THE RAMSEY NUMBERS OF LARGE_CYCLES VERSUS SMALL_WHEELS

Surahmat¹
Department of Mathematics Education, Islamic University of Malang, Malang 65144, Indonesia
kana_s@dns.math.itb.ac.id

E.T. Baskoro
Department of Mathematics, Institut Teknologi Bandung, Jalan Ganesa 10, Bandung, Indonesia
ebaskoro@dns.math.itb.ac.id

H.J. Broersma
Department of Applied Mathematics, University of Twente, 7500 AE Enschede, The Netherlands
broersma@math.utwente.nl

Received: 6/27/02, Revised: 4/29/04, Accepted: 6/22/04, Published: 6/29/04

Abstract

For two given graphs G and H, the Ramsey number R(G, H) is the smallest positive integer N such that for every graph F of order N the following holds: either F contains G as a subgraph or the complement of F contains H as a subgraph. In this paper, we determine the Ramsey number R(Cₙ,Wₘ) for m = 4 and m = 5. We show that R(Cₙ,W₄) = 2n − 1 and R(Cₙ,W₅) = 3n − 2 for n ≥ 5. For larger wheels it remains an open problem to determine R(Cₙ,Wₘ).

1. Introduction

Throughout the paper, all graphs are finite and simple. Let G be such a graph. We write V(G) or V for the vertex set of G and E(G) or E for the edge set of G. The graph G is the complement of the graph G, i.e., the graph obtained from the complete graph K|V(G)| on |V(G)| vertices by deleting the edges of G.

The graph H = (V', E') is a subgraph of G = (V, E) if V' ⊆ V and E' ⊆ E. For any nonempty subset S ⊆ V, the induced subgraph by S is the maximal subgraph of G with vertex set S; it is denoted by G[S].

¹Part of the work was done while the first author was visiting the University of Twente.
If \(e = \{u, v\} \in E \) (in short, \(e = uv \)), then \(u \) is called \textit{adjacent to} \(v \), and \(u \) and \(v \) are called \textit{neighbors}. For \(x \in V \) and a subgraph \(B \) of \(G \), define \(N_B(x) = \{y \in V(B) : xy \in E\} \) and \(N_B[x] = N_B(x) \cup \{x\} \). The \textit{degree} \(d(x) \) of a vertex \(x \) is \(|N_G(x)|\); \(\delta(G) \) denotes the minimum degree in \(G \).

A \textit{cycle} \(C_n \) of length \(n \geq 3 \) is a connected graph on \(n \) vertices in which every vertex has degree two. A \textit{wheel} \(W_n \) is a graph on \(n + 1 \) vertices obtained from a \(C_n \) by adding one vertex \(x \), called the \textit{hub} of the wheel, and making \(x \) adjacent to all vertices of the \(C_n \), called the \textit{rim} of the wheel.

Given two graphs \(G \) and \(H \), the \textit{Ramsey number} \(R(G, H) \) is defined as the smallest natural number \(N \) such that every graph \(F \) on \(N \) vertices satisfies the following condition: \(F \) contains \(G \) as a subgraph or \(\overline{F} \) contains \(H \) as a subgraph.

We will also use the short notations \(H \subseteq F \), \(F \supseteq H \), \(H \nsubseteq F \), and \(F \nsubseteq H \) to denote that \(H \) is (not) a subgraph of \(F \), with the obvious meanings.

Several results have been obtained for wheels. For instance, Burr and Erdős [1] showed that \(R(C_3, W_m) = 2m + 1 \) for each \(m \geq 5 \).

Ten years later Radziszowski and Xia [9] gave a simple and unified method to establish the Ramsey number \(R(G, C_3) \), where \(G \) is either a path, a cycle or a wheel.

