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A port-Hamiltonian model for compressible Newtonian fluid dynamics is presented in entirely coordinate-independent
geometric fashion. This is achieved by use of tensor-valued differential forms that allow to describe the interconnection
of the power preserving structure which underlies the motion of perfect fluids to a dissipative port which encodes New-
tonian constitutive relations of shear and bulk stresses. The relevant diffusion and the boundary terms characterizing
the Navier-Stokes equations on a general Riemannian manifold arise naturally from the proposed construction.

I. INTRODUCTION

Fluid mechanics continues to pose challenging problems
of theoretical and practical interest in both the mathematical
sciences and engineering applications. This article adds geo-
metric techniques from the theory of open dynamical systems
to this toolbox. In particular, it provides a complete geomet-
ric decomposition of the Navier-Stokes equations into energy-
exchanging subsystems.

The classical Hamiltonian theory of fluid dynamics1–5, can
only describe conservative systems with no energy-exchange
with their environments.

While this is useful for analysing a system that is isolated
from its surroundings, it is an obstacle for any practical ap-
plications in which energy exchange with other systems or
system components is an inevitable feature, such as the sim-
ulation and control of multi-physical systems. A versatile
and powerful treatment of such systems requires an exten-
sion of Hamiltonian theory, which can deal with open sys-
tems and how they are interconnected. The currently best un-
derstood such extension is the port-Hamiltonian framework6,
which employs a mathematically sophisticated theory of Dirac
structures to describe the power exchange between open sub-
systems. In this framework an interaction between two sys-
tems is characterised by the reciprocal bilateral influence the
systems have on each other, and as a consequence the en-
ergy exchanged between them. This interaction takes place
through what is called a power port. Each power port con-
sists of two dual variables, called an effort and flow, whose
duality pairing represents the power flowing between the two
interacting systems. The port-Hamiltonian formulation is in-
strumental to interconnect the fluid dynamic system to other
physical systems (of possibly different domains) in a way that
intrinsically satisfies the energy continuity between the sys-
tems. This provides a canonical starting point for the gen-
eration of a modular multi-physics network framework that
includes Newtonian fluids.

The straighforward adaptability of the port-Hamiltonian
framework, to which the results of this paper are just fur-
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ther testament, stems from its original purpose to apply gen-
eral network theory to subsystems provided by dynamical
systems. It is now mature in its mathematical foundations
and has been applied to a vast variety of dynamical systems.
Paramount to our use in this article, port-Hamiltonian the-
ory has proven very effective in the treatment of distributed-
parameter systems7 (we refer to Ref. 8 for a recent survey).

The specific aim of this work is to extend the port-
Hamiltonian formulation of ideal compressible fluids (Euler
equations), presented for the first time in Ref. 9, to Newtonian
viscous fluids (Navier-Stokes equations). The way this exten-
sion is developed is consistent with the core methodology of
port-Hamiltonian modelling: we introduce a distributed port
to interconnect the system representing ideal fluid dynamics
with a purely dissipative system that encodes the constitutive
relations peculiar of Newtonian fluids. This possibility was
envisaged informally in the aforementioned paper 9: “Energy
dissipation can be incorporated in the framework by terminat-
ing some of the ports by a resistive relation. In this way we
can represent the Navier Stokes equations.” The present work
is a geometrically thorough technical implementation of this
vision in quite useful generality, namely for fluid domains
represented by arbitrary Riemannian manifolds of any dimen-
sion. As related work, we cite the much more special case of
a flat one-dimensional spatial domain10 where reactive flows
were considered, and the fluid-solid interconnection models
based on port-Hamiltonian theory in in Refs. 11 and 12, where
simplified models for the fluid were considered.

The way to achieve the complete level of generality in this
work is by extending the differential form representation of
port-Hamiltonian fluid systems7 to tensor-valued forms and
the identification of novel duality pairings that are necessary
to extend the definition of power flows in this context. The
employment of tensor-valued forms for the geometric descrip-
tion of stress, in turn, was inspired by the treatment in Ref. 13.
While the present paper explicitly only treats Newtonian flu-
ids in order to keep the presentation focused, it is clear that
all relevant constructions lend themselves for extensions to a
larger class of fluids.

As additional contribution, we use the proposed geometric
tools to treat the fluid dynamics together with their thermody-
namic evolution, which allows us to draw conclusions on the
validity of the proposed port-Hamiltonian model with respect
to a general Fourier-Navier-Stokes fluid.

Our consistent use of differential geometric language in the
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port-Hamiltonian treatment of the Navier-Stokes equations is
essential for four reasons (see Refs 5, 14, and 15 for an ex-
position of clodes fluid dynamical systems in this geometric
setting). First, it ensures that constructions and conclusions
are free of involuntary coordinate artefacts, whose absence
otherwise had to be proven laboriously on a case by case
basis. Secondly, the differential geometric formulation con-
nects to recent results on numerical schemes that exploit alge-
braic isomorphisms between continuous quantities and their
discretization16 (we refer to e.g. Refs. 17–19 for works in
this direction). Thirdly, this provides the right tool to deal
with global questions, which cannot be addressed by formu-
lations tied to local coordinate charts. The standard vector
calculus representation of the Navier Stokes equations already
falls apart if one chooses problem adapted coordinates even in
the case of a flat fluid domain. Much more so if the domain
features a non-zero curvature or nontrivial topology.

Both is already the case for a sphere, a which is the ob-
viously relevant domain for fluid flow in many practical at-
mospheric models, where coordinate representations can only
describe the dynamics on a patch of the domain, but in-
trinsically fails to capture the evolution of the entire vector
field as a whole. Fourthly, and finally, the vector calculus
formulation of the Navier-Stokes equations does not contain
the information needed for their unique extension to curved
fluid domains20, where any naive integration of tensor-valued
forms is generically meaningless15. In order to keep the es-
sential methodology clear also for readers which are not prac-
titioners of the framework, we motivate every step taken to-
wards the construction of the port-Hamiltonian formulation of
the Navier Stokes-equations in this article.

The paper is organised as follows. In Sec. II and III an
overview of the Navier-Stokes equations will be presented re-
spectively in the coordinate-dependent and geometric case. In
Sec. IV the power balance in Newtonian fluids is calculated in
the general case, and will help the reader to understand the un-
derlying reasoning behind the definition of a port-Hamiltonian
model. The port-Hamiltonian model for ideal fluids is re-
viewed in Sec. V and in Sec. VI the novel model valid for
Newtonian fluids is presented. In Sec. VII some considera-
tions on the NS equations and the resulting energy balance are
drawn. Sec. VIII contains conclusions and future work. We
refer to Appendix B for an overview on the complete thermo-
dynamic representation of Newtonian fluids in the proposed
differential geometric language.

Notation. Standard differential geometric notation is used
throughout the article. The symbols used in this paper are as
follows. The mathematical model of fluid domains is a com-
pact, orientable, n-dimensional Riemannian manifold M with
(possibly empty) boundary ∂M. The space of vector fields on
M is the space of sections Γ(T M) of the tangent bundle T M.
The space of differential p-forms is denoted by Ωp(M) and
we also occasionally refer to 0-forms as functions, 1-forms as
covector fields and n-forms as top-forms. For v ∈ Γ(T M),
we use the standard definitions for the interior product by
ιv : Ωp(M)→ Ωp−1(M) and the Lie derivative operator Lv
acting on tensor fields of any valence. The metric-compatible
and torsion-free covariant derivative ∇v, the Hodge star oper-

ator ? : Ωp(M)→ Ωn−p(M) and the associated volume form
µvol = ?1 as well as the musical operators [ : Γ(T M)→Ω1(M)
and ] : Ω1(M)→ Γ(T M), which respectively transform vec-
tor fields to 1-forms and vice versa, are all uniquely induced
by the Riemannian metric in the standard way. When making
use of Stokes theorem

∫
M dω =

∫
∂M i∗ω for ω ∈Ωn−1(M), we

explicitly employ the linear operator i∗, sometimes referred to
as the trace operator, which is the pullback of the canonical
inclusion map i : ∂M ↪→M. When dealing with tensor-valued
forms do we adopt the additional convention that a numerical
index i ∈ {1,2} on the left or the right of a standard opera-
tor on differential forms indicates whether the operator acts
on the “first leg” (the tensor value, which in this case needs
to be a form) or on the “second leg” (the underlying form) of
the tensor-valued form on the respective side of the operator:
For an n form-valued m form α ⊗β , for instance, we define
?1(α⊗β ) := ?α⊗β and ?2(α⊗β ) := α⊗?β . For the repre-
sentation of the above concepts in terms of coordinate charts,
see Ref. 13.

