An existence theorem for Volterra integrodifferential equations with infinite delay *

Ferenc Izsák

Abstract

Using Schauder’s fixed point theorem, we prove an existence theorem for Volterra integrodifferential equations with infinite delay. As an application, we consider an \(n \) species Lotka-Volterra competitive system.

1 Introduction

Vrabie [10, page 265] studied the partial integrodifferential equation

\[
\dot{u}(t) = -Au(t) + \int_{a}^{t} k(t-s)g(s, u(s))ds
\]

\(u(a) = u_0, \tag{1.1} \)

where \(u : [a, b] \to X \), \(X \) is a Banach space, \(A : D(A) \subset X \to X \) is an \(M \)-accretive operator; \(t \in [a, b] \), \(g : [a, b] \times X \to X \), \(k : [0, a] \to \mathcal{L}(X) \) are continuous functions. The result, existence of solutions on some interval \([a, c) \) was obtained by using the Schauder’s fixed point theorem.

Schauder’s fixed point theorem is a usual tool for proving existence theorems in infinite delay case. In [8], Teng applied it to prove existence theorems for Kolmogorov systems. Another frequently used method (especially for integrodifferential equations) is the Leray-Schauder alternative, see [5] and its references.

Modifying (1.1) we investigate the case when the initial function is given on \((-\infty, 0] \), which means infinite delay, moreover in the right-hand side we take a function of the integral. This form allows us proving existence theorems for systems. In this case \(g, k \) in the right hand side have to be also modified. The spirit of the proof is similar to [10, pages 265–268] but we need some assumptions on \(k \) and \(g \) and additional spaces and operators have to be introduced to carry out the proof.

In section 3 we apply the result to a system (a competition model arising from population dynamics); existence of global solution will be proved. In the compactness arguments we need the following definition.

Mathematics Subject Classifications: 45J05, 45K05.

Key words: Volterra integrodifferential equation, Schauder fixed point theorem, competitive systems.

©2003 Southwest Texas State University.
Definition A family of functions $H \subset L^1([a,b];X)$ is 1-equiintegrable if the following two conditions are satisfied:

- For all $\epsilon > 0$, there exists δ such that for all $f \in H$, $\lambda(E) < \delta \rightarrow \int_E \|f(t)\|dt < \epsilon$
- For all $\epsilon > 0$, there exists $h > 0$ such that for all $f \in H$ and all $h_0 < h$,
 $$\int_a^{b-h_0} \|f(t+h_0) - f(t)\|dt < \epsilon.$$

In this paper, let X be a Banach space, $A : \mathcal{D}(A) \subset X \to X$ an M-accretive operator [10, page 21]. Further, the spaces equipped with the supremum-norm are denoted by denoted by C. We study of the abstract Cauchy problem ([7, page 90], [2, pages 390–398])

$$\dot{u}^f(t) + Au^f(t) = f(t) \quad \text{if} \quad t \geq a$$

$$u^f(a) = u(a).$$ \hspace{1cm} (1.2)

Here u^f denotes the f dependence of the solution. We also use the following theorem [10, page 65] which is the basis of the compactness method employing in the following section.

Theorem 1.1 Let $A : X \to X$ be an M-accretive operator, and $(I-\lambda A)^{-1}$ compact for each $\lambda > 0$. Let $u_0 \in \mathcal{D}(A)$ and $K \subset L^1([a,b];X)$ be 1-equiintegrable. Then the set $M(K) = \{u^f : u^f$ is the mild solution of (1.2), $f \in K\}$ is relatively compact in $C([a,b];X)$.