Hendry [5] showed \(R(C_5, W_4) = 9 \). Jayawardane and Rousseau [6] showed \(R(C_5, W_5) = 11 \). Surahmat et al. [13] showed \(R(C_4, W_m) = 9, 10 \) and \(9 \) for \(m = 4, 5 \) and \(6 \) respectively. Independently, Tse [14] showed \(R(C_4, W_m) = 9, 10, 9, 11, 12, 13, 14, 15 \) and \(17 \) for \(m = 4, 5, 6, 7, 8, 9, 10, 11 \) and \(12 \), respectively.

Recently, in [11], it was shown that the Ramsey number \(R(S_n, W_4) = 2n - 1 \) if \(n \geq 3 \) and \(n \) is odd, \(R(S_n, W_4) = 2n + 1 \) if \(n \geq 4 \) and \(n \) is even, and \(R(S_n, W_5) = 3n - 2 \) for each \(n \geq 3 \). Here \(S_n \) denotes a star on \(n \) vertices (i.e., \(S_n = K_{1,n-1} \)).

In [12] several Ramsey numbers of star-like trees versus large odd wheels were established, e.g., it was shown that \(R(S_n, W_m) = 3n - 2 \) for \(n \geq 2m - 4 \), \(m \geq 5 \) and \(m \) odd.

More information about the Ramsey numbers of other graph combinations can be found in [8].

2. Main Results

The aim of this paper is to determine the Ramsey number of a cycle \(C_n \) versus \(W_4 \) or \(W_5 \). We will show that \(R(C_n, W_4) = 2n - 1 \) and \(R(C_n, W_5) = 3n - 2 \) for \(n \geq 5 \).

For given graphs \(G \) and \(H \), Chvátal and Harary [3] established the lower bound...
Let $R(G,H) \geq (c(G)-1)(\chi(H)-1)+1$, where $c(G)$ is the number of vertices of the largest component of G and $\chi(H)$ is the chromatic number of H. In particular, if $n \geq 5$, $G = C_n$ and $H = W_4$ or W_5, then we have $R(C_n,W_4) \geq 2n-1$ and $R(C_n,W_5) \geq 3n-2$, respectively.

For the upper bounds we will present proofs by induction. In order to prove the main results of this paper, we need the following known results and lemmas.

Theorem 1 (Ore [7]).
If G is a graph of order $n \geq 3$ such that for all distinct nonadjacent vertices u and v, $d(u)+d(v) \geq n$, then G is hamiltonian.

Theorem 2 (Faudree and Schelp [4]; Rosta [10]).

$$R(C_n,C_m) = \begin{cases}
2n-1 & \text{for } 3 \leq m \leq n, \text{ } m \text{ odd, } (n,m) \neq (3,3). \\
n + \frac{m}{2} - 1 & \text{for } 4 \leq m \leq n, \text{ } m \text{ even and } n \text{ even, } (n,m) \neq (4,4). \\
\max\{n + \frac{m}{2} - 1, 2m - 1\} & \text{for } 4 \leq m < n, \text{ } m \text{ even and } n \text{ odd.}
\end{cases}$$

Lemma 1 (Chvátal and Erdős [2]; Zhou [15]).
If $H = C_s \subseteq F$ for a graph F, while $F \not\supseteq C_{s+1}$ and $\overline{F} \not\supseteq K_r$, then $|N_H(x)| \leq r - 2$ for each $x \in V(F) \setminus V(H)$.

Lemma 2 Let F be a graph with $|V(F)| \geq R(C_n,C_m)+1$. If there is a vertex $x \in V(F)$ such that $|N_H(x)| \leq |V(F)| - R(C_n,C_m)$ and $F \not\supseteq C_n$, then $\overline{F} \supseteq W_m$.

Proof. Let $A = V(F) \setminus N_F[x]$ and so $|A| \geq R(C_n,C_m)$. If the subgraph $F[A]$ of F induced by A contains no C_n, then by the definition of $R(C_n,C_m)$ we get that $\overline{F[A]}$ contains a C_m and hence \overline{F} contains a W_m (with hub x).