II. COORDINATE-DEPENDENT NAVIER-STOKES
EQUATIONS

On flat n-dimensional Euclidean space and after having
chosen Cartesian coordinates, the momentum balance equa-
tion for Newtonian fluids can be written as the n equations

∂t(ρvi)+∂m(ρvmvi) =−∂
i p+∂mτ

mi, (1)

where all indices range from 1 to the dimension n of the fluid
domain and repeated indices are summed over. On the left
hand side of this momentum balance equation, the scalar field
ρ represents the mass density of the fluid and the vector field
components vi represent the velocity vector field of the fluid.
Both depend on time and their spatial-temporal evolution is
related by the supplementary mass continuity equation

∂tρ +∂m(ρvm) = 0. (2)

On the right hand side of the momentum balance equation,
the second rank tensor field τ models the viscous stress of the
fluid and is, for Newtonian fluids, equal to

τ
i j := λ (∂mvm)δ i j +κ(∂ iv j +∂

jvi) (3)

in terms of the fluid velocity field and two non-negative con-
stants, the so-called bulk viscosity constant λ and the shear
viscosity constant κ . Finally, the scalar field p represents
the fluid’s static pressure and is governed by thermodynamic
equations of state corresponding to the specific thermody-
namic assumptions one entertains for any given fluid. Notice,
from the right hand side of the balance equation, that we chose
to not encode the pressure p of the fluid as yet another contri-
bution to the stress tensor τ , as it is often done, but instead to
keep it as a separate quantity of thermodynamic nature. For
definiteness, we consider the extraordinarily simple case of
barotropic fluids, which are compressible fluids whose pres-
sure field p is completely determined by the mass density ρ
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and the potential U(ρ) for the internal energy density ρU(ρ)
of the fluid, by means of the equation of state

p = ρ
2 ∂U

∂ρ
(ρ) , (4)

which effectively completely decouples the fluid from the
thermodynamic domain. Since the central constructions of
the present article are not concerned with thermodynamical
issues and, indeed, can be extended to include rather generic
thermodynamics assumptions, such as those underlying the
Fourier-Navier-Stokes fluid models, the loss of generality in-
curred by our consideration of barotropic fluids is inessential
to the conclusions of this work and serves to keep the essential
constructions lean. We will comment on the relation between
the proposed model and the complete fluid model including
thermodynamics in Appendix B.

What buys the above simplicity of formulation of the mo-
mentum balance equation (1), continuity equation (2) and
the Newtonian viscous stress tensor (3) is only the combina-
tion of flatness of the underlying space and the thus enabled
choice of cartesian coordinates. This implies particular nu-
merical coincidences: The components of the metric tensor
δi j, of the inverse metric tensor δ i j and the components δ j

i
of the Kronecker symbol numerically all coincide in these co-
ordinates, δ i j = δ i

j = δi j , which, in turn, implies that also
∂ i := δ i j∂ j = ∂ jδ

i j = ∂i. This simplicity, however, comes
at the cost of seriously obscuring the coordinate-independent
nature of both the equations and the objects determined by
it. The often employed vector calculus formulation of these
equations does not repair this at all, since it only hides the
indices but does not remove the underlying assumptions of
flatness of the underlying space and the need to choose carte-
sian coordinates on top of that. We will therefore not dwell on
the above formulation but replace it in the following section
by the already known proper coordinate-independent formu-
lation of the Navier-Stokes equation. Not only does this repair
the above-mentioned shortcomings for flat domains but it also
directly generalizes the Navier-Stokes equations for fluid flow
on a curved domain.

III. GEOMETRIC FORMULATION OF THE
NAVIER-STOKES EQUATIONS

In this section we introduce the coordinate-free formula-
tion of the momentum conservation equation (1), which can
be found e.g., in Refs. 13 and 21. Whether one adheres to
a flat domain for the fluid or generalizes to an n-dimensional
Riemannian manfold, it does not make a difference for the
coordinate-independent formulation that we employ in this
work. We will hence suppose from the beginning that the do-
main is an n-dimensional Riemannian manifold M with metric
tensor g. Furthermore, in order to ensure the convergence of
all relevant integrals and the applicability of Stokes’ theorem,
we impose the physically unproblematic assumption that the
manifold is both compact and orientable.

The momentum balance equation and the definition of the
Newtonian viscous stress tensor as well as the continuity

equation take their geometrically most insightful form in this
setting when expressed in terms of differential forms of vari-
ous degrees. Indeed, instead of a time-dependent fluid veloc-
ity vector field v ∈ Γ(T M), we rather use the covector field
(i.e., 1-form)

ν := g(v, ·) ∈Ω
1(M)

and instead of the scalar field ρ , we employ the mass density
top form (i.e., n-form)

µ := ?ρ ∈Ω
n(M)

where the operator ? denotes the Hodge dual on the Rieman-
nian manifold (M,g).

The information contained in the viscous stress tensor, fi-
nally, is now encoded in a covector-valued (n−1)-form T ∈
Ω1(M)⊗Ωn−1(M). The motivation of such tensorial nature
for stress in this geometric formulation can be extensively
found in Refs. 13, 21, and 22 and the intuition is that stress,
in a continuum, needs to be integrated over a surface to get a
traction force, i.e., a covector. We are thus tempted to write
the expression for the traction force acting on an (n− 1)-
dimensional surface S ⊂M as fT =

∫
S T where the integra-

tion acts only on the "form part", i.e., the second leg of T .
However, even if we can give a component-wise meaning to
this integral on a flat space, integration of tensor–valued forms
is not defined on general Riemannian manifolds. The intuitive
reason for this is that the basis vectors on M can change from
point to point on a curved space, which does not permit fac-
toring the necessary basis vectors out of the integral. In other
terms, the sum/integration of (co)vector belonging to different
(co)tangent spaces is not a well defined operation on Rieman-
nian manifolds13,14. Instead, the quantity of interest that can
be cast into standard integration on manifolds and that will be
of fundamental importance in this work is the rate of work, or
power, generated by the stress on a surface. To define it we
introduce the useful binary operator:

∧̇ : (Ω1(M)⊗Ω
l(M))× (Γ(T M)⊗Ω

k(M))→Ω
l+k(M) (5)

taking as input two tensor valued forms with dual properties
on the first leg, which are paired producing a function, while
the forms characterising the second leg of the arguments are
simply wedged together with the usual ∧ acting on scalar val-
ued differential forms. As an example of application of this
operator, the following identity which will be used later is
valid in case α ∈Ω1(M)⊗Ωn(M) and v ∈ Γ(T M):

α∧̇v = ?ιv ?2 α, (6)

where the fluid velocity vector field v is uniquely identified
with a vector valued zero-form v ∈ Γ(T M)⊗Ω0(M).

Remark 1 The previous identification stems upon the fact
that a T M-valued zero-form is just a section of the bundle
T M, i.e., a vector field, and the space Γ(T M)⊗Ω0(M) is
to be understood as the tensor product of modules over the
ring Ω0(M). In other words Γ(T M)⊗Ω0(M) := {u1⊗ u2 |
π1 ◦ u1 = π2 ◦ u2}, where π1 and π2 are the projection maps
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over the bundles characterising the two legs of the vector-
valued form. This is the technical meaning for symbol ⊗ in
the space of vector valued forms in this paper.

We can immediately give a physical interpretation of the
power generated by stress on a surface as

PT =
∫

S
T ∧̇v. (7)

Notice that thanks to the covector valued nature of stress, this
definition provides a metric independent notion of power. In
order to write the differential momentum equation for a fluid
in this language we need a further ingredient to calculate the
net force of the stress on a volume element, playing the role
of the divergence of the Cartesian version of the stress tensor
τ in (1). The key operator is the exterior covariant derivative
d∇ : Ω1(M)⊗Ωn−1(M)→Ω1(M)⊗Ωn(M), combining topo-
logical properties of the exterior derivative d and metric prop-
erties of the Levi-Civita covariant differential ∇ associated to
(M,g). Following Refs. 13 and 23, an implicit definition of
d∇ as the following identity on the space of top forms Ωn(M)
is given as

(d∇T )∧̇v = d(T ∧̇v)−T ∧̇∇v, (8)

for any vector field v. Here ∇v ∈ Γ(T M)⊗Ω1(M) is the
vector–valued one–form representing the geometric analo-
gous of the velocity gradient in Euclidean space, and defined
as ∇v(X) := ∇X v for any vector X , being ∇X the covariant
derivative in direction X .

