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Elastic Rayleigh–Plateau instability: dynamical
selection of nonlinear states

Anupam Pandey, *ab Minkush Kansal, a Miguel A. Herrada,c Jens Eggersd and
Jacco H. Snoeijera

A slender thread of elastic hydrogel is susceptible to a surface instability that is reminiscent of the

classical Rayleigh–Plateau instability of liquid jets. The final, highly nonlinear states that are observed in

experiments arise from a competition between capillarity and large elastic deformations. Combining a

slender analysis and fully three-dimensional numerical simulations, we present the phase map of all

possible morphologies for an unstable neo-Hookean cylinder subjected to capillary forces. Interestingly,

for softer cylinders we find the coexistence of two distinct configurations, namely, cylinders-on-a-string

and beads-on-a-string. It is shown that for a given set of parameters, the final pattern is selected via a

dynamical evolution. To capture this, we compute the dispersion relation and determine the

characteristic wavelength of the dynamically selected profiles. The validity of the ‘‘slender’’ results is

confirmed via simulations and these results are consistent with experiments on elastic and viscoelastic

threads.

1 Introduction

The breakup of a cylindrical liquid jet into small droplets is a
paradigmatic example of capillary action.1,2 The associated
Rayleigh–Plateau instability that triggers the break up process
is a generic mechanism for droplet formation and is extensively
used in applications involving sprays and printing.3 Such an
instability driven by surface tension is also important in
biological systems with an elastic boundary.4,5 Remarkably, it
was shown recently that bulk solid cylinders can also exhibit a
Rayleigh–Plateau instability, albeit only below a critical value of
the elastic modulus.6 Spontaneous undulations appear on
slender strands of soft agar gel, and lead to a periodic structure
with large deformations. The threshold of instability was

computed to be when the shear modulus m falls below
1

6
g=h0;

where g and h0 are the surface tension and cylinder radius,
respectively, in close agreement with experiment.6 This provides
an elegant demonstration that elastic solids, when sufficiently
soft, are shaped by capillarity in a way similar to liquid inter-
faces. Indeed, the effect of surface tension has turned out to be

essential for adhesion and wetting of soft solids,7–9 flattening
of sharp features on soft surfaces,10 and interaction and self-
assembly on soft, deformable substrates.11–14

Contrary to their liquid counterparts, however, elastic cylinders
do not pinch off to form droplets. The hydrogel threads studied by
Mora et al.6 consist of cross-linked polymer networks that
strongly deform, but which retain their integrity. By consequence,
the elastic threads evolve towards static shapes which are
characterised by large elastic deformations, where surface tension
balances the nonlinear elastic stress. As an illustration of typical
stationary profiles, we already provide some of our numerical
results in Fig. 1, which will be described in detail in the course of
the manuscript. The initial condition is a long cylinder of uniform
radius, but small numerical errors become amplified by a linear
instability to produce a non-uniform state. The various profiles in
Fig. 1 correspond to different stiffnesses, characterised by the
dimensionless number a = g/(mh0). In all cases, the final state of
the thread consists of thick bulges that are connected by thin
threads. We wish to describe these profiles in detail, in particular
how their size and spacing depend on the stiffness.

The bifurcation scenario of the instability and the subsequent
nonlinear states have been analyzed using neo-Hookean solids
augmented with a surface tension.15–18 The bifurcations are
intricate. For example, the critical shear modulus can be
adjusted by pre-stretching the thread.15 At moderate stiffness
(upper panel in Fig. 1), the resulting nonlinear states are
reasonably well described by thin cylinders that are connected
to thicker cylinders. Indeed, it was found that elastocapillary
cylinders of different radii can coexist below a critical stiffness,16
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in a process that is analogous to e.g. the coexistence of a
liquid and vapour phases. The cylinders of different radii are
connected by a transition region whose properties have been
characterised.16,17

Interestingly, similar morphologies are encountered during
the breakup of viscoelastic liquids, for example solutions of
long, flexible polymers. Typical configurations are jets of fluid
emanating from a nozzle,19 drops held between two plates
sufficiently far apart for the liquid bridge to be unstable,19 or
drops dripping from a pipette.20,21 During breakup, long threads
of liquid are observed, which become thinner over time,22 while
most of the liquid is collected into almost spherical drops, to
form the ‘beads-on-a-string’ (BOAS) configuration: large drops
connected by thin uniform threads.19 The stretching of long
flexible polymers in the thin liquid threads inhibits a rapid drop
pinch-off. When modelling the process using an Oldroyd-B
liquid, the thickness of the thread decays exponentially in time
with a timescale given by the relaxation time of the
polymer.19,23–25 From the thinning dynamics, one can therefore
infer the extensional rheology of the viscoelastic liquid.26,27

While the nonlinear states of viscoelastic liquids exhibit a
BOAS morphology, the experimental shapes on the agar gels
more closely resemble ‘cylinders-on-a-string’ (COAS), in line
with analysis.16 One might be inclined to think that this
difference is due to the different types of material: one being
dilute polymer suspensions while the solid hydrogels consist of
a fully crosslinked polymer network that is swollen by water.
Mechanically, one can distinguish these different types of
materials as elastic liquids (with vanishing storage modulus
at small frequency, G0(o - 0) = 0) versus elastic solids (with
finite G0(o - 0)). However, in the images toward the bottom of
Fig. 1, for elastic solids corresponding to very small stiffness, one
also observes BOAS in our purely elastic numerical simulations.
Indeed, in the limit of large relaxation times, the elastic stress of
the Oldroyd-B fluid is described exactly by a neo-Hookean

solid.28,29 In the context of axisymmetric jets it was shown in a
lubrication description that the transient shapes during pinch-
off in the Oldroyd-B fluid are described by slender neo-Hookean
solids,19,30–32 and this scenario was recently confirmed in a fully
three-dimensional analysis:27 a purely elastic BOAS solution was
found for neo-Hookean solids, which is identical to the similarity
solution for the transient viscoelastic thinning. The connection
between elasticity and viscoelasticity was also explored
recently,32 again using the idea that elastic cylinders of different
radii can coexist.16

In this paper, we address the question of what selects the
final pattern in the elastic Rayleigh–Plateau instability, i.e. what
determines whether beads or cylinders are formed. We wish to
describe cross-linked polymer networks, which exhibit a finite
static shear modulus; defined in terms of the storage modulus
as m � G0(o - 0). We reveal the complete set of nonlinear
equilibrium states of the resulting elastic Rayleigh–Plateau
instability. The main result is that for a given set of parameters,
COAS and BOAS morphologies can both exist. However, the
final solution is selected dynamically, and is determined from
the characteristic wavelength during the onset of the instability.