Lemma 3 Let F and G be graphs with $2n-1$ and $3n-2$ vertices without a C_n, respectively. If \overline{F} and \overline{G} contain no W_m, then $\delta(F) \geq n - \frac{m}{2}$ for even $m \geq 4$ and $n \geq \frac{3m}{2}$, and $\delta(G) \geq n - 1$ for odd $m \geq 5$ and $n \geq m$.

Proof. By contraposition. Suppose $\delta(F) < n - \frac{m}{2}$ for $m \geq 4$ even and $n \geq \frac{3m}{2}$. Then, there exists a vertex $x \in V(F)$ such that $|N_F[x]| = d_F(x) + 1 = \delta(F) + 1 \leq n - \frac{m}{2} = (2n-1) - (n + \frac{m}{2} - 1)$. Using Theorem 2 we get that $|N_F[x]| \leq |V(F)| - R(C_n,C_m)$. By Lemma 2, we conclude that \overline{F} contains a W_m with hub x.

Now, suppose $\delta(G) < n - 1$ for m odd and $n \geq m$. Then, similarly, using Theorem 2 there exists a vertex $y \in V(G)$ such that $|N_G[y]| \leq n - 1 = (3n - 2) - (2n - 1) = |V(G)| - R(C_n,C_m)$. By Lemma 2, we conclude that \overline{F} contains a W_m with hub y.

Before we deal with the general case of a cycle and W_4, we will first separately prove that $R(C_6,W_4) = 11$ and $R(C_7,W_4) = 13$.
Theorem 3 \(R(C_6, W_4) = 11 \).

Proof. Let \(F \) be a graph on 11 vertices containing no \(C_6 \). We will show that \(F \) contains \(W_4 \). To the contrary, assume \(F \) contains no \(W_4 \). It is known from [5] that \(R(C_5, W_4) = 9 \), implying that \(F \) contains \(C_5 \). Let \(A = \{ x_0, x_1, x_2, x_3, x_4 \} \) be the set of vertices of \(C_5 \subseteq F \) in a cyclic ordering, and let \(B = V(F) \setminus A \). Then \(|B| = 6 \). By Theorem 1, there exists a vertex \(b \in B \) such that \(|N_B(b)| \leq 2 \), since otherwise \(F[B] \), and hence \(F \), contains \(C_6 \). By Lemma 3, \(\delta(F) \geq 6 - \frac{4}{3} = 4 \), implying that \(|N_A(b)| \geq 2 \). If \(b \) is adjacent to \(x_i \) and \(x_{i+1} \) (indices modulo 5), then clearly \(C_6 \subseteq F \). So we may assume without loss of generality that \(N_A(b) = \{ x_1, x_3 \} \). Let \(\{ b_1, b_2, b_3 \} \) denote the three vertices of \(B \setminus N_B(b) \). Our next observation is that \(x_2x_4 \notin E(F) \); otherwise we obtain a \(C_6 \) with edge set \(6(E) \setminus \{ x_2x_3, x_3x_4 \} \subseteq \{ x_1b, b_2x_3, x_4x_2 \} \). Similarly, \(x_0x_2 \notin E(F) \).

Since \(F \) contains no \(C_6 \), we have \(|N_{\{b_1,b_2\}}(x_i) \setminus N_{\{b_1,b_2\}}(x_j)| = 0 \) for \(i = 0, 2, 4 \) and \(i \neq j \). This implies that there exists an \(x_i \) (\(i \in \{0, 2, 4\} \)) with no neighbor in \(\{b_1, b_2\} \), say \(x_0 \). Since \(F \) contains no \(W_4 \), \(x_0 \) must be adjacent to both \(b_1 \) and \(b_2 \). This implies that \(x_2 \) has no neighbor in \(\{b_1, b_2\} \); otherwise \(F \) contains a \(C_6 \). Thus \(F \) contains a \(W_4 \) with hub \(b \) and rim \(b_1x_4b_2x_2b_1 \), our final contradiction.

Theorem 4 \(R(C_7, W_4) = 13 \).

