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Keywords: We study the separable convex quadratic resource allocation problem with lower and upper constraints on
Resource allocation nested sums of variables. This problem occurs in many applications, in particular battery scheduling within
Nested constraints decentralized energy management (DEM) for smart grids. We present an algorithm for this problem that runs
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in O(nlogn) time and, in contrast to existing algorithms for this problem, achieves this time complexity
using relatively simple and easy-to-implement subroutines and data structures. This makes our algorithm
very attractive for real-life adaptation and implementation. Numerical comparisons of our algorithm with
a subroutine for battery scheduling within an existing tool for DEM research indicates that our algorithm
significantly reduces the overall execution time of the DEM system, especially when the battery is expected
to be completely full or empty multiple times in the optimal schedule. Moreover, computational experiments
with synthetic data show that our algorithm outperforms the currently most efficient algorithm by more than
one order of magnitude. In particular, our algorithm is able to solves all considered instances with up to ten
million variables in less than four minutes on a personal computer.

1. Introduction in, among others, engineering, finance, and machine learning (see also
the surveys in Patriksson (2008) and Patriksson and Stromberg (2015)).

1.1. Resource allocation problems and energy management As a consequence, many efficient algorithms have been developed for
this problem and its generalizations.

The resource allocation problem is a classical and well-researched In this article, we study an extension of QRAP, namely the QRAP
problem in the optimization and operations research literature. The with lower and upper constraints on nested sums of variables (QRAP-
objective of the resource allocation problem is to divide a fixed amount NC). This problem can be formulated as follows:
of resource (e.g., time, money, energy) over a set of activities while )
minimizing a given cost function (or maximizing a given utility func- QRAP-NC: min 1%
tion). In the most studied version of this problem, the cost functions xekr &2 g
are quadratic, which leads to the following formulation of the so-called s.t. z x; =R,
quadratic resource allocation problem (QRAP): N

_ |2 U< insUf, je N

QRAP: min - — iEN
xeR” en 2 a;
L <x;<u, i€WN, 2)
st. ) x, =R €}

ieN where N7 :={1,....j} for j € N'\{n}, L,U € R""!, and we define L" =
I <x;<u, Pi€N, U" = R for convenience. Note that if L/ = U/’ for some j € N1, we
may split up the problem QRAP-NC into two smaller instances of QRAP-

where a € R, R € R, Lu € R", and N := {l,...,n} (throughout
this article, we use bold font for vectors). The problem QRAP has been
studied extensively over the last decades due to its wide applicability

NC that involve the variables x;,... S X; and x il Xy respectively.
Thus, we assume without loss of generality that L/ < U/ for all
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j € N 1. Moreover, we may assume that L! = [, U! = u;, and
L/ > L7' +1; and U/ < U/! +u; for j € N™I\({1]).

The problem QRAP-NC has numerous applications in, among others,
machine learning, telecommunications, and speed optimization prob-
lems (see also the overviews in Akhil and Sundaresan (2018) and
Vidal et al. (2019)). Our particular motivation for studying QRAP-NC
is its application in decentralized energy management (DEM) for smart
distribution grids. In DEM, the goal is to optimize the joint energy
consumption of multiple devices within, e.g., a neighborhood. In a DEM
system, devices optimize their own consumption locally but this local
optimization is coordinated to obtain certain global objectives (hence
the term ‘“‘decentralized”). In the context of DEM, we are interested
in optimization of storage devices such as electrical batters and heat
buffers. Energy storage devices plays an important role in DEM systems
since they are quite flexible in their energy usage and are thus suitable
to compensate for peak consumption or production of energy in the
distribution grid (see, e.g., Roberts and Sandberg (2011), Lund et al.
(2016) and Zame et al. (2018)).

One important example of a device-level optimization problem
within DEM is the scheduling of a battery within a neighborhood. We
consider the situation where the charging and discharging of the bat-
tery has to be scheduled over a set N of equidistant time intervals, each
of length Ar. Given the power profile p := (p;),c - of the neighborhood,
the goal is to determine for each time interval i € N the charging
power x; of the battery during this interval so that the combined battery
and neighborhood profile is flattened as much as possible. Aiming for
this goal reduces the stress put on the grid and the risk of blackouts.
The (physical) restrictions of the battery are given by a minimum and
maximum charging rate X,;, and X,,,, and a capacity D. Given the
amount of energy present in the battery (the state-of-charge (SoC)) at
the start and end of the scheduling horizon, denoted by Sy, and Sepq,
we can formulate the resulting device-level optimization problem as
follows (see also van der Klauw et al. (2017)):

BATTERY: min " (p; + x;)?
xeR”"
ieN
S.6 0 < Sgare + 41 Y,
iENT
Sstart T 4t Z X; = Sends
iEN
Xiin £x; £ X,

min =

x; <D, je N" !,

ieN.

max >

Note that this is an instance of QRAP-NC by applying the variable
transform y := p + x.

Another important example is the scheduling of a combined heat
pump and buffer system. Here, a production schedule for the heat pump
must be determined while for each time interval a prescribed heat
demand is satisfied and the heat production profile is flattened as much
as possible. Considering the same setting as for the scheduling of a
neighborhood as described in the previous paragraph, this problem can
be modeled as an instance of BATTERY where y := p+ x is interpreted
as the vector of heat production and p is the vector of heat demands.

An important feature within the DEM paradigm is that device-level
problems have to be solved locally. This means that the correspond-
ing device-level optimization algorithms are executed on embedded
systems with limited computational power (see, e.g., Beaudin and
Zareipour (2015)) that are located within, e.g., households. Since these
algorithms are called multiple times with the DEM system as a subrou-
tine, it is important that these algorithms are very efficient. Therefore,
efficient and tailored device-level optimization algorithms are crucial
ingredients for the real-life implementation of DEM systems. In partic-
ular, for the optimization of storage devices, this means that fast and
tailored algorithms to solve QRAP-NC are crucial. For more background
on DEM, we refer to Siano (2014) and Esther and Kumar (2016).
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1.2. Background and contribution

An overview of several existing efficient algorithms for QRAP-NC
and some of its generalizations is given in Table 1. In particular,
there is a rich literature on solution approaches for QRAP-NC with
only upper nested constraints on sums of variables, i.e., only nested
constraints of the form Y., x; < U/, j € N"! are given. This
case has been studied mainly in the context of convex optimization
over submodular constraints (see, e.g., Hochbaum (1994), Hochbaum
and Hong (1995) and Vidal et al. (2016)). However, the literature
on the general case of QRAP-NC is limited. van der Klauw et al.
(2017) propose an infeasibility-guided divide-and-conquer algorithm,
to which we shall refer in this article as ALG;,;. This algorithm solves
a relaxation of the problem where the nested constraints are ignored
and, subsequently, splits up the problem into two smaller instances of
QRAP-NC at the variable for which the lower or upper nested constraint
is violated most in the solution to the relaxation. The worst-case
time complexity of this algorithm is O(n?). Furthermore, Vidal et al.
(2019) propose a decomposition-based algorithm, hereafter referred
to as ALGye., that solves QRAP-NC in O(nlogn) time. This algorithm
decomposes QRAP-NC into a hierarchy of QRAP subproblems whose
single-variable bounds are optimal solutions to QRAP subproblems
further down in the hierarchy. Currently, this is the most efficient
algorithm for QRAP-NC.

As mentioned before, we are interested in algorithms for QRAP-NC
that are fast in practice. Although the decomposition-based algorithm
ALGyg, has a good worst-case time complexity, we observe several
disadvantages of this approach that may make it less favorable in
practice than its worst-case time complexity suggests:

1. Each level of recursion within ALG,. solves a series of instances
of QRAP whose parameters are determined by optimal solutions
to multiple instances of QRAP on earlier levels. Since each
instance is solved from scratch, much time is spent on initializing
the subproblems.

2. ALGy.. achieves for each level of recursion an O(n) time com-
plexity by solving the QRAP subproblems using an O(n) time al-
gorithm such as the ones in Kiwiel (2008). These O(n) time algo-
rithms repeatedly call linear-time algorithms such as Blum et al.
(1973) to find the median of a set. However, these median-find
algorithms are relatively slow in practice due to a big constant
factor in their complexity (Blum et al., 1973). Moreover, they are
significantly more difficult to implement than simple sorting or
sampling-based strategies (Kiwiel, 2005; Alexandrescu, 2017).

To alleviate these issues, we propose in this article a new algorithm
for QRAP-NC, called ALGg.q, which has the same time complexity
as ALGge., namely O(nlogn), but in contrast requires only relatively
simple and fast subroutines to attain this complexity. As a conse-
quence, this algorithm is both faster in practice and easier to implement
than ALGye.. These are generally more important criteria for the ac-
tual adaptation of a given algorithm than the polynomial worst-case
time complexity (Miiller-Hannemann and Schirra, 2010). Our algorithm
builds upon the monotonicity results for QRAP-NC derived in Vidal
et al. (2019) and solves a sequence of QRAP subproblems that have a
sequential nested structure rather than the divide-and-conquer struc-
ture of both ALGg. and ALG;,;. More precisely, for each j € W,
the jth subproblem involves only the first j variables x,,...,x ;- As a
consequence, our approach can solve its first j subproblems without
any knowledge on the parameters involving indices higher than j,
whereas both ALG; ¢ and ALGg.. require all problem parameters to
be known a priori. This makes our algorithm particularly useful in
situations where problem parameters arrive over time. This is, e.g., the
case when each variable denotes a decision for a specific time slot and
all parameters related to this time slot become available only during
or at the start of this time slot. Moreover, due to the nested structure,
each input and bookkeeping parameter is accessed within a relatively
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Table 1
Overview of several algorithms for QRAP-NC. Technically, the complexity of the algorithms of Vidal et al. (2016, 2019) is O(nlog m) where m
is the number of nested constraints. However, since m = n— 1 in QRAP-NC, this complexity resolves to O(nlogn).

Article Type Complexity for QRAP-NC Complexity for

with only upper nested
constraints

general QRAP-NC

Hochbaum and Hong (1995)

Vidal et al. (2016)

van der Klauw et al. (2017) (ALGj,)
Vidal et al. (2019) (ALGgec)

This article (ALG,.,)

'seq

Iterative multiplier search
Decomposition-based
Relaxation-based
Decomposition-based

Sequential nested decomposition-based

O(nlogn) n.a.
O(nlogn) n.a.
on?) o(n?)
O(nlogn) O(nlogn)
O(nlogn) O(nlogn)

small time period instead of frequently throughout the entire course
of the algorithm. This is beneficial for caching since this increases the
number of times a value can be accessed quickly from a cache instead
of relatively slowly from the main memory.

We attain the O(nlogn) complexity using an efficient implementa-
tion of double-ended priority queues (Knuth, 1998; Brass, 2008) for
several bookkeeping parameters. This data type supports insertion of
arbitrary elements and finding and deletion of minimum and maximum
elements in at most O(log n) time. Our approach requires O(n) of such
operations, which leads to an overall time complexity of O(nlogn).
Double-ended priority queues can be implemented using specialized
data structures such as min-max heaps (Atkinson et al., 1986) or by a
simple coupling of a standard min-heap and max-heap (see also Brass
(2008)). The latter heaps are one of the most basic data structures
and many efficient implementation exist for different programming
languages (Brodal, 2013). Thus, we can achieve the time complexity
of O(nlogn) using relatively simple data structures, as opposed to
ALGy,., Where a more involved implementation of a linear-time median
algorithm is required.

Our algorithm for QRAP-NC also leads to efficient and fast azlgo—
rithms for instances of QRAP-NC where we replace each term %2—’ by
a;f (%) for each i € N with a given convex function f. Such a structure
is present in many applications considered in the literature, in partic-
ular in most of the applications surveyed or evaluated in Akhil and
Sundaresan (2018) and Vidal et al. (2019). We obtain such efficient al-
gorithms by a reduction result in Schoot Uiterkamp et al. (2021), which
states that any optimal solution to an instance of QRAP-NC is also opti-
mal for this instance when we take as objective function ;.\ a;f (;Lf).
Note that, alternatively, a slightly weaker reduction result follows
from combining a result from Nagano and Aihara (2012), namely that
the reduction result holds for differentiable convex functions when the
feasible set is given by submodular constraints, with the observation
that QRAP-NC is a special case of separable convex optimization over
submodular constraints (see, e.g., Schoot Uiterkamp et al. (2021) and
Wu et al. (2021)). As a consequence of these reduction results, our
algorithm solves also such problems in O(nlogn) time. This leads to
faster algorithms for a wide range of practical problems, including the
vessel speed optimization problem (Norstad et al., 2011; Hvattum et al.,
2013) and processor scheduling with agreeable deadlines (Huang and
Wang, 2009; Gerards, 2014).