The manuscript is organised as follows. In Section 2 we start
by exploring the nonlinear final states by a slender theory based
on energy minimisation. This thermodynamic approach is
justified given that we describe cross-linked polymer networks
that reach stationary equilibrium shapes as shown in Fig. 1.
Based on this, we compute a map of all possible solutions
which we present in Section 3, and show that both COAS and
BOAS solutions can coexist for a given value of the stiffness. The
remaining question is thus to find the mechanism that selects
the morphology. In Section 4 we demonstrate that this selection
is a dynamical process: to that end we compute the dispersion
relation of the elastic Rayleigh–Plateau instability, identifying
the growth rates and the dominant wavenumber. It is shown
that the fastest growing wavelength accurately predicts the

Fig. 1 Typical stationary states resulting from the elastic Rayleigh–Plateau instability. These shapes are obtained from our dynamical numerical
simulations of elastic neo-Hookean cylinders subjected to capillarity (without invoking a slender assumption). The initial condition is a long cylinder of
uniform radius, but small numerical errors become amplified by a linear instability to produce a non-uniform state. From top to bottom, the panels
correspond to cylinders of decreasing stiffness, characterised by a = g/(mh0). The thread initially has a dimensionless radius %h = h/h0 = 1, and extends over
a finite domain from %z = z/h0 = �100 to 100. The domain was taken very long such that the finite domain-size has a limited effect on the wavelength
selected in the final pattern. Note that the simulations are symmetric around %z = 0.
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selected nonlinear state, as found in numerical simulations.
Finally, in Section 5 we lift the slender assumption and generalise
various results through conservation laws associated to
translational invariance with respect to space and material
coordinates. The paper closes with a Discussion in Section 6.

2 Slender formulation
2.1 Free energy functional

We start by developing an analytical model to understand the
capillary driven deformation of an elastic cylinder. Let us
consider an infinitely long elastic cylinder of initial radius h0.
The analysis bears a resemblance with,16,17,32 but with some
differences that enable the appearance of both ‘beads’ and
‘cylinders’ – this will be highlighted in particular in Section 3.
In line with experiment, the spatial modulations triggered by
the capillary instability are assumed to be axisymmetric. Hence,
the shape of the deformed cylinder is described by the jet
radius h(z), where z indicates the position along the thread.

The associated capillary energy follows from the surface
area, and reads

Fg ¼ 2p
ð
dz gh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h02

p
; (1)

where h0 = dh/dz. We consider the solid surface tension g to be
constant, but note that results for variable surface tensions are
easily generalised using the Shuttleworth relation.33–35 For
liquid jets an instability appears since long wave modulations
lead to a reduction of Fg. For solids, however, the modulations
induce elastic deformations that come with an elastic energy

Fe ¼ 2p
ðð

dR dZ RWðFÞ: (2)

In this expression W is the elastic energy density (per unit
reference volume), integrated over the radial R and axial Z
coordinates of the reference state, i.e. prior to deformation.
The elastic energy depends on the deformation gradient tensor
F = qx/qX, which accounts for the mapping from the reference
(X) to the current (x) configuration. For an axisymmetric
deformation field, the mapping is given by r = r(R,Z) and z =
z(R,Z). Whether or not the Rayleigh–Plateau instability appears
depends on the relative strength of the reduction of the
capillary energy as compared to the increased elastic energy.
Below we will consider a neo-Hookean solid,36 for which

W ¼ m
2
Tr F � FTð Þ � 3ð Þ. Note that the elastic energy is expressed

in reference (Lagrangian) coordinates, whereas the surface energy
is naturally expressed in current (Eulerian) coordinates. To be able
to incorporate these into a total free energy, we rewrite Fe in
Eulerian coordinates. Since we consider the cylinder to be incom-
pressible, the volume elements in both of the coordinate systems
are same, so the energy density W is the same in when expressed
on the domains of the current and reference coordinates.

In what follows we simplify the elastic energy by making use of
the ‘‘slender’’ approximation, commonly used for (viscoelastic)
liquid threads, where spatial modulations of h(z) along the jet are

slow.19 Though approximate, it has the major advantage that it
enables a detailed analytical exploration and classification of
possible nonlinear states. We will find that the slender assump-
tion is valid nearly everywhere along the jet, and we will confirm
later that the ‘‘slender’’ results are indeed fully representative of
the true elastocapillary problem.

In the slender approximation the axial stretch l, defined as
dz = ldZ, will to leading order be homogeneous across the cross-
section of the cylinder; for corrections including gradients of
stretch we refer to.17 Therefore, it can be written as a function of
the axial coordinate alone, i.e. l(z), where we prefer to use the
current axial position z as the coordinate. For an incompressible
material, the volume is preserved which means that an axial
stretch must be counteracted by a reduction of the cross-
sectional area. By consequence, the current radial position of a

point of reference coordinate R becomes r ¼ R=
ffiffiffiffiffiffiffiffiffi
lðzÞ

p
; which fixes

the radial stretching in terms of the axial l(z). In particular, for the

radius of the interface this implies h ¼ h0=
ffiffiffi
l
p

. To be consistent
with the slender approximation, we evaluate F to leading order and
find that the principal values are given by l = h0

2/h2 (axial
direction) and l�1/2, l�1/2 (radial and azimuthal directions).
This provides a major simplification, also used in:16,17 it allows
expressing the elastic energy directly in terms of h(z). Integrating
Fe over the cross-section, we obtain the total elastocapillary energy:

F½h� ¼ p
ð
dz 2gh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h02

p
þ h2WðhÞ � ph2

� �

¼ p
ð
dz 2gh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h02

p
þ wðhÞ � ph2

� �
:

(3)

Here we introduced w(h) � h2W(h) as the elastic energy per unit
length of the cylinder. For a neo-Hookean solid, the explicit
form reads

wðhÞ¼ h2WðhÞ¼ h2

2
m l2þ2

l
�3

� �
¼ 1

2
m

h0
4

h2
þ2

h4

h02
�3h2

� �
: (4)

In (3) we furthermore introduced p as a Lagrange multiplier to
impose the volume constraint, accounting for the incompres-
sibility of the material.

2.2 Free energy minimisation

We have now reduced the elasto-capillary free energy to (3), which
is a functional of h(z). One notices that the integrand only involves
h and h0, so that the minimisation can be performed using the
Euler–Lagrange equation, as e.g. in classical mechanics. Hence, we
can introduce the effective ‘‘Lagrangian’’ (omitting a factor p),

Lðh; h0Þ ¼ 2gh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h02

p
þ wðhÞ � ph2: (5)

The corresponding Euler–Lagrange equation gives an ODE for
the shape of the cylinder,

p ¼ gkþ 1

2h

@w

@h
; with k ¼ 1

h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h02
p � h00

ð1þ h02Þ3=2: (6)

Here we recognize the Laplace pressure due to the interface
curvature k, which is now complemented by an elastic
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contribution. Given that L does not depend explicitly on z, we
can use the Beltrami identity† to find an exact integral of (6),

T ¼L� h0
@L

@h0
¼ 2ghffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ h02
p þ wðhÞ � ph2: (7)

The quantity T represents the tension in the thread, the integral
of elastic and capillary stress over the cross-section – at equili-
brium, this tension is indeed constant along z to ensure a
global force balance. In the energetic description, the
‘‘conservation of tension’’ is thus a consequence of the invariance
of the free energy with respect to a translation in z. This transla-
tional invariance is of course not restricted to the slender
assumption; in Section 5 we will find that a conservation law
for both T and p can be derived beyond the slender assumption.