In terms of the geometrically well-defined quantities above,
the momentum balance equation in convective form on a com-
pact and oriented Riemannian manifold takes the manifestly
coordinate-independent form13,14,21

ν̇ +d( 1
2 ? (ν ∧?ν))+ ιvdν =− dp

?µ
+

?2d∇T

?µ
. (9)

The left hand side of (9) is the differential form representation
of the material derivative of the velocity field while the right
hand side encodes the way pressure and stress enter as force
(covector) fields in the equation.

When considering Newtonian fluids, T is composed as the
sum of a bulk stress Tλ and a shear stress Tκ , defined by

Tλ := λ (div(v)µvol), (10)
Tκ := κ(?2Lvg), (11)

where µvol is the volume form induced by the Riemannian
metric. The bulk stress Tλ depends on the divergence of
the velocity vector field div(v), defined as the function such
that Lvµvol = div(v)µvol holds true. The shear stress Tκ

is defined in order to model viscous stresses whenever the
transport of the metric under the flow of v is non-zero, i.e.,
when v fails to be the generator of a rigid body motion. In
fact Lvg extends the concept of rate of strain to Rieman-
nian manifolds. As a matter of fact, in term of components
(Lvg)i j = ∇iν j +∇ jνi, which is the natural generalisation on
manifolds of the rate of strain in (3), constructed by replacing

ordinary derivatives with covariant derivatives. It is interest-
ing to notice that, contrarily to the bulk stress, the shear stress
does not admit a formulation using scalar valued differential
forms. In fact, being Lvg a symmetric 2-rank tensor, it can-
not be represented by a scalar valued differential form, which
is by definition a totally antisymmetric tensor field. This is
ultimately the phenomenological reason why a geometric rep-
resentation of Navier–Stokes equations need to be developed
using (co)vector–valued forms.

A computation of the above stress tensor components
shows that they encode precisely the same information as τ in
Cartesian coordinates on a flat manifold, but are now defined
on any Riemannian manifold and are manifestly invariant with
respect to the choice of coordinates.

The continuity equation that supersedes (2) for the gen-
eral case of a Riemannian manifold and without coordinate
assumptions takes the simple geometric form7

µ̇ =−d(?µ ?ν), (12)

where it might aid the intuition to note that the right hand side
is identical to minus the Lie derivative Lvµ . The barotropic
equation of state, which we assumed in (4) for definiteness, is
already valid on any Riemannian manifold.

IV. ENERGY IN THE FLUID AND
ON-SHELL/OFF-SHELL POWER BALANCE

The compressible Navier-Stokes momentum balance equa-
tion (9) and continuity equation (12), together with the the
barotropic equation of state (4) we chose for definiteness, de-
scribe a system whose energy loss due to viscosity is unavoid-
able, even if the domain boundaries would not allow for any
exchange of matter or energy with the environment. If such an
exchange through the domain boundary is additionally possi-
ble, the system may experience an additional loss or gain of
energy. In any case, the system does not obey conservation
of its mechanical energy which is expressed as function of the
state variables ν and µ as:

H(ν ,µ) :=
∫

M

( 1
2 ?µ(ν ∧?ν)+U(?µ)µ

)
. (13)

composed by the sum of kinetic energy K(ν ,µ) =
∫

M
1
2 ?

µ(ν ∧ ?ν) and the potential energy. In this section we use
the momentum and continuity equations to compute the vari-
ation of the total energy in the fluid domain Ḣ, detecting the
mechanisms which contribute to a non zero power flow in the
system. Such a failure of the energy functional to be a com-
plete generator of the time evolution of a system is the defining
hallmark of a system that exchanges energy with its environ-
ment. The description of such systems is trivially beyond the
scope of generalised Hamiltonian theory and requires a port-
Hamiltonian treatment instead.

Conscious of the fact that port-Hamiltonian theory does not
represent yet a consolidated framework in physics and dy-
namical system theory, we introduce some terminology which
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aims at helping the reader in understanding the basics of port-
based thinking. This terminology is not standard in the port-
Hamiltonian literature, but we believe it is extremely useful
to understand the role of the key geometric object character-
ising a pH system, called Stokes Dirac Structure (SDS), for
non practitioner readers. Consider the energy functional (13),
dependent on the state variables ν and µ , also called energy
variables in the port-Hamiltonian framework. The formal ex-
pression for the time derivative of this functional in case of
fixed spatial domain (i.e. M does not change in time) is

Ḣ =
∫

M
δν H ∧ ν̇ +δµ H ∧ µ̇, (14)

where δ(·)H indicates the variational derivative of H with re-
spect to the energy variables, which correspond to differential
forms with a complementary degree with respect to the energy
variables and are referred to as co-energy variables. The vari-
ational derivatives (see Refs. 7 and 24 for a proof) of H with
respect to the energy variables are

δν H = ?µ ?ν ∈Ω
n−1(M),δµ H = 1

2 ? (ν ∧?ν)+h ∈Ω
0(M) ,

(15)
where h = ∂

∂?µ
(?µ U(?µ)) is the specific enthalpy, which for

barotropic fluids is related to pressure by means of the identity

dh =
dp
?µ

. (16)

Notice that the co-energy variables carry a clear physical
meaning, i.e., δν H is the mass inflow over a surface and δµ H
is the known as the Bernoulli function. We refer to (14) as
off-shell expression of the power, since it does not involve the
equations of motion (i.e., the continuity equation and the mo-
mentum equation), but only the knowledge on the functional
H, its energy variables, and the variational derivatives.

In contrast, we call on-shell expression of the power, the
one obtained by substituting the equations of motion (9) and
(12) in the time derivative of the energy variables in (14). This
distinction, which might seem redundant at first sight, is at
the core of pH theory, since the SDS will be defined based
on this distinction. The key to identifying the elements of
the port-Hamiltonian description of a system is then to equate
the off-shell expression for the rate of change of the energy
functional representing continuity of energy with its on-shell
expression. Now, skipping hereafter the proof which can be
found in Appendix A, equating the off-shell expression (14) to
its on-shell version, i.e., using the equations of motion (9) and
(12) in order to replace ν̇ and µ̇ , we obtain the off-shell/on-
shell power balance

∫
M

δν H ∧ ν̇ +δµ H ∧ µ̇︸ ︷︷ ︸
Off-shell Term (Ḣ)

=
∫

∂M
i∗(−?µ ?ν)∧ i∗( 1

2 ? (ν ∧?ν)+h)︸ ︷︷ ︸
Boundary Term present also in Ideal Fluids (Ḣ2)

+
∫

∂M
i∗(?Tλ )∧ i∗(?ν)︸ ︷︷ ︸

Bulk Boundary term (Ḣ3λ )

+
∫

∂M
i∗(Tκ ∧̇v)︸ ︷︷ ︸

Shear Boundary Term (Ḣ3κ )

+

− λ

∫
M
(div(v))2

µvol︸ ︷︷ ︸
Bulk Distributed Term (Ḣ3λ )

−κ

∫
M

1
2 〈〈Lvg,Lvg〉〉µvol︸ ︷︷ ︸

Shear Distributed Term (Ḣ3κ )

(17)

where we define the quadratic form on the geometric rate of
strain

〈〈Lvg,Lvg〉〉µvol := (Lvg)]1∧̇(?2Lvg).

Figure 1 summarizes the power balance (17) for later refer-
ence. The Hi terms in the parenthesis of (17) refer to the proof
of the expression, that can be found in Appendix A.

As physically expected, both forms of stress produce terms
which dissipate mechanical energy within the spatial domain,
which are non zero if the divergence of the velocity vector
field of the fluid is non zero (bulk) and the rate of deformation
of the fluid is non zero (shear).

Remark 2 It is important to remark that the shear viscosity
also presents a divergence effect in case of compressible fluid,
as a consequence of the changing in metric transport, i.e. a
vector field v whose divergence is not zero is not the genera-
tor for a rigid body motion, and as a consequence Lvg 6= 0.
The combination of both the divergence parts of the bulk and

shear components is called isotropic viscosity, which has as
coefficient the second viscosity coefficient ζ := λ + 2

3 κ (for
n = 3). The remaining part, i.e. the shear viscosity without
the divergence term, is called deviatoric viscosity. For geo-
metrical consistency we will keep on using the bulk and shear
decomposition, since concepts like isotropy are not completely
generalisable on Riemannian manifolds.

A more subtle aspect is that the differential operator encod-
ing stresses in a Newtonian fluid, also induces terms describ-
ing boundary energy flows, which are often neglected in the
literature using no-slip boundary arguments (i∗v = 0) which
would indeed nullify the boundary terms in (17). This argu-
ment however is valid only in the case the boundary of the
fluid domain ∂M would represent a physical interface between
the fluid and a rigid wall on which no slip condition apply. In
general we are interested in analysing fluid dynamics also in
more abstract situations, e.g., in case the manifold M repre-
sents a virtual control volume.