We evaluate the performance of our algorithm ALG,., and compare
it to the state-of-the-art algorithms ALG;,; and ALGe.. For this eval-
uation, we use both synthetic instances and instances of the battery
scheduling problem BATTERY using real power consumption data as
input. With regard to the instances of BATTERY, we compare our
approach to a tailored implementation of ALG;,; within DEMKit, an
existing simulation tool for DEM research (Hoogsteen et al., 2019).
Within DEMKit, the battery scheduling problem is used as a sub-
routine within a distributed optimization framework that coordinates
the energy consumption of multiple devices (Gerards et al.,, 2015).
Our results indicate that the number of tight nested constraints in an
optimal solution greatly influences which algorithm is faster for a given
problem instance. In particular, ALG,, is on average faster than ALGyyy,
except when the percentage of tight nested constraints is relatively

low (less than 2%). Moreover, the execution time of ALGgeq is more
stable than that of ALG;,;, which makes our algorithm more suitable
for use in DEM systems that employ a high level of parallelism (see,
e.g., Hoogsteen et al. (2018)). With regard to the synthetic instances,
we study the scalability of ALGgeq, ALGjy, and ALGge.. Our results
indicate that both our algorithm ALGgq and ALGiy are at least one
order of magnitude faster than ALGge. and that ALG,,, is on average
more than twice as fast as ALG;. In particular, ALG,q solves instances
with up to ten million variables in less than four minutes.
Summarizing, the contribution of this article is as follows:

» We present a fast and efficient algorithm for QRAP-NC that
matches the best-known time complexity of O(nlogn) and can
attain this complexity using relatively simple and fast subroutines;

+ We show that our algorithm is suitable for use in DEM systems
due to its fast and stable execution time;

+ We show that our algorithm outperforms the currently most
efficient algorithm by at least one order of magnitude on the
studied problem instances.

The outline of the remainder of this article is as follows. In Section 2,
we present a simple procedure to solve QRAP, which forms an im-
portant ingredient for our eventual approach for solving QRAP-NC. In
Section 3, we present an initial sequential algorithm for solving QRAP-
NC with an O(#?) worst-case time complexity. Based on this algorithm,
we derive in Section 4 our O(nlogn) time algorithm ALGgq for this
problem. In Section 5, we evaluate the performance of this algorithm
and compare it to the state-of-the-art algorithms. Finally, we provide
our conclusions in Section 6.

2. A breakpoint search algorithm for QRAP

In this section, we discuss a simple approach to solve QRAP that be-
longs to the class of so-called breakpoint search methods (Kiwiel, 2008;
Patriksson and Stromberg, 2015) that structurally search for the opti-
mal Lagrange multiplier corresponding to the resource constraint (1).
This approach forms an important ingredient of our O(nlogn) time
algorithm for QRAP-NC in Section 4.

We start by considering the Lagrangian relaxation of QRAP:

x?
QRAP[5] : min D (%a—'—éxi +6R
ieEN

i i

st.l;<x;<u, €N,

where § € R is the Lagrange multiplier corresponding to the resource
constraint (1). We denote the optimal solution to this problem by
x[6] := (x;[6]);en- Since the objective function of this problem is
separable, the optimal solution to QRAP[§] is given by

I, ifs< i,
a;

x 8] =4a06 if L <5<, 3)
u; if :—‘ <é.

Observe that x;[§] is a continuous piecewise linear non-decreasing
function of 5. More precisely, x;[§] is constant for § < i—", linear with

i
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Fig. 1. The function x,[6] for a given i € N. The slope of the line segment for
FelL, ] is q.

Table 2
Updating the bookkeeping sums P(5) and Q(5) when searching the breakpoints in
non-decreasing order.

Type of 6 Update P(5) Update Q(5)
s=aq PG -1, [JORYE
S=p P@6) +y 00) —a;

slope q; for 6 € [i—‘ %], and again constant for § > Z—' (see also Fig. 1).
For each i € NV, we call the points where x;[6] has “i{inks”, i.e., where
x,;[6] is non-differentiable, the breakpoints of x;[§]. We denote these
breakpoints for i € N by «; and p; respectively, i.e., ¢; := 2—’ and
pi = Z—I, where we refer to «; as the lower breakpoint of xi[é’] and
to §; as the upper breakpoint of x;[5]. We denote the multiset of lower
breakpoints by A := {¢; | i € N'} and the multiset of upper breakpoints
by B :={B; | i € N'}. The reason for defining .4 and B as multisets is
so that we can readily associate each breakpoint value in the set with
one index in N

Note that also the sum z[§] := Y.\ x;[6] is continuous, piecewise
linear, and non-decreasing. Moreover, it has 2n breakpoints, namely
those of all terms x;[§]. Thus, the multiset of breakpoints of z[5] is
given by A U B. Feasibility of the original problem QRAP implies that
there exists a value § for the Lagrange multiplier § such that z[5] = R,
meaning that x[§] is optimal not only for QRAP(5) but also for the
original problem QRAP. Note that this multiplier is not necessarily
unique: in general, there may exist an interval I C R such that § € I
implies z[5] = R.

Our approach to find the value § consists of two steps. First, we aim
to find two consecutive breakpoints §, and 6, such that §, < § < §,.
Since z is non-decreasing, this is equivalent to finding two consecutive
breakpoints §, and &, such that z[§;] < R < z[§,]. For this, we may
consider all breakpoints in .4 U B in non-decreasing order until we have
found the first, i.e., smallest, breakpoint § such that § < é. In detail, for
each candidate breakpoint 5, we compute z[5] and if z[5] > R, we set
8, := 6 and 6, as the previously considered breakpoint. To compute
z[ 8] efficiently, we keep track of the sums

PG = Y L+ Y u  0®) = Y g

i 6<‘17"_ it 522*:, i %gk%’:
and update these values each time a new breakpoint has been consid-
ered (see Table 2).

In a second step, given the consecutive breakpoints §, and 6, with
5 € [8,,6,), we determine § and x[5]. If z(6,) = R, then § = 5, and we

are done. Otherwise, we have for each i € N:

* x;[6] = I, if and only if x,(6,) = /;, and
* x,[6] = u; if and only if x;(5,) = u;.

To see the first equivalence, first suppose that x;[§] = /,. Since § is
no breakpoint, we have that § < «;. As a consequence, since there is
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no breakpoint between § and §,, we have that §, < ;. It follows that
x;[6,]1 = I;. Second, suppose that x;[5,] = /;. Since x[5] is non-decreasing,
it follows that /; < x;[8] < x;[6,] = /; and thus that x,[5] = /,. The second
equivalence holds analogously. Thus, given §; and §,, we know whether
a given variable x,[5] equals its lower bound /,, its upper bound y;, or is
strictly in between these bounds. To find x;[5] for those variables that
are strictly in between their bounds, note that, by definition of x[5],

R=z81= Y L+ Y &b+ Y u
it x;[6)=l; it l<x;[8]<u; it x;[6]=u;

It follows that

R=2% 512, li = Zi: xyi61=u, i

5=
2 I<x;[81<u; i

B

from which we can directly compute x;[5] by x;[5] = ;4.

Algorithm 1 summarizes the sketched approach. To efficiently com-
pute the minimum breakpoint §,, we can implement the multisets A
and A3 as sorted lists. As a consequence, each iteration of the algorithm
takes O(1) time. Since the maximum number of iterations is 2»n (one for
each breakpoint), the overall complexity of this approach is O(nlogn)
due to the initial sorting of the breakpoints. If this sorting is given (for
example if the breakpoints have already been sorted in a previous run
of the algorithm), the time complexity of the algorithm reduces to O(n).

Algorithm 1 An O(nlogn) time algorithm for QRAP.

Juy

: Input: Parameters a € RY |, R€ R, and L,u € R"

2: Output: Optimal solution X to QRAP
3: Compute the breakpoint multisets .4 and B
4: Initialize P := Y, I;; Q :=0
5: repeat
6: Determine smallest breakpoint §; := min(A U B3)
7: if P+ Q6; = R then
8: § = 6,; compute x[§] using Equation (3)
9: return
10:  else if P+ Q65 > R then {§ < §;}
11: 6= %; compute x[§] using Equation (3)
12: return
13: else
14: if 5; is lower breakpoint (§; = «;) then
15: P:=P-1;0:=0+aq;
16: A = A\{o;}
17: else
18: P:=P+u; Q0 :=0-gq
19: B :=B\(]}
20: end if
21: end if

22: until multiplier § has been found
23: return Optimal solution X := x[5]

We conclude this subsection with two observations that are crucial
for the efficiency of our algorithm for QRAP-NC presented in the
following section:

1. Instead of searching the breakpoints in non-decreasing order, we
may also search them in non-increasing order and continue the
search until we find the first, i.e., largest breakpoint §, such that
8, < 6.

2. Solving two instances of QRAP that differ only in the value
of R in the resource constraint (1) can be done simultaneously
in one run of Algorithm 1. This is because the multisets of
the breakpoints for these two instances of QRAP are the same.
Thus, we can modify Algorithm 1 such that it continues the
breakpoint search after the optimal multiplier for the smallest
of the given values of R has been found. Note that, essentially,
the optimal multiplier for a given value R serves as the starting
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candidate for the optimal multiplier for instances with a higher
value of R. This is in fact one of the two crucial observations for
our approach for solving QRAP-NC, which we discuss further in
Section 4.2.

3. An initial sequential algorithm for QRAP-NC

In this section, we present our initial sequential algorithm for the
problem QRAP-NC. This algorithm solves the problem as a sequence
of 2n — 1 instances of QRAP whose single-variable bounds (2) are
optimal solutions to previous QRAP subproblems. For this, we consider
a sequence of restricted subproblems where we take into account only
a subset of the variables. More precisely, we define for each j € M and
C € R the following subproblem:

QRAP-NC/(C) : min Z ~L

x€R/ Pyvs 2 a;

st. ) x=C, 4
ieN

k< Y % <UY keNTT 5)

ieNk

I <x; <u, €N,

Throughout this article, we denote the optimal solution to this subprob-
lem by x/(C) := (x{ (C))ieni> Where we use the brackets () instead
of [-] to emphasize the distinction of this solution from an optimal
solution x[5] of the Lagrangian relaxation QRAP(5) of QRAP. Note
that this optimal solution is unique since the objective function of the
corresponding problem is strictly convex and all constraints are linear.
Moreover, observe that the nth subproblem QRAP-NC"(R) is equal to
the original problem QRAP-NC.

The key ingredient to our algorithm is that we can replace the
nested constraints (5) by specific single-variable constraints without
changing the optimal solution. By doing this, we transform an instance
of QRAP-NC into an equivalent instance of QRAP. More precisely,
we show that each subproblem QRAP-NC/(C) yields the same optimal
solution as the following instance of QRAP:

2
; Vs
QRAP/(C) : min 3 12
yer/ iENJ 2 4
st. )y =C, 6)
iENJ
WY <y <7, e N %)
lyj<y; <u, 8)

where the bounds x/~'(L/=!) and x/~'(U’/~") in (7) are the optimal
solutions of the problems QRAP-NG/~!(L/~!) and QRAP-NC/~!(U/-1)
respectively. Note that the single-variable bounds for x; in (8) are the
same as those of the original subproblem QRAP-NC/(C).

The validity of this transformation is proven by Lemmas 1-3. First,
Lemma 1 shows that the optimal solution x/(C) to the subproblem
QRAP-NC/(C) is non-decreasing in C. Subsequently, Lemma 2 uses
this property to show that when adding the alternative single-variable
bounds (7) to the problem formulation of QRAP-NC/(C), the optimal
solution x/(C) to QRAP-NC/(C) is not cut off. Finally, Lemma 3 shows
that the alternative single-variable bounds (7) are stronger than the
nested constraints (5).

Lemma 1. If L’ < A < B < U/, we have x/(A) < x/(B) for a given
jEWN.

Proof. This proof is based on the proof of Theorem 2 in Vidal et al.
(2019) and given in Appendix A.1. []

Lemma 2. For a given j € NV and C € [L/,U’], we have that
X (L) < xTN©C) < x](WU).
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Proof. Let x' := (x{“(C),...,xj”(C)) be the vector of the first j
components of the optimal solution to the problem QRAP-NG/*!(C).
Since x’ is feasible for all nested constraints (5) for k € N/, this vector
is also the optimal solution to QRAP-NC/(A) where A := DieNi x".,
i.e., we have x’ = x/(A). Since A € [L/,U/], Lemma 1 implies that
(L) < x/(4) < x](UY) for all i € WNV. It follows that x/(L/) <
O <X forallie NV, O

Lemma 3. If for a given j € N"~! and vector y € R/ we have x/(L/) <
y < xI(UY), then L¥ < ¥,y y; SU* for all k € NY.

Proof. The sum of the inequalities x{ (L)) <y < x{ (U’)overalli e Nk
yields

2 U< Y o< Y AW

ieNk ieNk iENk

Since x/(L/) and x/(U/) are feasible for QRAP-NC/(L/) and QRAP-
NC/(U/) respectively and k < j, we have L* < ¥._ .« x/(L/) and

DNk x{ (U7) < U* and the result of the lemma follows. []

Lemma 2 implies that, given optimal solutions x/~!(L/~!) and
x/~1(U/~1), we can replace the nested constraints (5) in QRAP-NC/(C)
by the single-variable bounds (7) without cutting off the optimal
solution to QRAP-NC/(C). Moreover, since these single-variable bounds
are stronger than the nested constraints by Lemma 3, adding these
constraints does not change the optimal objective value. It follows
directly that any optimal solution to QRAP/(C) is also optimal for
QRAP-NC/(C).

Based on Lemmas 1-3, the following approach can be used to
solve QRAP-NC. We successively solve the subproblems QRAP/(L/) and
QRAP/(U/) from j = 1 to n— 1 and finally the subproblem QRAP"(R),
whereby in each step we use the optimal solutions to the preceding
subproblems QRAP/~!(L/~!) and QRAP/~!(U/~!) as input. Note that
each of the subproblems is an instance of QRAP. This approach is
summarized in Algorithm 2.

Algorithm 2 An initial sequential algorithm for QRAP-NC.