In what follows, we work with dimensionless variables, %h = h/h0,
%z = z/h0. The equilibrium equation thus takes the form

�p ¼ 1

�h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �h

02
p �

�h
0 0

ð1þ �h
02Þ3=2

þ a�1 � 1

2�h4
þ 2�h2

� �
; (8)

which was also derived in,19,30 along with the tension equation

�T ¼ 2�hffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �h

02
p þ a�1

1

2�h2
þ �h4

� �
� �p�h2: (9)

Here %T = T/(gh0), %p = (ph0/g) + 3/(2a), and we introduced

a ¼ g
mh0

: (10)

The parameter a is the elastocapillary number, measuring the
relative strength of surface tension to elasticity. It will be the
central parameter describing the properties of the elastic thread.

3 Equilibrium morphologies

For a given set of %T and %p we can formally integrate (9) by
separation of variables, to find the deformed shape for any value
of a. In what follows, however, the integration is done numerically.
Typical profiles are shown in Fig. 2 confirming that indeed both
the BOAS and COAS morphologies emerge within the present
formulation, upon varying %T and %p. Below we analytically derive the
key features of the two configurations, e.g. the sizes of the string,
cylinder and bead. These results are partially available in the
literature for either BOAS or COAS, but here we show how they
emerge from a single framework. This is important, as it reveals
how these different morphologies are connected in the space of
possible solutions. The combined results for BOAS and COAS will
be summarised in a regime map (Fig. 3), offering a complete
overview of the possible nonlinear states.

3.1 Cylinders-on-a-string

The experiments on Agar gel form nearly homogeneous cylinders
with two different radii. We will denote the radius of thicker part

of the cylinder by %h2 which is connected to the thinner part of
radius %h1. Assuming uniform radii away from the transition
region, the derivatives %h0 and %h00 vanish, and the expressions
for %p and %T become algebraic functions of either %h1 or %h2. The
selected pairs (%h1,%h2) can be determined by noting that both %p
and %T are constant along the entire thread; %p is a Lagrange
multiplier for the total volume while %T is an integration constant
that represents the tension inside the thread. This means that
we can evaluate (8,9) at both %h1 and %h2, and equate the resulting
values of %p and %T, which gives two equalities:

1
�h1
þ 1

a
2�h1

2 � 1

2�h14

� �
¼ 1

�h2
þ 1

a
2�h2

2 � 1

2�h24

� �
; (11a)

�h1 þ
1

a
1
�h12
� �h1

4

� �
¼ �h2 þ

1

a
1
�h22
� �h2

4

� �
: (11b)

In Section 5 below we will show that (11) is in fact exact, without
relying on lubrication ideas, in the limit that the cylindrical
parts are perfectly uniform.

For a given value of a, these provide two equations that
uniquely determine the COAS-pair ( %h1, %h2). Subsequently, we can
evaluate the corresponding values of %p and %T, and compute the
entire profile of the thread. Before discussing the results, we
note that (11a) and (11b) are the exact same conditions as
derived by Xuan and Biggins16 and Zhou and Doi,32 who used a
Lagrangian description and identified the conditions for ‘‘cylinder
coexistence’’ based on an analogy with phase separation.

The results for %h1 and %h2 are plotted in Fig. 3 as the blue
dashed lines, where the top branch represents %h2 and the
bottom branch gives %h1. Clearly, nontrivial solutions only
appear above a critical ac, marked by the open circle in Fig. 3.
This value of a is found by noting that two branches merge at
the critical point, which appears at the cylinder radius of 2�1/6

at ac ¼
ffiffiffiffiffi
32
p

; as previously pointed out by Taffetani and
Ciarletta,15 Xuan and Biggins,16 and Zhou and Doi.32 With
increasing a the thread ( %h1) becomes asymptotically thin, while
the cylinder (%h2) progressively bulges out. In the limit of large a,
corresponding to very soft cylinders, one can derive the following
asymptotic expressions32

%h1 = (2a)�1/3, %h2 = a1/3. (12)

An interesting feature already noted in15,16 is that the critical
point ac lies below the onset of instability of an unstretched
elastic cylinder, which is at a = 6 as found from linear stability
analysis.6 The values for ( %h1, %h2) at a = 6 are indicated by the
orange circles in Fig. 3. This means that for an unstreched
cylinder, the transition to COAS is discontinuous, reaching a
finite difference amplitude already at the transition. A continuous
transition is recovered when stretching the cylinder such that it
matches the radius of the critical point, %hc = 2�1/6.

A great asset of the slender approximation is that it allows for
computing the full shape of the solution by direct integration of
(9). For a chosen a, the string thickness (%h1) is found by solving
eqn (11a) and (11b), and the values of %T and %p are determined
subsequently. The profiles follow from numerical integration of

† In the Lagrangian formulation of classical mechanics, the role of z is played by
time. In case the Lagrangian does not depend explicitly on time, the Beltrami
identity implies that the Hamiltonian is constant in time and expresses con-
servation of energy.
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the resulting first order ordinary differential eqn (9) using
NDSolve in Mathematica. The results are shown in Fig. 2a.
For large a we clearly observe the COAS morphology. Upon decreasing
a the transition region between the two cylinders becomes
smoother, with an increasing width near the critical point.16

3.2 Beads-on-a-string

The possibility of spherical beads, as commonly observed for
viscoelastic liquids,19,37 is not captured in Xuan and Biggins.16

The reason for this is that the axial curvature was not incorpo-
rated into the description, due to an approximation of the

Fig. 2 Different nonlinear morphologies of elastocapillary cylinders. (a) COAS shapes for increasing a (10.08 (red), 102 (green), and 997 (black)). The sizes
of the cylinders are represented by � symbols in Fig. 3. (b) For a = 997, a gradual increase in %p results in solutions that reach a constant curvature at the
thick part giving BOAS configurations. The thread size is identical for these solutions following the scaling of (14). The sizes of the beads are represented
by open diamond symbols in Fig. 3.