The aim of the port-Hamiltonian approach is to construct
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FIG. 1. Abstract Energy Balance for Navier-Stokes equations.

the geometric structure, the SDS, able to abstractly capture
both the computed energy balance by means of pairings of
dual variables, and the equations of motion. In this sense it
is a major generalisation of the classical Hamiltonian frame-
work, for which Ḣ = 0. The construction will be instrumental
for connecting together physical systems in a modular way,
keeping the consistency of the power balance induced in the
interconnection. For this reason it is also important not to dis-
card the boundary terms, because in general, if the fluid is de-
composed in different volumes, the no slip condition will not
in generally hold on the boundary of such volumes and there-
fore a description considering every term in (17) is needed.

In the next section we review the port-Hamiltonian model
for Euler equations, given as a definition in Ref. 7 and derived
by the authors starting from Lie group theory in Ref. 24. Start-
ing from this description we will build the port-Hamiltonian
model for NS equations augmenting the reviewed model with
a dissipative port encoding the viscous constitutive relation
characteristic of Newtonian fluids.

V. REVIEW OF PH FORMULATION OF EULER
EQUATIONS WITH DISTRIBUTED EXTERNAL FORCE
FIELD

We review the pH formulation for the barotropic Euler
equations, which coincide with the system presented previ-
ously by setting the viscous stresses T = 0. The state vari-
ables are the velocity 1-form ν and the mass form µ . The
model is generated by the Hamiltonian H(ν ,µ) in (13) which
represents the total energy in the fluid dynamic system. The
construction builds upon the definition of dual effort and flow
variables, which together constitute a power port, in the sense
that their duality product represents physical power flowing in
the system. The tensorial nature of these variables together
with their dual pairing definition is defined in Tab. I and will
be omitted in the text for improving the readability.

The Stokes-Dirac structure DE of the fluid dynamic system

is given by

DE = {( fs, f∂e, fd ,es,e∂e,ed) ∈BE|(
fν

fµ

)
=

( 1
?µ

ι]◦?(·)dν d
d 0

)(
eν

eµ

)
−
( 1

?µ

0

)
ed ,

fd =
(

1
?µ

0
)(eν

eµ

)
,(

e∂e
f∂e

)
=

(
0 1
−1 0

)(
i∗(eν)
i∗(eµ)

)
},

(18)

where the bond space BE is given by the Cartesian product
of the appropriate differential forms which can be uniquely
reconstructed using Tab. I. We define

fs =

(
fν

fµ

)
and es =

(
eν

eµ

)
.

The momentum and continuity dynamic equations(
ν̇

µ̇

)
=

(
−d(δµ H)− ιvdν + ed/ρ

−d(δν H)

)
, (19)

are recovered from (18) once we impose

es =

(
eν

eµ

)
=

(
δν H
δµ H

)
and fs =

(
fν

fµ

)
=

(
−ν̇

−µ̇

)
. (20)

with the variational derivatives in (15). Equivalently we say
that the implicit port-Hamiltonian system is defined by the in-
clusion

((−ν̇ ,−µ̇), f∂e, fd ,(δν H,δµ H),e∂e,ed) ∈DE. (21)

The assignment (20) defines the off-shell effort and flow vari-
ables, and as such depends only on the Hamiltonian func-
tion, the chosen energy variables, and the functional chain
rule, which all together express energy continuity as described
earlier. In fact (14) canonically defines dual properties in
this effort/flow pair since the variational derivative produces a
form of the complementary order of the energy variable along
which the variation is calculated (see Tab. I). The other ef-
fort and flow variables in DE are the on-shell ones, and their
definition makes the power balance associated to DE consis-
tent with the physical energy balance and produces the correct
equations of motion.

The distributed port characterised by the port variables (ed ,
fd) is designed such that ed represents the external force field
applied to the momentum balance due to in-domain body
forces. Its conjugated variable fd represents the volume flux
across any surface of the medium and its pairing

∫
M ed ∧ fd

contributes to the time derivative of the Hamiltonian.
The SDS explicits geometrically the power continuity of

the system in the sense that the following balance structurally
holds along solutions

0 =
∫

M
es∧ fs +

∫
∂M

e∂e∧ f∂e +
∫

M
ed ∧ fd . (22)

Notice that in case Euler equations are considered (i.e., impos-
ing ed = 0) this power balance exactly mimics equation (17)
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eν fν eµ fµ ed fd e∂e f∂e
Space Ωn−1(M) Ω1(M) Ω0(M) Ωn(M) Ω1(M) Ωn−1(M) Ω0(∂M) Ωn−1(∂M)
Pairing

∫
M eν ∧ fν

∫
M eµ ∧ fµ

∫
M ed ∧ fd

∫
∂M e∂e∧ f∂e

Off-shell variables On-shell variables

TABLE I. Description of flow and effort spaces and pairings for Euler equations with distributed esternal port (ed , fd).

for T = 0. In the general case (22) shows that the variation
of total energy in the system is governed by two effects: one
pairing of boundary port variables, corresponding to bound-
ary conditions of the underlying PDE, and the pairing of dis-
tributed port variables, determining the power flow in the sys-
tem due to in-domain forces, like body forces (e.g. gravity,
magnetic forces) or distributed stress forces. In the following
we will address the latter case, showing how to represent the
SDS corresponding to Navier-Stokes equations, finally mim-
icking the whole power balance (17).

Remark 3 The presented SDS is not standard in the sense of
Ref. 7, due to the state modulated term in the first diagonal en-
try of the matrix representation of the operator in (18). This
term is due to convective acceleration of the fluid and a de-
tailed derivation of it can be found in Ref. 24. Nevertheless
the term is skew-symmetric when interpreted as a bilinear op-
erator of the space of off-shell efforts es, making the term not
contribute to the total energy balance of the system. Its effect
on the power balance corresponds to the Ḣ1 term calculated
in Appendix A where (17) is proven.

Remark 4 The possibility of using the ports in the SDS to in-
terconnect the system with other systems is peculiar of the pH
framework, whereas in the standard Hamiltonian framework
the dynamics is constrained such that no open distributed port
is present (ed = 0), and the state space is constrained such that
the boundary flow, representing mass inflow at the boundary
∂M, is zero ( f∂e = i∗(ιvµ) = 0). As consequence the sys-
tem remains conservative, i.e. Ḣ = 0. We will make use of
the graphical language of bond graphs (see e.g., Ref. 24 for
a complete introduction in this context) to represent dynami-
cal systems interconnected by means of power ports as in Fig
2. The bonds (double arrows) represent the power ports on
which the dual effort and flow variables live and whose pair-
ing defines the power flow in the direction on the arrow. In
the standard Hamiltonian framework only the off-shell bond
would be present, and as a consequence the power continuity
condition encoded by the SDS would collapse to Ḣ = 0.

VI. CONSTRUCTION OF PH MODEL FOR
NAVIER-STOKES EQUATIONS

Our aim is to derive the Navier-Stokes equations, together
with its geometric SDS, by interconnection. This means that
a new resistive port element, with its resistive flow and effort
(er, fr) and its duality pairing 〈er, fr〉r needs to be defined.
The viscous constitutive relations in Newtonian fluids must
be captured by a resistive static relation er = R( fr) mapping

the resistive effort and the resistive flow such that

〈R( fr), fr〉r ≥ 0. (23)

The sign of the inequality constrains the power flow to be
always entering the resistive port, which represents the ir-
reversible transformation of energy to the thermal domain.
Therefore, the resistive element cannot generate energy and
make it flow back to the rest of the network where it is inter-
connected. Subsequently the port (ed , fd) will be used in or-
der to interconnect the conservative system (Euler equations)
to the resistive element in a power preserving way, as depicted
in Fig.2. The following interconnection procedure will shed
light on the geometric structure underlying the object marked
by a question mark, i.e., will determine how the dissipative
relation distribute energy in the system.

A. Interconnection procedure

In case of a closed manifold (∂M = /0), the interconnection
will be implemented such that∫

M
ed ∧ fd =−〈er, fr〉r =−〈R( fr), fr〉r ≤ 0, (24)

meaning that the distributed port (ed , fd) is interconnected to
the dissipative relation in such a way that the total system will
indeed dissipate energy along its solutions.