Proof. Let \(F \) be a graph on 13 vertices containing no \(C_7 \). We will show that \(F \) contains \(W_4 \). To the contrary, assume \(F \) contains no \(W_4 \). By the previous result, we know that \(F \) contains \(C_6 \). Let \(A = \{ x_0, x_1, x_2, x_3, x_4, x_5 \} \) be the set of vertices of \(C_6 \subseteq F \) in a cyclic ordering, and let \(B = V(F) \setminus A \). Then \(|B| = 7 \). By Theorem 1, there exists a vertex \(b \in B \) such that \(|N_B(b)| \leq 3 \), since otherwise \(F[B] \) and hence \(F \) contains \(C_7 \). By Lemma 3, \(\delta(F) \geq 7 - \frac{4}{3} = 5 \), implying that \(|N_A(b)| \geq 2 \). If \(b \) is adjacent to \(x_i \) and \(x_{i+1} \) (indices modulo 5), then clearly \(C_7 \subseteq F \). Now we distinguish three cases.

Case 1: \(b \) has two neighbors in \(A \) at distance 3 along the \(C_6 \).
We may assume without loss of generality that \(N_A(b) = \{ x_1, x_4 \} \). Let \(b_1, b_2, b_3 \) denote three vertices of \(B \setminus N_B(b) \). As in the proof of Theorem 3, we observe that \(x_0x_3 \notin E(F) \); otherwise we obtain a \(C_7 \). Similarly, \(x_2x_5 \notin E(F) \). Now one of \(x_0x_2, x_3x_5 \) is an edge of \(F \); otherwise we obtain a \(W_4 \) in \(F \) with hub \(b \) and rim \(x_0x_3x_5x_2x_0 \). We next observe that precisely one of these edges exists in \(F \); otherwise \(x_0x_2x_3x_5x_4bx_1x_0 \) is a \(C_7 \) in \(F \). We may assume without loss of generality that \(x_0x_2 \in E(F) \) and \(x_3x_5 \notin E(F) \). Since \(x_0x_3, x_2x_5 \notin E(F) \), at least one of \(x_0 \) and \(x_5 \) is a neighbor of \(b_i \) in \(F \) (\(i = 1, 2, 3 \)). Suppose \(x_0b_1, x_0b_2 \in E(F) \). Since there is no \(C_7 \) in \(F \), we easily get that \(x_3b_1, x_5b_2 \notin E(F) \). Now at least one of \(x_2b_1, x_2b_2 \) is an edge of \(F \); otherwise we obtain a \(W_4 \) in \(F \) as in the proof of Theorem 3. But then \(x_0b_1x_2x_3x_4bx_1x_0 \) is a \(C_7 \) in \(F \) for \(i = 1 \) or \(i = 2 \), a contradiction. Since we do not use the edge \(x_0x_2 \) in the last arguments, the case that \(x_3b_1, x_5b_2 \in E(F) \) is symmetric. This completes Case 1.
Case 2: b has three neighbors in A.
We may assume without loss of generality that \(N_A(b) = \{x_1, x_3, x_5\} \). Let \(b_1, b_2, b_3 \) denote three vertices of \(B \setminus N_B(b) \). As in the proof of Theorem 3, we observe that \(x_0x_2 \notin E(F) \); otherwise we obtain a \(C_7 \). Similarly, \(x_2x_4, x_4x_0 \notin E(F) \). Since \(x_0x_2, x_2x_4 \notin E(F) \), at least one of \(x_0 \) and \(x_4 \) is a neighbor of \(b_i \) in \(F \) (\(i = 1, 2, 3 \)). Suppose by symmetry that \(x_0b_1, x_0b_2 \in E(F) \). Similarly, at least one of \(x_2b_1, x_4b_1 \in E(F) \). By symmetry and possibly reversing the orientation of the \(C_6 \), we may assume \(x_2b_1 \in E(F) \). Clearly, \(b_1x_1, b_1x_3, b_1x_5, b_2x_1, b_2x_5, x_1x_3, x_1x_5 \notin E(F) \). Also \(x_3x_5 \notin E(F) \); otherwise \(x_3x_5bx_1x_2b_1x_0x_5 \) is a \(C_7 \) in \(F \). Now \(b_1b_2 \in E(F) \); otherwise we obtain a \(W_4 \) in \(F \) with hub \(b_1 \) and rim \(b_2x_1x_3x_5b_2 \). We conclude that \(x_0b_2b_1x_2x_3x_4x_5x_0 \) is a \(C_7 \) in \(F \). This completes Case 2.

