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A B S T R A C T

Within the last years, digital light processing (DLP) became a viable solution for the manufacturing of
end-use parts in various industries among other additive manufacturing (AM) processes. As the number
of applications realized in a rapid manufacturing (RM) approach grows, it is necessary to understand the
process economics better when moving from laboratory and prototyping applications into the cost-
sensitive production scale. This paper presents a production-centered economic assessment of DLP
production in the early product development process, based on Continuous Liquid Interphase Printing
(CLIP). It is applied to an automotive exterior part case study to reveal expected process economics and
estimate part prime cost for different printer sizes and automation concepts. A subsequent sensitivity
analysis assesses the influence of relevant cost drivers and identifies opportunities for further cost
savings when producing end-use parts with DLP. Results may help machine OEMs and application
developers in cost optimization and decision making in RM.

© 2021 CIRP.

Introduction

The manufacturing sector for polymeric automotive parts and
components is dominated by well-explored and widely used
manufacturing technologies such as injection molding, insert
molding and back molding [1]. However, additive manufacturing
(AM) is considered as an emerging and conceivably disrupting
technology for polymer processing [2,3]. Its relevance for the
production of end-use parts is expected to increase within the next
years [4]. Due to significant improvements, AM materials and
processes are now found to be partially fulfilling automotive part
requirements [5]. As a consequence, AM is not only used for rapid
prototyping but also applied for rapid manufacturing (RM) [6] and
cost of end-use parts manufactured with AM become an important
factor to identify positive business cases for this manufacturing
technology. Addressing these trends, this paper presents an
approach for cost assessment of end-use parts printed with digital
light processing (DLP). The approach is centered around the

Continuous Liquid Interphase Process (CLIP) technology which can
be assigned to the DLP process family.

Introduction to DLP: the example of CLIP

In general, DLP systems are based on a vat photopolymerization
process, working with a light mask projector [7]. This principle is
derived from the method of dynamic mask projection, which was
originally enabled by a digital micro-mirror device from Texas
Instruments [8]. These technologies build a part in a layer-wise
approach by selective curing of a liquid photosensitive resin when
exposed to an UV-light mask [8,9]. CLIP recently emerged among
these technologies and delivered high production speed paired
with multiple programmable resins to form end-use parts [10]. Its
working principle is illustrated in Fig. 1.

At the beginning of a print, the build platform or carrier is
submerged in the resin reservoir. An oxygen-permeable and
optically transparent window creates a dead zone, a thin layer of
oxygen, between its surface and the photopolymer resin. From
beneath, a digital light processor irradiates a defined cross-section
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layer of the three-dimensional object into the liquid and solidifies
the exposed sections of photopolymer resin. During the build
process the build platform continuously moves upwards while
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aintaining a thin gradient of polymerization between the
reviously cured layer and the dead zone. The oxygen layer
revents the cured resin from sticking to the reservoir. Through
his continuous process, a three-dimensional object is formed.
pon print finish, the part and its support structures can be
emoved from the build platform. After removal of excess resin, the
art is additionally cured in a heating chamber to enhance the
echanical and thermal properties [11].

urrent trends and industry needs for end-use part production with
LP

The CLIP technology recently realized multiple end-use part
pplications in the automotive, sports equipment and apparel
ndustries using rigid epoxy-based and soft elastic polyurethane-
ased materials. Table 1 presents some of these published
pplications.
As presented, most applications are driven by customization

urposes, often in combination with a specific design for additive
anufacturing (DfAM). In the automotive sector, cost-effective
mall series production is also an important driving force [12–14].
pplications in sports and apparel are influenced by the customer's
esires or increase the functional value of the application through
eometries that are tailored to the customer's body dimensions.
or example, this process enhances the impact absorption of
ootball helmet cushions, comfort of bicycle saddles or perfor-
ance of running shoes [15–17]. These recent developments of
nd-use products in the DLP domain triggered market entry of new
rinter manufacturers with open-material systems [19,20] in
ollaboration with material suppliers to increase the spectrum of
aterials for DLP and enable new applications [21–23]. As the

systems aim to leave the domain of rapid prototyping, manu-
facturers present solutions to automatize the processes further.
These solutions include automated loading and unloading of DLP
machines by robots [24] or integrating multiple post-processing
steps in a single unit [19].

With respect to all these emerging trends and growing
possibilities, potential end-users need more profound understand-
ing of cost-efficiency in series production with DLP. In general, the
economics of AM influence the applicability of the technology for
end-use part manufacturing as cost sensitivity of the user
significantly increases when moving from rapid prototyping to
rapid manufacturing. As a consequence, users need versatile cost
evaluation tools which support them with detailed and specific
information in the early product development process by
providing:

� Detailed cost breakdowns
� Assessment of production system alternatives (e.g., different
printer sizes)

� Evaluation of influence of operation concepts (e.g., partial
automation)

� Sensitivity analysis regarding important cost drivers
� Extensibility and integrability in further product development
(e.g., production line simulation)

Generated insights equip engineers and decision makers with
important information regarding whether DLP in general can be
considered a competitive manufacturing approach. Taken together,
also further decision making regarding, e.g., a favorable location of
production or following a make or buy approach is possible.

By reviewing and adapting existing cost modeling approaches
for AM, this paper develops a cost assessment framework for DLP,
which targets economic technology evaluation in the early product
development process. It addresses the mentioned areas of decision
support and is subsequently applied to a case study for early
economic evaluation of DLP production of an automotive series
part.

The applicability of existing cost modeling techniques and first
approaches to quantify economics of AM processes, especially with
regard to DLP, are addressed in the following section.