Fig. 3 Phase map of the elastic Rayleigh–Plateau instability. Size of the bead, cylinder and string/thread are plotted as a function of the elastocapillary
number. The blue dashed lines represent string ( %h1) and cylinder ( %h2) for COAS configuration. For large a these solutions obey the asymptotic results of
(12). The open circle marks the critical point given by ac ¼

ffiffiffiffiffi
32
p

and %hc = 2�1/6. Beads (of sphericity greater than 60%) lie within the shaded (gray) region.
The orange solid lines represent string size ( %h1) and maximum radius ( %R) found from the slender theory for dynamically selected solutions conforming to
Rayleigh–Plateau instability, for Ohnesorge number Oh = 1 (cf. Section 4). The orange circles represent onset of the dynamic instability (a = 6). For large a,
the bead size reaches an asymptotic limit given by eqn (34) and is plotted as the black, dashed line. The green squares mark the dynamically selected
solutions found through 3-D numerics. The � symbols on blue dashed line ( %h2) represent the COAS cylinders from Fig. 2(a), while the open diamond
symbols along the vertical line at a = 997 represent the sizes of the beads in Fig. 2(b), based on their respective colors.
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surface energy. Conversely, the usual description for BOAS in
viscoelastic liquids19,38 does not capture the COAS solutions
described above, as the elastic terms associated to radial
stretching were dropped in the asymptotic analysis (specifically,
the term Bh4 in w(h)). Here we show how the beads occur within
the present formalism, which thus contains both BOAS and
COAS. As such, we can predict when these morphologies are
expected to occur in the elastic Rayleigh–Plateau instability.

First we show when spherical beads of size %R, with constant
curvature �k = 2/ %R, can appear as a solution. The pressure eqn (8)
indeed allows for constant curvature solutions, provided that the
elastic terms proportional to a�1 are subdominant. This implies
that 1/ %R c a�1 %R2, which provides an upper bound %R { a1/3. With
this, %p C 2/ %R, and we can once again make use of the fact that %p
and %T are constant everywhere along the jet. Evaluating (8) inside
the cylindrical thread of radius %hth, we obtain

2
�R
¼ 1

�hth
� 1

2a
1

�hth4
þ 2

a
�hth

2: (13)

If in addition %R is large compared to the thread radius %hth, the
leading order balance reads

0 ¼ 1
�hth
� 1

2a
1

�hth4
) �hth ¼ ð2aÞ�1=3: (14)

The analysis is based on the hierarchy of scales %hth B a�1/3 {
%R { a1/3. Hence, the BOAS solutions can only appear at large a.
For completeness, we can also compute the tension associated
to this solution, which gives %T = 3/(2a)1/3, in agreement
with.19,38

Importantly, and perhaps somewhat unexpectedly, the
thread radius %hth for the BOAS solution, eqn (14), converges
to the exact same thickness as the large a asymptotics of %h1 for
the COAS, reported in (12). This was also noticed in.32 Hence,
the thread thickness is universal in the limit of very soft
cylinders. It is therefore of interest to investigate what the
various solutions look like, by integrating (9) under the condi-
tions that a thin thread appears. This is achieved by consider-
ing small but finite values of %p; varying %p effectively controls the
volume of the solutions. The result is given in Fig. 2b, for the
case where a = 997. One observes that the string can be
connected to beads of arbitrary size, until the bead size reaches
the upper bound %R B a1/3. Then, the size of the beads
‘‘saturates’’ and gives rise to a flat cylinder, shown by the black
profile in Fig. 2b. The reason for this saturation is that the
elastic energy associated to the radial expansion, required to
form large beads, becomes comparable to the capillary energy.

3.3 Regime map

These findings are summarised in the regime map given in
Fig. 3. The COAS solutions are indicated by the blue dashed
lines, indicating the thickness of the cylinders as a function
of a. At large a, the thin thread can equally well be connected to
spherical beads as long as the bead radius %R remains below the
saturation given by the blue line. The region where BOAS can be
observed is indicated by the grey zone, which for large a spans a
very large part of the solution space. The grey zone is not

sharply defined: it is drawn by evaluating the ‘‘sphericity’’ of
the beads in the numerical profile (defined somewhat
arbitrarily by demanding khmax/2 to be larger than B60%).
We thus conclude that for moderate values of the softness, a B
O(10), only cylinder-like solutions can be observed. This
is consistent with experiments6 and previous analysis.16 By
contrast, both BOAS and COAS can appear at larger values of a.

The remaining question is, for a given value of a, which of
these solutions will be selected in an experiment, or in the
numerical simulations presented above. For each of the numerical
solutions in Fig. 1, to be discussed in detail below, we determined
the thread radius and the maximum height along the cylinder
(averaged over the various beads). The resulting values are added
to the regime map of Fig. 3 as green squares. The threads in the
numerical simulations very closely follow the prediction for %h1,
indicated by ‘‘string’’, obtained from the cylinder analysis.
However, the size of the bulges are typically much below the value
of %h2, indicated by ‘‘cylinder’’: the sizes tend towards the grey
region corresponding to BOAS. Below we explain the mechanism
that selects the bead size and derive the orange lines in Fig. 3.

4 Dynamical selection of bead size

In the Rayleigh–Plateau instability of a liquid, one can obtain a
reasonable estimate of the size of the large drops from the
dispersion relation of the linear stability analysis. The fastest
growing wavelength dictates the periodicity of the initial pattern,
which combined with volume conservation gives an estimate of
the drops. We propose the same scenario for the selection of the
bead size in the elastic Rayleigh–Plateau instability.

Below we spell out the dynamical equations, to trace the
temporal evolution from an initially homogeneous cylinder,
subject only to small perturbations such as those resulting
from numerical rounding error, to the final nonlinear states.
We discuss numerical solutions to these equations, and also
determine the dispersion relation by computing the growth rate
of small sinusoidal perturbations (with and without the slender
assumption). Subsequently, the fastest growing wavelength is
used to estimate the bead size, and show how this provides the
selection of the nonlinear state in the regime map of Fig. 3.

4.1 Numerical solution

4.1.1 Dynamical constitutive equation. To determine the
cylinder’s evolution, we need to extend the energetic formulation
to include the dynamics of the instability. We here formulate
the fully three-dimensional problem and present numerical
solutions. In the Eulerian formulation for an incompressible
medium, this is given by the mass and momentum equations

r�v = 0, (15)

r
@v

@t
þ v � rð Þv

� �
¼ r � r; (16)

where r is the density, v the velocity field and r is the Cauchy
stress tensor. For a neo-Hookean solid the Cauchy stress reads
r = mF�FT � pI, where we remind F = qx/qX is the deformation
gradient due to the mapping from reference (X) to current (x)
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configuration. Since we are now dealing with the dynamical
evolution, the mapping x(X,t) is time-dependent. To relate the
mapping, needed for the neo-Hookean stress, and the velocity
v, we use,39

@X

@t
þ v � rX ¼ 0; (17)

where X(x,t) is the inverse of the mapping.