2 An existence result for a class of Volterra-type integrodifferential equations

A class of Volterra-type integrodifferential equations

Let U be an open subset of X, and $U_A = U \cap \mathcal{D}(A)$, with $(I-\lambda A)^{-1}$ compact. Let $b > a$ and $g = (g_1, g_2, \ldots, g_n)$ be Lipschitz-continuous functions in the second variable, where $g_i : (-\infty, b] \times U_A \to X$ are bounded and continuous. Let $k = (k_1, k_2, \ldots, k_n)$ be a function such that $k_i \in L^1([0, \infty), \mathcal{L}(X))$ and

$$k(t)g(s,u(s)) = (k_1(t)g_1(s,u(s)), k_2(t)g_2(s,u(s)), \ldots, k_n(t)g_n(s,u(s))). \hspace{1cm} (2.1)$$

Let the space X^n be equipped with the maximum norm, $\|x\| = \max_{1 \leq i \leq n} \|x_i\|$, where $x = (x_1, x_2, \ldots, x_n)$. Let $F : X^n \to X$ be a function such that for some constant $M_F \in \mathbb{R}$,

$$\|F(x)\| \leq M_F \|x\| \quad \text{and} \quad M_F \int_{-\infty}^{0} \|k(-\tau)\|d\tau \leq 1. \hspace{1cm} (2.2)$$
Consider the problem

\[\dot{u}(t) = -Au(t) + F\left(\int_{-\infty}^{t} k(t-s)g(s,u(s))ds\right) \quad \text{for} \quad t \geq a \]
(2.3)

\[u(t) = u_0(t-a) \quad \text{for} \quad t \leq a, \]
(2.4)

where \(u_0 \in \mathcal{C}((\infty,0],X)\) is a given bounded, equiintegrable function which fulfills the matching condition

\[u_0(0) = F\left(\int_{-\infty}^{0} k(-s)g(a+s,u_0(s))ds\right). \]
(2.5)

Theorem 2.1 Under assumptions (2.1) and (2.2), there is a value \(c\) in \((a,b]\) such that (2.3)-(2.4) has a weak solution on \((-\infty,c]\).

Proof: Note that \(k_i \in L_1([0,\infty),\mathcal{L}(X))\) implies \(k \in L_1([0,\infty),\mathcal{L}(X^n,\mathbb{R}^n))\) and (2.2) makes sense. This is only a technical supposition because (2.3) could be rewrite with \(k/M\) and \(Mg\) (instead of \(k, g\), resp.; \(M \in \mathbb{R}\) is sufficiently big) fulfilled (2.3). Let

\[P : \mathcal{C}(((-\infty,b],U) \mapsto \mathcal{C}((\infty,b],U)\]

defined by

\[Pf(t) = \begin{cases}
F\left(\int_{-\infty}^{t} k(t-s)g(s,u^f(s))ds\right) & \text{if } t \geq a \\
\int_{-\infty}^{t} k(t-s)g(s,u^f(s))ds & \text{if } t \leq a,
\end{cases} \]
(2.6)

where \(u^f\) is the weak solution of (1.2).

Observe that \(Pf = f\) holds if and only if \(u^f\) is the weak solution of the equation (2.3)-(2.4). Let us choose \(\rho > 0\) such that

\[B(u(a),\rho) := \{v \in X : \|v - u(a)\| \leq \rho\} \subset U. \]
(2.7)

Since \(g\) is bounded there is \(M \in \mathbb{R}\) such that

\[\|g(s,v)\| \leq M \quad \text{for} \quad (s,v) \in ((\infty, b] \times [U_A \cap B(u_0,\rho)]). \]
(2.8)

Denote by \(S(t)\) the semigroup generated by \(-A\) on \(\mathcal{D}(A)\). Let us choose further \(b \geq c_0 \geq a\) such that for all \(t \in [a,c_0]\)

\[\|S(t-a)u_0 - u_0\| + (c_0-a)M \leq \rho, \]
(2.9)

and \(c \in [a,c_0]\) such that

\[(c-a)MF\|k\|_{L_1} \leq 1. \]
(2.10)