Cost modeling techniques and derivation of research need

Available cost modeling techniques

Today, a broad spectrum of available cost modeling techniques
exists. These comprise analogical techniques, parametric techni-
ques and analytical techniques [25–27]. To address the respective
techniques’ major advantages, drawbacks as well as their scope of
application in the context of (AM) product development, they are
assessed one by one in the following paragraphs.

Fig. 1. Illustration of the working principle of the CLIP technology [11].

able 1
verview of recently published end-use part applications of the CLIP technology.

Industry Application Material class Driver Ref.

Automotive Personalized side scuttles EPX Customization [12]
Brake bracket EPX Small series [13]

Air duct split EPX Small series [14]
Fuel tank cap EPX Small series [14]

Apparel &Sports Running shoe midsoles EPU DfAM [15]
Bicycle saddle padding EPU DfAM [16]
Football helmet cushion EPU DfAM [17]
Eyewear frame cushions EPU DfAM [18]

2
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Analogical techniques
Analogical methods are using a certain codification for parts,

frequently a morpho-dimensional codification, which relates to a
typical solution for each codification (e.g., a manufacturing
process, typical cost range) [28]. They are characterized by
adjusting the cost of a similar product relative to differences
between it and the target product [25]. This approach is one of the
most successful approaches in the early design stage [29], where it
profits from advantages like its fast application, clear relation of
causes and effects and possible accuracy [27]. However, it requires
expert knowledge for the definition of adjustment factors,
identification of appropriate analog parts and build-up of the
substantial and detailed database [27]. As a consequence, first
implementation of this technique usually implies a high invest-
ment, which poses a high barrier especially for smaller-sized
enterprises [28].

Parametric techniques
By bringing parameters of a part into a mathematical

correlation with expected costs via statistical analysis, parametric
cost estimation techniques enable cost prediction within part
families [27]. Consequently, these methods are only feasible when
two conditions are met: First, the product must be a member of a
closely related product family. Secondly, this family must have
many members with already established cost for provision of
historical data [29]. Given this data exists, parametric techniques
are suited for cost estimation in the early design stage [27].
However, while they are fairly easy to perform and do not require
expert knowledge for their application, they often function like a
‘black box’, making it difficult for the user to understand elements
of the manufacture, identify cause-and-effect relationships or
justify the results. Moreover, if the context of production is altered,
the estimation must be repeated and results need to be justified
again [27,28].

Analytical techniques
In analytical cost estimation techniques, all work steps with

their costs for material, work, infrastructure, etc. are added up to
the product's cost in a bottom-up approach. This procedure
requires deep understanding of the process, its interactions and
part design details [27]. Degree of detail and a clear cause-and-
effect relationship are major advantages of this technique [25].
Furthermore, it is able to provide insight into cost contributors and
cost drivers. Also, miscalculation of single elements does not
necessarily compromise the entire estimation [27]. While it is
practically adaptable to changing workshop contexts [28], a new
estimate must be built up for each alternative scenario, resulting in
significant effort. [27]. Due to this data-intense approach, it is
rather suited for later stages of the product development process.
However, when no historic data is available (e.g., for new
technologies or products), this technique is the only cost modeling
approach applicable [27].

Use in the product development process
As already partially addressed, the different cost estimation

techniques demand varying degrees of available data and
formalization of the product and manufacturing process. Thus,
their individual position and contribution in the product develop-
ment process differs as illustrated in Fig. 2.

Resulting from the statements in “Introduction” section, the

evaluation through, e.g., an activity-based costing approach
[27,30]. With regard to all available cost modeling alternatives,
two main aspects need to be considered: First, with a low presence
of AM in end-use part manufacturing, techniques relying on
historic data like analogical or parametric modeling are less
favorable due to low data availability. Secondly, analytical cost
modeling not only represents the only technically feasible method
in these circumstances, but also offers support and opportunities
for extension (e.g., through integration into production-oriented
discrete event simulation [31]) in the following steps of product
development. In a more detailed investigation, existing analytical
cost models for AM end-use parts produced in a rapid manufactur-
ing approach are discussed in the next section.

Analytic cost modeling in context of rapid manufacturing

Several researchers dealt with AM cost identification in the
past, as showed by Costabile et al. [32]. Thus, the literature review
focuses on the key elements of the following analysis. This
comprises the use of AM in a rapid manufacturing context,
coverage of DLP processes, production with single geometries,
varying printer size and cost driver analysis. In terms of rapid
manufacturing, Hopkinson and Dickens tested production volume
of parts including a cost model to compare part cost of different AM
technologies like selective laser sintering (SLS), fused deposition
modeling (FDM) and stereolithography (SLA) with injection
molding. Their model determines the break-even point between
the technologies and injection molding [33]. Ruffo et al. improved
this model by integrating further cost factors like administrative
and overhead cost for identification of scaling effects [34]. Based on
the work of Ruffo, Charalambis et al. developed a first cost model
for DLP using a specifically designed precision printer without
regard to rapid manufacturing. Although this generic cost model is
not restricted to DLP technologies, specific assumptions of
parameters and limitations are derived from photopolymerization
processes and thus need adjustment when applied to other AM
technologies. The developed model sums up the cost for pre-
processing efforts, material, build process, post-processing activi-
ties and overhead allocations [35]. Cunningham et al. and Schröder
et al. extended cost analysis regarding cost driver influence. They
conducted a sensitivity analysis (SA) on stereolithography (SLA),
selective laser sintering (SLS), fused deposition modeling (FDM),
selective laser melting (SLM), electron beam melting (EBM) and
wire and arc additive manufacturing (WAAM) to uncover special
economic effects or rank the cost drivers by their impact on the
underlying cost models [36,37]. Yang and Li introduced a cost
model with consecutive sensitivity analysis for production with
mixed geometries using mask image projection stereolithography,

Fig. 2. Use of cost estimation techniques in the product development process and
target support area for this concept [adapted from [28]].
targeted area for support through the proposed cost modeling
approach is highlighted. It spans from the late product definition
phase to the beginning of the production phase with main
emphasis on the early (pre-)development phase. Here, first data
concerning the product's geometry, requirements and qualified
processes is available, enabling process-specific analytical cost
3

which shares certain process similarities with DLP [38]. A brief
overview of the different models’ coverage of single geometry
production (SGP), DLP and SA is presented in Table 2.