The subtle aspect, often treated superficially in the liter-
ature with boundary condition arguments, arises in case the
compact fluid container has a boundary ∂M 6= /0. In this case,
a distributed differential operator entering the dynamic equa-
tion induces a boundary term in the energy balance, which
represents the power that might flow in/out the system due
to boundary conditions associated to the differential operator.
We have seen this mechanism in the calculation of (17), where
the distributed term related to Navier-Stokes equations indeed
produces boundary terms into the power balance. Denoting
abstractly these terms by 〈e∂ r, f∂ r〉∂ r, the interconnection will
be implemented in case ∂M 6= /0 as∫

M
ed ∧ fd =−〈er, fr〉r + 〈e∂ r, f∂ r〉∂ r =

=−〈R( fr), fr〉r + 〈e∂ r, f∂ r〉∂ r , (25)

making the energy balance (22) for the total system

Ḣ =
∫

∂M
e∂e∧ f∂e−〈R( fr), fr〉r + 〈e∂ r, f∂ r〉∂ r ≤

≤
∫

∂M
e∂e∧ f∂e + 〈e∂ r, f∂ r〉∂ r , (26)
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FIG. 2. Bond Graph model for the port-Hamiltonian model for Euler’s equations with an open distributed port to be used for modeling viscous
effects. The dashed arrow shows the power continuity constraint that the SDS encodes.

which indeed holds true e.g., in (17) since the distributed dis-
sipative terms are non positive.

As discussed earlier, both the distributed dissipation port
(er, fr) and its corresponding boundary port (e∂ r, f∂ r) com-
prise of two stress contributions due to bulk and shear stresses.
We define 〈er, fr〉r := 〈eλ , fλ 〉λ +〈eκ , fκ〉κ and 〈e∂ r, f∂ r〉∂ r :=
〈e∂λ , f∂λ 〉∂λ

+ 〈e∂κ , f∂κ〉∂κ
. Thus, we can re-express (25) as

∫
M

ed ∧ fd =−〈er, fr〉r + 〈e∂ r, f∂ r〉∂ r =

−〈eλ , fλ 〉λ + 〈e∂λ , f∂λ 〉∂λ︸ ︷︷ ︸
Bulk viscosity

−〈eκ , fκ〉κ + 〈e∂κ , f∂κ〉∂κ︸ ︷︷ ︸
Shear viscosity

.

(27)

In what follows, we will guide the reader in deriving the
port-variables and their corresponding pairings in (27). We
will analyse the two constitutive equations for bulk and shear
viscosity separately. In this way it will be easier to identify the
variables playing roles in the energy balance which are gener-
ated by the specific constitutive relation under study, in favour
of a modular construction of the desired model, in which a
user can just "pick up" the desired constitutive relation.

Another advantage of this splitting is that the bulk viscosity
relation can be represented using purely scalar valued differ-
ential forms, making its port description easier. On the other
hand, defining the resistive relation for the shear viscosity will
be more challenging and are non-trivially related to the dis-
tributed port (ed , fd). In particular, the shear resistive port
variables will be represented by covector-valued forms and
thus lie in different spaces and will be coupled with a different
pairing with respect to the usual wedge pairing characterising
the (ed , fd) port. This represents a substantial generalisation
with respect to the seminal work7 where only scalar valued
forms are considered.

For both stresses, the strategy we use to define their corre-
sponding port variables and pairings relies on the power bal-
ance of the system (17), following from the phenomenological
way in which Newtonian stress forces enter the momentum
equation on a continuum.

eλ fλ e∂λ f∂λ

Space Ω0(M) Ωn(M) Ω0(∂M) Ωn−1(∂M)
Pairing

∫
M eλ ∧ fλ

∫
∂M e∂λ ∧ f∂λ

TABLE II. On-shell bulk viscosity flow and effort spaces and pair-
ings

B. Bulk Viscosity

The comparison between the bulk terms in (17) and the
generic interconnection to be achieved (25) instructs us on
how to define the resistive effort and flow variables generated
by the bulk dissipative relation. These are of both distributed
type, denoted eλ and fλ , and of boundary type, denoted e∂λ

and f∂λ . The static resistive relation is denoted Rλ . The con-
struction is achieved by defining the on-shell effort and flow
variables eλ , fλ ,e∂λ , f∂λ , their pairings, and Rλ such that

−〈eλ , fλ 〉λ =−λ

∫
M
(div(v))2

µvol (28)

〈e∂λ , f∂λ 〉∂λ
=
∫

∂M
i∗(?Tλ )∧ i∗(?ν). (29)

The definition of the proper spaces and pairing achiev-
ing the goal is shown in Tab. II. Furthermore we have
Rλ : Ωn(M)→Ω0(M) such that eλ =Rλ ( fλ )= λ ? fλ , which
makes the inequality (23) hold true for λ ≥ 0. For what con-
cerns the on-shell variable assignments we define fλ = d?ν ,
e∂λ = i∗(?Tλ ) and f∂λ = i∗(?ν). It is easily verified that this
choice satisfies (28,29).

In Figure 3 the details on the construction of the power pre-
serving interconnection between the ideal fluid port (ed , fd)
and the bulk dissipative port (eλ , fλ ) is depicted: the dis-
tributed flow − fd = − ? ν is transformed in fλ by means of
the operator−d, and enters the dissipative constitutive relation
Rλ to generate eλ = λ ?d?ν = ?Tλ (which corresponds ex-
actly to the bulk stress tensor). This variable comes back to the
system by means of the operator d, producing ed = λd?d?ν ,
which is exactly, up to division by ?µ , what pops up at the
level of momentum equation due to the bulk viscosity.

The fact that (27) holds for this construction implies that
the operator d is formally skew adjoint (or just skew adjoint
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FIG. 3. Augmenting the Euler pH model with bulk viscous forces. Left figure shows block diagram representation in case ∂M = /0, while
Right figure shows bond graph representation in the general case.

in case ∂M = /0) with respect to the defined duality pairings.
With reference to Fig. 3, the maps −d and d form together
what is called in bond-graphs and network theory a Trans-
former TF, which is a power continuous element relating
efforts and flows. The Dirac structure Dλ , shown in Fig.
3 (right), implements all the flow-effort relations described
above such that the power balance is as desired in (27), ex-
cluding the shear viscosity. The boundary variables, if inter-
preted as PDE boundary conditions, do not enter the momen-
tum equation but have an effect on the energy balance.

Remark 5 Notice that this scheme resembles exactly the
grad/div relation often used to describe constitutive equations
together with conservation laws, and the term present at the
momentum equation d ? d ?ν is indeed the manifold general-
isation of the vector calculus term ∇(∇ · v) present in com-
pressible Navier-Stokes equations on Euclidean space.

C. Shear Viscosity

We proceed analogously as for the bulk viscosity case. The
comparison between the shear terms in (17) and (25) impose
the constraints

−〈eκ , fκ〉κ =−κ

∫
M

1
2 〈〈Lvg,Lvg〉〉µvol (30)

〈e∂κ , f∂κ〉∂κ
=
∫

∂M
i∗(Tκ ∧̇v). (31)

on the definition of on-shell shear variables. The nota-
tion goes exactly like in the bulk case with a subscript κ

instead of λ . As anticipated, this time the distributed and
boundary dissipative ports must be characterised by pair-
ings which go beyond the framework of scalar valued forms.
We propose a construction in which the on-shell shear vari-
ables and their pairings are shown in Tab. III. We de-
fine Rκ : Γ(T M)⊗Ω1(M) → Ω1(M)⊗Ωn−1(M) such that
eκ =Rκ( fκ) = 2κ ?2 ◦[1( fκ). This choice makes the inequal-
ity (23) hold true for κ ≥ 0. The distributed on-shell flow is
defined as fκ = ∇v.

For what concerns the boundary port variables we can-
not proceed as in the bulk viscosity case since the pull back
does not trivially distribute over ∧̇, but only over the form
part, that is the second leg, of its arguments, i.e., i∗(Tκ ∧̇v) =
i∗2(Tκ)∧̇i∗2(v). Here i∗2 denotes the pullback on the second leg

of its argument and produces a two point tensor, in particular
i∗2(Tκ) ∈Ω1(M)⊗Ωn−1(∂M) and i∗2(v) ∈ Γ(T M)⊗Ω0(∂M).
With remark 1 in mind, the space of this two point tensor is
understood to be Γ(T M)⊗Ω0(∂M) := {u1⊗ u2 | π1 ◦ u1 =
i ◦π2 ◦ u2}, being π1 and π2 the projection maps of the bun-
dles in the two legs, and similarly for the other considered two
point tensors.

The boundary on-shell variable assignment is then defined
as e∂κ = i∗2(Tκ) and f∂κ = i∗2(v) and the pairing in Tab. III is
well defined since the definition of ∧̇ can be canonically ex-
tended for two point tensors. As for the bulk case, this choice
satisfies (30,31).