Case 3: b has exactly two neighbors in A at distance 2 along the C6.
We may assume without loss of generality that \(N_A(b) = \{x_1, x_3\} \). Let \(b_1, b_2, b_3 \) denote vertices of \(B \setminus N_B(b) \). As in the proof of Theorem 3, we observe that \(x_0x_2 \notin E(F) \); otherwise we obtain a \(C_7 \). Similarly, \(x_2x_4 \notin E(F) \). Since \(x_0x_2, x_2x_4 \notin E(F) \), at least one of \(x_0 \) and \(x_4 \) is a neighbor of \(b_i \) in \(F \). Suppose by symmetry that \(x_0b_1 \in E(F) \).

Since \(x_0x_2, x_2x_4 \notin E(F) \) and \(\overline{F} \) contains no \(W_4 \), by the Pigeonhole Principle, there exists an \(x \in \{x_0, x_4\} \) such that \(x \) is adjacent to at least two vertices in \(\{b_1, b_2, b_3\} \). Let \(x_0 \) be adjacent to \(b_1 \) and \(b_2 \). If \(x_1x_5 \in E(F) \), then \(x_2 \) and \(x_4 \) are not adjacent to \(b_1 \) and \(b_2 \), since otherwise \(F \) contains a \(C_7 \), so \(\overline{F} \) contains a \(W_4 \) with hub \(b \) and rim \(bx_4bx_5 \). In case \(x_1x_5 \notin E(F) \), we get that \(x_3b \in E(F) \), since otherwise we have a \(W_4 \) in \(\overline{F} \) with hub \(x_5 \) and rim \(b_1x_1b_2b_1 \). The case is now similar to Case 2. This completes Case 3 and the proof of Theorem 4.

\[\square \]

Lemma 4 Let \(F \) be a graph on \(2n - 1 \) vertices with \(n \geq 8 \), and suppose \(\overline{F} \) contains no \(W_4 \). If \(C_{n-1} \subseteq F \) and \(F \not\supseteq C_n \), then \(|N_A(x)| \leq 2 \) for each \(x \in V(F) \setminus A \), where \(A = V(C_{n-1}) \).

\textbf{Proof.} Let \(A = \{x_1, x_2, ..., x_{n-1}\} \) be the set of vertices of a cycle \(C_{n-1} \) in \(F \) in a cyclic ordering, and let \(B = V(F) \setminus A \). Suppose there exists a vertex \(b_1 \in B \) with \(|N_A(b_1)| \geq 3 \). Clearly, \(b_1x_{i+1} \notin E(F) \) whenever \(b_1x_i \in E(F) \) (indices modulo \(n - 1 \)). Since \(n \geq 8 \), \(|A| \geq 7 \), and hence we can choose two neighbors \(x_i \) and \(x_j \) of \(b_1 \) in \(A \) such that \(x_{i+1} \neq x_{j-1} \) and \(x_{i-1} \neq x_{j+1} \) (indices modulo \(n - 1 \)). Let \(A = \{x_{i-1}, x_{i+1}, x_{j-1}, x_{j+1}\} \). Then \(|A| = 4 \) and \(xb_1 \notin E(F) \) for each \(x \in A \). Moreover, since \(F \) contains no \(C_n \), by standard long cycle arguments \(x_{i-1}x_{j-1}, x_{i+1}x_{j+1} \notin E(F) \). If \(|N_A(x)| \leq 1 \) for all \(x \in A \), then in \(\overline{F} \) all vertices of \(A \) have at least 2 = \(\frac{1}{2} |A| \) neighbors, implying that \(F \) contains a \(W_4 \) with hub \(b_1 \). Hence \(|N_A(x)| \geq 2 \) for some \(x \in A \). By symmetry, considering the two possible orientations of \(C_{n-1} \), we may assume without loss of generality that \(|N_A(x_{i+1})| \geq 2 \), hence \(x_{i-1}x_{i+1}, x_{i+1}x_{j-1} \in E(F) \). Then \(x_{i}x_{j-1} \notin E(F) \); otherwise we can obtain a \(C_n \) from \(E(C_{n-1}) \setminus \{x_{j-1}x_{i}, x_{i}x_{i+1}, x_{i-1}x_{i}\} \cup \{xb_1, b_1x_i, x_ix_{j-1}\} \). Similarly, \(x_i x_{j+1} \notin E(F) \). Since \(\delta(F) \geq n - 2 \) by Lemma 3 and \(|N_A(b)| \leq 5 - 2 = 3 \) for each \(b \in B \) by Lemma 1, there
exist distinct vertices $b_2, b_3 \in \mathcal{B}$ such that $b_1b_2, b_1b_3 \in E(F)$. This implies that x_{j-1} and x_{j+1} are not adjacent to any vertex in $\{b_2, b_3\}$ since otherwise F contains a C_n (extending the C_{n-1} by including b_1 and b_2 or b_3, while skipping x_i). Now, we will distinguish the following two cases.