Let us define

\[\mathcal{C}_{u_0}((\infty, b],U) = \{u \in \mathcal{C}((\infty, b],U) : u(t) = u_0(t-a) \quad \text{for} \quad t \leq a\}. \]
(2.11)
Let

\[H : C_u((−∞, b], U) \mapsto C([a, b], U) \]

be a natural homeomorphism with \((Hf)(t) = f(t)\) for \(t \in [a, b]\) and let

\[K_{u_0}^r := \{ f \in C([−∞, c], X) : \|Hf(t)\|_∞ ≤ r \& f(b) = u_0(d - a) \text{ for } d ≤ a \}. \quad (2.12) \]

Obviously \(K_{u_0}^r\) is nonempty, bounded, closed and convex subset of the space \(C_u([−∞, c], X)\).

Observe that \(P = P_1 \circ P_2\), where (using the matching condition (2.5)) we define \(P_1 : C_u((−∞, b], U) \mapsto C_u((−∞, b], U)\) as

\[P_1v(t) = \begin{cases} F \left(\int_{−∞}^t k(t - s)g(s, v(s))\,ds \right) & \text{if } t ≥ a \\ v(t) & \text{if } t < a \end{cases} \quad (2.13) \]

and \(P_2 : C_u((−∞, b], U) \mapsto C_u((−∞, b], U)\) is defined as \(P_2 = H^{-1} P_2^* H\), where

\[P_2^* : C([a, b], U) \mapsto C([a, b], U) \]

and \(P_2^* g(t)\) is the weak solution of the abstract Cauchy problem

\[\dot{u}(t) + Au(t) = g(t) \text{ for } t ≥ a \]
\[u(a) = g(a) = u_0(0). \quad (2.14) \]

For details on this problem, we refer the reader to Barbu [1, page 124] and for some applications of this result to [10, page 35].

Let \(f, h \in L_1([a, b], X) \) and let \(u, v \) be solutions, in the weak sense, of

\[\begin{align*}
\dot{u}(t) + Au(t) &= f(t) \\
\dot{v}(t) + Av(t) &= h(t)
\end{align*} \quad (2.15) \]

with some initial conditions \(u(a), v(a)\). Then for \(s, t \in [a, b] \) we have

\[\|u(t) - v(t)\| ≤ \|u(s) - v(s)\| + \int_s^t \|f(\tau) - h(\tau)\|\,d\tau. \quad (2.16) \]

From this inequality, it follows that

\[\|P_2^* h_1(t) - P_2^* h_2(t)\| ≤ \|h_1(a) - h_2(a)\| + \int_a^t \|h_1(\tau) - h_2(\tau)\|\,d\tau \]
\[≤ \|h_1 - h_2\|_∞ (t - a + 1), \]

which implies the continuity of \(P_2^*\) on \(C([a, b], U)\) and so \(P_2\) on \(K_{u_0}^r\). Using (2.8), (2.9) and (2.16) for \(u \in K_{u_0}^r, t \in [a, c_0]\) we get

\[\|P_2^* u(t) - u(a)\| ≤ \|P_2 u(t) - S(t - a)u(a)\| + S(t - a)u(a) - u(a)\|
\]
\[≤ \|S(t - a)u(a) - u(a)\| + \int_a^t \|g(t)\|\,dt \]
\[≤ \|S(t - a)u(a) - u(a)\| + (c_0 - a)M ≤ ρ. \quad (2.17) \]
Then we conclude that $P^*_2 u(t) \in B(u(a), \rho) \cap D(A)$. Consequently, $P_2 u(t) \in D(g)$ for $t \geq a$. By (2.2), (2.8), (2.10) and (2.13), for $t \geq a$ we have

$$
\|P u(t)\| = \|P_1 P_2 u(t)\| = \|F(\int_{-\infty}^{t} k(t-s)g(s, P_2 u(s))ds)\| \\
\leq M_F \sup_{s \in (-\infty, t]} \|g(s, P_2 u(s))\| \int_{-\infty}^{0} \|k(-\tau)\|d\tau \\
\leq M_F M \int_{-\infty}^{0} \|k(-\tau)\|d\tau \leq M.
$$