We complete the picture referring to Figure 4, in which the
details about the implementation of the interconnection are
given. The distributed flow − fd =−?ν is transformed in fκ

by means of minus the operator Φ : Ωn−1(M)→ Γ(T M)⊗
Ω1(M), defined as Φ(?ν) = ∇v, and enters the dissipative
constitutive relation Rκ to generate eκ = κ ?2 Lvg (which is
exactly the shear stress tensor Tκ ). This variable comes back
to the system by means of the operator Θ := ?2d∇, producing
the right term (up to division by ?µ) appearing in the mo-
mentum equation ed = ?2d∇Tκ . In the same sense as in the
bulk case, the operators Θ and−Φ can be considered formally
adjoint with respect to the defined duality pairings. The com-
bination of Θ and −Φ represent a transformer element, but
now with a new pairing on one side.

Remark 6 The reason why the defined boundary variables
are actually two point tensors is deeply encoded in the na-
ture of shear stress. In fact, in order to compute the power
flow at the boundary in (31), one needs to know the veloc-
ity field in a whole open neighbourhood of the boundary, and
then pull back the power density produced by the pairing of
stress and velocity field. From a practical point of view, the
pairing can be performed using limiting arguments, i.e. cal-
culating a combination of spatial derivatives of the velocity
field at the boundary on some coordinate chart. However, ge-
ometrically, these derivative, which are those encoded in the
rate of strain tensor Lvg, do not possess a purely topological
expression in differential forms that can be pulled back at the
boundary, which makes the use of two point tensor necessary
to achieve technical correctness.

Remark 7 Notice that theses geometric constructions
presents some degrees of freedom in the interplay between
the definition of the pairings and of the resistive efforts and
flows. The choice we made is to define the quantities such



10

-

FIG. 4. Augmenting the Euler pH model with shear viscous forces. Left figure shows block diagram representation in case ∂M = /0, while
Right figure shows bond graph representation in the general case.

eκ fκ e∂κ f∂κ

Space Ω1(M)⊗Ωn−1(∂M) Γ(T M)⊗Ω1(M) Ω1(M)⊗Ωn−1(∂M) Γ(T M)⊗Ω0(∂M)
Pairing

∫
M eκ ∧̇ fκ

∫
∂M e∂κ ∧̇ f∂κ

TABLE III. On-shell shear viscosity flow and effort spaces and pairings

FIG. 5. Full decomposed bond graph model of the Navier-Stokes
equations on a general Riemannian manifold with boundary.

that every variable has a clear physical interpretation, e.g.,
the distributed resistive efforts represent the stress tensors.

D. Port-Hamiltonian model of Navier-Stokes equations

We are now fully prepared to define the overall port-
Hamiltonian model for viscous Newtonian fluids, represented
using bond graphs as an interconnection of components in Fig.
5 and compactly in Fig. 6.

To summarise the construction, the following SDS DNS (in
contrast with the previous DE) constitutes the new geomet-
ric entity completely characterising Navier-Stokes equations
and the power balance of a Newtonian fluid on a Riemannian
manifold. We indicate with

fr :=
(

fκ

fλ

)
,er :=

(
eκ

eλ

)
, f∂ r :=

(
f∂κ

f∂λ

)
,e∂ r :=

(
e∂κ

e∂λ

)

R := diag{Rκ ,Rλ},Θr := (Θ d),Φr :=
(

Φ

d

)
and BNS is the appropriate bond space, which can be uniquely
derived by means of the tables. The new SDS that combines

DE,Dλ , and Dκ is given by

DNS = {( fs, fr, f∂e, f∂ r,es,er,e∂e,e∂ r) ∈BNS|(
fν

fµ

)
=

( 1
?µ

ι]◦?(·)dν d
d 0

)(
eν

eµ

)
−
( 1

?µ
◦Θr

0

)
er,

fr =
(

Φr ◦ 1
?µ

0
)(eν

eµ

)
,(

e∂e
f∂e

)
=

(
0 1
−1 0

)(
i∗(eν)
i∗(eµ)

)
,(

e∂λ

f∂λ

)
=

(
i∗(? fλ )
i∗(eν)

)
,(

e∂κ

f∂κ

)
=

(
i∗2( fκ)

i∗2(]◦?(eν))

)
}

(32)

where the resistive static relation er = R( fr) is imposed. The
structure is power continuous, in the sense that the following
power balance folds true along solutions

Ḣ =
∫

∂M
e∂e∧ f∂e + 〈e∂ r, f∂ r〉∂ r−〈er, fr〉r ≤

≤
∫

∂M
e∂e∧ f∂e + 〈e∂ r, f∂ r〉∂ r , (33)

which mimics exactly (17) once the effort and flow definitions
are substituted. As simple and physical consistent corollary
we have that in case of closed manfifold (∂M = /0) the sys-
tem is purely dissipative, i.e. Ḣ ≤ 0, and the dissipation stops
when both the rate of deformation Lvg and the divergence
div(v) of the fluid are zero.

VII. OPERATORS, VORTICITY AND POWER BALANCE
IN NAVIER-STOKES EQUATIONS

As custom in port-Hamiltonian theory, the explicit dynamic
equations can be derived after eliminating from the model the
explicit dissipative elements. This is done by directly impos-
ing the dissipative static relation in the dynamic equations af-
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FIG. 6. Compact bond graph model of the Navier-Stokes equations
on a general Riemannian manifold with boundary.

ter imposing (20). The total dynamic equations result in(
ν̇

µ̇

)
=

(
−d(δµ H)− ιvdν + Θr◦R◦Φr

ρ2 (δν H)

−d(δν H)

)
. (34)

While the continuity equation remains rightfully unchanged
with respect to Euler equations, it is interesting to look at the
momentum equation in its full generality. By substituting the
variational derivatives and the definitions of the maps, and in
particular using the form δν H = ρ ?ν , we obtain the momen-
tum equation which is based on operators acting on the veloc-
ity field:

ν̇ +d( 1
2 ιvν)+ ιvdν +

dp
ρ

=
λ

ρ
d?d?ν +

κ

ρ
?2 d∇ ?2 Lvg (35)

The right hand side in the previous equation stores in great
generality all possible extra terms that the NS equations might
assume with respect to Euler equations on a Riemannian man-
ifold.

A. The Laplacian operator

It is instructive to reduce the equation to the incompress-
ible case, in order to have a feeling on the comparison with
respect to the Laplacian operator, ubiquitous in Navier-Stokes
equations. The port-Hamiltonian formulation of ideal incom-
pressible fluids25 is slightly different with respect to the model
presented for compressible fluids due to the different role of
pressure. Here the considerations done on the equations are
unimpressed by this difference, and hence we safely use the
incompressible case for discussing some relevant aspects. It
is insightful to recall the intuitive geometric idea of the Lapla-
cian operator which is an operator calculating the difference
of a field value at a point from “an average of the field” on
a “shell of points around it”. Clearly, in a non-flat space, the
definition of this “shell” can be done in different ways, which
explains intuitively the fact that there are different choices of

Laplacian that can be made at a manifold level (we refer to the
insightful discussion in Ref. 20 and references therein).

In the incompressible case div(v) = ?d?ν = 0. The relation
between the proposed geometrical formulation and the Lapla-
cian operator is disentangled by the identity (see Ref. 13 for a
proof)

?2d∇ ?2 Lvg = ∆Rν (36)

where ∆Rν := ∆ν + 2Ric(v) is the so called Ricci laplacian,
being ∆ = −(?d ? d+ d ? d?) the Hodge laplacian acting on
differential forms, and Ric : Γ(T M) → Ω1(M) is the Ricci
tensor, a (0,2) tensor field storing curvature information of
M and completely characterised by the metric g, and as such
canonically defined on any Riemannian manifold21. Thus, the
incompressible and homogeneous (setting ρ = 1) NS equa-
tions on a Riemannian manifold can be written as

ν̇ +d( 1
2 ιvν)+ ιvdν +dp = κ(∆ν +2Ric(v)), (37)

which assume the familiar form used in vector calculus (iden-
tifying the hodge laplacian with the vector calculus laplacian
acting on vector components) once a flat Euclidean space as
underlying manifold M is considered, i.e. when Ric = 0. In
this case, the “averaging” around the point can be seen to be
equal to an averaging on a surface of dimension n− 1 with
radius tending to zero. This result is consistent with many ac-
cepted versions of incompressible NS equation on manifolds
derived on the basis of operator theory only20,26.