All approaches have in common, that they are based on a
bottom-up analytical cost modeling approach, underlining the
findings in “Use in the product development process” section.
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esearch need

With regard to the findings in “Introduction” and “Cost
odeling techniques and derivation of research need” sections,

he need for a DLP cost assessment framework can be identified,
hich covers a rapid manufacturing context with a single
eometry production approach and support of sensitivity analysis
or cost driver evaluation. From a practical standpoint, producing
nd-use parts with DLP implies efficient and optimized build
rocesses. It is questionable if a mixed geometry approach will be
dopted for series manufacturing. Furthermore, the use of larger,
ore productive DLP systems is usually preferred over the use of
mall systems. Thus, the effect of printer platform size within the
LP technology family needs to be considered when selecting the
ight platform for series production. Especially in series
anufacturing, users need to identify opportunities for further
ost savings and back decisions, e.g., regarding whether to make or
uy. Ideally, the assessment approach supports in the early
evelopment phases and provides an opportunity for further
xtension towards the production phase. This comprises, for
xample, a possible integration into dynamic simulation of
roduction systems, which can be done when first production
ayouts are existent and availability and precision of data is very
igh.
Addressing these needs in research and industrial practice, the

ollowing introduces an assessment framework based on a static
ost model for prime cost estimation in a DLP end-use part
anufacturing environment during the early product develop-
ent phase. Its activity-based approach aims to provide detailed
ost insights (e.g., through application of cost driver sensitivity
nalysis) and offers the possibility for further extension or
ntegration. Subsequent application to an automotive exterior
art case study reveals differences in part cost on different
latform sizes, potentials for cost savings through automation and
nfluence of selected cost drivers in a subsequent sensitivity
nalysis.

ethodology

verview of method and implementation

For better understanding, the fundamental framework for cost
ssessment is shown in Fig. 3, providing an overview about its
lements, tools and deployment.
On the input level (1), build geometry data and machine

arameters need to be gathered using the machine interfaces and/
r a nesting software like Materialise MAGICS. Depending on the
mount of already available data and the needed accuracy, the time

data amounts, e.g., coming from multiple parallel evaluations, and
ensures repeatability of the evaluation in a very short time span. In
this step, the scripts carry out the evaluation and cost modeling
according to the parameters specified by geometry, print experi-
ments and estimations. The analysis level (3) gives insight into the
estimated prime cost for the respective part's production, the
underlying cost structure and cost driver impact. For fast and
comprehensive visual analysis of the key performance indicators
(KPIs), the analysis can be coupled to a python-based KPI
dashboard. Based on the results, different system configurations,
cost driver impacts and potentials for further improvement of cost
performance can be evaluated. The central elements defining the
cost model and sensitivity analysis are described in the following,
before the framework is applied to a case study in “Application to a
case study” section.

Reference process chain and system boundary

The reference process chain for the assessment is depicted in
Fig. 4. With three major steps, pre-processing, processing and post-
processing, the system boundary covers all directly print-related
activities to manufacture a blank part. Following finishing steps
(e.g., subsequent surface treatments like painting) are not covered.

Pre-processing encompasses the activity sequence of nesting,
data transfer to the machines, resin dispense and loading of the
printer platform into the machines. The latter two manual
activities can be automated through robot handling. During
processing, the print is executed and subsequent unloading of
the build platform is either done manually or automatically. Post-
processing involves washing of the green parts, removal of support
structures, cleaning of the build platform for subsequent jobs and
thermal curing of the green parts.

able 2
verview of model coverage in identified cost modeling approaches.

Reference SGP SA DLP

Hopkinson and Dickens [33] �
Ruffo et al. [34] �
Charalambis et al. [35] � �
Schröder et al. [36] � �
Cunningham et al. [37] � �
Yang and Li [38] � �

Fig. 3. Underlying methodological framework for cost assessment.
Fig. 4. Process steps and activity sequence for the considered process chain.
pan for this step varies. For example, if print experiments are
equired to collect data, which cannot be directly derived from
istoric evaluations or digital print job planning, it extends from
inutes to several hours. The evaluation level (2) comprises the
ctivity-based cost model and sensitivity analysis module, which
re implemented in python scripts. This enables processing of large
4
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Cost structure

For the definition of the cost model, the underlying cost
structure and way of cost calculation is assessed. To determine the
prime cost per part, a calculation based on machine hour rates and
differentiated overheads is applied. In general, the prime cost can
be broken down into production cost and sales and administration
(S&A) overheads, as illustrated in Fig. 5. Production cost are
determined by material cost, summarizing the cost of production
materials and their overheads, and manufacturing cost, comprising
labor cost and manufacturing overheads.

A detailed view on the manufacturing cost in Fig. 5 is provided
in Fig. 6. In manufacturing overheads, the depreciation and lease
cost, calculatory interests, room and energy cost as well as
maintenance cost constitute the machine cost. Together with labor
cost and remaining overheads, machine cost are a central cost
component of manufacturing cost.