and (2.5) implies that $Pu(t) = u(t)$ for $t \leq a$; i.e., P maps K_{u_0} into itself. Since

$$
\|(P_1 v - P_1 w)(t)\| = \|F(\int_{-\infty}^{t} k(t-s)[g(s, v(s)) - g(s, w(s))]ds)\| \\
= M_F \int_{-\infty}^{a} k(t-s)[g(s, v(s)) - g(s, w(s))]ds \\
+ \int_{a}^{t} k(t-s)[g(s, v(s)) - g(s, w(s))]ds \\
\leq M_F [v(a) - w(a)] \\
+ \max_{s \in [a, t]} [g(s, v(s)) - g(s, w(s))](t-a)\|k(t-s)\|_{L_1},
$$

the function P_1 is continuous from $C_{u_0}((\infty, b]; U)$ into itself. Using the continuity of P_2 we have that $P : K_{u_0}^M \rightarrow K_{u_0}^M$ is continuous. Since

$$
\int_{E} Pf(t)dt \leq \lambda(E) \max_{t} Pf(t) \leq \lambda(E)\|k\|_{L_1} M
$$

and

$$
\int_{a}^{b-h_0} \|Pf(t + h_0) - Pf(t)\|dt \\
\leq \|F\| \|(a-b)(\int_{-\infty}^{t+h_0} k(t-s)g(s, u^f(s))ds - \int_{-\infty}^{t} k(t-s)g(s, u^f(s))ds)\| \\
\leq h_0 \|F\| \|(a-b)\|k\|_{L_1} M
$$

we get that $HP(K_{u_0}^M)$ is 1-equiintegrable. Let us define

$$
K_{u_0} := cl(\text{conv } P(K_{u_0}^M)).
$$

Easy calculations shows that $H(K_{u_0}) = cl(\text{conv } HP(K_{u_0}^r))$ is equiintegrable and Theorem 1.1 implies the relative compactness of $P^*_2 H(K_{u_0}) = HP_2(K_{u_0}).$
Since H is homeomorphism, $P_2(K_{u_0})$ and $P(K_{u_0}) = P_1P_2(K_{u_0})$ are relative compact. Since $P(K_{u_0})$ is a subset of the closed, bounded and convex set K_{u_0}, the Schauder fixed point theorem ensures the existence of a fixed point of P.

3 Application to an n species Lotka-Volterra competitive system

We prove local existence of solutions for a system, which is a model of an n species competition arising in the population dynamics. Let $\Omega \subset \mathbb{R}^n$ be a bounded domain with smooth boundary. Feng [3] studied the system $(i = 1, \ldots, N)$

$$
\begin{align*}
(u_i)_t &= D_i \left[\Delta u_i + u_i (a_i - u_i - \sum_{j \neq i}^N \kappa_{ij} u_j^{\tau_{ij}}) \right] \quad \text{on } (0, \infty) \times \Omega \\
\quad u_i &= 0 \quad \text{in } (0, \infty) \times \partial \Omega \\
\quad u_i(s, x) &= \eta_i(s, x) \quad \text{on } [-\tau, 0] \times \Omega,
\end{align*}
$$

where $u_i(t, x)$ denotes the density of the i-th species at time t and position x (inside a bounded domain Ω of \mathbb{R}^3), $u_j^{\tau_{ij}}(t, x) = u_j(t - \tau_{ij}, x)$, $\tau_{ij} > 0$, $\tau = \max \{\tau_{ij}\}$, D_i, a_i are positive, and κ_{ij} are nonnegative real numbers. Supposing the existence of a solution (a sufficient condition for this - using upper and lower semisolutions - is formulated in [6]) the authors describe the attractors of (3.1).