As further insight, we rewrite the momentum equation us-
ing (36) as

ν̇ +d( 1
2 ιvν +h+

(κ−λ )

ρ
?d?ν) =

=− ιvdν− κ

ρ
?d?dν +

2κ

ρ
Ric(v). (38)

One of the advantages of the velocity representation of fluid
dynamic systems, is that the vorticity equation, i.e. the dy-
namic equation governing the closed vorticity 2-form ω := dν

and playing the role of the curl of the velocity field in vector
calculus, is simply obtained by exterior differentiating both
sides of the velocity equation. The result is

ω̇ =−Lvω−νd(
?d?ω

ρ
)+

2dRic(v)
ρ

(39)

which in the incompressible and homogeneous case becomes

ω̇ =−Lvω +ν∆ω +2dRic(v). (40)

As a consequence, only on a flat space, the incompressible
vorticity equation reduces to a pure advection-diffusion equa-
tion:

ω̇ +Lvω︸ ︷︷ ︸
advection

= ν∆ω︸︷︷︸
diffusion

. (41)
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B. The role of vector-valued forms in the energy balance

In the following we give an energy based argument on why
the developed geometric SDS is important to represent New-
tonian fluid dynamics by showing that using only the equa-
tions can lead to a non physically consistent interpretation of
the energy balance. Let us restrict to the incompressible and
homogeneous case for simplicity, even if the whole argument
is equally valid for compressible fluids. Using (37) (which
follows from (36)), we can compute the power flow due to
shear stresses in an alternative way with respect to how it was
calculated in Appendix A, as (the notation is consistent with
the proof of (17))

Ḣ3κ = κ

∫
M
?ν ∧ (∆ν +2Ric(v)).

Using the incompressibility condition and formal self-
adjointness of the hodge laplacian operator we get the expres-
sion

Ḣ3κ =−κ

∫
M
[ω ∧?ω +?ν ∧2Ric(v)]+κ

∫
∂M

i∗(ν ∧?ω),

where we remind that ω = dν is the vorticity 2-form. In this
form it possible to see a dissipative term that depends explic-
itly on the curvature of the underlying manifold, as experi-
mentally observed in e.g., Ref. 27. Equating the two versions
of the power balance we obtain the interesting identity

−κ

∫
M

1
2 〈〈Lvg,Lvg〉〉µvol +

∫
∂M

i∗(Tκ ∧̇v) =

=−κ

∫
M
[ω ∧?ω +?ν ∧2Ric(v)]+κ

∫
∂M

i∗(ν ∧?ω).

We produce the following considerations:

1. Using this second version of power balance it could in
principle be possible to represent the shear dissipative
ports using scalar valued forms only, as clearly seen
from the right side of the identity. However this would
come to the price of loosing the geometric nature of the
stress tensor in the port-Hamiltonian formulation. Fur-
thermore the distributed term

∫
M ?ν ∧Ric(v) is indef-

inite in sign, depending whether the curvature of the
manifold is positive or negative, which makes this extra
distributed port non necessarily dissipative. The reason
is that this port has no independent physical meaning at
an energy balance level, and makes sense only together
with the other terms. We conclude that the definition of
such a port would not correspond to a physical mech-
anism underlying a constitutive relation, and indeed be
against the concept of modular interconnection of sub-
systems.

2. The identity reveals an interesting connection between
the energy balance, the underlying topological proper-
ties of the spatial manifold, and the boundary terms.
Consider for example a subset of an Euclidean space as
M, i.e., Ric= 0, and a fluid undergoing a rotational rigid
body motion, i.e., the vector field v satisfies Lvg = 0

and has a constant in space non zero vorticity ω . Of
course the left hand side of the identity must be zero
because both the distributed and the boundary term are
zero. Nevertheless the vorticity ω is not zero for a ro-
tational rigid body motion and since Ric = 0 it must be
that ∫

M
ω ∧?ω =

∫
∂M

i∗(ν ∧?ω),

which means that the boundary port in this alternative
representation acts as a correcting term to make the en-
ergy balance right, at the price, again, of loosing physi-
cal insight on the stress. This example proves that even
in flat space the terms on the right hand side of the iden-
tity do not represent physical distributed and bound-
ary dissipation, but just two terms whose sum gives the
right result. Again, building the ports in the SDS on the
basis of this alternative energy balance based on opera-
tors in the NS equation would be wrong, since the ports
would not represent the way of physically interconnect-
ing the system to other systems.

3. In case of closed manifold ∂M = /0 we can deduce the
kinematic identity

1
2

∫
M
〈〈Lvg,Lvg〉〉µvol =

∫
M
[ω ∧?ω +?ν ∧2Ric(v)],

where we notice that the fact that manifold is closed
implies that Ric 6= 0.

As a conclusion, it is of utmost importance to start with the
correct geometric definition of stress in order to define the
SDS in a physical consistent way, and these arguments con-
firm that identifying the model with the equations only can
lead to misinterpretation of the terms in the energy balance.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we obtained a coordinate-invariant, port-
Hamiltonian formulation of the Navier-Stokes equations for
compressible Newtonian fluids. In particular, we showed how
the geometric modelling of shear stresses, in terms of tensor-
valued forms and exterior covariant derivatives, allows to de-
scribe a novel geometrical duality within the port-Hamiltonian
formalism that allows to describe the constitutive relations of
Newtonian fluids. This result opens up the possibility to inter-
connect Newtonian fluid models with any other physical sys-
tem in order to realise an entirely modular and multi-physical
network. Most importantly, this modelling methodology that
is based on port-Hamiltonian system theory, ensures that the
fundamental physical requirement of overall energy conserva-
tion is adhered under all circumstances.

A generalisation of the here obtained model, which in-
cludes moving fluid domains in order to be able to intercon-
nect fluid patches to solid mechanics, is under study. The
aim in reach is a complete energy-consistent fluid/solid sys-
tem that can be understood in terms of interconnected open
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boundary ports of the two subsystems28. Furthermore we are
working towards a port-Hamiltonian description of the com-
plete Fourier-Navier-Stokes fluid, described with the proposed
differential geometric language in Appendix B, where we dis-
cuss the thermodynamic ranges in which the presented model
is valid.

Finally, a practical application of the proposed framework
is the development of advanced numerical integration tech-
niques based on the thorough exterior calculus formulation
and the intrinsic preservation of the energy-consistency of the
continuous model. The promise is for this to lead to a versa-
tile energy consistent and naturally multi-physical simulation
framework.

Appendix A: Proof of (17)

Let us decomposes the on-shell rate of change of energy
into a sum Ḣ1 + Ḣ2 + Ḣ3 of conveniently chosen terms, which
we now discuss in turn. Using the identity (16), we identify
the on-shell power expression by substituting (9) and (12) in
(14):

Ḣ =
∫

M
δν H ∧ [−d( 1

2 ? (ν ∧?ν))︸ ︷︷ ︸
H2

−ιvdν︸ ︷︷ ︸
H1

−dh︸︷︷︸
H2

+
?2d∇T

?µ
)]︸ ︷︷ ︸

H3

+

+δµ H ∧−d(?µ ?ν)︸ ︷︷ ︸
H2

. (A1)

The underbrace notation identifies the single power terms that
are analysed separately. Using the identity ιvdν = ?(?dν ∧
ν), we take as the first term Ḣ1 := −

∫
M δν H ∧ ?(?dν ∧ ν)

and show that it vanishes. Indeed, using (15) and that ?α ∧
β = (−1)nα∧?β for arbitrary k-forms α,β , one obtains Ḣ1 =
(−1)n ∫

M(?µ)ν ∧?dν ∧ν = 0.
As second term we consider Ḣ2 := −

∫
M[δν H ∧ d(?( 1

2 ν ∧
?ν) + h) + δµ H ∧ d(?µ ? ν)]. Substituting the variational
derivatives (15), suing the distribution of the exterior deriva-
tive on the wedge product, and using Stokes’ theorem, one
obtains a mere surface term

Ḣ2 =
∫

∂M
i∗(−?µ ?ν)∧ i∗( 1

2 ? (ν ∧?ν)+h) , (A2)

where the pullback i∗ of the canonical inclusion map i : ∂M ↪→
M was distributed over the wedge product.

The third term collects the remaining contribution Ḣ3 :=∫
M δν H ∧ ?2d∇T

?µ
to the power balance. Note that this is the

term whose presence is synonymous with dissipation due to
viscosity and thus effects all the difference to a Eulerian
fluid, in which energy variation can indeed happen only at
the boundary of the spatial domain. We address the bulk (10)
and shear (11) stress separately by splitting the term H3 in
H3λ +H3κ .

