of computational and storage 
resources, and this can be a challenge in certain 
deployments. For example, the expected deluge 
of Wi-Fi hotspots and small 5G cells will not be 
able to use, due to cost and power consumption 
requirements, specialized hardware to run com-
plex ML models. Large macrocell deployments 
already have a notable power consumption foot-
print coupled with generally larger deployment 
sites. In such cases, deploying specialized acceler-
ation units might be a better option. Moreover, it 
is reasonable to assume that in time the hardware 
required to support ML solutions will be embed-
ded in the FPGAs already used by vendors in their 
products.

Support for Multiple Radio Access Technolo-
gies (N-4): Something that is closely related to the 
heterogeneous data sources challenge is support 
for a diverse ecosystem of radio access technol-
ogies (RATs). In fact, it is expected that 2G (3G 
could be the first technology to be withdrawn), 
4G, 5G, Wi-Fi, and beyond 5G networks will coex-
ist for decades to come. This requires the AI-based 
management platform to interface with highly het-
erogeneous technologies, each characterized by 
very different design choices. If we just consider 
the MAC layer, networks use time-division multiple 
access (TDMA) in 2G, carrier sense multiple access 
with collision avoidance (CSMA/CA) in Wi-Fi, 
orthogonal frequency-division multiple access 
(OFDMA) in 4G, and mixed numerology in 5G.

ml-bAsed ArchItecture
The aiOS architecture is based on the open 
next-generation RAN envisaged by O-RAN [6], 
which seeks to extend the control/user plane 
decoupling with AI-empowered radio control, 
hardware and software openness, and virtualiza-
tion. With this in mind, below we describe the 
main components of aiOS, as depicted in Fig. 2, 
and how the challenges discussed in the previous 
section are tackled.

Multi-RAT Protocol Stack: This includes var-
ious network elements based on Wi-Fi, 4G, and 
5G that are able of distributing the load across 
several (possibly disaggregated) nodes. 

Challenges addressed: This diversified deploy-
ment tackles the N-4 (support for multiple RATs) 
and ML-2 ({heterogeneous data sources) challeng-
es, allowing per-user and per-node RAN telemetry 
to be pushed to the near-real-time RIC through 
the standard E2 interface.

Near-Real-Time RIC: This implements control 
functions on the order of 10 ms–1 s, and compris-
es two main elements:
• Applications Layer. This is a software layer 

comprising network applications called 
xApps in O-RAN terminology. The xApps 
control one or several radio management 
operations by exchanging data with the 
infrastructure devices over the E2 interface. 
Examples of these applications are mobility 
management and frame size selection. 

To be successful, ML-based 
network management solu-
tions need to pull data not 

only from the network stack 
but also from the applica-

tions and services running 
on the network so that the 

impact of such applications 
(e.g., tele-medicine) on 
network configuration 
or optimization can be 

assessed.

CORONADO_LAYOUT.indd   57CORONADO_LAYOUT.indd   57 3/29/21   5:11 PM3/29/21   5:11 PM

Authorized licensed use limited to: UNIVERSITY OF TWENTE.. Downloaded on May 17,2021 at 13:45:58 UTC from IEEE Xplore.  Restrictions apply. 



IEEE Communications Magazine • March 202158

• Core. This embeds the network intelligence 
and per-user near-real-time functions. The 
information fl ow is divided into six steps. In 
Step 1, the RAN manager collects near-real-
time RAN telemetry by capturing the state of 
the underlying infrastructure and storing it in 
the radio-network information base (RNIB). 
In Step 2, the ML core is fed with these new 
raw data. The time series manager is the fi rst 
entry point, and is responsible for process-
ing the data from the RNIB, and for provid-
ing the ML core with a merged and clean 
dataset. This processing combines possibly 
non-synchronized data sources (e.g., from 
various APs) and weights historical data and 
new data. After that, the ML core produc-
es a fi ltered dataset that can be used off line 
by any ML framework to build a model. In 
Step 3, the ML core stores the new model 
in the ML models catalogue, while in Step 
4 it onboards the model in the applications 
catalogue as an xApp. In Step 5, the xApp 
is deployed in the applications layer. Final-
ly, in Step 6 the output of the application 
is forwarded to the RAN manager for RAN 
reconfi guration. Note that although Steps 1 
to 4 correspond to the ML pipeline, Steps 5 
and 6 are identical for the deployment and 
reconfiguration of standard and intelligent 
xApps. This is highlighted in Fig. 2 by dashed 
lines. 

Challenges addressed: The modular design 
eliminates the need to perform the entire ML 
pipeline on the network nodes, reduces compu-
tational complexity (challenge N-3), and facilitates 
the support of future ML toolboxes (challenge 
ML-3). Furthermore, it enables ease of use (chal-
lenge N-1) and interpretability for networking 
experts (challenge N-2), and allows them to recti-
fy the decisions made by ML engines.

Orchestration and Automation: This builds on 
cloud components acting as a single distributed 
system  (from edge to data centers). This layer is 
orchestrated by the non-RT RIC and implements 
above-1-s functions such as confi guration, inven-
tory, and policy management. The standard A1 
interface allows the specification of individual 
control policies on the RAN and their conveyance 
for runtime execution.

Challenges addressed: Besides the deploy-
ment of network policies and reconfi guration, this 
layer allows ML models to be trained at the edge 
or in data centers. Consequently, training time
(challenge ML-4) is greatly reduced by leveraging 
powerful cloud sites. Moreover, clean data from 
other sources (e.g., operational networks) can be 
inserted, enabling dataset availability (challenge 
ML-1).