In [8], Teng studies

$$
\begin{align*}
\frac{dx_i(t)}{dt} &= x_i(t) [a_i(t) - g_i(t, x_i(t)) - \sum_{j=1}^m c_{ij} P_j(x(t - \tau_{i,j}(t))) \\
&\quad - \sum_{j=1}^m \int_{-\sigma_{ij}}^0 \kappa_{ij}(t, s) Q_j(x_j(t + s)) ds], \quad (i = 1, \ldots, n)
\end{align*}
$$

an n-species Lotka-Volterra competitive system with delays as an application of existence result for periodic Kolmogorov systems with delay. Detailed study of the non-autonomous Lotka-Volterra models with delay (focused on existence of positive periodic solutions) can be found in [9].

We rewrite (3.1) taking into account that a bounded attractor A has a bounded neighborhood U and $B \in \mathbb{R}$ such that $u(t, x) \in U$ for $t \leq t_0$ implies $|u(t, x)| < B$ for all $t > t_0$. B can be considered as a bound determined by the carrying capacity of the territory. Let $b: \mathbb{R} \to \mathbb{R}$ be a bounded, continuous such that $b(x) = x$ for $|x| < B$. The new form of (3.1) is

$$
\begin{align*}
(u_i)_t &= D_i \left[\Delta u_i + b(u_i)(a_i - b(u_i) - \sum_{j=1}^N \kappa_{ij} b(u_j^{\tau_{ij}})) \right] \quad \text{on } (0, \infty) \times \Omega \\
\quad u_i &= 0 \quad \text{on } (0, \infty) \times \partial \Omega \\
\quad u_i(s, x) &= \eta_i(s, x) \quad \text{on } [-\tau, 0] \times \Omega.
\end{align*}
$$
We reformulate (3.3) again in accordance to the notations and assumptions of Theorem 2.1. Let \(\Omega \subset \mathbb{R}^3 \) be a bounded open subset, \(X = [L^2(\Omega)]^n, u = (u_1, \ldots, u_n) : \mathbb{R} \to X \) \(u(s)(x) = (u_1(s,x), \ldots, u_n(s,x)) \) and

\[
D(A) = [C^2(\Omega)]^n, \quad A(u_1, u_2, \ldots, u_n) = (D_1 u_1, \ldots, D_n u_n).
\]

Let \(g = (g_1, g_2, \ldots, g_{n+1}) \) be such that \(g_i : (-\infty, \infty] \times X \to X \) are bounded and continuous, Lipschitz-continuous in the second variable and \(g_i(s,u(s))|_{\mathbb{R} \times B} = u(s) \), where \(B \) is an a priori bound of the solutions of (3.3), \(k = (k_1, k_2, \ldots, k_{n+1}) \), where \(k_i \in L_1([0, \infty), \mathcal{L}(X)) \).

We rewrite (2.3)-(2.4) in the form

\[
\begin{align*}
(u_i(t,x))_t &= D_1 u_i(t,x) + F_i\left(\int_{-\infty}^{t} g_i(t-s) g(s,u(s))ds \right) \quad (i = 1, \ldots, n) \\
u_i(s,x) &= \eta_i(s,x) \quad \text{on } [-\tau, 0] \times \Omega,
\end{align*}
\]

where we take \(A \) as defined above and \(n + 1 \) instead of \(n \). In a special case we get a perturbed version of (3.3), supposed that the right-hand side of (3.4) is approximated such that

\[
\left[\int_{-\infty}^{t} k_i(t-s) g_i(s, u(s))ds \right]_j \approx \kappa_{ij} b(u_j^\tau_i(t)) \quad (i, j = 1, \ldots, n)
\]

and

\[
\left[\int_{-\infty}^{t} k_{n+1}(t-s) g_{n+1}(s, u(s))ds \right]_j \approx b(u_j(t)) \quad (j = 1, \ldots, n).
\]