For any smooth function f we have d∇( f µvol) = d f ⊗µvol,
which follows from the Leibniz rule together with the fact
d∇µvol = 0. As a consequence we have

?2d∇Tλ = λ ?2 (d(div(v))⊗µvol) = λd?d?ν ,

where we used the identity div(v) = ?d ? ν . This allows to
compute the energy balance for the bulk viscosity term using
only scalar valued differential forms as

Ḣ3λ = λ

∫
M
?ν ∧d?d?ν .

An integration by parts together with Stokes theorem pro-
duces

Ḣ3λ = λ

∫
∂M

i∗(?ν)∧ i∗(?d?ν)−λ

∫
M

d?ν︸︷︷︸
div(v)µvol

∧?d?ν︸ ︷︷ ︸
div(v)

,

which are the bulk terms in (17) since λdiv(v) = ?Tλ .
For the shear stress we substitute the variational deriva-

tive and apply the identity ?ιvα = (ν ∧ ?α) for α ∈ Ω1(M)
after ?ν ∧ α = ν ∧ ?α in the integral, where in this case
α = ?2d∇Tκ . Then we use the definition of the operator ∧̇
introduced in (5) with the identity (6). Overall one obtains

Ḣ3κ =
∫

M
?ν ∧?2d∇Tκ =

∫
M
?ιv ?2 d∇Tκ =

∫
M

d∇Tκ ∧̇v,

and thus, applying the definition (8) and Stokes theorem

Ḣ3κ =
∫

∂M
i∗(Tκ ∧̇v)−

∫
M

Tκ ∧̇∇v.

The shear terms in (17) are recovered by the identity
∇v = 1

2 (Lvg)]1 (see13 for a proof), and the definition
〈〈Lvg,Lvg〉〉µvol := (Lvg)]1 ∧̇(?2Lvg).

Appendix B: The role of thermodynamics: towards a
Fourier-Navier-Stokes port-based model

In this section we present an overview on the entropy pro-
duction in fluid flows using the proposed differential geomet-
ric framework and then comment on the relation with the
proposed pH model. The goal is to highlight rigorously the
physical and mathematical steps that are normally, more or
less clearly, assumed to include thermodynamic aspects in the
Navier-Stokes framework, leading to the so called model for
Fourier-Navier-Stokes fluids.

For a thermodynamic system, the first law assumes the ex-
istence of a total energy Ht =

∫
M Ht , Ht ∈ Ωn(M) which is

conserved at an integral balance level, that is

Ḣt =−
∫

∂M
i∗(ιvHt)−

∫
∂M

i∗(ιv(?p))+

+
∫

∂M
i∗(T ∧̇v)−

∫
∂M

i∗Q (B1)

where all the terms on the right hand side correspond to ad-
vection of total energy through the boundary, i.e., according to
the first law, the total energy does not have sources or sink in-
side the spatial domain M. The first term on the right hand side
corresponds to the total energy advected through the boundary
by means of a macroscopic velocity field v, the second term
expresses the external work done by static pressure, the third
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term to work done by stress T , and the fourth the heat flux
vector Q ∈Ωn−1(M).

Applying Stokes theorem and definition (8) we get the en-
ergy equation

Ḣt =−d(ιvHt + iv(?p)+Q)+d∇T ∧̇v+T ∧̇∇v, (B2)

which completes the dynamic equations governing the fluid
together with momentum and continuity equations. Newto-
nian stresses are already characterised by the previously dis-
cussed geometric relations for Newtonian fluids while the
missing constitutive relation is the one for the heat flux

Q = k ?dT, (B3)

where T ∈ Ω0(M) is the temperature field of the fluid and k
is the heat conductivity coefficient. Notice that the total en-
ergy Ht is not the Hamiltonian used before to construct the
port-Hamiltonian theory, which comprised only the recover-
able energy (i.e., the Gibbs free energy). This can be clearly
seen by noting that, for simplicity considering a manifold
without boundary, from (B1) it follows Ḣt = 0 (total energy
is conserved anyway, also if stresses are present), while in
the port-Hamiltonian model we had Ḣ ≤ 0. The total en-
ergy Ht is the sum of a kinetic energy K =

∫
M K , where

K = 1
2 ?µ(ν ∧ ?ν) ∈ Ωn(M) (which is the same used in

the Hamiltonian H) and an internal energy Ui =
∫

M U (V,S)
which depends on the extensive variables of massic volume
V := ?( 1

ρ
) ∈ Ω3 and on the extensive thermodynamic state

variable entropy S ∈ Ω3(M). In a state of thermodynamic
equilibrium it is assumed that the so called Gibbs relation is
valid, relating the entropy and other thermodynamic potentials

T δS = δU + pδV. (B4)

The "differential" δ cannot be substituted with exterior
derivative operator, since it would produce a collapsing iden-
tity on n+ 1 forms. The assumption which needs to be done
to proceed in this context is to assume that (B4) holds also
for non-equilibrium conditions in which a macroscopic veloc-
ity field v is present. This is implemented by postulating the
version of Gibbs equation

T
DS
Dt

=
DU

Dt
+ p

DV
Dt

(B5)

in which the convective derivative operator is D
Dt (·) := ∂

∂ t (·)+
Lv(·), which takes this form in the differential geometric
context due to the geometric version of Reynolds transport
theorem21. Now the dynamic equation on the internal energy
U is obtained by subtracting from (B2) the time derivative of
the kinetic part, i.e., U̇ = Ḣt − ˙K . The latter is easily com-
puted by means of the momentum and continuity equations
and it results in

˙K =−d(ιvK + ιv(?p))+(d?ν)p+d∇T ∧̇v. (B6)

After computing the subtraction we get the equation on the
internal energy

U̇ =−d(ιvU +Q)− (d?ν)p+T ∧̇∇v, (B7)

rightfully indicating that the distributed stress power T ∧̇∇v
is a source for the internal energy of the fluid. Now applying
Cartan’s formula together with the fact that U is a top form,
(B7) can be rewritten as

DU

Dt
=−dQ− (d?ν)p+T ∧̇∇v. (B8)

Now we use (B5) as a definition for the entropy. In fact sub-
stitution of previous expression therein, together with the fact
(following from the continuity equation) D

Dt V = d?ν , yields

T
DS
Dt

=−dQ+T ∧̇∇v. (B9)

To derive a very insightful form of this equation let’s apply
the identity dQ

T = d(Q
T )+

Q
T 2 ∧dT and massage (B9) in

Ṡ+d(ιvS+
Q
T
) = σT +σT (B10)

where σT = k
T 2 ? dT ∧ dT ≥ 0 is the entropy source due to

a non null temperature gradient while σT = 1
T T ∧̇∇v ≥ 0 is

the entropy source due to non conservative stresses. Notice
that the positiveness of the entropy source terms follow in this
setting by the choice of Newtonian constitutive relations for
the stress and k > 0, but in case of more complicated fluids it
represents a constraint for the constitutive relations that can
be used, since a negativeness of those terms would constitute
a violation of the second principle.

The proposed pH model does not of course capture the
whole Fourier-Navier-Stokes picture discussed in the previous
section. In fact the thermodynamic equation (B7) as separate
conservation law is not part of the model, and the total power
balance encoded in the SDS characterises only the variation of
the Gibbs free energy (in contrast to the total energy Ht ) under
specific thermodynamic constraints. In the proposed model
the constraint is implicit in the assumption of barotropic flu-
ids, for which the potential mechanical energy density U(ρ)
(in contrast to the total internal energy density U ) completely
characterises the pressure by means of the equality dh = dp

ρ
.

This assumption represents an instance of the Gibbs relation
in equilibrium condition and differs from the more general
(B4). The research on the geometric port-based structure of
the complete Fourier-Navier-Stokes fluids is being intensively
investigated (see e.g., Ref. 29 and references therein) and it
is a known fact that it does not possess a canonical pH for-
mulation, due to the non symplectic nature of the thermal do-
main. In particular, as evident from the entropy equation, the
presence of dissipative stress acts as source of entropy in the
fluid, making the assumption of barotropicity false for a ther-
modynamically isolated system. As a consequence, the pro-
posed model is valid for a non isolated system, in which a low
source of entropy keeps the entropy inside the fluid container
constant. From an engineering point of view, this scenario
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comprises all the situations of open low speed aerodynamics
systems, in which the pressure of the system can be uniquely
derived from the potential energy; or most commonly in the
incompressible case, in which the pressure does not have a
thermodynamic nature and the NS equations are effectively
decoupled from the thermodynamic domain. We remind that
a pH formulation of the latter case without viscosity (incom-
pressible Euler equations) is addressed in Ref. 25 and the up-
grade to the incompressible port-Hamiltonian Navier-Stokes
formulation follows exactly like in this work by considering
the shear stress Tκ only.
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