1: Input: Parameters a € R? , L,U € R*™1 ReR, and l,u € R"

2: Output: Optimal solution X to QRAP-NC

3: Initialize x/(L") = L'; x](U") = U'

4: for j=2,....,n—1do

5:  Compute optimal solutions x/(L/) and x/(U’) to QRAP/(L/) and
QRAP/(U/) respectively

6: end for

7: Compute optimal solution x"(R) to QRAP"(R)

8: return Optimal solution x := x"(R)

Since each subproblem QRAP/(-) can be solved in O(n) time
(Brucker, 1984), the worst-case time complexity of Algorithm 2 is
O(n?). However, linear-time algorithms for QRAP such as Brucker
(1984) attain their linear time complexity by employing linear-time
algorithms for median finding, which are, as already mentioned, in
general slower than simple sorting- or sampling-based approaches (Ki-
wiel, 2005; Alexandrescu, 2017). Note, that also the O(nlogn) time
algorithm ALG,. attains its worst-case time complexity by using such
slow linear-time algorithms as a subroutine.

In the next section, we propose an algorithm to solve QRAP-NC
in O(nlogn) time that, as opposed to ALGge., does not require linear-
time median-finding algorithms. Instead, it only requires a simple data
structure for double-ended priority queues to store several bookkeeping
parameters.

We conclude this section with two remarks that may be of indepen-
dent interest:



M.H.H. Schoot Uiterkamp et al.

1. It can be shown that Lemmas 1-3 also hold for the case where
the variables are integer-valued, i.e., x € Z" (see also Theorem 5
in Vidal et al. (2019)), given that all parameters a, L, U, I, and
u are also integer-valued and nonnegative. As a consequence,
when solving each subproblem QRAP/(-) with integer variables,
Algorithm 2 computes an optimal solution to QRAP-NC with in-
teger variables. The worst-case time complexity of this algorithm
is O(n?) since each QRAP/(-) subproblem with integer variables
can be solved in O(j) time (Ibaraki and Katoh, 1988).

2. Lemmas 1-3 can be generalized to the case where the objec-
tive function is the sum of separable convex cost functions f;,

i.e., where we replace each term %Z—'k by a convex function
fi(x;). For this more general problem, this leads to a sequential
algorithm that is very similar to Algorithm 2. However, initial
computational tests indicated that both this algorithm and Al-
gorithm 2 are in practice much slower than both ALG;, and
ALGdec‘

4. A fast O(nlogn) time algorithm for QRAP-NC

The sequential algorithm derived in the previous section does not
match the best known time complexity of the algorithm in Vidal et al.
(2019). However, we show in this section that we can implement
Algorithm 2 such that its time complexity reduces to O(n log n) without
requiring a linear-time median finding algorithm. Instead, we only
require a data type that supports insertion of elements and the finding
and removing of minimum and maximum elements in O(logn) time
such as a double-ended priority queue.

The key to efficiency in our approach is that we do not explicitly
compute the solution to each QRAP subproblem. Instead, we only
compute an optimal Lagrange multiplier corresponding to the resource
constraint (6) that characterizes the entire optimal solution to this
subproblem. Subsequently, we use these multipliers to reconstruct the
optimal solution to the original problem QRAP-NC using two sets of
simple recursive relations that can be executed in O(n) time. In order
to compute the Lagrange multipliers without explicitly storing interme-
diate solutions, we exploit the special structure of these multipliers and
of a specific algorithm for solving QRAP.

First, in Section 4.1, we introduce some of the used notation.
Second, in Section 4.2, we derive an efficient approach for computing
the optimal Lagrange multipliers of the subproblems QRAP/(L/) and
QRAP/(U/). Based on these optimal Lagrange multipliers, we derive in
Section 4.3, two simple recursions to compute the optimal solution x
to QRAP-NC. Finally, in Section 4.4, we present an O(n log n) algorithm
for QRAP-NC and discuss an implementation that attains this worst-case
time complexity.

4.1. Notation

We introduce the following notation concerning the subproblems
QRAP/(L/) and QRAP/(U/) that we use throughout the remainder of
this article (see also Table 3). We denote for j € N the lower and upper
smgle-varlable bounds (7) and (8) of QRAP/(C) with C € [L/,U/ ] by
Vo= (D)eps and @ = @)ens, where I := x)7'(L)")) and @ :=

’ LwiY for i < j, and I’ :=1; and uJ =u; Furthermore, we denote
by o = (a ),E v and i (/} ),E N the lower and upper breakpoints
for the QRAPJ(C) subproblem. We call the breakpoints corresponding
toi =}j,ie., 0‘, and ﬁ’ , initial breakpoints since QRAP/(C) is the first
subproblem, i.e., w1th lowest index j, in which we have to compute
breakpoint values for the variable x;. Note that we can compute these
breakpoints directly as aj = [Il—’ and ﬂf =
subproblem QRAP/(C). !

Furthermore, let x/ and 4/ denote the optimal Lagrange multipliers
for the subproblems QRAP/(L/) and QRAP/(U/) respectively and define
k = (ey and 4 = (V),cy, where we set ! = a

% by definition of the
J

a and
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Table 3
Overview of the used notation with regard to the subproblems QRAP/(L/), QRAP/(U/),
and QRAP/(C) for C € [L/,U’].

Symbol
ij = (i:j):e/v'/
W = (’z,{)ze/w

o = (@)icp

Definition

Lower single-variable bounds of QRAP/(C)
Lower single-variable bounds of QRAP/(C)
Lower breakpoints for QRAP/(C)

p = (ﬁf ieN Upper breakpoints for QRAP/(C)
aj s [ij’ Initial breakpoints of QRAP/(C)
K/ Optimal Lagrange multiplier for QRAP/(L/)
N Optimal Lagrange multiplier for QRAP/(U/)
A/ Set of lower breakpoints of QRAP/(C)
B Set of upper breakpoints of QRAP/(C)

Al = ﬁll. If the optimal Lagrange multiplier for a given subproblem

QRAP/(L/) is not unique, we define without loss of generality x/ as the
maximum optimal Lagrange multiplier. Analogously, we define A/ as
the minimum optimal Lagrange multiplier of subproblem QRAP/(U/).
Note that x/(L/) = x/[x/] and x/(U’/) = x/[4/] by definition of the
subproblems QRAP/(L’) and QRAP/(U/) and of x/ and A/. Finally, for a
given subproblem QRAP/(C), we define the set of its lower breakpoints
as A/ = {a{ | i € NV} and the set of its upper breakpoints as
B/ = {p! | i € N/}. Recall that in Section 2 we defined breakpoint
sets as multisets for convenience when solving QRAP. However, for
our approach for a fast algorithm for QRAP-NG, it is crucial that the
breakpoint sets do not contain duplicate elements. Therefore, in this
section and the remainder of this article, we regard A/ and B’ as
ordinary sets.

4.2. Computing the optimal Lagrange multipliers of the subproblems

The goal of this subsection is to derive an efficient approach for
computing the optimal Lagrange multiplier of each QRAP subproblem
in Algorithm 2 without explicitly calculating any of the intermediate
optimal solutions x/(L/) and x/(U/) for j € N. If we would follow the
latter strategy, i.e., if we solve each pair of subproblems QRAP/(L/) and
QRAP/(U/) from scratch, e.g., using Algorithm 1, we would have to ex-
plicitly compute the breakpoint sets for each pair of subproblems. This
leads to O(n?) computations and thus forms an efficiency bottleneck
within this algorithm.

We show that we can apply the breakpoint search procedure in
Algorithm 1 for solving the subproblems such that each breakpoint
set A/*! can be obtained from the previous set .4/ in O(1) amor-
tized steps, i.e., the total number of steps required to carry out this
construction for all j € N"! is O(n). This can be done because of
two intermediate results that we show in this subsection. First, the
number of distinct values that the breakpoints can take is not O(n?)
but O(n). We obtain this result by unveiling a useful relation between
breakpoints of consecutive subproblems, i.e., between a/, g/ and a/*!,
1. Second, when constructing the breakpoint sets, each distinct
breakpoint value is included in or removed from a breakpoint set at
most twice during the entire procedure. For this, it is important that we
solve each lower subproblem QRAP/(L/) by considering the breakpoints
in non-decreasing order and each upper subproblem QRAP/(U/) by
considering the breakpoints in non-increasing order. Together, these
two results imply that the construction of the breakpoint sets requires
in total O(n) additions and removals of breakpoint values. By using
an appropriate data structure such as double-ended priority queues for
maintaining the breakpoint sets, each of these steps can be executed
in O(logn) time, which leads to an overall O(nlogn) complexity for
computing the optimal Lagrange multipliers x and A.

The outline of the remainder of this subsection is as follows. First,
in Section 4.2.1, we analyze the relation between breakpoints of con-
secutive subproblems and show that the number of distinct breakpoint
values is O(n). Subsequently, in Section 4.2.2, we use this information
and the structure of Algorithm 1 to construct the breakpoint sets for
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each subproblem from those of the preceding subproblems. Finally, in
Section 4.2.3, we discuss how the updating of the bookkeeping param-
eters within the breakpoint search procedure must be adjusted when
applying this procedure to the subproblems QRAP/(L/) and QRAP/(U/).

4.2.1. Relation between consecutive breakpoints

We first show how we can efficiently obtain the breakpoint set
of a given subproblem QRAP/*!(C) based on the breakpoint set and
optimal Lagrange multipliers of the preceding subproblems QRAP/(L/)
and QRAP/(U/). We establish for a given j € N"! and i < j the

following relation between the subsequent lower breakpoints a{ and
L

o .
1

; o . ) i
« If &/ < o, it follows from Eq. (3) that x/[x/] = I since a/ = :4
This implies that IT’I = x{(Lf) = x{[ld] = 7{ and thus a{“ = a{.

o If a{ <kl < ﬂ{, it follows from Eq. (3) that x{[xj] = a;x/. Thus,

g L e
! a; i i
« If g/ < «J, then it follows from Eq. (3) that x/[x/] = &/. This

implies that l_f“ = xf(Lf) = x{[xf] =i/ and thus a{“ = ﬁ,’

a a,

Summarizing, we can determine a{ *! from the previous breakpoints a{
and g/ and the optimal Lagrange multiplier «/ as follows:

a{ if K/ < a{ s
a{+l= K/ ifa{SKj<ﬂij, 9
gl if pl <kl
Analogously, we obtain the following expression for the upper break-
point ﬂij“ in terms of the previous breakpoints a{ and ﬂ,.j and the
optimal Lagrange multiplier A/:

Bt A > B
FI =34 g N>l (10)

1
a ifa >N

Note that it follows from these relations that a{ < a{ *1 and ﬂij > ﬂij +1
for each j € WN""!. Moreover, note that the only values that the
breakpoints a{ *+1 and ﬂij *1 can take are those of the initial breakpoints
al and p! or of the optimal Lagrange multipliers in x and A. More
precisely, by applying Egs. (9) and (10) recursively, we obtain the set
of all possible values of a{ 1 as follows:

J+l J oo gl R B S Y R
o E{xl,a, B C{x/ kT ) B AT
C (I R B T Y

S kel B AL T

Analogously, we have that ﬂf’l € {x/7, kol A, ..., A} This
implies that the number of distinct values among all breakpoints is
limited by 4n.

4.2.2. Constructing consecutive breakpoint sets

As observed at the end of Section 2, we can solve a given QRAP
subproblem by searching its breakpoints either in non-decreasing or
non-increasing order. In particular, we can solve all lower subproblems
QRAP/(L/) by searching the breakpoints in non-decreasing order and
all upper subproblems QRAP/(U/) by searching the breakpoints in non-
increasing order. When doing this, note that for solving the upper
subproblem QRAP/(U/) we can use as breakpoint sets the sets that
“remain” from the breakpoint search for the lower subproblem. More
precisely, instead of the sets .4/ and B/ that we also use as breakpoint

sets for_ the lower subproblem QRAP/(L/), we can use the sets {a{
Al | af >/} and {f/ € B/ | p/ > «/} respectively. This is because

k/ < A and thus in the breakpoint search for the upper problem
QRAP/(U/) no breakpoints smaller than x/ need to be considered.
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We define the sets A/ and /3’ as the sets of lower and upper
breakpoints that remain to be considered after solving the subprob-
lems QRAP/(L/) and QRAP/(U/) in the way described in the previous
paragraph, i.e., we have

A= e A | k) <al <N,
B ={p eB |k <p <¥}).

We call these sets the remaining breakpoint sets of the subproblems
QRAP/(L/) and QRAP/(U/). In the following, we relate these two
remaining breakpoint sets to the breakpoint sets of the next two sub-
problems, i.e., to the sets .4/*! and /3/*!. For this, we focus on the
relation between the lower remaining breakpoint sets A/ and the
lower breakpoint set .4/*!; the relation between the upper remaining
breakpoint set 3/ and the upper breakpoint set 3/+! is analogous.

For each i € N/, we determine the value of a{ *! based on the values
of a/, and g/ compared to those of «/, /. More precisely, we consider
the following four cases:

1. If K/ < a{ < A, it follows from Eq. (9) that af“ = a{ . Thus, all
values in A/ act as breakpoint values for the next subproblems,
ie, A/ C A/t

2. If a{ </ and x/ < ﬂij , it follows from Eq. (9) that a{ +

3. If af < k/ and ﬂ{ < «/, it follows from Egs. (9) and (10) that

=/,

x](L') =it/ and ﬁl.”' =p = a{“ respectively. Thus,
J+1 _ j+l n n J+1
A A LAY S VA

y y ) " , )
This means that «/ = g/ = g/ and ' = & = @ for all
j' > j. Thus, in all remaining subproblems, the lower and upper
breakpoints of i coincide and x{/(C) = 12{ for any j/ > j and
L' < € < U/, regardless of the values of the future optimal
Lagrange multipliers /' and 4/’. This means that we can remove
this index (variable) from the breakpoint search.