This cost structure builds the base for the definition of the cost
model in “Cost model” section.

Cost model

Using elements of the models presented in “Cost modeling
techniques and derivation of research need” section and the cost
structure introduced in “Cost structure” section as a baseline, the
cost model defines cost-estimating relationships (CERs) for the
parameters. For a complete overview of all involved parameters,
calculations and resulting CERs, comprehensive tables are provid-
ed at the end of this article in Appendix A. Following the idea of
production at an ideal AM part supplier facility, the part production
is assumed to run 24 h in three shifts. This implies that apart from
printers, also the shared pre- and post-processing equipment like
washers, resin dispensers and ovens for post-processing is highly
utilized and job distribution is done accordingly. The cost model is
designed to analyze effects of partially automated production.
Concepts involve a robot for loading and unloading operations of
printers and part washer as well as automated resin dispensing
during pre-processing. These automated tasks can be triggered to
manual execution to evaluate potential cost savings through
automation.

As illustrated in Fig. 7, prime cost are composed of four major
cost blocks. These blocks contain CERs for labor cost, material cost,
machine cost and overhead respectively S&A cost. The color coding
of these components is also found in the subsequent cost analysis
charts in Fig. 9 in “Calculated prime cost per part” section.

Manufacturing cost result from machine hour and labor rates in
combination with the respective process and machine times.
Material cost depends on resin cost, the geometrical properties of
the part, its support and excess material which is not solidified
during a print. Together, material cost, machine cost and labor cost
form the manufacturing cost. Applying standard overhead rates for

polymer processing facilities as overhead and S&A cost, prime cost
per part can be calculated assuming a yield factor. As a profit
margin is not applied, the prime cost cannot be treated as an
estimated net offer price.

In favor of readability, the next paragraphs only introduce
central CERs of the model. A detailed summary of all involved
calculations is provided in the appendix.

Material cost
As presented by Ruffo et al. [34] for the case of laser sintering,

direct cost in AM are affected by the material cost, the part volume
and wasted material. This also applies to the DLP technology,
where the final material usage is composed of the part itself,
support structures and excess resin covering the build's surface
before washing. Usage of two-component resins leads to additional
waste because of fast solidification, which prevents it from being
re-used in a second print cycle. Translated into a CER, the material
cost per part CMat can be expressed as follows.

CMat ¼ ðVB þ VS þ VEÞ�cMat

NP;B

VB describes the part build volume, VS the amount of support
volume per build and VE comprises unsolidified excess material
lost through adhesion and beginning age hardening. These
volumes are multiplied with the specific resin cost cMat divided
by the number of parts fabricated in a single build NP;B. The amount
of waste material is measured through weighing in the print
experiment.

Manufacturing cost
As part of the manufacturing cost, labor cost per part CL are

affected by manual processing activities multiplied with the labor
rate cL. The time for resin dispensing tD, the cumulative time for
loading and unloading of the printer, part washer and post-
treatment oven as handling time tH as well as the time for manual
equipment cleaning tC can be assigned to the number of parts per
build NP;B. De-supporting takes the time tDS and is accounted for
each part individually. Equipment cleaning after a shift is
represented through tSC and distributed over the number of parts
manufactured during a shift NP;S.

CL ¼ b�ðtD þ tHÞ þ tC
NP;B

þ tDS þ tSC
NP;S

� �
�cL

As the model investigates the effects of automation on the part
production cost, the parameters tD and tH are set to zero when the

Fig. 6. Machine cost as a component of manufacturing cost [adapted from Plinke
[40]].
Fig. 5. Components of prime cost [adapted from Horsch [39]].

5

model is run.

b ¼ 1; for manual processes
0; for automated processes

�

This assumes automation of dispensing and loading activities
through continuous dispensing and robot utilization for handling
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perations. These activities are then accounted for with machine
imes.

For allocation of the machine cost to the manufacturing cost,
he cost per machine hour for the different used equipment needs
o be calculated. This follows a common pattern for each
quipment besides the curing oven.

Mac;i ¼ cE;i þ
cR;i þ cDL;i
tA;i�kU;i

Machine hours of the respective equipment (indexed with i)
Mac;i are characterized through the hourly equipment energy cost

E;i, room cost cR;i and depreciation respectively lease cost cDL;i.
hese figures are divided by the time of machine availability tA;i
nd utilization rate kU;i. The different machine cost CMac;i are then
alculated by multiplying the respective equipment's machine
our rate cMac;i with the associated processing times ti (e.g.,
rinting time tP , washing time tW) and can be broken down to
ingle parts via the number of parts on a build platform NP;B.

Mac;i ¼
cMac;i�ti
NP;B

Cost for the curing oven are attributed to a day's part output

or extrapolation of the equipment cost in the production
environment of the M1 and M2 printer.

Overhead, yield and S&A cost
Overhead and sales and administration cost are estimated by

applying standard overhead rates to the production cost. The
selected values shown in Table 3 reflect experts’ assumptions for a
small to medium-sized polymer processing facility. The yield
assumption is derived from operation experience with optimized
DLP builds.

Sensitivity analysis

To investigate the influence of selected cost drivers on the
proposed cost model's output, a sensitivity analysis is conducted.
The selected parameters of the cost model are varied in their input
to detect their effect on the model output and reveal potentials for
further cost savings when using DLP in a rapid manufacturing

Fig. 7. Flowchart illustrating the components and parameters of the activity-based DLP cost model.

Table 3
Rates applied for overhead, S&A cost and yield.