Case 1: $x_{j-1}x_{j+1} \notin E(F)$.
Since \overline{F} contains no W_4, $x_ib_2, x_ib_3 \in E(F)$ for each $t \in \{i - 1, i + 1\}$. Suppose to the contrary, e.g., that $x_{i-1}b_2 \notin E(F)$. Then \overline{F} contains a W_4 with hub x_{j-1} and rim $\{x_{i-1}, b_2, x_{j+1}, b_1\}$. The other cases are symmetric. See Figure 1.

![Figure 1: The proof of Lemma 4 for Case 1.](image)

Clearly then $x_ib_2, x_ib_3 \notin E(F)$ since $F \not\supseteq C_n$. Thus, we have a W_4 in \overline{F} with hub x_i and rim $\{x_{j-1}, b_2, x_{j+1}, b_3\}$, a contradiction.

Case 2: $x_{j-1}x_{j+1} \in E(F)$.
If $b_2x_{i-1} \in E(F)$, then we obtain a C_n in F with edge set $E(C_{n-1}) \setminus \{x_{j-1}x_j, x_jx_{j+1}, x_{i-1}x_i\} \cup \{x_{i-1}b_2, b_2b_1, b_1x_i, x_{j-1}x_{j+1}\}$.
Hence $b_2x_{i-1} \notin E(F)$. Similarly, $b_2x_{i+1}, b_3x_{i-1}, b_3x_{i+1} \notin E(F)$. If $x_jx_{i-1} \in E(F)$, we obtain a C_n with edge set $E(C_{n-1}) \setminus \{x_jx_{j+1}, x_{j-1}x_j, x_{i-1}x_i\} \cup \{x_jb_1, b_1x_i, x_{j-1}x_{j+1}\}$.
Hence, by symmetry, $x_jx_{i-1}, x_jx_{i+1} \notin E(F)$. Since \overline{F} contains no W_4 (with hub x_i and rim $\{x_{j+1}, b_2, x_{j-1}, b_3\}$), x_i is adjacent to a vertex in $\{b_2, b_3\}$. Without loss of generality, let $x_ib_2 \in E(F)$. Since $\delta(F) \geq n - 2$ by Lemma 3, x_{i+1} must be adjacent to two vertices in $\mathcal{B} \setminus \{b_1, b_2, b_3\}$. Let $x_{i+1}b_4, x_{i+1}b_5 \in E(F)$ for $b_4, b_5 \in \mathcal{B}$. By similar arguments as before, $C_n \not\subseteq F$ implies $b_4b_5 \notin E(F)$ for each $b \in \{b_4, b_5\}$. Suppose $b_4x_{i-1} \notin E(F)$.
Then we have a W_4 in \overline{F} with hub x_{i-1} and rim $\{b_4, b_1, x_{j-1}, b_2\}$. Similar case analyses
show that $b_4, b_5 \in E(F)$ for each $x \in \{x_{i-1}, x_{j-1}\}$. Since F contains no C_n, we clearly have $b_4b_5 \notin E(F)$, and also $x_ix_j \notin E(F)$ (otherwise consider $E(C_{n-1}) \setminus \{x_{j-1}x_j, x_{i-1}x_i\} \cup \{x_ix_j, x_{i-1}b_4, b_4x_{j-1}\}$). Since $\delta(F) \geq n - 2$ by Lemma 3, there exists a vertex $b_6 \in B \setminus \{b_1, \ldots, b_5\}$ such that $b_4b_6 \in E(F)$. This clearly implies $b_6x_i, b_6x_j, b_6b_5 \notin E(F)$. See Figure 2.