4. Finally, if a{ > A/, it follows from Egs. (9) and (10) that af +_ a{
and ﬂij o a{ respectively. Thus, a{ = ﬁij o a{ . Analogously

to the case af < ﬂij < «J, it follows that l_{' = ﬁ{, = l_f and

x{/(C) = l_{ for all j/ > j and L/’ < C < UY'. Thus, also in this

case we can remove the index i from the breakpoint search.

Note that these four cases are mutually exclusive and cover all
possible values of «/ and f/ (see also Table 4). These four cases imply
that we can construct .A/*! from A’ as follows:

{x/} if there exists i such that a{ <kl < ﬂl./ ,
j+1

A = Ao (o
[/} otherwise.

Analogously, we can construct 3/*! from B’ as follows:

Bt =B u{p

iy {{/1/ } if there exists i such that a{ <M< ﬁl.j ,
J+1

/] otherwise.

The above constructions show how the breakpoint sets evolve from j
to j + 1, i.e., how we obtain A/*! and B/*! from A/ and /. First,
after the breakpoint search procedure of Algorithm 1, we obtain the
intermediate sets .4/ and 5/ that contain all breakpoints in .4/ and 53/
respectively that have not been considered as candidate breakpoints
during the search procedure. Second, the new breakpoint sets .A4/*!
and B/*! are obtained by adding to A/ and B’ respectively the initial
breakpoints aﬁ: and ﬂj’:ll corresponding to the (j + 1)th subproblems.
Moreover, we must add any value of the new breakpoints a[j +!and ﬁ[.j +
with i < j + 1 that is not yet present in these sets. For this, based on
the analysis in this subsection, we conclude that it is sufficient to add
k! to A/ if there exists i € N/ such that a{ < K/: < ﬁij and to add A/ to
B/ if there exists i € NV such that al < ¥ < p! (see also Table 4). In
particular, this means that updating the breakpoint steps can be done
in O(n) steps, i.e., by O(n) additions and removals of breakpoint values.
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Table 4

Clarification of the four cases used to determine a’*'.

i

Value of o] Value of g/ Covered by Resulting value of a,”'l

o <k Bl <« Case 3 p/*'; already not present in A/
a <k’ Bl >« Case 2 K/

K <a <N Any Case 1 a

M<al Any Case 4 o; already not present in A/

4.2.3. Updating bookkeeping parameters

In order to efficiently compute the sums z/[8] := Y,/ x{ [6] for a
given breakpoint §, we define the following bookkeeping parameters
analogously to those in the breakpoint search procedure for QRAP in
Algorithm 1:

Pigy:= Y P+ Y @ 0 = Y e

¥ i v i
i<j: L<s<L
aj aj

isj o<k i<j: 5/’2%
Each breakpoint value /' and 4/ in a given breakpoint set acts as a
collective breakpoint for one or multiple activities. As a consequence,
within the breakpoint search procedure, they have the same function as
the “regular” initial lower and upper breakpoint values a,’.' and [3’? . Thus,
when a breakpoint value of the form /' or 4/’ has been considered, we
require an efficient update of the bookkeeping sums P/(x/"), Q/(x/') or
Pi(A"), /(W) respectively. In the case of /', we update P/(x/") by
subtracting from this value the sum of the lower bounds l_{ of those
activities i whose lower breakpoint equals /', i.e., for which alj =«

The sum of these values is
p "
ax) =k’ Z a;

Z l_{ = Z aia{ = Z

i<j: o=t i<j: o =xi' i<j: ol =x/' i<j: a{’s,d’<ﬂ{’
g

=0 (v )’

. i I3 . . ; g .

since o/ = L for each i € N7 and we have that «/ = «/ if and
i

. i’ i’ . . .
only if @/ = «/ for all j” € {j’.....j}. Analogously, we update

the bookkeeping sum Q/(x/") by adding to this value the sum of the
parameters a; for those i with o = «/'. This sum is

S a- 3

- m v
i<j: af:l(f i<j’: a{ SKJ/<ﬂf

a, =0 ().

Thus, the updates take the form P/(x/) — 0/ (x/ )/ and Q/(x/") +
07 (k7).

The updates for the case of 4/, i.e., for P/(A/) and Q/(V/), are
analogous to those for the case of «/'. Table 5 provides an overview
of the updates of the bookkeeping sums for both these cases for each
of the four breakpoint values types a!, £, /', and M.

4.3. Recovering the optimal solution to QRAP-NC

In the previous section, we found an efficient way to compute the
optimal Lagrange multipliers x/ and 4/ for the QRAP subproblems
QRAP/(L/) and QRAP/(U/). In this section, we show how we can use
these values to compute the optimal solution x"(R). For this, we first
determine which nested constraints are tight in x"(R) and use this
information to reconstruct the individual terms x!(R) for i € N. To
this end, for each j € N1, let v/ denote the smallest index larger
than or equal to j such that one of its corresponding nested constraints
is tight in x"(R). More precisely,

Y xIR)=Lkor Y xR = U“>‘

v/ :=min (k >j
ieNk ieNk

Furthermore, let V/ denote the value of the tight nested constraint
corresponding to the index v/ and y/ the corresponding multiplier,
ie, Vie{LY U"}and y/ € {x”, 1" }. More precisely,

* Yieww XIR) = LY implies V/ = L¥ and y/ = «v’;
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* Yepd XI(R)=U" implies ¥/ = U” and 4/ = 2*'.

The main result in this subsection is that the values y/ act as optimal
Lagrange multipliers for the resource constraint (6) in the subproblem
QRAP"(R). As a consequence, given these values, we can calculate
x"(R) directly using a relation similar to the Lagrangian relaxation
solution in Eq. (3). To show this result, we prove Lemmas 4 and 5. First,
Lemma 4 shows how we can iteratively compute y from the optimal
multipliers k and A using a simple recursive relation. Second, Lemma 5
shows how we can calculate x"(R) from y using a relation similar to
that in Eq. (3).

Lemma 4. We have y" = x" = A". Moreover, for each j € N"~!, we
have:

1. /¥ <« implies 3, i XM(R) = L and 4/ = «;
2. M < ! implies Y, x'(R) = UY and y/ = ¥/,
3. k) < It < M oimplies L) < Y,y x"(R) < U/ and y/ = yi+1,

Proof. See Appendix A.2. [

Lemma 5. For each i € N, we have

[; if y' < a;,
x{(R)=1a;x" ifal <y <pl, an)
u; ifp<i

Proof. See Appendix A.3. []

Note that, starting from y" = x” and using Lemma 4, we can
compute the values y/ recursively as

KJ if y/t </,
=¥ if yitl > M, 12)
7/t otherwise.

Thus, given the optimal Lagrange multipliers x and 4, we can compute
the optimal solution x to QRAP-NC in O(n) time as x"(R) using the two
relatively simple recursions in Egs. (11) and (12).

4.4. An O(nlogn) time algorithm for QRAP-NC

In the previous two subsections, we derived an efficient approach to
compute the optimal Lagrange multipliers x and A for the QRAP/(L/)
and QRAP/(U/) subproblems and to compute from these multipliers the
optimal solution x. In this subsection, we combine these two ingredi-
ents to formulate a fast and efficient algorithm for QRAP-NC (Algorithm
3). More precisely, in the first part of this subsection, Section 4.4.1,
we present our algorithm and discuss several of its details regard-
ing the subroutines for computing the optimal Lagrange multipliers
of the QRAP/(L/) and QRAP/(U/) subproblems. This includes several
procedures that deal with corner cases and with the updating of the
breakpoint sets and the bookkeeping parameters. In the second part,
Section 4.4.2, we focus on the efficiency of the algorithm. In particular,
we prove in Lemma 6 that the algorithm has an O(nlogn) worst-case
time complexity when using an appropriate data structure. Finally, in
the third part, we compare the complexities of the three algorithms
ALGgeq, ALGyyf, and ALGge. and present. In particular, we discuss a
worst-case instance for ALG,,, that is essentially a best-case instance
for ALG;,; and a worst-case instance for ALG;, that is essentially a
best-case instance for ALGq.

4.4.1. Description of the algorithm

Algorithm 3 captures our approach for solving QRAP-NC. First, in
Lines 3-13, the algorithm initializes all problem parameters, the initial
breakpoint values and breakpoint sets, and the initial bookkeeping
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Table 5
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Updating the bookkeeping sums P/(§) and Q/(5) when searching the breakpoints in non-decreasing order (QRAP/(L/)) and

non-increasing order (QRAP/(UY)).

Type of § In QRAP/(L’) (non-decreasing search) In QRAP/(U’) (non-increasing search)
PI(5) 0/(5) PI(5) /(%)

s=a PI(6)~1; Q') +q; PI(8) +1, 0/(6) — g

5= p; PI(5) +u /() — g PI(6) —u; 0/(6) +q

o=k, j < PI(6)— Q7 (/)i Q/(8)+ 0" (k') PI(8)+ Q7 (x/)x/' 0/(3)- 0" (k)

=i, ) <j PI(§)+ Q) (W) 03 -0 (W) PI(8) - 0V (W) 0/(®)+ 0" (W)

parameters. Throughout the entire algorithm, it maintains four separate
sets A, B, K, and £ of breakpoint values corresponding to the “source”
of the values, i.e., this specifies whether they are one of the initial
breakpoint values a! or ! or one of the optimal Lagrange multipliers
k/ or A/ respectively. Second, in Lines 14-16, the algorithm applies for
each j € N'\{1} the procedure SorveSusproBLEMS(j) (see Algorithm 4)
that computes the optimal Lagrange multipliers x/ and A/ for the two
subproblems QRAP/(L/) and QRAP/(U/). Finally, using the obtained
vectors of optimal Lagrange multipliers x and 4, the algorithm com-
putes in Lines 17-22 the (alternative) multiplier values y using the
recursion in Eq. (12) and from these values the solution x"(R) using
Eq. (11).

Algorithm 3 An O(nlogn) time algorithm for QRAP-NC.

1: Input: Parameters a € RZO, LUeR"! ReR,and l,u e R"
2: Output: Optimal solution X to QRAP-NC

3: L'=1, =max(L',1)); U' = u; = min(U", u;)
4: for j =2 to n do

5 L/ =max(L/, L7 +1))

6: U/ =min(U/, U7 +u;)

7: end for

8: fori=1to ndo

9: al‘.' = ‘1‘—’_; ﬁlf = %

10: end for ‘

11: k! =al; Al =ﬂ11;l(j=oo, N =—cofor j>1

: Initialilze breakpoint sets: A :={al}; B :={f]}; K :
: Initialize bookkeeping sums: P} = P}, =0; 0] =0},
: for j =2 to n do

Apply procedure SoLvESUBPROBLEMS(/)

: end for

"
: fori=n-1down to 1 do

Compute y' using Equation (12)

: end for

: Compute x"(R) using Equation (11)
: return Optimal solution X := x"(R)

—_
N

@ L =0
a;

[T S G S Y
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—_
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The procedure SorveSusproBLEMS(j) carries out the breakpoint search
procedure for the subproblems QRAP/(L’/) and QRAP/(U/) as described
in Section 2 (Lines 39-59). This is done by first initializing the book-
keeping parameters for these breakpoint search procedures in Lines 39—
46 and Lines 49-56 and subsequently applying the procedures
LowerSusproBLEM(j) (Line 47, Algorithm 5) and UppERSUBPROBLEM(j)
(Line 57, Algorithm 6), which are identical in nature to Lines 5-22
of Algorithm 1. Before carrying out the breakpoint search procedure,
two possible corner cases are considered in Lines 1-38 with regard to
relation between the to-be-computed multipliers x/ and A/ and their
predecessors x/~! and A/~!. We briefly discuss these corner cases for
x/; the corner cases for A/ are analogous.

The first corner case occurs when x/ = «/~! (Lines 1-9 in
SorveSusproBLEMS(j)). This case corresponds to Lines 7-9 in Algorithm
1, where the currently considered candidate multiplier §; leads to a
solution x[§;] that sums to C, i.e., z[§;] = C. For QRAP-NC/(L/), this
case thus occurs if and only if L/~! + x; [x/] = L/, i.e., if and only if

x/(L9) = xI7' W) for all i € NV~ and L/~ + max(l;, min(a; ¢/, u;)) =
L’. The second case (Lines 10-13) occurs when x/ < x/~! and corre-
sponds to Lines 10-12 of Algorithm 1, where the candidate multiplier §;
leads to a solution x[6;] whose sum is larger than C, i.e., z[§;,] > C.
In QRAP-NC/(L/), this case occurs if and only if L/~! + Xj:[l(j 1> L/,
i.e., if and only if x{(Lj) = x{_l(Lf'*l) for alli € N/7! and L/-! +
max(/;, min(a; x/,u;)) > LJ. In both cases, it is not necessary to carry
out the actual breakpoint search to find «/ since either x/ = x/~! (the
first case) or x/ = (L’ — L/=")/a ; (the second case).

Whether or not one of the above mentioned corner cases occurs
partly determines whether or not we have to include the new initial
breakpoint values aj and ﬂj in the breakpoint search procedure. The

algorithm makes this decision in Lines 33-38: o’ and g’/ are included

only if they are in between the lowest and highest breakpoint values
that can be considered in the breakpoint search. This lowest value is
k) if ¥/ < k/~! (when one of the two corner cases for x/ occurs and
thus this value has already been determined) and x/~! otherwise (when
breakpoint search is required to find /). Analogously, the highest value
is A/ if A/ > =1 and A/~! otherwise.