Parameter Rate in %

Material overhead 4

Production overhead 15
S&A on material 5
S&A on production 5
Yield 95
P;D, as it is assumed that oven capacity is selected according to the
nstalled printing volume and curing time takes over 12 h. The cost
or automation equipment and the simulated production environ-
ent of the L1 printer, which is not available at the facility, have
een estimated based on publicly available data and expert guesses
6
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environment. The selection of parameters of interest can be
oriented on the following three aspects:

� Significant contribution of the parameter to the prime cost.
� Technical parameters, which are influenceable by user and
operation concept.

� Parameters, which are likely to be negotiable at resource
purchase.

As frequently not all technical parameters are freely accessible
on AM machines, the selection depends on the utilized equipment.
For example, machines can limit the variation of print speed in the
user interface for machine protection or quality reasons. Also, for
the course of this work, parameters associated with the part
orientation or geometry are excluded but have an influence on
prime cost. However, this case study assumes a qualified build job
and explores the cost drivers based on a fixed geometrical layout.
Identified parameters and their effects will be presented after
analysis of the prime cost structure.

Application to a case study

Print setup for the case study

The following paragraphs describe the evaluation of a case
study using the proposed assessment framework. After selection of
the print properties for different machines sizes, the print is
executed on two printers. Results from this experimental print
help to improve the accuracy of the cost modeling and sensitivity
analysis. The obtained results are discussed after the presentation
of the print setup.

Part and print properties
The case study is centered on an automotive exterior trim part

with a low production volume. Properties and shape of the part are
described in Table 4. For this print, the material of choice is
Carbon's EPX 82 [41], which has been used in multiple automotive
interior and exterior applications [12–14].

As the part features critical surfaces on side (b) which are
exposed to the customer's view, the part needs to be printed at an
angle to maintain a single-sided support attached solely to side (a).
The process chain of printing and post-processing depends on the

selected base material. For EPX 82, Table 5 summarizes the
resulting processing steps, duration and necessary equipment.

After the print duration (tp) of 304 min, the build platform is
washed in the part washer and dunked in IPA (tW) for 16 min. After
support removal, the green part is thermally cured in an industrial
oven for 750 min (tTC).

Nesting results
Support generation was done using the Carbon printer interface

with its support generation feature and manual support adjust-
ments to clear critical surfaces. The resulting supported single-part
STL file was used to nest the same supported part on all considered
printer platforms. Because of the isotropic build quality of DLP
systems, the nesting of parts was optimized towards the highest
platform utilization without maintaining a standardized orienta-
tion. This contributes to economical print optimization and lower
cost per part.

Referring to the different printers’ specifications, the print jobs
were nested using Materialise MAGICS. Table 6 summarizes the
nesting results for the physically present M1 and M2 printers and
the estimation for the L1 platform based on publicly available data.
The realized part number per print varies between 2 parts for the
small M1 platform and 24 parts for the L1 platform.

Cost model parameter gathering
For check of printability and gathering parameters like process

step timings and resin loss, the print jobs have been executed on a
Carbon M1 and M2 printer using EPX 82 resin. Tracked times for
processing steps influenced the parameter selection in the cost
model and sensitivity analysis. Fig. 8 shows the parts on the M2's
build platform after the finished print. During the prints on the M1
and M2 platforms, the print duration and resin loss due to adhesion
to part and printer surfaces as well as residual resin were recorded.
Table 7 summarizes these parameters.

The residual resin volume sticking to the part's unwashed
surface was weighed out at 2.5 ml per part. Residual resin left in the
printers after job finishing was measured at 62.4 ml for the M1 and
116.7 ml for the M2, resulting in 67.3 ml of excess resin for the M1
and 131.5 ml for the M2 printer. As build platform size doubles
between M1 and M2, the excess resin amount (part surface and
printer residuals) grows with nearly the same rate, namely with a
factor of 1.95. Broken down to the printer's surface, this equals a
resin loss of 0.60 ml/cm2 for the M1 and 0.58 ml/cm2 for the M2.
This is used to estimate specific resin loss on the L1 platform at
around 0.55 ml/cm2.

The print duration of 5 h and 4 min on both M1 and M2 result in
an effective print speed of 23.3 mm/h. This equals a build rate of
13.8 cm3/h (M1) and 41.3 cm3/h (M2). Based on the achieved print
speed and larger platform size, the build rate of the L1 platform is
estimated at 162.2 cm3/h.

As predicted by the printer interface, the builds came out
without noticeable errors or surface irregularities. Generated
support could be easily separated from the part bodies. Upon
successful completion of the build job, the parameters for this print
setup were handed to the model parameter lists.

Table 4
Shape and properties of the case study exterior part.

Part back (a) and front (b) view

Table 5
Processing steps and necessary equipment for parts produced with EPX 82.
Bounding box X (supported) [mm] 51
Bounding box Y (supported) [mm] 70
Bounding box Z (supported) [mm] 118
Part volume [cm3] 21.61
Support volume [cm3] 13.23

Step Duration [min] Equipment

Print 304 Printer
Washing 16 Washer &IPA bath
Support removal 2 –

Thermal curing 750 Oven

7
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alculated prime cost per part

Upon execution of the cost model, the prime cost per part for a
roduction environment surrounding the different printer plat-
orms are calculated. Fig. 9 summarizes the results, listing the
xpected total production cost per part and their composition on

pre-selection of cost drivers for analysis in the subsequent
sensitivity analysis. Components of yield and overhead costs are
not displayed because these have been applied to the model as
fixed rates which are not containing further information.