![Figure 2](image_url)

Figure 2: The proof of Lemma 4 for Case 2.

Thus, F contains a W_4 with hub b_5 and rim $\{x_i, b_6, x_j, b_4\}$, a contradiction. This completes the proof. □

Theorem 5 $R(C_n, W_4) = 2n - 1$ for $n \geq 5$.

Proof. We use induction on $n \geq 5$. We already know that $R(C_n, W_4) \geq 2n - 1$ for $n \geq 5$. For $n = 5, 6,$ and 7, we respectively know from [5], Theorem 3, and Theorem 4 that $R(C_n, W_4) = 2n - 1$. Now assume that $R(C_n, W_4) = 2n - 1$ for $n < k$ with $k \geq 8$ and let F be a graph on $2k - 1$ vertices containing no C_k. We shall show that F contains W_4. To the contrary, assume F contains no W_4. By the induction hypothesis, we have $F \supseteq C_{k-1}$. Let $A = V(C_{k-1})$, $B = V(F) \setminus V(C_{k-1})$ and so $|B| = k$. By Lemma 4, we have $|N_A(x)| \leq 2$ for each $x \in B$. Since by Lemma 3, $\delta(F) \geq k - 2$, we obtain $|N_B(x)| \geq k - 2 - 2 = k - 4 \geq \frac{1}{2}k = \frac{1}{2}|B|$ for all $x \in B$. Now $F[B]$ and hence F contains a C_k by Theorem 1, a contradiction. This completes the proof. □
Theorem 6 \(R(C_n, W_5) = 3n - 2 \) for \(n \geq 5 \).

Proof. We use induction on \(n \). We already know that \(R(C_n, W_5) \geq 3n - 2 \) for \(n \geq 5 \). For \(n = 5 \), we know from [6] that \(R(C_5, W_5) = 3.5 - 2 \). Assume the theorem holds for \(n < k \) with \(k \geq 6 \) and let \(F \) be a graph on \(3k - 2 \) vertices containing no \(C_k \). We shall show that \(\overline{F} \) contains \(W_5 \). To the contrary, assume that \(\overline{F} \) contains no \(W_5 \). Consequently, \(F \) must contain a \(C_{k-1} \), and we let \(A = \{a_1, a_2, \ldots, a_{k-1}\} \) denote the set of vertices of a cycle \(C_{k-1} \) in \(F \), in a cyclic ordering. Let \(B = V(F) \setminus A \), so \(|B| = 2k - 1 \). Then, by Theorem 5, the complement of the subgraph \(F[B] \) of \(F \) induced by \(B \) must contain a \(W_4 \). Let \(x_0 \) be the hub and \(X = \{x_1, x_2, x_3, x_4\} \) be the rim of a \(W_4 \) in \(\overline{F}[B] \). We distinguish the following cases.