Importantly, the dynamics (16) for a neo-Hookean solid is
purely conservative: to reach a thread at a stationary state, one
needs to include mechanism that dissipates the elasto-capillary
energy that is liberated after the instability sets in. In experiment,
the dissipative mechanism is material specific, and could e.g.
be rather different when comparing elastomeric and hydrogel
cylinders. Here we choose to simply add a (Newtonian) viscous
contribution to the stress, so that

r = �pI + Z(rv + rvT) + m(F�FT � I), (18)

where Z is the viscosity. This choice is natural in relation to the
BOAS formation observed for viscoelastic liquids. Namely, as
shown in,29 the constitutive relation (18) corresponds to the
Oldroyd-B model for viscoelastic liquids, taken in the limit of
infinite relaxation times. More specifically, the Oldroyd-B
model has two viscosities (Z for the solvent and Zp for the
polymer), complemented by a polymer relaxation time t. Here we
consider the limits Zp - N and t - N, while keeping the ratio
m = Zp/t constant. The model thus contains no polymer relaxation,
and the remaining parameters are the static elastic modulus m
and a solvent viscosity Z; the corresponding elastic and viscous
forces act ‘‘in parallel’’ as is the case for the paradigmatic Kelvin-
Voigt solid. Once a steady-state is reached, the viscous term
vanishes and (18) reduces to the neo-Hookean solid of modulus m.

Below we report the results in dimensionless form. All
lengths are again expressed in terms of h0, and the ratio of
elasticity to capillarity expressed by a = g/(mh0). The appearance
of inertia now gives rise to a capillary timescale (rh0

3/g)1/2,
which will be used to scale the growth-rates. The relative
importance of viscous dissipation is then expressed via the
dimensionless group,

Oh ¼ Zffiffiffiffiffiffiffiffiffiffi
rgh0

p ; (19)

which is the Ohnesorge number. We reiterate that despite the
appearance of a viscosity, the model does not describe a fluid,
but rather a solid that dissipates energy during its evolution to
equilibrium.29

4.1.2 Numerical method. We numerically solve the fully
three-dimensional problem, but make use of the fact that
profiles are axisymmetric. We then write the problem in
cylindrical coordinates (R,Z) and (r,z), respectively corres-
ponding to reference and current configurations. The corres-
ponding deformation tensor is F = (qr/qR)er#er + (qr/qZ)er#ez +
(qz/qR)ez#er + (qz/qZ)ez#ez + (r/R)ey#ey. To improve the
stability of the method, it is convenient to replace the

incompressibility eqn (15) by

detF ¼ r

R

@r

@R

@z

@Z
� @r

@Z

@z

@R

� �
¼ 1: (20)

However, the stress boundary conditions at the free surface are
expressed in their Eulerian form

n�r = �gkn, (21)

where k is again (twice) the mean curvature and n the surface
normal. Denoting h(z,t) as the thread profile, the kinematic
boundary condition becomes

@h

@t
þ vzðh; zÞ

@h

@z
¼ vrðh; zÞ: (22)

At z = 0 we impose symmetry conditions

vz ¼ 0;
@vr
@z
¼ @h
@z
¼ 0; (23)

while regularity at r = 0 requires

vr ¼
@vr
@r
¼ 0: (24)

Owing to the symmetry, the problem is resolved only on the
domain from z = 0 to z = L.

We have performed two types of simulations. On the one
hand, we simulate cylinders of large but finite length. This is
done by introducing no-slip boundary conditions at z = L,

vz = vr = 0, h = h0. (25)

We are interested in observing the natural wavelength that is
selected by the nonlinear evolution equations. To restrict
effects due to a finite length of the cylinder, we therefore take
a large domain, L = 100h0, which admits a broad spectrum of
wavelengths to develop. On the other hand, we performed a
numerical linear stability analysis for an infinitely long cylinder.
Both problems are solved numerically using a mapping technique
that is a variation of40 for interfacial flows and extended in27 for
viscoelastic fluids. Details are provided in Appendix A.

4.1.3 Numerical results. Fig. 1 shows the stationary states
achieved for decreasing stiffness, from a = 10 to a = 500. The
Ohnesorge number was kept constant, at Oh = 1. Each of the
simulations starts from a homogeneous cylinder with vanishing
elastic stress, whose small numerical perturbations are
amplified by a linear instability. The instability is triggered by
a release of elasto-capillary energy, which initially is converted
into motion. Owing to the viscous term, this energy is
dissipated and leads to the steady patterns shown in Fig. 1.

Clearly, the thickness of the thin thread decreases when the
material becomes softer, i.e. with increasing a. The thread
thickness measured from the simulations is plotted in the
regime map of Fig. 3 as green squares, and it very closely
follows the predicted thickness of the slender theory, indicated
by ‘‘string’’. The size of the bulges are also reported as green
squares. For a = 10, which is within the experimental range for
Agar gels,6 the bulge size is close to the ‘‘cylinder’’ analysis by.16

However, for large a the bulges are much smaller than
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predicted in the cylinder analysis, and we approach the BOAS
regime.

The simulations in Fig. 1 were performed on a large domain
to allow for the natural selection of a wavelength of the final
pattern. Though the restrictions by the finite size lead to a
variable spacing between the drops, we clearly observe a
decrease in characteristic wavelength as a increases. To further
investigate this, we numerically determined the dispersion
relation by a linear stability analysis of the dynamical system, by
computing the growth rates o for an infinitely long cylinder, with
a superimposed sinusoidal perturbation of small amplitude.
We refer to Appendix A for details.

The results for Oh = 1 are shown as the symbols in Fig. 4, for
varying a. The results are plotted in dimensionless form, using
�o = o(g/(rh0

3))�1/2 and %q = qh0. Indeed, we see that the
wavenumber with maximum �o increases with a, which is
consistent with a decreasing wavelength of the pattern. These
trends will be commented in detail below using analytical
results from a slender dynamical analysis.

4.2 Fastest growing wavelength in the slender approximation

We now analyse the dynamical eqn (15) and (16) in the
slender approximation. The approach is inspired by the slender
formulation for viscoelastic fluids,38 but taken for infinite
relaxation time to account for the neo-Hookean character. The
slender (lubrication) approximation for thin threads requires two
fields: the thread radius h(z,t) and the axial component of velocity
v(z,t) � vz(z,t). In the slender approximation, these fields depend
only on the axial coordinate z. Mass conservation then gives

@h2

@t
þ h2v
� � 0

¼ 0; (26)

which is complemented by the axial momentum conservation,

r
@v

@t
þ vv0

� �
¼ � 1

2ph
dF
dh

� � 0
þ3Z

h2v0
� � 0
h2

: (27)

The first term on the right can be viewed as the pressure
gradient driving the flow, containing both capillarity and
elasticity. Here we explicitly write it in a variational form, based
on the functional derivative of F. This offers a natural way to
connect to the energy minimisation scheme that is employed in
the first part of the paper, where we computed the stationary
states. Working out the functional derivative, the momentum
equation becomes

r
@v

@t
þ vv0

� �
¼ � gkþ 1

2h

dw

dh

� � 0
þ3Z

h2v0
� � 0
h2

: (28)

When combined with (4), the above equation is nearly of the
same form as the lubrication equation in,38 used for the
Oldroyd-B fluid with infinite relaxation time. The only difference
is that in (4) we retained the term Bh4 in w(h). This term is
negligible in the BOAS regime, but not in general. Specifically, it
turns out to be critical to explain the threshold of the elastic
Rayleigh–Plateau instability.