4.4.2. Time complexity
We now establish the worst-case time complexity of Algorithm 3 by
means of the following lemma:

Lemma 6. Algorithm 3 can be implemented such that its worst-case time
complexity is O(nlog n).

Proof. Observe that, throughout the algorithm and all its procedures,
all operations have a total time complexity of O(n) except for four
operations on the sets A, B, K, and L of to-be-considered breakpoints.
For each of these breakpoint sets, say D, these are finding the minimum
and maximum breakpoint in D (Lines 2 and 18 in Algorithm 4 and
Line 2 in Algorithms 5 and 6), inserting a breakpoint value in D
(Lines 13, 29, 34, and 37 in Algorithm 4), and removing the minimum
or maximum breakpoint from D (Lines 15 and 31 in Algorithm 4 and
Lines 16, 20, 24, and 28 in Algorithms 5 and 6). As we showed in
Section 4.2, each breakpoint value is inserted and removed at most
once during the course of the algorithm. Moreover, in the worst case,
we have to find the minimum and maximum breakpoint value in D a
number of n times. Thus, the total number of breakpoint set operations
is O(n). If we maintain the breakpoint sets as min—-max heaps (Atkinson
et al., 1986), each of these operations can be executed in O(1) (finding
the minimum and maximum) and O(logn) (inserting and removing a
breakpoint) time. This means that the total time complexity of all four
breakpoint set operations is O(n log n) if we use min—max heaps to store
the breakpoint sets. It follows that Algorithm 3 can be implemented
such that its worst-case time complexity is O(nlogn). []

We expect the average-case performance of Algorithm 3 to be much
better than O(nlog n) since the size of the breakpoint sets is limited by
the iteration index j. More precisely, in iteration j, the size of each
breakpoint set A, B, K, and L is at most j. As a consequence, the time
complexity of insertion and removal of a breakpoint during iteration j
is O(log j) instead of O(log n).

In practice, carrying out the breakpoint set operations might be
faster if we use a different data structure than min-max heaps to
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Algorithm 4 Procedure SoLvESUBPROBLEMS(j).

1: if L/~ + max(l;, min(a;x/ ™!, u;)) = L/ then {x/ = /~1}

2:  Replace x/~! in K by «/
3 ifxl < a; then
b/ ._ pi—1 Al . il

4 Pl =P +1; 0] :=0]
5. else if ﬂj’. < k/ then

. 5/ _ il . Al ._ 5]
6: PL_PL +uj; QL '_QL
7: else

pi . pi-l. /i ._ Ai-1

8 PL.— " ,QL,—QL +a;
9: end if
10: else if /=" + max(/;, min(a;x/~!,u;)) > L’ then {x/ < x/~!}
11 &/ = - LI™Y/a,

. Bl ._ 7j-1. A} «_
122 P =175 0] =g
13: Add«/ to K
14: else {x/ > /~1}
15:  Remove /! from K
16: end if
17: if U771 + max(l;, min(a; A/, u;)) = U/ then {A/ = 271}
18: Replace #~!in £ by A/
19: if V< aj then

. ) ._ pi—1 A . Al
20: Py =Py 1,0y =0y
21: else if ﬂ/’. < A/ then

. b/ _ pi-1 Al . pi-l
22: PU = PU +uy; QU 1= QU
23: else

. 5/ ._ pi-l. /] ._ pi-1
24: P =B 0] =0 +q
25:  end if
26: else if U/~! +max(lj,min(aj/1j’l,uj)) < U/’ then {¥ > 2/~1}
272 M =U-U"/q

. Bl _q7j-1. A _
28 P, =UIT50) =g
29: Add ¥ to L

30: else {4/ < A/~1}
31: Remove A/! from £
32: end if _
33: if min(x’/~!, k7)) < a; < max(4/~1, /) then
34:  Add ajj: to A
35: end if _
36: if min(k/~!, k/) < ﬁj’. < max(4/~1, /) then
37 Add ﬁjff to B
38: end if
30: if x/ > /7! then
40:  if kil < aj then
. . pi-l . — -l
41: P:=P +1;0:=0]
42: else if aj <kl < ﬂj’. then
. . pi-l. — !
43: P:=P"0:=0]"+q
44: else
. — pi-1 . — il
45: P:— P tu; Q=0
46: end if
47:  Apply procedure LoweRSUBPROBLEM(})
48: end if
49: if #/ < A/~! then
50: if ﬂj’. < A1 then
. — pi-l . -l
51: P =P + 0:=0y
52: else if a; <M< ﬂj’. then
. . pi-1L. — !
53: P._PU ,Q.—QU +a;
54: else
. . pi-l . — !
55: P:=P, +1;;0:=0y
56: end if
57:  Apply procedure UppERSUBPROBLEM()
58: end if

maintain the breakpoint sets A, B3, K, and L. For instance, when » is
small, simple arrays might be sufficient for fast insertion and removal of
breakpoints, even though this increases the worst-case time complexity
to O(n?). On the other hand, Hochbaum and Hong (1995) suggest
to keep the breakpoint sets by means of a so-called disjoint set data
structure (see, e.g., Cormen et al. (2009)). Using such a structure, a
sequence of O(n) breakpoint insertions and deletions in sets of size at
most n can be done in O(n) time using the algorithm in Gabow and
Tarjan (1985). However, it is unclear whether the algorithm in Gabow
and Tarjan (1985) is fast in practice for two reasons. First, it is com-
plicated and cumbersome to implement compared to other algorithms
for insertion and removal operations on disjoint set data structures
(Galil and Italiano, 1991). Second, although the authors mention in
a preliminary study (Gabow and Tarjan, 1983) that their algorithm
outperforms the state-of-the-art at that moment, the literature contains
hardly if any studies on its practical performance. Alternatively, one
could use other algorithms (e.g., those evaluated in Patwary et al.
(2010)) that have a worse worst-case time complexity but have been
shown to be fast in practice.

4.4.3. A comparison of worst-case instances

To compare the difference in performance between ALGgeq, ALGjys,
and ALGg.., we discuss in this section one worst-case instance for
ALGgeq and one worst-case instance for ALGjs. In fact, we show that
this worst-case instance for ALG, is essentially a best-case instance for
ALG;,¢ and that the discussed worst-case instance for ALG; is a best-
case instance for ALG,,q. This suggests that the algorithms are in a sense
complementary. In general, these analyses may provide additional
insights into the strengths and weaknesses of these algorithms.

10

First, we discuss a worst-case instance for ALGq. From the time
complexity analysis for ALGgq in Section 4.4.2, we may conclude that
a worst-case instance for ALGgq is one where the maximum size of
the breakpoint set D is £2(n). In particular, if for a given instance first
all breakpoints are inserted in and afterwards removed from D, the
time complexity all breakpoint operations together is Y, - 2(logi) =

Q(nlogn). This holds, e.g., for the following instance:

. 1,5
-1: — X7
WCs in %, 3%
ieN
1 1
s.t. =2n? - = - =
Z n-+n 2n(n+1) ok
ieN

LiG+n< Y x<2jn+j-2iG+n, jenNT,
2 i€ENJ 2

i<x;<2n+1-i, ieN.

Note that this is in fact an instance of QRAP since the nested constraints
are redundant, i.e., we have Y.\ i = %j(j+ Dand Y,cpi@n+1-i)=
2jn+j— %j(j +1) for all j € N"~!. We show by means of Lemma 7 that
WC-1 is indeed a worst-case instance of ALGgq:

Lemma 7. When applying ALG,, to WC-1, first £(n) breakpoints are
inserted in the breakpoint set D and subsequently 2(n) breakpoints are
removed from D throughout the course of the algorithm.

Proof. See Appendix A.4. [

Considering the performance of the two other algorithms for this
instance, note that the time complexity of ALG;,; reduces to O(n) since
the nested constraints are redundant and thus not violated in the
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Algorithm 5 Procedure LowERSUBPROBLEM(j).

Algorithm 6 Procedure UpPERSUBPROBLEM(/).

1: repeat

2: Choose minimum to-be-considered breakpoint: & 1=
max(A, B, K, £) and corresponding member set D € { A, B, K, L}

3: if P+ Q6= L' then

4 k) :=6; add x/ to K

5: P/ :=P, 0, =0

6: return

7: elseif P+ Q6> L’/ then

8 (x/ <8:) k) :=(L/ = P)/Q; add k/ to K

9 P{ =P, Q_"L =0

return
11: else
12: (x/ > 8:) breakpoint 6 will be considered
13: if D = A then
14: Let breakpoint be & = af
15: P:=P—-1;0:=0+aq;
16: Remove a’k‘ from A
17: else if D = B then
18: Let breakpoint be & = ¢
19: P:=P+u;Q:=0—-aq
20: Remove ff from B
21: else if D = K then
22: Let breakpoint be § = «*
23: P:=P-0kck, 0 :=0+0%
24: Remove «* from K
25: else
26: Let breakpoint be § = A*
27: P:=P+0}i50:=0-0}
28: Remove A from £
29: end if
30: end if

31: until ¥/ has been determined

1: repeat
2: Choose maximum to-be-considered breakpoint: & 1=
min(A, B, K, £) and corresponding member set D € { A, B, K, L}

3: if P+ Q8 =U/ then
4: M :=6;add ¥ to L
5: P, =P 0, :=0
6: return
7: elseif P+ Q6 < U’ then
8: (¥ >8) ¥ := U/ - P)/Q); add ¥ to L
9: Pl =P, 0, :=0
10: return
11: else
12: (X < 6): breakpoint will be considered
13: if D = A then
14: Let breakpoint be & = af
15: P:=P+1,0:=0-agq;
16: Remove a’k‘ from A
17: else if D = B then
18: Let breakpoint be & = g
19: P:=P—-u; Q0 :=0+a;
20: Remove ff from B
21: else if D = K then
22: Let breakpoint be § = «*
23: P:=P+0'«k, 0:=0-0%
24: Remove «* from K
25: else
26 Let breakpoint be § = A¥
27: P:=P-0j 0:=0+0j
28: Remove A from £
29: end if
30: end if

31: until A/ has been determined

relaxation of the problem. Furthermore, the time complexity of ALGge.
remains O(n log n) since the parameter choices do not influence the level
of recursion and the number of subproblems that must be solved at each
level of the recursion hierarchy.

Now we discuss a worst-case instance for ALG;,;. This instance is
described in Wu et al. (2021) under the additional requirement that
the decision variables are integer-valued. However, the conclusion of
their analysis, namely that the instance is a worst-case instance, is not
affected by this requirement. As a consequence, it is also a worst-case
instance of QRAP-NC with continuous variables for ALG;.

The instance is given by

R )
WC-2: min 2 3%
iEN

st Y x ==,
ieN
Vi< Y xS+l jeN™
iENJ
—-2n<x;<2n, i€N.

In the following, we determine for this instance the number of break-
point operations and the size of the breakpoint sets in ALGgeq. For
this particular instance, we can derive a closed-form expression for the
multipliers of the QRAP subproblems, i.e., ¥ and A:

Lemma 8. For the instance WC-2, the Lagrange multipliers x/ and 4/ as
computed by ALG,, are given for each j € N' =1 by

K= (1Y (2,'— %) _1

> Pi=en (-3)+

N —

Proof. See Appendix A.5. []
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Note that Lemma 8 implies that ¥/ < «/~! and &/ < A/~! for j
uneven and x/ > x/~! and A/ > A/7! for j even. Thus, in procedure
SoLvESUBPROBLEMS(j), either x/ is added to K (Line 13) and A/~! is
removed from £ (Line 31) or x/~! is removed from K (Line 15) and A/
is added to £ (Line 29). Moreover, since x/ > —2n = o’ and A/ < 2n = ﬂf
for all j > 2, none of the initial breakpoints aj and g/ are added to A
and B in Lines 33-38. Together, this means that the maximum number
of breakpoints in D = .4 U BU K U L at any moment during the course
of the algorithm is at most 3 (the initial number of breakpoints in D
plus one). Thus, the maximum required depth of the heaps that store
the breakpoint sets is independent of the problem size n. This means
that also the efficiency of each individual breakpoint operation on these
heaps is O(1) and thus the time complexity of all operations together
reduces from O(nlogn) to O(n). Since all other operations of ALGgeq
have a total time complexity of O(n), the time complexity of ALGgq
for the considered instance is O(n).

We conclude this section with a final remark on the applicability
of ALGqq to the case where the variables are integer-valued. At the
end of Section 3, we mentioned that the initial sequential Algorithm
2 can be extended to integer-valued decision variables. The reason
for this is that, in this algorithm, the QRAP subproblems are solved
explicitly. Thus, these intermediate solutions can be used directly as
lower and upper single-variable bounds for the next subproblem. In
ALGge,, the unique optimal solution to each subproblem is not explic-
itly computed. Instead, we compute the (unique) Lagrange multiplier
corresponding to this solution. However, in the problem with integer
variables, subproblems may not have unique optimal solutions. More-
over, the characterizing property of Lagrange multipliers does not hold
anymore. This means that there may be multiple optimal solutions that
are characterized by the same Lagrange multiplier or such a multiplier
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Table 6
Parameter choices for the battery scheduling problem for each scenario.
Xonin X imax D
SmALL -4.0-10° 4.0-10° 8.0-10%
MEpium -2.0-10* 2.0-10* 40-10°
LARGE -3.6-10* 3.6-10* 7.2-10°

might not even exist. Since the uniqueness of the optimal solutions
and the presented characterization of solutions via Lagrange multipliers
play a crucial role in ALGeq, We believe that a direct extension of this
algorithm to integer-valued decision variables might not be possible.