The prime cost per part show strong dependence on platform
size, reaching from 48.51s for the smallest M1 platform to 17.87s
on the L1 platform. However, the cost decrease is not proportional
to platform size increase, as the L1 platform realizes a reduction of
about 13.2% over the five-times smaller M2 platform while
doubling the platform size between the M1 and M2 platforms
reduces part cost by 57.6%. While the share of machine cost for the
M1 and M2 is nearly equal between 42.6% and 40.7%, it rises to
52.8% with usage of the L1 platform. Especially for the large build
platform, the printer contributes the major share of machine cost,
which represents the highest cost component. Other researchers
reported comparable findings regarding the high impact of
machine cost on part cost in multiple AM processes [33,34,36].
These point towards a high relevance of the printing speed and
machine investment, respectively, lease cost as a cost driver.
Lindemann et al. [42] also reported on the effect of these
parameters.

Material cost comprise the material consumed for the part
body, supports and the excess resin which is washed off the parts
or left in the printer after a completed build job. Because of the
printing duration of over 5 h, excess resin cannot be reused. Its
two-component formulation leads to an ongoing solidification
process and degradation of printing properties, so excess material
needs to be disposed. Across all platforms this effect causes the
highest share in material cost ranging between 3.4% and 6.4% of
part cost. As support material also needs to be disposed, these
parameters also represent a high cost-driving and optimization
potential. In general, the share of material cost increases with the
build platform size from 7.0% to 16.2%.

Labor cost develop inversely proportional to platform size and
part number per print, ranging from 30.2% to 11.5%. Using bigger
platforms, cost for manual activities like cleaning and machine

able 6
esting results of the case study part on the Carbon M1, M2 and L1 printer platform.

Platform M1 M2 L1

Platform size (X,Y) [mm] 141 � 79 190 � 118 400 � 250
Print height (Z) [mm] 118 118 118
Parts per print [pcs] 2 6 24
Total part volume [cm3] 43.21 129.63 518.57
Total support vol. [cm3] 26.46 79.38 317.52

ig. 8. Case study parts after successfully finished printing experiment on the
arbon M2 platform.

able 7
arameters recorded during the experimental prints and resulting estimations for
he L1 platform.

M1 M2 L1*

Adhesive loss per part [ml] 2.5 2.5 2.5
Excess resin loss per print [ml] 62.4 116.7 490.7
Specific resin loss [ml/cm2] 0.60 0.58 0.55
Print speed [mm/h] 23.3 23.3 23.3
Build rate [cm3/h] 13.8 41.3 162.2
he respective platform. Cost shares displayed on the inner ring are
umulative values attributed to the categories of material, labor,
achine, overhead and expected yield cost. To get an impression
bout the dimensions of important cost contributing to each of
hese categories, the outer ring displays selected cost components
alculated by the model. The detailed view provides support for
8

preparation are distributed over a higher number of parts per print,
leading to a decrease of labor cost from 30.2% to 11.5% with
increasing platform size. However, the amount of finishing cost
increases from 1.9% to 5.0% because a growing number of parts
needs individual support removal and handling. As all manual
activities are assumed to be efficiently organized, the labor rate
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and underlying personnel cost are identified as a potential cost
driver. Regarding the growing number of concepts for automation
between printers as mentioned in “Introduction” section, the cost
saving potential for automation of handling operations seems to be
limited as these activities contribute to less than 1.4% of prime cost
for all platform sizes. The following section presents the effects of a
partially automated production environment on the prime cost per
part.

Effects of platform handling automation

Recently proposed automation approaches use a robot arm or
conveyor system to automatically load and unload finished prints
from printers and post-processing equipment. As shown in Fig. 9
for a manual production approach, the cost for manual handling
activities represent a minor cost component when it comes to total
labor cost. The cost model is executed again, modeling automated
handling and resin dispensing. Additional automation equipment
is contributed for in the machine hour rate. Table 8 summarizes the
effects of handling automation for the different platform sizes.

The results underline the limited effect of handling automation
in production setting for this case study, realizing cost reductions
between 0.5% and 1.2%. As the contribution of handling cost to the
total labor cost per part decreases with increasing platform size,
handling automation becomes less attractive for these machines.
Regarding the subsequent sensitivity analysis, parameters for
handling automation are not considered impactful cost drivers.

Cost driver evaluation

The following paragraphs evaluate the role and effect of

print speed or lease price negotiations are expected to have a high
impact on part cost. The same logic applies to the general resin
price and material waste during production, comprising support
and excess resin. These factors are influenced through print
optimization or varying material prices. As activities requiring
labor are assumed to be efficiently organized, the underlying cost
driving parameter is operator cost. These cost also vary depending
on the location of production and therefore pose an influenceable
cost driver. A first category summarizes the negotiable, resource-
related cost drivers such as cost for printer lease, operator and resin
cost. Cost drivers like print speed, the resin loss and support
volume, which can be influenced by build optimization, are listed
in a second category.

All parameters are varied within a range of �20% around their
original value for comparison of their effect on the part cost. Their
behaviour is depicted in Fig. 10 with the first cost driver category
listed in the upper graph row and the second category in the row

Fig. 9. Overview of the calculated prime cost per part and their components for the M1, M2 and L1 printer platform.

Table 8
Change in cost per part through handling automation.