We now proceed via a standard linear stability analysis. For
this we introduce dimensionless variables, again scaling all
lengths on h0 and introducing the dimensionless wavenumber
%q = qh0. Similarly, we define the dimensionless growth rate �o =
o(g/(rh0

3))�1/2 based on the (inverse) inertia-capillary time. We
then consider small perturbations,

%h(%z,%t) = (1 + ee�o%t cos %q%z), %v(%z,%t) = %v0ee
�o%t sin %q%z, (29)

retaining only terms linear in e. Mass conservation (26) then
gives the relation %v0 = �2�o/%q, which is inserted in (28) to give
the dispersion relation,

�o2 ¼ 1

2
�q2 1� 6a�1
� �

� �q4
	 


� 3Oh�o�q2: (30)

We remark that for vanishing elasticity (a = N), the dispersion
relation of (30) reduces to that of a slender, viscous jet.2

The solid lines in Fig. 4 show the dispersion relation (30), for
Oh = 1 and different values of the softness, a. Clearly, the
slender prediction is an excellent approximation over the entire
range of a. Hence, in the remainder we can work with a closed-
form analytical expression for the fastest growing wavenumber
%q*, as given by (31).

Inspecting (30) one verifies that the instability appears for
a 4 6, in agreement with the purely energetic analysis.6,15

Unstable modes are found in the range %q A [0,%qm], where %qm =
(1 � 6a�1)1/2, while the fastest growing mode, i.e. with the
largest Re(�o), corresponds to

�q� ¼
1� 6a�1
� �1=2
2þ 3

ffiffiffi
2
p

Oh
� �1=2: (31)

As a - 6+, we find that qm - 0. Hence, the onset of instability
is governed by very long waves. On the other hand for a - N,
elasticity ceases to be important and one recovers the usual
Rayleigh–Plateau instability. A few comments are in order.
First, we remark that, despite the slender assumption used
here, the onset of the instability at a = 6 is in perfect agreement
with the complete linear analysis.6 The reason for this is that

Fig. 4 Dispersion relation, theory vs numerics: green squares represent
results from 3-D simulations with increasing marker size denoting data for
larger a (7, 10, 50, 1000). The Ohnesorge number is kept fixed at 1. The
orange lines are the theoretical prediction given by (30).
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the onset is at %q = 0, for which the slender treatment of the
elastic energy is asymptotically correct. Also in the limit a -

N, the range of unstable wavenumbers again becomes exact.
Namely, this limit is dictated by capillarity, which here is
captured by the exact form of Fg.

4.3 Selection of bead size

We assume that the periodicity of the final nonlinear state
is dictated by the most unstable wavelength, l* = 2p/q*.
In addition, the original volume per wavelength, ph0

2l* must
be preserved in the nonlinear state. For any value of a, these two
conditions select a unique pair of %p and %T, so that a unique
nonlinear solution can be determined from (9).

To illustrate the selection mechanism, we first consider the
limit of a - N, for which the volume inside the thin thread
becomes negligible with respect to that inside the bead of
radius R. In this extreme case, volume conservation thus takes
the form

ph02l� ¼ 2p2h03
2þ 3

ffiffiffi
2
p

Oh

1� 6a�1

 !1=2

¼ 4

3
pR3; (32)

where we used l* from the linear stability analysis. Hence,
we find

R

h0
¼ �R ¼ 3

2
p

2þ 3
ffiffiffi
2
p

Oh

1� 6a�1

 !1=2
2
4

3
5
1=3

: (33)

This indeed provides a selection of a unique bead size, which
approaches a constant value in the limit of large a (this limiting
value is indicated for Oh = 1 in Fig. 3). The analysis is consistent
as long as %R { a1/3, such that we are in the BOAS regime. This is
the case for any finite Oh.

For intermediate a, the problem is solved numerically from
(9) where %p and %T are chosen such that the solution presents the

desired wavelength l*, while conserving the volume. For Oh = 1,
the size of the bead and the string are plotted as the orange
solid lines in Fig. 3. Clearly, the predictions by the orange lines
provide an excellent match to the full three-dimensional
numerical solutions (green squares). This agreement shows
that, indeed, the nonlinear states are selected by the dynamical
evolution of the thread.

Let us summarise the scenario that emerges, by recapitulat-
ing Fig. 3. The dynamically selected solutions appear for a 4 6,
which is the threshold for the instability. Near the threshold,
a- 6+, the fastest growing wavelength l* goes to infinity and the
selected solutions naturally converge to the COAS morphology
(this limit is marked by the two orange circles in Fig. 3). For all
values of a the minimum thickness (lower orange line) closely
follows the string size (lower dashed line, %h1). However, the
maximum radius (upper orange line) quickly falls below from
the thickness predicted from the COAS-analysis (upper dashed
line, %h2). This means that the COAS configuration is typically
observed up to a E 10, in line with experiments.6 For larger a,
the selected bead size converges to a value obtained by
expansion of (33),

�R ¼ 2þ 3
ffiffiffi
2
p

Oh
� �1=6 3p

2

� �1=3

: (34)

The corresponding value for Oh = 1 is indicated as black dashed
line in Fig. 3. Similar curves can be computed for any value of
Oh (not shown). Each of these curves will start at the same
point at a = 6, but converge to (34) for large a.

Finally, we conclude this section by directly comparing the
profiles obtained from the full three-dimensional numerics and
the slender analysis. Fig. 5 show the profiles obtained by two
methods. It may come as a surprise to the reader that the
slender theory results exhibit a nearly perfect agreement with
the simulation profiles, particularly in the transition region

Fig. 5 Comparison of dynamically selected profiles obtained by 3-D numerics (black dashed lines) and by slender theory (orange solid lines). These
shapes correspond to the green squares of Fig. 3.
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between the thin and the thick part. This is due to the fact that
our expression of curvature in the capillary energy is exact,
which enables the model to capture moderate to large slopes.
Apparently, the approximations in the elastic energy have a
small effect on the profiles. We will return to the relation
between the slender formulation and the three-dimensional
problem in Section 5.

5 Analysis beyond the slender
approximation: conservation laws

The reason that the slender approximation does so well in
capturing the numerical observations is hidden in its conser-
vative nature. For the stationary states, the two quantities %p and
%T remain constant along the length of the deformed cylinder;
for this reason we were able to simplify the expressions in
regions where the shapes simplify to portions of a cylinder or of
a sphere. In this section, we demonstrate that %p and %T emerge
from conservation laws that are valid beyond the slender
assumption, and that, at equilibrium, (11a) and (11b) can be
derived from the full elasto-capillary problem without any
approximation.