AdAptIVe frAme AggregAtIon usIng AIos
In this section we describe an xApp designed 
to assess the viability of aiOS in a network man-
agement task of practical relevance, namely 
data-driven adaptive frame aggregation in IEEE 
802.11-based SD-WLANs. The xApp has been 
implemented and validated on a Wi-Fi testbed.

descrIptIon
The channel access of 802.11 incurs a high over-
head given its contention-based nature. Figure 3 
depicts an example of this issue when transmitting 
three packets, where the overhead accounts for 60 
percent of the airtime. To overcome this, the stan-
dard incorporates frame aggregation by employing 
two techniques: the aggregated MAC service data 
unit (A-MSDU) and the aggregated MAC proto-
col data unit (A-MPDU). Figure 3 shows the huge 
chunk of airtime saved by A-MSDU aggregation. 
However, both techniques are too rigid as they 
define a fixed frame size. Figure 4 shows how, 
under diff erent channel conditions determined by 
different distances from the AP and modulation 
and coding schemes (MCSs), diverse frame sizes 
provide the best goodput for each user, which is 
where aiOS’s data-driven capabilities prove their 
worth by adapting the frame length on a per-user 
basis.

On the basis of the in-network information 
made available by aiOS, we designed off line ML 
models to adapt the per-user frame length to max-
imize network goodput. We took as reference 
the Random Forest Regressor (RFR) and M5P 
ML models, which were deployed as xApps, as 
shown in Fig. 2. To ensure standard compatibili-
ty, the frame size was only adapted in the down-
link direction. The deployment considered a Wi-Fi 
network comprising one AP, N static stations 
connected in downlink, and M static stations in 
uplink representing background traffi  c. The AP is 
based on a PCEngines ALIX 2D board mounting 
an Atheros AR9220 Wi-Fi interface and running 

FIGURE 2. aiOS reference system architecture based on O-RAN standards.
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OpenWRT 18.06.04. The AP, which was config-
ured on channel 36 and free from external inter-
ference, had a fixed location, while the stations 
were placed randomly. For the training phase, the 
aggregated downlink bit rate was 20 Mb/s, and 
the uplink bit rate was 1 Mb/s. The frame size 
was set to 200 B, with a maximum aggregation 
length of 3839 B. From this dataset, the variables 
selected for the models’ construction were the 
channel utilization, and specifi c information of the 
MCS, for example, success probability, attempted 
bytes in the last 100 ms, and expected throughput 
in perfect channel conditions. Please refer to [7] 
for more details about the training.

performAnce eVAluAtIon
The evaluation considered two scenarios covering 
homogeneous (Scenario 1) and heterogeneous 
(Scenario 2) channel conditions. In Scenario 1, 
the stations were placed at 20/30 m from the AP, 
while in Scenario 2 the distance was 20/50 m. 
The evaluation took the basic frame transmission 
as baseline and compared the goodput improve-
ment achieved by the standard A-MSDU aggrega-
tion, the M5P model, and the RFR model for an 
increasing number of stations in downlink.

Figure 5 shows that the basic transmission 
always off ers the lowest performance because of 
the high overheard induced by small payloads. As 
depicted in Fig. 5a, in Scenario 1 the ML models 
outperform A-MSDU aggregation due to their 
continuous size adaptation to the network sta-
tus. In contrast, the use of a fixed size results in 
a greater number of errors in the transmissions. 
Moreover, the improvement achieved by the ML 
models increases with the number of stations due 
to their greater effi  ciency in dealing with channel 
congestion. Figure 5b, which corresponds to Sce-
nario 2, compares the same mechanisms under 
heterogeneous channel conditions. Similarly to 
the previous scenario, the M5P and RFR mod-
els outperform the standard mechanisms. In this 
case, the goodput improvement is comparatively 
lower for three and four stations because multiple 
stations are using a lower MCS given the greater 
distance, thus increasing the channel utilization. In 
general, RFR provides the best results as it is more 
suitable for problems with high variance and high 
bias such as those found in wireless networks, in 
which channel conditions greatly vary.

The results demonstrate that the relative 
goodput improvement with respect to the stan-

dard mechanisms is higher in heterogeneous 
conditions. Note that although the improvement 
is higher in the homogeneous scenario, the het-
erogeneous case is much more significant as it 
more closely resembles a real-life environment. 
This fact proves the relevance of AI-based net-
work management when taking as input real-time 
in-network information such as that provided by 
aiOS. 

dIscussIon And future chAllenges
AI-enabled SDN is a promising paradigm for 
future wireless and mobile networks. In this 
article, we introduce aiOS, which is an AI-na-
tive platform for control and management 
policies in SD-WLANs. aiOS, whose design pil-
lars are high-level abstractions, unified data 
models, and well-defined interfaces, is well 
suited to serve the needs of different verticals, 
including residential, enterprise, and industri-
al deployments. In particular, we have shown 
how aiOS can be used to dynamically adapt 
the frame aggregation length in IEEE 802-11-
based SD-WLANs.

Currently, aiOS supports only off line and cen-
tralized model construction. However, we are 
already working on larger volumes of data collect-
ed from multiple sites to extend aiOS with online 
and federated learning capabilities. We expect 

FIGURE 3. Overhead savings in IEEE 802.11 channel access enabled by frame aggregation.
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FIGURE 4. Goodput vs. frame length for various distances and MCSs.
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this to allow aiOS to react more promptly to 
changes and provide more accurate decisions in 
a timely manner, as the models will be updated 
constantly with new batches of data. 
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FIGURE 5. Goodput improvement for an increasing number of stations: 
a) homogeneous channel conditions; b) heterogeneous channel 
conditions.
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Currently, aiOS supports 
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model construction. Howev-
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and federated learning 
capabilities. We expect this 
to allow aiOS to react more 
promptly to changes and 

provide more accurate deci-
sions in a timely manner, as 
the models will be updated 

constantly with new 
batches of data.
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