M1 M2 L1

Machine cost [s] þ0.25 þ0.08 þ0.02
[%] þ1.2 þ1.0 þ0.2

Labor cost [s] �0.68 �0.23 �0.08
[%] �4.6 �4.2 �3.6

Overhead &yield cost [s] �0.11 �0.03 �0.01
[%] �1.1 �0.9 �0.4

Cost per part [s] �0.54 �0.18 �0.07
[%] �1.2 �1.0 �0.5
selected cost drivers on the part prime cost for the presented case
study using the sensitivity analysis method as introduced in
“Sensitivity analysis” section. Based on the presented reasoning
pattern, six parameters are identified for sensitivity analysis.
Printer lease cost and print speed mainly determinate the printer
machine cost. Changes in these parameters due to alteration of
9

below. For every cost driver and printer platform, the listed slope of
the linear (regression) function indicates the responsiveness of the
cost model to the input parameter variation. It can be interpreted
as change in part cost per percent of change in the input
parameters.
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For parameters associated with the first category, printer lease
ost represent the most impactful cost driver. Ranging between a
esponsiveness of 0.454 for the small M1 platform to 0.642 for the
1 platform. Compared to operator cost and resin cost, here the
pread between the different platforms is also the highest. While
he responsiveness to changes in operator cost is very low for each
latform, ranging from 0.082 (L1) to 0.106 (M2) with a small
pread, a more clear dependence on resin cost is present. Here,
ncrease in resin cost influences the large L1 platform the most,
aving a responsiveness of 0.187.
With regard to the second category of cost drivers, which are

nfluenceable through technical adjustments and optimizations,
hanges in print speed by far have the highest effect on part cost.
urthermore, due to the modeled shift system and the use of a floor
unction inside calculations for the realized parts per day NP;D (see
able 11 in the Appendix), the behavior is non-linear. Taking into
ccount the linear regression slope coefficients, the small M1
latform has the highest responsiveness (�0.823) to changes in
rint speed. With a mediocre spread, the L1 platform shows the
owest responsiveness with a value of �0.729. For the other two
ost drivers, resin loss and support volume, spread and respon-
iveness are very low. For resin loss, values between 0.040 (M1)
nd 0.074 (L1) are reported. Even lower values apply to support
olume, ranging between a responsiveness of 0.016 (M1) and 0.043
L1).

Expressed as changes in absolute part cost for a more practical

cost sensitivity for sourcing of automotive parts is very high and
thus demands economic optimization. Also, careful weighing of
chances and risks related to cost drivers is mandatory.

Discussion

Conclusions

The developed cost assessment framework and its application
to the case study generated valuable insights into the cost structure
of series production with DLP. It enables an assessment of cost
structures for physically present printers and production systems
as well as estimation for machines that might be subject to an
investment or available at suppliers. Fundamental findings from
the case study showed that increasing printer size positively
influences prime cost per part. However, the relation is not
proportional because of varying shares of machine cost. As already

Fig. 10. Overview of the cost driver sensitivity for the selected parameters on M1, M2 and L1 printer platform.

Table 9
Absolute change in part cost at variation boundaries (�20%).

Variation M1 M2 L1 Unit

Lease cost �20% �4.41 �1.84 �2.29 [s]
Resin cost �20% �0.79 �0.65 �0.67 [s]
Print speed þ20% �8.01 �2.98 �2.59 [s]

�20% þ7.03 þ2.95 þ2.61 [s]
erspective, Table 9 exemplarily summarizes the absolute varia-
ion results of the most impactful cost drivers ‘Lease cost’, ‘Resin
ost’ and ‘Print speed’ for the different print platforms.
In general, these figures underline the potential impact of cost

river optimization, especially given the automotive background of
he application example. Regardless of a make or buy approach, the
1

found in investigations of other AM processes, machine cost also
contributes the highest share in part prime cost with DLP, ranging
from about 37% to 52%. Consequently, cost drivers associated with
machine cost like machine lease price or print speed bring the
highest potential for further production cost reductions as
detected in the sensitivity analysis.
0
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With increasing platform size, the contribution of labor cost
decreases, as time-intensive activities like machine cleaning
between build jobs are distributed over a higher number of parts
per print. However, the same applies to the cost of handling part
platforms between prints and post processing. Thus, the effect of
automation of handling activities on the part cost is very limited
and decreases with increasing platform size. This applies to this
case study, but could significantly change when another produc-
tion model and shift-system is assumed. In contrast to handling,
cost attributed to single part finishing activities become more
relevant with a higher number of parts produced in a print. This
underlines the need for new automation concepts for support
removal and part finishing to lower prime cost in production.

The importance of material cost also grows with the platform
size. Though bigger platforms operate more efficient concerning
unused resin, high cost shares and thus also high potentials for cost
optimization lie in the reduction of support structures and excess
resin. In this case study, the degradation of two-component resins
during longer print times leads to a high amount of unused resin
which is not usable for a subsequent print and thus needs to be
disposed. Here, development and application of single-component
resins with comparable properties can improve the process cost
and sustainability.

In general, bigger print platforms correlate with reductions in
part cost in the analyzed case study. For all platform sizes the
optimization of build-related cost drivers like print speed, material
waste and support volume shows a high potential for further cost
reductions. These parameters can often be influenced by the user
depending on the build preparation and execution.

Limitations and future research

The proposed framework enables first estimations of part cost
on different DLP platforms in a rapid manufacturing context.
Though some build and model parameters were gathered through
a sample print, other parameters are subject to the user's
assumptions. It is questionable if the assumed parameters can
realistically be achieved in the final production environment.
However, for the targeted early product development phase, the
approach offers a detailed breakdown of cost and influence of cost
drivers, enabling first profound decision making regarding, e.g.,
utilized printer platforms and the operation concept or checking
the plausibility of supplier quotes. Furthermore, its elements can
be carried forward to a dynamic cost evaluation in a simulation
environment, further enhancing cost estimations together with
production times and necessary equipment.

The case study showed that the part cost difference between
the two larger platforms is relatively low. Depending on the
production volume, it might also be beneficial to produce on
smaller machines, as they can face higher utilization in practice.
Especially when larger machines are not fully utilized, the high
investment, respectively, lease cost can lead to significant
increases in part cost, underlining the need for an application-
specific dynamic cost modeling approach.