5.1 Translational invariance

To express the general conservation laws of elasticity, we write
the elastic energy as a functional of the mapping x(X), in
the form

Fel x½ � ¼
ð
dXW x;

@x

@X
;X

� �
: (35)

We remind that F ¼ @x

@X
contains the elastic deformation, and

in the present problem W(F) without any dependence on the
current coordinate x or on the material coordinate X. It is
instructive, however, to retain the formalism with W(x,F,X).
Namely, an explicit dependence on x will act as a potential energy
and will give rise to external forces. An explicit dependence of W
on the material coordinate X implies inhomogeneities of the
system in the reference state. In what follows below we will
closely follow the work by Eshelby,41 and separately exploit the
consequences of both qW/qx = 0 and qW/qX = 0. The invariance
with respect to x gives a force balance, while indeed a second
conservation law originates from the invariance with respect to X.
Both laws were derived by Eshelby41 as a form of Noether’s
theorem, which expresses that each continuous symmetry is
accompanied by a conservation law. Subsequently, these conser-
vation laws are worked out in the context of the present problem,
without making use of the slender hypothesis.

5.1.1 Current configuration. In the absence of external
force fields, the elastostatic equation is in the form of a
conservation law div�r = 0, expressing the divergence of the
Cauchy stress r on the current configuration. For incompressible

elastic media the Cauchy stress reads r ¼ @W
@F
� FT . Here we

interpret this result as a consequence of translational
invariance of the energy (35) with respect to the current position

x. Remembering that F ¼ @x

@X
, the Euler–Lagrange equation for

(35) reads

dFel

dx
¼ @W

@x
�Div

@W

@F

� �
¼ 0: (36)

Translational invariance with respect to the current coordinate
implies qW/qx = 0, such that the equilibrium condition simplifies
to a vanishing divergence on the reference domain (denoted by
Div). Transformed from the reference domain to the current
domain, this gives the above-mentioned div�r = 0 on the current
domain.

Physically, we can of course interpret this as a balance of
forces on a material volume indicated by the dashed lines in
the bottom panel of Fig. 6. When expressing the divergence as a
surface integral, the force balance on the volume element readsÐ
s1
r � n1ds1 þ

Ð
s2
r � n2ds2 þ

Ð
s3
gkn3ds3 ¼ 0; where the n1,2,3 are

the unit vectors normal to the surfaces s1,2,3, and we used the
boundary condition that normal traction on the free surface is
of capillary origin r�n3 = gkn3. Applying Stokes theorem we
further simplify the surface integral

Ð
s3
gkn3ds3 to contour

integrals on the two bounding circles, indicated by c1,2. With
this, the force balance on the volume element reduces toð

s1

r � ezds1 þ
I
c1

gt1d‘ ¼
ð
s2

r � ezds2 þ
I
c2

gt2d‘; (37)

where we also used that n1 =�ez and n2 = ez, and introduced the
tangential vectors t1,2. By axisymmetry, the radial component
of this force balance is identically satisfied, and we are left
with the axial component. Given that (37) holds for any choice

Fig. 6 Conservation laws in reference (top panel) and current (bottom
panel) configurations. The dashed lines represent surfaces enclosing a
material volume in both of the configurations. Ni (ni) are the unit normals
to the reference (current) surfaces.
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of the cross-section, i.e. for any choice of z1,2, we can write it in
the form ð

s

szzdsþ
I
c

g t � ezð Þd‘ ¼ T ; (38)

where T is constant along the thread. This is a generalized form
of eqn (7) marking the ‘‘conservation’’ of axial tension.

5.1.2 Reference configuration. The second conservation
law can be derived using the translational invariance with
respect to the reference coordinate X. Namely, when the material
inside an elastic medium is homogeneous in the reference state,
the energy should be invariant with respect to a translation in X.
Under the condition that qW/qX = 0, one can demonstrate by
direct evaluation that

dFel

dx
� F ¼ �Div Pð Þ; (39)

where we defined Eshelby’s energy-momentum tensor41

P ¼ FT � @W
@F
�WI: (40)

Hence, at equilibrium Div(P) = 0 emerges as the conservation
law associated to invariance with respect to X.

Once again the conservation law can be written as a surface
integral over a material volume shown in the top panel of
Fig. 6, where the N1,2,3 are the normals of the bounding
surfaces in the reference configuration. This surface integral
is the large-deformation equivalent of the J-integral in fracture
mechanics,41 and is also referred to as configurational force
balance – in the absence of cracks or defects, i.e. translational
invariance in X, the surface integral vanishes.

Since N1 = �eZ, N2 = eZ and N3 = eR (cf. Fig. 6), the surface
integral reads�

Ð
S1

P � eZdS1 þ
Ð
S2

P � eZdS2 þ
Ð
S3

P � eRdS3 ¼ 0.

Once again, the radial component of the surface integral is trivially
satisfied by symmetry. Owing to the shear free cylindrical surface,
i.e. eZ�P�eR = 0, the axial component of the configurational force
balance reduces to ð

S

PZZdS ¼ k; (41)

where k is a constant, and S is any cross section on the reference
configuration space. Below we will show how (41) simplifies to the
result for the pressure p, previously obtained in the slender
approximation.

5.2 Neo-Hookean solid: recovering the slender results

We now demonstrate how the slender results (11a) and (11b)
are recovered without any approximation – which implies that
the key features of Fig. 3 are exact, and do not rely on the
slender hypothesis. We start by noting that an axisymmetric
deformation is characterized by the set of mapping r = r(R,Z),
y = Y, and z = z(R,Z). For a neo-Hookean solid with elastic

energy density W ¼ m
2
TrðF � FT Þ � 3ð Þ; we can express the axial

components of both the Cauchy’s stress and Eshelby’s stress

tensor as42

szz ¼ mBzz � p ¼ m
@z

@Z

� �2

þ @z

@R

� �2
" #

� p; (42)

and

PZZ ¼ mCZZ � p�W ¼ m
2

@r

@Z

� �2

þ @z

@Z

� �2
" #

� p

� m
2

@r

@R

� �2

þ @z

@R

� �2

þ r

R

� �2
�3

" #
:

(43)

Here B = F�FT and C = FT�F are the strain tensors in current and
reference configurations respectively. In general, one is able to
evaluate these quantities only after the mapping is solved.
Here, however, we exploit their conservative nature and evalu-
ate them at regions where the cylinder is locally flat. In a flat

region,
@r

@Z
¼ @z

@R
¼ 0 and

@r

@R
¼ h=h0;

@z

@Z
¼ h20=h

2: Thus the two

stresses take following forms

szz ¼ m
h0

4

h4
� p; (44)

and

PZZ ¼
m
2

h0
4

h4
� m

2

2h2

h02
� 3

� �
� p: (45)

The unknown p in the equations above is evaluated using the
normal stress boundary condition at the free surface, srr =
gk = �g/h. Since srr = mh2/h0

2�p, we find p = g/h + mh2/h0
2. Now

we are in a position to evaluate the eqn (38) and (41). Within a
flat region (38) simply becomes szzh2 + 2gh = gh + mh0

4/h2 � mh4/
h0

2 = T, where we have absorbed the constant p into T. Using
the dimensionless quantities introduced in Section 2.2, we find
the expression of tension as

�T ¼ �hþ 1

a
1
�h2
� �h4

� �
: (46)