5. Evaluation

In this section, we evaluate the performance of our Algorithm 3 as
presented in Section 4.4, to which we shall refer as ALG, for clarity,
and compare it with the state-of-the-art algorithms ALG;,; from van der
Klauw et al. (2017) and ALGy., from Vidal et al. (2019). We carry
out two types of experiments. First, we evaluate the performance of
our algorithm on instances of the battery scheduling problem BAT-
TERY using measured power consumption data as input. For this,
we tailor ALG,, to this problem and compare this implementation
to a tailored implementation of ALG;, within the simulation tool
DEMKit (Hoogsteen et al., 2019). Second, we compare the execution
time and scalability of our algorithm and of ALG;;; and ALG4,. on
synthetic instances with sizes ranging from 10 to ten million variables.
We have implemented all three algorithms in Python (version 3.5) to
be able to compare them to the implementation in DEMKit, which is
also written in Python, and made the corresponding code available
at https://github.com/mhhschootuiterkamp/QRAP_NC. All simulations
and computations have been executed on a 2.60 GHz Dell Inspiron 15
with an Intel Core i7-6700HQ CPU and 16 GB of RAM.

In Section 5.1, we describe in more detail the problem instances
that we use in the evaluation. Subsequently, in Section 5.2, we discuss
several implementation choices and in Section 5.3 we present and
discuss the results of our evaluation.

5.1. Problem instances

For the comparison of the tailored implementation of our algorithm
ALGg,q with the tailored implementation of ALG;,s within DEMKit, we
generate instances of the problem BATTERY using measured power
consumption data as input. For this, we consider the setting where a
battery charging schedule for two consecutive days needs to be com-
puted. This scheduling horizon is divided into 15-minute time intervals,
resulting in n = 192. To study the influence of the battery size on
the solving time, we consider three scenarios that correspond to three
different battery sizes and denote them by Smarr, Mepium, and LArGe. In
these scenarios, the battery capacity is 20 kWh, 100 kWh, or 180 kWh
and the (dis)charging rate is 4 kW, 20 kW, or 36 kW respectively. This
leads to Ar = i and to the values for X ;,, X..x» and D as given in
Table 6. Note that this is equivalent to the situation where either 10, 50,
or 90 percent of the households have installed a smaller “home” battery
with a capacity of 5 kWh and a (dis)charging rate of 1 kW, which
corresponds to real-life field tests such as described in Reijnders et al.
(2018). We set both the initial and target SoC to a given fraction of the
capacity, i.e., Ssa = Seng = 5D, where s € {0,0.1,0.2,...,1}. For each
scenario, we simulate 50 battery schedules of two days. As input for the
base load p, we use measurement data of the actual power consumption
of 40 households for 100 consecutive days that were obtained in the
field test described in Hoogsteen et al. (2017).

For the scalability analysis, we generate synthetic instances in the
same way as in Vidal et al. (2019). For this, we consider instance sizes n
in the set {10,20, 50, 100,200,500, ...,107} and for each of these sizes,
we generate 10 instances. In each instance, we sample the parameters
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a, I, and u from the uniform distributions U(0, 1), U(0.1,0.5), and
U(0.5,0.9) respectively. To generate the nested bounds L and U, we
first draw for each i € N two values X; and Y; from the uniform
di_stribution U, u). Su_bsequently, we define for each j € N t_he values

w) = Yiepi X; and w) 1= Fc v, ¥; and we set L/ := min(w}, w?}) and
U’ := max(w’l,wé) forj<nand L" =U" = %(w’; +wh).

5.2. Implementation details

In both the divide-and-conquer algorithm ALGg.. and the
infeasibility-guided algorithm ALG;s, we use the algorithm from Kiwiel
(2008) to solve the QRAP subproblems. In this algorithm, we replaced
the proposed linear-time procedure for finding medians by the proce-
dure statistics.median(). The reason for this is, as mentioned
before, that linear-time algorithms such as in Blum et al. (1973) for
finding medians are relatively slow in practice due to the large constant
factor in their complexity (see also Kiwiel (2005) and Alexandrescu
(2017)).

For the double-ended queues needed in ALGg, for the optimal
Lagrange multipliers « and 4, we use the Python container data type
deque. Moreover, we initially implemented the double-ended priority
queues for the lower and upper initial breakpoint values (a!),c - and
(#");cn as symmetric min-max heaps (Arvind and Rangan, 1999). How-
ever, initial tests indicated that using instead a coupled min-heap and
max-heap implementation with total correspondence leads to similar
or even lower execution times of the overall algorithm. Moreover, the
latter data structure is much simpler to implement using the standard
Python library heapq. Therefore, we use this method instead of min—
max heaps. In this alternative method, we insert new breakpoints in
both the min-heap and the max-heap and use the min-heap to find
and delete a minimum breakpoint (in the lower subproblems) and the
max-heap to find and delete a maximum breakpoint (in the upper
subproblems). Moreover, we assign to each breakpoint a flag that
is 1 if the breakpoint has been removed from either of the heaps
and O otherwise. This prevents that we find a minimum (maximum)
breakpoint in the min-heap (max-heap) that was already considered in
the other heap and thus has been removed from the breakpoint search.

5.3. Results and discussion

In this section, we present and discuss the results of our evalua-
tion. First, we discuss the results of the comparison of the tailored
implementation of ALG,, with the tailored implementation of ALGiyy
within DEMKit. Fig. 2 shows the ratios between the execution times of
the tailored implementation of ALG;; and that of ALG,,. Moreover,
Tables 7-9 contain for each scenario and each initial and target SoC
value the mean, maximum, and coefficient of variation (CoV) of the
execution times. The CoV is the sample deviation divided by the sample
mean and is a suitable measure of the variation between samples when
comparing different collections of samples with significantly different
sample means.

Tables 7-9 show that the mean execution time of ALGq is similar in
each scenario, whereas that of ALG;,¢ appears to decrease as the battery
size increases. This implies that also the ratios between the execution
times decrease as the battery size increases, which is confirmed by
the boxplots in Fig. 2. In particular, a smaller battery size seems to
imply that ALGy, is likely to be faster than ALG;,; whereas ALG;y is
likely to be faster for larger battery size. The reason for this is that the
execution time of ALG;, ¢ heavily depends on the number of tight nested
constraints in an optimal solution, i.e., on the number of distinct values
of v/ for j € N (see also Section 4.3). To support this fact, we plot
in Fig. 3 boxplots of these numbers. Note that when the initial SoC is
20% or 30% of the battery capacity in the scenario Large, in only 4
of the 50 instances the number of tight constraints was more than 1,
meaning that in the remaining 46 instances the optimal solution to the
relaxation of the problem did not violate any of the nested constraints.


https://github.com/mhhschootuiterkamp/QRAP_NC

M.H.H. Schoot Uiterkamp et al.

Computers and Operations Research 135 (2021) 105451

2 2
I ST T I I P 00 S TS I N P I o -1
o = 0.5 & 0.5
1 0.25 0.25
0 0.5 1 0 0.5 1 0 0.5 1
(a) SMALL. (b) MEDIUM. (c) LARGE.

Fig. 2. Boxplots of the execution time of the tailored implementation of ALG;,; within DEMKit divided by that of the tailored implementation of ALG, for the three scenarios.

was faster than ALG;

inf*

Ratios larger than 1 imply that ALG,

seq

100 25 25
g 2 20 2 20
2 80 2 =
£ 15 £ 15
i 0 E Z
g 60 g 10 5 10
B 50 EiS 5 EiS 5 l‘ é 9 l ; %
40 - Le= LE
0 0.5 1 0 0.5 1 0 0.5 1
S S S
(a) SMALL. (b) MEDIUM. (c) LARGE.

Fig. 3. Boxplots of the number of tight constraints in the optimal solutions for the three scenarios.

Table 7

The mean, maximum, and coefficient of variation of the execution times of the tailored
implementation of ALG,., and the tailored implementation of ALG;,; within DEMKit for
the scenario SMmALL.

seq

Table 9

The mean, maximum, and coefficient of variation of the execution times of the tailored
implementation of ALG,,, and the tailored implementation of ALG; ; within DEMKit for
the scenario LARGE.

seq

s ALGqq ALG;,; within DEMKit s ALGqq ALG;, within DEMKit
Mean (s) Max (s) CoV Mean (s) Max (s) CoV Mean (s) Max (s) CoV Mean (s) Max (s) CoV
0 1.80-1073  2.09-107% 580-1072 6.15-107%  723-107%  7.61-1072 0 1.59-107%  2.15-107%  7.33-1072 1.60-107  2.76-1073  2.98.107!
0.1 1.78-107  2.14-103  6.18-1072  6.15-107  7.16-107  6.52-1072 01 158-107  1.90-10  7.33-102  893-10"* 2.11-107% 522-107!
02 1.81-10° 277-10°® 9.19-1072 6.10-107  7.15-107  7.17-1072 02 158-107° 1.94-1073  8.61-1072  7.82-107* 2.04-1073  4.77-107!
03 1.79-1073 225-107° 7.70-1072  6.10-107  7.10-1073  7.34.1072 03 155-107° 216-107° 879-102 745.10% 2.00-10°  4.66- 107!
0.4 1.79-1073  244-1073 725-1072  6.07-103  7.11-103  7.10-1072 0.4 154-107% 205-10° 7.06-102 822-10% 230-10°  5.18-107!
0.5 1.77-107 225-107°  6.28-1072  6.02-107  694-107  6.41-1072 0.5 1.54-1072 205-10° 7.67-1072 1.02-107  242-107  551-107!
0.6 1.83-10°  4.00-1073 1.89-107"  6.01-107  7.09-107%  6.78-1072 06 153-107° 1.83-107  6.24-1072 1.34-107  2.63-1073  4.38.107!
0.7 1.77-1073  221-1073 649-1072  6.05-10  697-10  7.69-1072 0.7 155-1073 1.77-1073 6221072 1.72-1073  2.61-1073 275107
0.8 1.80-102  2.68-1073 1.00 - 107! 6.05-107  7.06-10  7.52-1072 0.8 153-1073 1.86-1073  580-1072  2.09-10  295.1073 1.87-107!
09 1.79-107° 2.87-1073 1.24-107"  597-107 7.88-1073  8.48.1072 09 153-107° 1.94-1073  634-1072  231-107  2.98.1073 1.69 - 107!
1 1.79-1073  2.18-107%  6.02-1072  6.01-107 822-107%  881-1072 1 1.52-1073 1.77-1073  458-1072  2.51-107  3.16-1073 1.36- 107!
Table 8 Table 10

The mean, maximum, and coefficient of variation of the execution times of the tailored
implementation of ALG,, and the tailored implementation of ALG;, within DEMKit for
the scenario Mebium.

Percentage of instances where the tailored implementation of ALG,, is faster than the
tailored implementation of ALG;, within DEMKit given the number of tight nested
constraints in their optimal solutions.

s ALGqeq ALG;,; within DEMKit Number of tight nested constraints 1 2 3 4 5 6 >7
Mean (s) Max (s) CoV Mean (s) Max (s) CoV “Win” percentage 0.0 22 302 628 838 934 100
0 171-107  2.40-10%  1.19-107"  1.88-107  3.45-107  3.10- 107
0.1 164107 196-107  739.107  1.45-107 331-107  447-107
0.2 166-107 240-107 1.03-107"  147-107° 334107 478107 . )
0.3 176-10°3  350-10-3 1.85-10-' 1.68-10-3 3.43-10-3  4.41.10-! From these results, we can derive a “rule of thumb” for the choice
0.4 1.65-107°  236-10% 1.07-107  1.76-107  351-10%  3.45-107" of a proper algorithm to use given the expected number of tight nested
0.5  1.66- 10’2 242- 10’2 1.08 - 1071 1»95‘1072 327 107‘: 2.83-107" constraints. To this end, we compute for each number of tight con-
. |~ . = . )~ < . )~ . )~ . -1 . . . . .
0.6 1.65-10 24810 975+ 10 22310 35210 2.26. 10 straints the percentage of instances where the tailored implementation
0.7 16810 209107  846-107 2.32-107 342-107 185.107" £ ALG faster than the tailored impl tati £ ALG ithi
0.8 164-107° 194-107 679-107 236-107 319107  1.61-10"" o seq TUNS faster than the tallored implementation o inf WIRIN
0.9 170-103 2.17-107*  1.02-10"' 2.53-102  350-10->  1.63-10-! DEMKit given the optimal solution has this particular number of tight
1 1.67-107  2.11-107  841-102  2.61-10  405-103  1.54-107! nested constraints (see Table 10). These values suggest that when