While DLP already proves its capability to fulfill end-use parts’
requirements and moves into series production like other AM
technologies, there are still opportunities for further cost
reductions in both, production resources and build optimization
for DLP. For example, effects from alternative part positioning,
supporting or redesign for additive manufacturing were not

need to be considered when AM is evaluated among other
manufacturing options. Multiple effects down the supply chain
should be taken into account to estimate the cost of AM and its
sustainability in production in a more holistic way. Future research
can address these topics and contribute to more cost transparency
in this AM process family, ultimately advancing usage of AM in
manufacturing through better cost prediction in the early product
development stages.
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Appendix A. Additional information for parameters and
calculations

This appendix provides additional information about relevant
parameters and calculations, which where applied during devel-
opment of the cost model and its application to the presented case
study.

A.1 Parameter notation and overview

Multiple parameters have been identified and acquired for the
proposed cost model. For better understanding and transparency,
these parameters are listed in Table 10 with their respective
notation, grouped by their type.

Table 10
Summary of parameters for model input.

Parameter Symbol Unit

Printer platform x size x [mm]
Printer platform y size y [mm]
Geometric part volume VG;P [cm3]
Geometric support volume VG;S [cm3]
Part bounding box x size xB;P [mm]
Part bounding box y size yB;P [mm]

Part bounding box z size zB;P [mm]
Printer room footprint AF;P [m2]
Washer room footprint AF;W [m2]
Oven room footprint AF;O [m2]
Printer power rating PE;P [kW]
Washer power rating PE;W [kW]
Robot power rating PE;R [kW]
Oven power rating PE;O [kW]

Number of parts per build NP;B –

Number of shifts per day nS –

Number of operational days per year nO –

Lease for printer and platforms cDL;P [ks/a]
Lease for part washer cDL;W [ks/a]
Invest cost for robot and periphery CI;R [ks/a]
Invest cost for curing oven CI;O [ks/a]
Resin cost cMat [s/L]
Operator cost cL [s/h]

Printing time tP [h]
Washing time tW [min]
Resin dispensing tD [min]
Platform handling tH [min]
Platform cleaning tC [min]

Part de-supporting tDS [min]
Thermal curing tTC [h]
Shift clean-up time tSC [h]
Time per shift tS [h]
Depreciation time tDep [a]

Specific resin loss kL [ml/cm2]
Printer utilization –
considered but are directly linked to the cost during production.
Furthermore, improved support generation and minimization of
waste not only contribute to better cost performance but also to a
more sustainable manufacturing process with DLP. In this context,
additional benefits of AM such as the possibility to produce locally
in distributed manufacturing networks were not covered here but
11
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.2 Relationships for parameter calculation and cost-estimation

The cost model introduced in “Cost model” section contains a
umber of cost estimating relationships and side calculations,
hich are necessary to conduct the sensitivity analysis and achieve
he presented results. Table 11 provides an overview over all
quations for the resulting cost-estimating relationships, which
ere applied in the model in addition to the relationships
entioned in the introduction of the cost model.
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able 11
ummary of calculated parameters and cost estimating relationships.

Parameter Equation Unit

Part volume per build VB ¼ NP;B�VG;P [cm3]
Support volume per build VS ¼ NP;B�VG;S [cm3]
Excess volume per build VE ¼ kL�x�y [cm3]
Print speed vP ¼ zB;P

tP
[cm/h]

Average build rate bP ¼ VBþVS
tP

[cm3/h]

Material cost per part CMat ¼ ðVBþVSþVE Þ�cMat
NP;B

[s]

Labor cost per part CL ¼ tDþtHþtC
NP;B

þ tDS þ tSC
NP;S

� �
�cL [s]

Machine hour cMac;i ¼ cE;i þ cR;iþcDL;i
tA;i �kU;i [s/h]

Equipment energy cost cE;i ¼ PE;i�kE [s/h]
Equipment room cost cR;i ¼ AF;i�kR [s/a]
Daily availability tA;D;i ¼ nS�ðtS � tSCÞ [h]
Yearly availability tA;i ¼ nO�tA;D;i [h/a]
Printer machine cost CMac;P ¼ cMac;P �tP

NP;B
[s]

Washer machine cost CMac;W ¼ cMac;W �tW
NP;B

[s]

Robot machine cost CMac;R ¼ cMac;R �tH
NP;B

[s]

Oven machine cost CMac;O ¼ cMac;O �tTC
NP;D

[s]

Robot depreciation cost cDL;R ¼ CI;R �kM
tDep

[s/a]

Oven depreciation cost cDL;O ¼ CI;O �kM
tDep

[s/a]

Production cost CP ¼ CMac;P þ CMac;W þ CMac;R þ CMac;O [s]
Parts per day NP;D ¼ tA;D;P

tPþtH
�kU;P�NP;B

j k -

Parts per shift NP;S ¼ NP;D
nS

-

Total part cost before yield CPart;BY ¼ ðCP þ CLÞ�ð1 þ kSA;P þ kO;PÞ
þCMat�ð1 þ kSA;M þ kO;MÞ

[s]

Total part cost after yield CPart;AY ¼ CPart;BY

kY
[s]

able 10 (Continued)

Parameter Symbol Unit

kU;P
Washer utilization kU;W –

Robot utilization kU;R –

Oven utilization kU;O –

Maintenance factor kM –

S&A on material kSA;M –

S&A on production kSA;P –

Overhead on material kO;M –

Overhead on production kO;P –

Yield kY –

Power rate kE [s/kWh]
Room rate kR [s/m2a]
Conversion rate $/s kC –
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