This is exactly the same as (11b), but now derived without any
slender approximation. Similarly (41) becomes �mh0

4/(2h4) +
2mh2/h0

2 + g/h = K where K = (�k/ph0
2) + 3m/2. In dimensionless

form we then find

�K ¼ 1
�h
þ 1

a
2�h2 � 1

2�h4

� �
; (47)

which is (11a).
We have thus demonstrated that (11a) and (11b) are valid

beyond the slender approximation. This means that the COAS
features in Fig. 3 (blue dashed lines) are exact. Similarly, the
scaling of the thread thickness in the BOAS regime, i.e. %hth =
(2a)�1/3 is exact, as also already inferred in.27 Namely, for
spherical beads of radius R, capillarity dominates over elasticity
to give, PZZ =�p =�2g/R, where we use the capillary pressure of
a sphere. The bead connects to a thin thread that must have the
same value of %K associated to this PZZ. Thus evaluating (47) for
a string, dropping the subdominant elastic term proportional
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to %hth, and equating it to %K for a bead, we obtain

1
�hth
� 1

2a�hth4
¼ 2

�R
: (48)

Finally, if the bead size if much larger than the thread thickness
( %R c %hth), we recover the scaling %hth = (2a)�1/3. This concludes
our discussion on the conservation laws to show that the
essential features of the phase map shown in Fig. 3 remain
valid beyond the slender approximation.

6 Discussion

In summary, we present a detailed study on the capillary driven
instability of soft solid cylinders including the threshold of
instability, a phase map of all possible morphologies and the
dynamical selection thereof. The key result from the present
work is that there is not a unique equilibrium solution for a
given stiffness and surface tension, and previously derived
beads-on-a-string (BOAS) and cylinders-on-a-string (COAS)
configurations can actually coexist. The final pattern that
emerges is selected via a dynamical process – very much like
distribution of drop sizes in the conventional ‘‘liquid’’ Ray-
leigh–Plateau instability. While for many results we have used a
slender approximation, to efficiently explore the space of solutions
and to describe the dynamical selection mechanism, the results
are in excellent agreement with three-dimensional numerical
simulations. In addition, we were able to derive various analytical
results without invoking the slender assumption. As such, the
phase map in Fig. 3 offers a general description of the nonlinear
states of the elastic Rayleigh–Plateau instability.

The experiments on which cylinders have been observed are
using agar gels, which allows values of up to a E 10. In this
range of values radial stretch is still significant, so it is difficult
to see a good realisation of the BOAS structure, characterised by
almost spherical beads. It will be challenging to achieve much
softer or much thinner structures experimentally, necessary to
increase a by an order of magnitude. However, a larger range of
values for a can be reached in polymer solutions, where BOAS
are observed as ‘‘transients’’ during the pinch-off. Indeed, it
was shown theoretically by,27 that the resulting shape during
this relaxation phase of polymer solutions is strictly identical
to the purely elastic BOAS structure without any relaxation.
We can estimate the value of a in polymer solutions based on
the connection m = Zp/t, where Zp and t are polymer viscosity
and relaxation times, respectively, and which can be measured
independently. In the experiments by,19 the measured value of
a can easily reach values of about 200 – consistent with the
range where we predict the emergence of BOAS structures.
Once a first balance of surface tension and elasticity is reached,
elastic stresses relax exponentially in time, with a corres-
ponding thinning of the thread. This process can be followed
over at least another order of magnitude, yet the thread exhibits
the exact same structure as solid-elastic BOAS.21,43

Our predictions on the selection of COAS versus BOAS are
thus in good agreement with experimental observations.

Future work could be dedicated to extending the dynamical
evolution beyond the model presented here, which is essentially
based on an Oldroyd-B fluid in the limit of infinite relaxation
time. Similarly, one can envisage an elasticity beyond the neo-
Hookean solid, for example to account for the finite extensibility
inside the thin threads.
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A Numerics via mapping technique

The numerical technique used in this study is a variation of
that developed in40 for interfacial flows and extended in27 for
viscoelastic fluids. The spatial physical domain is mapped onto
a rectangular domain by means of a non singular mapping

r = f (x,w,t), z = g(x,w,t),

R = F(x,w,t), Z = G(x,w,t), [0 r x r L] � [0 r w r 1],

where functions f, g, F and G should be obtained as a part of the
solution. To determine these functions, the following equations
have been used

g = x, (49)

F = h0. (50)

Eqn (49) guarantees that the same discretization used for the
x variable is automatically applied to variable z. Finally, eqn (50)
indicates that at the initial stage the interface is a perfect
cylinder of radius h0.

Some additional boundary conditions for the shape
functions are needed to close the problem. At z = x = 0

g ¼ @f
@w
¼ 0; (51)

at z = x = L,

g = L, f = h0, (52)

and at r = w = 0,

g = x, f = 0. (53)

The unknown variables in the numerical domain are f, g, p, vr,
vz, F and G. All the derivatives appearing in the governing
equations are expressed in term of w, x and t. Then, the
resulting equations are discretized in the w direction with nw

Chebyshev spectral collocation points. In the x direction, we
use fourth-order finite differences with nx equally spaced
points. The results presented in this work were carried out
using nx1 = 5500 and nw = 10.

To compute the unsteady 2D solution, all the equations are
solved together (monolithic scheme) using a Newton-Raphson
technique. In this case, second order backward differences are
used to compute the time with a variable time step. One of the
main characteristics of this procedure is that the elements of
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the Jacobian T(p,q) of the discretized system of equations
T(p,q)DC(q) = �F(p) for the base solution updates DC(q) (q =
1,2,. . .,n � N stands for the values of the n unknowns at the N
grid points) are obtained by combining analytical functions
and collocation matrices. This allows taking advantage of the
sparsity of the resulting matrix to reduce the computational
time on each Newton step.

As explained by,40 the numerical procedure can be also
easily adapted to solve the eigenvalue problem which deter-
mines the linear stability of the 1D basic solution, of a uniform
thread with vanishing velocity and vanishing elastic stress. In
this case, the temporal and axial derivatives are computed
assuming the dependence

C(z,r;t) = Cb(r) + edC(r)e�iot+iqz (e { 1). (54)

Here, C(z,r;t) represents any dependent variable, Cb(r) and
dC(r) stand for the 1D base (steady) solution and the radial
(1D) dependence of the eigenmode, respectively, while o = or +
ioi is the eigenfrequency and q (real) is the axial wavenumber.
The radial dependence of the linear perturbation dC(q), for a
given axial wavenumber q, is the solution to the generalised
eigenvalue problem T(p,q)

b dC(q) = io Q(p)
b dC(q), where T(p,q)

b is the
Jacobian of the system evaluated with the basic solution C(q)

b ,
and with all axial derivatives computed according to (54), while
Q(p,q)

b accounts for the temporal dependence of the problem. This
generalised eigenvalue problem is solved using MATLAB EIG
function.
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