The relation between the number of tight nested constraints and the
ratios is also strongly visible when comparing Figs. 2 and 3: the ratios
increase as the number of tight constraints increases.
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the number of tight constraints is more than % ~ 2.1 percent, our
algorithm is faster in more than 50% of the instances. In particular,
when the number of tight constraints is — =~ 3.6 percent or more, the
tailored implementation of our algorithm ALG,, is always faster.
Note that this rule-of-thumb is in line with the physical interpreta-
tion of tight nested constraints in BATTERY. For this, note that a battery
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Table 11
Mean and coefficient of variation of the execution times.
n Mean (s) CoV
ALGseq ALGinf ALGdec ALGseq ALGinf ALGdec
10 1.33-107* 2.54-107* 1.44-107 9.97-10"" 540-10"" 1.77-107"
20 1.80-10* 4.12-10™* 3.11-1072 7.32-1072 232-10"' 8.01-1072
50 5.00-107* 1.05-1073 9.41-102 3.06-10"" 2.53-107" 2.24-107!
100 9.06-10* 1.97-107 2.07-1072 6.51-1072 3.44-107" 1.35-107"
200 1.90-1073 4.02-107 4.16-102 6.92-102 3.83-10"' 5.18-1072
500 4.98-107 1.05-1072 1.20-10"' 9.34-10% 3.08-10' 3.90-1072
1,000 9.76-1073 1.98-102 2.55-107" 4.90-1072 3.75-107" 4.62-1072
2,000 2.04-1072 4.48-1072 547-107" 1.92-10% 227-107" 1.86-1072
5,000 5.27-102 1.07-107' 1.48 322-102 3.40-107" 2981072
10,000 1.13-107" 225-107" 3.11 8.73-10% 3.59-107" 3.06-1072
20,000 223-10"" 4.61-107" 6.56 3.06-1072 2.48-107" 1.80-1072
50,000 5.76-10"' 1.35 1.77-10°  3.02-1072 3.44-107' 235-.1072
100,000 1.18 2.88 3.77-10°0  1.99-102 2.52-107" 1.76-1072
200,000 2.49 5.21 7.92-10"  4.97-1072 2.66-107" 2.20-1072
500,000 6.66 1.37-10°  2.11-10 7.78-10% 1.70-10"" 1.26-1072
1,000,000 1.42-10°" 335-10°" 4.49.102 3.23-1072 3.01-107" 1.50-1072
2,000,000 2.94-10" 5.11-10°" 9.34-10% 7.04-102% 3.16-10"" 1.26-1072
5,000,000 9.26-10"" 1.96-10” 2.54-10% 8.01-102 191-10"" 1.58-1072
10,000,000 1.80-10 3.48-10% 527-10% 1.69-10"' 2.87-10"" 1.44.1072

being completely empty or full is equivalent to a nested constraint of
BATTERY being tight. When the charging rates of the battery are large,
the battery is better able to, at a given moment, flatten large peaks
or drops in power consumption. However, the latter is also dependent
on whether there is enough space (energy) left in the battery to store
(dispatch) this energy, which is more likely when the battery capacity
is large. Thus, when adopting a large battery for load profile flattening,
it is less likely that it will be completely empty or full.

Although the ratio between the execution times of ALG,., and
ALG;,¢ appears to depend significantly on the battery size, the maxi-
mum and CoV of the execution times of ALG is on average around
1.9 and 3.0 times smaller than that of ALG;, respectively. This means
that the execution times of ALG,, are on average more stable than
those of ALG;,;, regardless of the battery size. For DEM in general
and DEMKit in particular, this is beneficial since the coordination and
optimization of schedules for different devices is often done in parallel
due to the decentralized nature of the coordination (see, e.g., Hoogsteen
et al. (2018)). As a consequence, the execution time of the entire
coordination and optimization framework is constrained by the max-
imum execution time required for solving one (subset of) device-level
optimization problem(s). Thus, using ALG,, instead of ALG;,s within
such a framework may significantly reduce the overall execution time
of the framework.

In the following, we present and discuss the results of the scalability
evaluation. Fig. 4 shows the execution times of the three algorithms
ALGgeq, ALGyys, and ALGge., and Table 11 shows for each studied
instance size n the mean and CoV of the execution times of the cor-
responding instances. The added regression lines in Fig. 4 are the fitted
power laws of the execution times, i.e., for each algorithm we fit the
function ¢(n) = ¢, - n2 to the execution times. These lines indicate that
the practical execution time of all three algorithms is close to O(n),
with ALGg, and ALGjy¢ being very close together and closer to O(n)
than ALGy... However, the CoVs for ALG;,; are around one order of
magnitude larger than those of both ALGgq and ALGge. This suggests
that the execution time of the latter two algorithms is significantly less
affected by the choice of problem parameters than ALG;. This is in line
the results of the comparison of the tailored implementation of ALGq
for BATTERY with that of ALG;,¢ within DEMKit.

The results in Fig. 4 and Table 11 indicate that on average ALGq
is 26.7 times faster than ALGg.. and 2.14 times faster than ALGjy;.
With regard to the performance of ALGg,., we acknowledge that ALGg4e,
and in particular the updating scheme for the single-variable bounds
can probably be implemented more efficiently than in the current
implementation. To reduce the influence of the overall implementation
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on the results of this study, we measured the total time that is spent
in ALGg.. on solving QRAP subproblems and compared this to the
execution times of ALGeq and ALGiy. This alternative time represents
the time that is minimally required to solve all QRAP subproblems
regardless of the implementation of the scheme used to update the
single-variable bounds. These measurements indicate that on average
around 61% of the total execution time of ALGy,. is spent on solving
QRAP subproblems. However, this time is still on average 16.3 times
more than the execution time of ALG,, and 8.3 times more than that
of ALGinf’

Furthermore, Table 12 reports on several implementation-
independent statistics of the algorithm execution. More precisely, the
table shows the mean and CoV of the number of executed breakpoint
operations in ALGg, and the number of solved QRAP subproblems
in ALG;y; and ALGge.. These operations and subproblems are the
computational bottleneck of the corresponding algorithms and thus
these results provide additional insight in the practical performance of
the algorithms.

Table 12 indicates that the number of breakpoint operations within
ALGgeq appears to grow linearly in n. This is in line with the proof
of Lemma 6 where we stated that this number is O(n). Moreover, the
number of QRAP subproblems that is solved in ALG;, is significantly
less than in ALGge.. This is in line with the findings in Wu et al.
(2021), who studied among others QRAP-NC with discrete decision
variables. One reason for this is that the decomposition within ALGe.
algorithm always happens through the middle, i.e., a QRAP subproblem
in k variables is split into two smaller QRAP subproblems in [%J
and [g] respectively. As a consequence, the number of solved QRAP
subproblems for an instance with » variables is always given by 8n — 4
(see also Vidal et al. (2019) and Wu et al. (2021)). This also explains
why the CoV for ALGy,, is always zero.

6. Conclusions

We proposed an O(nlogn) time algorithm for quadratic resource
allocation problems with lower and upper bound constraints on nested
sums of variables. As opposed to existing algorithms with the same time
complexity, our algorithm can achieve the O(nlogn) time complexity
using only basic data structures and is therefore easier to implement. In
computational experiments, we demonstrate the good practical perfor-
mance of our approach, both on synthetic data and on instances from
the application area of decentralized energy management (DEM) for
smart grids that use measured power consumption data as input.

Our approach builds upon monotonicity arguments that find their
origin in the validity of greedy algorithms for convex optimization
problems over submodular constraints (Hochbaum, 1994; Hochbaum
and Hong, 1995). Such monotonicity arguments have been primarily
studied for resource allocation problems where the objective function
is separable, i.e., can be written as the sum of single-variable func-
tions. However, in previous work (Schoot Uiterkamp et al., 2020)
we prove the validity of similar monotonicity arguments to solve a
nonseparable resource allocation problem with so-called generalized
bound constraints. Moreover, recent results on the use of interior-
point methods for nested resource allocation problems (Slager, 2019;
Wright and Lim, 2020) suggest that incorporating specific nonseparable
terms in the objective function does not increase the complexity of
the used solution method. Thus, one interesting direction for future
research is to investigate whether one can use monotonicity arguments
to derive efficient algorithms for resource allocation problems over
nested constraints with nonseparable objective functions.

With regard to the application within DEM systems, we compared
our algorithm with an existing implementation of the state-of-the-art
algorithm of van der Klauw et al. (2017) within a simulation tool for
DEM research. One of our objectives was to decide which of these two
algorithm is more suitable to use for a given (type of) problem instance.
It would be worthwhile to conduct a more thorough comparison and
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Fig. 4. Execution times of ALG,

seq

Table 12

Mean and coefficient of variation of the number of breakpoint operations (ALG,

and ALGge.).

108 107

(circles, black), ALG; (triangles, gray), and ALGy.. (squares, open).

seq) and number of solved QRAP subproblems (ALGj,¢

n Mean

CoV

Breakpoint operations QRAP subproblems

Breakpoint operations QRAP subproblems

ALGy,q ALGy¢ ALGy ALGy, ALGy ALGy
10 70.2 10.1 76 9.70 - 1072 4.15-107" 0
20 151.8 15.2 156 4.58 - 1072 337107 0
50 396.3 33.0 396 5.64-1072 477 - 107" 0
100 820.2 40.4 796 3451072 493107 0
200 1,653.9 50.8 1,596 1.74 - 1072 6.34- 107! 0
500 4,149.3 112.2 3,996 1.53-1072 571107 0
1,000 8,315.1 154.2 7,996 1.10- 1072 8.16- 107! 0
2,000 16,655.1 258.6 15,996 6.99-107 591107 0
5,000 41,744.7 347.4 39,996 4231073 8.08 - 107! 0
10,000 83,438.6 564.8 79,996 2.28-107° 7.95- 107" 0
20,000 166,985.2 610.2 159,996 2.61-107 7.94-107" 0
50,000 417,593.7 1,586.4 399,996 2421072 8.12- 107! 0
100,000 835 373.5 2,273.4 799,996 6.72- 107 6.06- 10! 0
200,000 1,671,822.2 2,304.0 1,599,996 7.61-107* 7.01-107" 0
500,000 4,179,134.5 3,375.4 3,999,996 4.88-107 7.52- 107! 0
1,000,000 8,360,418.0 8,048.6 7,999,996 198107 599107 0
2,000,000 16,720,079.0 5,234.0 15,999,996 173107 1.15 0
5,000,000 41,799,020.3 18,175.2 39,999,996 113107 6.82-107" 0
10,000,000 83,608,186.8 18,871.4 79,999,996 9.08-107° 8.64 - 107! 0

to develop an automated procedure to decide which algorithm is most Acknowledgments

likely to be faster. Moreover, the nonseparable version of the studied
problem mentioned in the previous paragraph is related to energy
management of batteries in three-phase distribution networks, where
load profile flattening on all three phases together is required to avoid
blackouts in these networks (Weckx and Driesen, 2015; Hoogsteen
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direction is also relevant in the context of DEM.
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Appendix. Proofs of Lemmas 1, 4, 5,7, and 8

A.1. Proof of Lemma 1

Lemma 1. If L’ < A < B < U/, we have x/(A) < x/(B) for a given
jEWN.

Proof. For convenience, we include the equality constraint (4) into the
nested constraints (5) by replacing these nested constraints by

ke NV,
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where L¥ = L¥ and UF = U* for k < j, and L) = U/ = C. The
Karush-Kuhn-Tucker (KKT) optimality conditions (see, e.g., Boyd and
Vandenberghe (2004)) for the subproblem QRAP-NC/(C) are as follows:

J
X, S .
a—’+Z(nﬁ—€,{)+u{—v{=0, ie N, (A.1a)
i k=i
L'<Y x <0, ieN, (A.1b)
keN'
n! <U"- Z xk>:O, ie N, (A.10)
kENT
g{'(Z xk—L'>=0, ie N, (A1d)
keN
W —x)=0, ieN, (A.le)
Vi —1)=0, ieNY, (A.1f)
n C,.j,/z{,v >0, ieN. (A.1g)

Let (£/(C),n/(C), 4/ (C),v/(C)) denote the Lagrange multipliers cor-
responding to the optimal solution x/(C). Thus, (x/(C),¢/(C),n/(C),
W (C), v/ (C)) satisfy the KKT-conditions (A.1).

Suppose that there exists an index s € N such that xi(A) > xﬁ(B).
Let r be the largest index with r < s such that }, - xi(A) >

Dkenr x{;(B), and let 7 be the smallest index with 7 > s such that
Yrent X (A) < Yycpr X, (B). By definition of r, s, and 1, we have that

ix{f(B)= PIEACIEED VAR YRV R YA

iENT ieNT-! iENT ieNT-!
1

=Y x(A).
i=r

Moreover, observe that we cannot have r = s = ¢ simultaneously.
Indeed, if r = s = 1, then we have by definition of r, s, and ¢ that

PIEAVEID WAV ENDY

kEN'S kEN'S keN's—]

X! (A) + xI(B).

This implies xi(A) < xﬁ(B), which is a contradiction. Thus, either r < s
or s <t or both.

We show that we obtain a contradiction if r < s. The proof for the
case where s < t is symmetrical. If r < s, the following holds:

+ By definition of r and s, we have

2 W< ¥ oa®= 3

kENT keENT keNT1

i .
X, (B)+x/(B) < Z
keNT-1

X1 (A)+x.(B).