Case 1: \(k \) is even.
Since \(F \) contains no \(C_k \), within \(F \): \(|N_A(z)| \leq \lceil \frac{k-1}{2} \rceil \) for each \(z \in B \). This implies that there exist vertices \(a_j, a_{j+1} \in A \) for some \(j \in \{1, 2, \ldots, k - 1\} \) such that \(a_jx_0, a_{j+1}x_0 \not\in E(F) \). No \(C_k \) in \(F \) also implies \(N_X(a_j) \cap N_X(a_{j+1}) = \emptyset \). No \(W_5 \) in \(\overline{F} \) implies in \(F \): \(|N_X(a_j)| \geq 2 \) and \(|N_X(a_{j+1})| \geq 2 \), and without loss of generality we may assume \(a_j \) is adjacent to \(x_1 \) and \(x_3 \), and \(a_{j+1} \) is adjacent to \(x_2 \) and \(x_4 \). This implies \(x_1x_3, x_2x_4, x_0a_{j+2}, x_0a_{j-1} \in E(F) \) since otherwise \(\overline{F} \supseteq W_5 \) (Note that \(F \nsubseteq C_k \) implies neither of \(a_{j-1} \) and \(a_{j+2} \) is adjacent to a vertex in \(X \)). Since \(F \) contains no \(C_k \), it is not difficult to check \(x_0a_{j-2}, a_{j-2}x_1, a_{j+1}a_{j-2} \not\in E(F) \). This implies \(\overline{F} \supseteq W_5 \) with hub \(x_0 \) and rim \(\{x_3, a_{j+1}, a_{j-2}, x_1, x_2\} \), a contradiction.

Case 2: \(k \) is odd.
We may assume \(x_i \in E(F) \) for each odd \(i \in \{1, 2, \ldots, k - 1\} \), since otherwise we can use the same arguments as in the first case. Since \(F \) contains no \(C_k \), \(a_ja_h \not\in E(F) \) for all even \(j, h \in \{1, 2, \ldots, k - 1\} \). If \(k \geq 11 \), we have \(K_6 \) in \(\overline{F} \) which implies \(\overline{F} \supseteq W_5 \), a contradiction. Now assume \(7 \leq k < 11 \). If \(F \) we have \(|N_X(a_j)| \geq 2 \) for all even \(j \in \{1, 2, \ldots, k - 1\} \), since otherwise \(\overline{F} \supseteq W_5 \). By the same token, we may assume without loss of generality that \(a_j \) is adjacent to \(x_1 \) and \(x_3 \) for some even \(j \in \{1, 2, \ldots, k - 1\} \). We distinguish two subcases.

Subcase 2.1: \(x_1 \) is adjacent to \(x_3 \).
Then \(x_1 \) and \(x_3 \) are not adjacent to any vertex in \(\{a_{j-1}, a_{j-2}, a_{j+1}, a_{j+2}\} \), since otherwise \(F \) clearly contains a \(C_k \). Thus, we get \(\overline{F} \supseteq W_5 \) with hub \(x_0 \) and rim \(\{x_3, a_{j+2}, a_{j-2}, x_1, x_2\} \), a contradiction.

Subcase 2.2: \(x_1 \) is not adjacent to \(x_3 \).
This implies \(x_2 \) and \(x_4 \) are adjacent to all vertices in \(\{a_{j-1}, a_{j+1}\} \), since otherwise \(\overline{F} \supseteq W_5 \). Suppose, e.g., \(x_2a_{j-1} \not\in E(F) \). Then \(\overline{F} \supseteq W_5 \) with hub \(x_1 \) and rim \(\{a_{j-1}, x_2, x_0, x_3, a_{j+1}\} \); the other cases are similar. Thus, we get \(x_2a_j, x_4a_{j+2} \not\in E(F) \); otherwise a \(C_k \) in \(F \) is immediate. Thus, we get \(\overline{F} \supseteq W_5 \) with hub \(x_0 \) and rim \(\{x_4, a_{j+2}, a_j, x_2, x_3\} \), our final contradiction.

This completes the proof. \(\square \)
3. Problem

We conclude the paper with the following open problem:

Find the Ramsey number $R(C_n, W_m)$ for $n \geq m \geq 6$.

References