According to the choice of \(g \) requirements (3.5) and (3.6) can be rewritten as

\[
\int_{-\infty}^{t} k_i(t-s)(u_1(s), u_2(s), \ldots, u_n(s))ds \approx (\kappa_{11} b(u_1^\tau_1(t)), \kappa_{12} b(u_2^\tau_1(t)), \ldots, \kappa_{1n} b(u_n^\tau_1(t))) \quad (i = 1, \ldots, n)
\]

and

\[
\int_{-\infty}^{t} k_{n+1}(t-s)(u_1(s), \ldots, u_n(s))ds \approx (b(u_1(t)), \ldots, b(u_n(t))).
\]

Obviously \(k_1, k_2, \ldots, k_{n+1} \) can be chosen such that \(k_i \in L_1([0, \infty), \mathcal{L}(X)) \) and approximations (3.7) and (3.8) are sharp; namely, for all \(\epsilon_1, \epsilon_2, \ldots, \epsilon_{n+1} > 0 \) there are \(k_i \in L_1([0, \infty), \mathcal{L}(X)) \) such that for any bounded \((u_1, u_2, \ldots, u_n) \) and for all \(t > t_0, \)

\[
\int_{-\infty}^{t} k_i(t-s)(u_1(s), u_2(s), \ldots, u_n(s))ds = (\kappa_{11} b(u_1^\tau_1(t)), \kappa_{12} b(u_2^\tau_1(t)), \ldots, \kappa_{1n} b(u_n^\tau_1(t))) < \epsilon_i \quad (i = 1, \ldots, n)
\]
and
\[\int_{-\infty}^{t} k_{n+1}(t-s)(u_1(s),\ldots,u_n(s))ds - (b(u_1(t)),\ldots,b(u_n(t))) < \epsilon_{n+1}. \]

Moreover, the terms on the left-hand side of (3.7) and (3.8) lead to a more precise model than the original equation did (3.1) or (3.3) since the new terms keep track the past of the population. Finally let \(F = (F_1, \ldots, F_n) \) where
\[\int_{\infty}^{t} k(t-s)g(s,u(s))ds \in [L^2(\Omega)]^{n\times(n+1)} \]
and
\[F_i : [L^2(\Omega)]^{n\times(n+1)} \to L^2(\Omega), \]
\[F_i(x_1,x_2,\ldots,x_n,x_{n+1}) = a_i(x_{n+1})_i - (x_{n+1})_i^2 - \sum_{j=1}^{n} (x_{n+1})_i(x_i)_j. \] (3.9)

Since \(k = (k_1,k_2,\ldots,k_{n+1}) \) and \(g = (g_1,g_2,\ldots,g_{n+1}) \) fulfill every requirements listed in Theorem 2.1 we get the following

Theorem 3.1 Let \(u_i(s,x) = \eta_i(s,x) \) on \([-\tau,0] \times \Omega \) be an initial condition with a priori bound \(B \) of the possible solutions of (3.4). Let further \(k, g \) and \(F \) be as defined by (3.5), (3.6) and (3.9) satisfying the conditions of Theorem 2.1. Then (3.4) - a modified version of (3.1) - has a global solution.

We have to prove only the existence of a global solution. Observe that the condition \(b > c_0 \) (required in (2.9) and in (2.17)) plays no role here because we have not restricted the domain of \(g \). By repeating the method for seeking local solution one can choose a constant \(c - a \) in each steps, i.e. we have a local solution on \([a,c]\) and then \([a,2c-a]\), \([a,3c-2a]\) and so on, where every local solution fulfills the conditions of Theorem 2.1 which ensures the existence of a global solution.

Acknowledgements: The author is grateful to Gyula Farkas for his advice and to László Simon for reading the original manuscript.

References

Ferenc Izsák
Department of Applied Analysis, Loránd Eötvös University
H-1518 Budapest, PO Box 120, Hungary
e-mail: bizsu@cs.elte.hu
and
Faculty of Mathematical Sciences, University of Twente
PO Box 217, 7500 AE Enschede, The Netherlands.