Thus, x/(A) < x/(B).
For each k such that r < k < s — 1, we have by definition of r and
s and KKT-condition (A.1b) that
< Y < Y xB) <0~

ieNk ieNk
It follows from KKT-conditions (A.1c), (A.1d), and (A.1g) that
¢/ (B) = n,(A) = 0. Thus, for each r < k < s — 1, we have

Z(n (4) - ¢l ) - Z (7] (4) = ¢ () = m(A4) - £ () < 0

i=k+1

and

Yol B -BY- Y ol (B) - (B)=nl(B)-(B)>0.

i=k i=k+1

In particular, this implies that

J J
201 () = ¢/ (A) < Y n](A) = & () (A.2)
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and

J J
20 (B) = ¢/ (B) > ¥ (] (B) ~ £/ (BY). (A.3)

We have /, < x{(A) < xf(B) < u,. It follows from KKT-

conditions (A.le)—(A.1g) that

VI(B) = il(A) =0 (A.4)

Similarly, since /; < x{;(B) < x(;(A) < u,, we have by KKT-

conditions (A.1e)—(A.1g) that

VI(A) = pl(B) = (A5
We can now derive a contradiction as follows:
I . (A . .
Yo -can =2 _ i+ vy .62
J
G #(B)+ v/(B) (A.6b)
J ' )
= D0/ (B) = ¢/(B) (A.60)
=
< Z(n (B)-¢/(B) (A.6d)
J
= —@ - u/(B)+v/(B) (A.6e)
J
5@ H(A)+vi(4) (A.60
/_ r
= ) (r/(A) - (A) (A.68)
. |
< Y /Ay - ¢l (ay). (A.6h)

i=s

Here,

» (A.6a), (A.6¢c), (A.6e), and (A.6g) follow from KKT-condition
(A.1a);

« (A.6b) follows from Eq. (A.5) and the fact that x/(A) > x/(B) and
ag > 0;

» (A.6d) follows from Eq. (A.3);

- (A.6f) follows from Eq. (A.4) and the fact that x/(4) < x/(B) and
ag > 0;

» (A.6h) follows from Eq. (A.2).

It follows that x/(A) < x/(B). [
A.2. Proof of Lemma 4

Lemma 4. We have y" = x" = A". Moreover, for each j € N"~!, we
have:

1. p/* <« implies 3 i X'(R) = L and 4/ = «;
2. M < ! implies Y, s x'(R) = UY and y/ = ¥/,
3. k< < A implies LV < Yc i X'(R) < U’ and y/ = P AR

Proof. We have y" = k" = 1" since we defined L" = U" = R and by
definition of the solution x"(R) the nested constraints L" < 37, \» x/(L")
and Y, x/(U") < U" are tight. We prove the lemma by considering
each of its three cases separately for each j < n:

1. We prove this part of the lemma for the case that j is the largest
index smaller than /*! such that y/*! < «/, i.e., yk*! > k* for
all k € {j+1,...,0/*! — 1}. Using this result, we show as follows
that the other case, i.e., both the situations where either j = v/+!
or where there exists an index k > j that it is the largest index
in the set {j 4+ 1,...,0/*! — 1} such that y**! < x*, leads to a
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contradiction. In the former situation, it follows that j +1 > j =
v/*1 > j + 1, which is a contradiction. In the latter situation,
the lemma applies for k, meaning that Y, \« x!(R) = L* and
thus v* = k. However, we also have by definition of v/*! that
v* = v/*! since j + 1 < k < v/*!. This implies k = v/*!, which is
a contradiction.
If y/*1 < «J, it follows from the lower breakpoint relations
in Eq. (9) that we have either a{“ >kl > i (f < ﬂij)
or a{“ = ﬁ[j <kl <NV (ifﬂf < «/) for all i < j+ 1. We show that
in both cases it holds that x;’j“ vt = x{ (LY):
+ In the former case, note that o < of*! for all k < n

by Eq. (9) and that y/*' = y* forall k € {j + 1,...,0/*"}

by definition of y/*!. Since y**! > «* for all k € {j +

I,...,t/*! — 1}, we have that o* > a{“ > pitl = phtl 5k
for all k € {j + I,...,v/*! — 1}. Thus, xF(LK) = ¥ =
xkH(IAY) for all k € {j + 1,...,0/*! — 1}, which implies
that x{ (L)) = x,.”/“‘l(L”H*l). Moreover, note that since
WS g+l > i+l = ' e have that x;’j“ Wty =
XIS 0 follows that xV (V™) = X/ (1),
The latter case implies that x{ L = x{ U = a,’f . It follows
by Lemmas 1 and 2 that x””l(V"jH) < xl‘.’H](U”Hl) <

XUy = X (L) <@y < e,

a

On the one hand, if ¥**' = L¥*', we have

pi+l
=Y Jah=Y a =" - Y Mt
1 1 1
iNJ €N i=j+1
pit
> Y N®- Y xR
ieN ! i=j+1
= Z X"(R) > LY,
ieNJ

where the inequality follows since Zl_e Aot x!(R) = LY and
by Lemma 2. On the other hand, if v =y, we have by
Lemma 2 that

U= F xuh= 3 5wz Foawnz v,

iENJ iENJ iENJ
In both cases, it follovys thgt Yieni XI(R) = L/, from which it
follows directly that y/ = x/.

2. The proof for the case &/ > y/*! is analogous to the proof for
the case y/*! </,

3. Suppose that x{(L/) = x!(L") holds for all i < j +1. By Lemma 2,
this implies that x*(L*) = x/(L/) = x(L") for all k € {j,...,n}
and i < j + 1. In particular, we have that x*(L*) = I* for all
k € {j+1,...,n}, which implies that x* < af‘. Furthermore, note
that for any k¥’ € W there is at least one index iy < k such
that a;‘k/ , < KK < ﬂl’;’, Otherwise, there exists ¢ > 0 such that

¥ 4+ ¢ is an optimal Lagrange multiplier. It follows from the

. ’ ’ . ’

relation between a:‘/ and af‘,“ in Eq. (9) that a,{‘,“ = «¥ for
k’ k’ k'

any k' < n. This implies in particular that af*! = k* < aikk  for

all k € {j +1,...,n}. It follows that < a{fl = x/ and thus

K

J
7 j+1 . j+1 +1 j+1
that k! < y/i+l = " Since y¥'" € (¥ ,2”" }, we have
L’j+l b\i+l

= 22! from which it follows that Ziej\f“jH x'"R)=U
However, this implies that

j+1 j+1 j+1 J+1 j+1 j+1
Yo=Y Mw=v" > Y 2w

ieN vt ieN ! ieNvH
> Z x[UjJrl(LUHl).
ieN !
This implies that Zie_,\/vf“ xly/'*l(LUHl) _ ngj\/vf“ xf”H(U”jH),

from which it follows that L**' = U*"*' by the monotonicity of
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X! () as proven in Lemma 1. However, this is a contradiction
with the assumption that L¥ < U* for all k < n. Hence, there
must be at least one index i’ such that x{,(Lf )< xlf’,(R). It follows
that L/ = ¥, vy X/ (L) < Xic s X (R).

To prove that ¥, x!(R) < U/, we can use a similar argument
wherein we show that the proposition x{ uh) = x!(R) cannot be
true for all i < n. Together, this implies that L/ < Dieni XH(R) <
U/, from which it follows directly that z/ = y¥'*' = z/+1. O

A.3. Proof of Lemma 5

Lemma 5. For each i € N, we have

Il if ¥ <al,
X[(R) =qa, " ifal <y <pl,
u; ifgl < 4.

Proof. Let J denote the set of indices whose corresponding nested
lower or upper constraint is tight in x"(R). More precisely,

J = | JENY =t nsg)s

where ¢ := |J| and j, < -+ < j,. For a given p € {1,...,q}, note
that since either the lower or upper nested constraint corresponding
to j, is tight in the solution x"(R), we have that ZiEN,,, x!(R) = Vip.
This implies that the vector (R 1<ig), is the optimal solution to the
subproblem QRAP-NC’»(V/r), i.e., to the problem

oo . 1%
QRAP-NC»(V/) : min Y >
xeRlp =2 g
ieNIP
s.t. Z x; =V,
iENP
LF< Y X <UY ke(l,...j,— 1}
iENK
(A.7)
L <x; <y, ie{l,---’jp}-

Note that in the optimal solution (x](R)),_ \ip 1O this problem, none
of the nested constraints (A.7) for k with Jpo1 < k < j, are tight.
As a consequence, when deriving the reformulated equivalent problem
QRAP/»(V/r), it follows from Lemmas 2 and 3 that we may replace the
single-variable bounds (7) for i with j,_; <i < j, by the original vari-
able bounds /; < x; < u;. Thus, we can reformulate QPRAP-NC/»(V/r)
to

o 12
QRAP/»(V//r) St

min
xR/

Z. 2 a;
ieNp
s.t. z x; =V,
ieN’p
L L
XTI < x < x0T,
i€{l,....jp1}s

l; i€{jpmi+1 ..}

J

IA

X; Suj,

Recall that y/ is the optimal Lagrange multiplier for this problem. As
a consequence, we can directly compute xf” (R)forie {j,_1+1,....J,}
using Eq. (3):

I if yr < a”f,
x!(R) = x?”(Vjp) = ai}(j" if al’: <y < ﬂf,

u; if ﬂii <yl
The result of the lemma follows since we have y/» = 4 for each
i € {jp—1»---»J,} by definition of j, and y'. O
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A.4. Proof of Lemma 7

Lemma 7. When applying ALG,,, to WC-1, first Q(n) breakpoints are
inserted in the breakpoint set D and subsequently Q(n) breakpoints are
removed from D throughout the course of the algorithm.

Proof. First, note that for this instance we have a; =i and ﬂtf =2n+1-i
fori € N and x! = 1 and A' = 2n. Moreover, its optimal solution is
given by X, =2n+% and x; =2n+ 1 —i for i € N'\{1}.

When we follow all steps of Algorithm 3 and the relevant proce-
dures, we observe the following:

+ In SoLveSusproBLEMS(2), we have L! + max(l,, min(x!, u,)) = 1 +
2 = 3 = L2 Hence, the condition of the if-statement in Line 1
applies and thus > = x! = 1. Analogously, we have U'! +
max(l,, min(4',u,)) = 2n+2n— 1 = 4n — 1 = U? and thus the
condition of the if-statement in Line 17 applies and we have
4% = 3! = 2n. It follows from Lines 33-38 that both o2 and §2
are added to the breakpoint sets .4 and B respectively. Moreover,
it follows from Lines 39-58 that no breakpoints are removed from
these sets.

Suppose that x/ = k! =1 and A/ = A' = 2n for some j > 2. Then
=Y 4 max(lj, min(e/ = up) = 3G - D+ j = 3j(+1) = L’ and
U/~ +max(l;, min(¥ =", u))) = 2(j—1)n+j—1—%j(j—1)+2n+1—j =
2jn+j— % j(j +1)=U/. Following the same reasoning as for the
case j = 2, it follows that both o’ ﬂ; are added to A and B

/ and
J
respectively and that no breakpoints are removed from these sets.

By applying the principle of induction, we may conclude that all
breakpoints o/ and g! for i € N "=l are added to the breakpoint sets
and that none of them have been removed from these sets by the start
of iteration j = n.

Since L" > %n(n —1) and U" < 2n% + n - %n(n + 1), the else-
statements of Lines 14-15 and 30-31 apply. Thus, the values "~ =
«! and A~! = A' are removed from the multiplier sets X and £
respectively (leaving them empty), the breakpoints «/ and g’ are added
to A and B respectively, and the procedures LowerSusproBLEM(n) and
UppERSUBPROBLEM(n) are applied since k" > «"~! and A" < A"~!. Since in
the optimal solution the variable %, is strictly in between its bounds
and all other variables equal their upper bound, we know that g/ <
K" < ﬂll for all i > 1. Thus, in the procedures LowerSusproBLEM(j), all
breakpoints except ﬁll have been considered as candidate multipliers
and have afterwards been removed from the corresponding breakpoint
set. Summarizing, we conclude that first £(n) breakpoints have been
inserted and subsequently ©Q(n) breakpoints have been deleted. []

A.5. Proof of Lemma 8

Lemma 8. For the instance WC-2, the Lagrange multipliers x/ and VV/ as
computed by ALGy,, are given for each j € N1 by

i i 3 1 i i 3 1

Jo=(—1y (2i-2)_2 Joee =1y (25 =2 2.
W= (2-3) -3, W= (2-3)+3
Proof. We prove the lemma by induction. First, it follows from Lines 3—-
10 of Algorithm 3 that k! =a =/, = L' =—land ' = ] =u; =U' =
0. Also, we have (=)' (2-1-2) -4 =—1and (=)' (2-1-2)+1 =0,
so the lemma holds for j = 1.

Second, suppose that the lemma holds for all j/ < j for some

j € N"™=!. We show that this implies that the lemma also holds for ;.
Here, we prove the lemma for the case that j is even (the proof for the
case that j is uneven is symmetrical). If j is even, then j — 1 is uneven

and thus 4! = — [2(; —- g] + 1= 2 + 4. This implies that

1 1
2 2

U/~! 4 max(l;, min(# ™" u;)) = —(j — 1) + | + max(—2n, min(=2; + 4,2n))

Bj+6<j+1=U’.
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Thus, the condition in the if-statement of Line 26 of Algorithm 4 is
satisfied and we have

A/:Uj—Uj_l:j+1—[—(j—1)+1]:2j—1:(—l)j(Zj—%)+

S

Furthermore, note that 4/~! < x/ since otherwise

L= Y x@)= Y x/(L)+max(l;, min(x/,u,)
i€NJ ieNI—!
< U+ max(ly, min(A Y u) = -3/ +6 < j = L/,

which is a contradiction. This implies that x{_l(Uf’l) < x{ (L/) for all
i < j—1 and thus that

V=3 xw)= Y AWz ¥ 70l =0,
ieNT iENT-1 ieNi-1

It follows that ¥/ = L/ —U/7! = j— [ - D+1] = 2j -2 =
(=1 (2 j - %) - % By the induction principle, we have thereby proven
the lemma for all j e N*!. O
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