
Computers & Operations Research 135 (2021) 105451

A
0

Contents lists available at ScienceDirect

Computers and Operations Research

journal homepage: www.elsevier.com/locate/cor

A fast algorithm for quadratic resource allocation problems with nested
constraints
Martijn H.H. Schoot Uiterkamp ∗, Johann L. Hurink, Marco E.T. Gerards
Faculty of Electrical Engineering, Mathematics and Computer Science, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands

A R T I C L E I N F O

Keywords:
Resource allocation
Nested constraints
Quadratic programming
Energy
Battery
Fast algorithm

A B S T R A C T

We study the separable convex quadratic resource allocation problem with lower and upper constraints on
nested sums of variables. This problem occurs in many applications, in particular battery scheduling within
decentralized energy management (DEM) for smart grids. We present an algorithm for this problem that runs
in 𝑂(𝑛 log 𝑛) time and, in contrast to existing algorithms for this problem, achieves this time complexity
using relatively simple and easy-to-implement subroutines and data structures. This makes our algorithm
very attractive for real-life adaptation and implementation. Numerical comparisons of our algorithm with
a subroutine for battery scheduling within an existing tool for DEM research indicates that our algorithm
significantly reduces the overall execution time of the DEM system, especially when the battery is expected
to be completely full or empty multiple times in the optimal schedule. Moreover, computational experiments
with synthetic data show that our algorithm outperforms the currently most efficient algorithm by more than
one order of magnitude. In particular, our algorithm is able to solves all considered instances with up to ten
million variables in less than four minutes on a personal computer.
1. Introduction

1.1. Resource allocation problems and energy management

The resource allocation problem is a classical and well-researched
problem in the optimization and operations research literature. The
objective of the resource allocation problem is to divide a fixed amount
of resource (e.g., time, money, energy) over a set of activities while
minimizing a given cost function (or maximizing a given utility func-
tion). In the most studied version of this problem, the cost functions
are quadratic, which leads to the following formulation of the so-called
quadratic resource allocation problem (QRAP):

QRAP: min
𝒙∈R𝑛

∑

𝑖∈

1
2
𝑥2𝑖
𝑎𝑖

s.t.
∑

𝑖∈
𝑥𝑖 = 𝑅, (1)

𝑙𝑖 ≤ 𝑥𝑖 ≤ 𝑢𝑖, 𝑖 ∈  ,

where 𝒂 ∈ R𝑛
>0, 𝑅 ∈ R, 𝒍, 𝒖 ∈ R𝑛, and  ∶= {1,… , 𝑛} (throughout

this article, we use bold font for vectors). The problem QRAP has been
studied extensively over the last decades due to its wide applicability

∗ Correspondence to: Department of Mathematics and Computer Science, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The
Netherlands.

E-mail addresses: m.h.h.schootuiterkamp@utwente.nl (M.H.H. Schoot Uiterkamp), j.l.hurink@utwente.nl (J.L. Hurink), m.e.t.gerards@utwente.nl
(M.E.T. Gerards).

in, among others, engineering, finance, and machine learning (see also
the surveys in Patriksson (2008) and Patriksson and Strömberg (2015)).
As a consequence, many efficient algorithms have been developed for
this problem and its generalizations.

In this article, we study an extension of QRAP, namely the QRAP
with lower and upper constraints on nested sums of variables (QRAP-
NC). This problem can be formulated as follows:

QRAP-NC: min
𝒙∈R𝑛

∑

𝑖∈

1
2
𝑥2𝑖
𝑎𝑖

s.t.
∑

𝑖∈
𝑥𝑖 = 𝑅,

𝐿𝑗 ≤
∑

𝑖∈ 𝑗

𝑥𝑖 ≤ 𝑈 𝑗 , 𝑗 ∈  𝑛−1,

𝑙𝑖 ≤ 𝑥𝑖 ≤ 𝑢𝑖, 𝑖 ∈  , (2)

where  𝑗 ∶= {1,… , 𝑗} for 𝑗 ∈ ∖{𝑛}, 𝑳,𝑼 ∈ R𝑛−1, and we define 𝐿𝑛 =
𝑈𝑛 = 𝑅 for convenience. Note that if 𝐿𝑗 = 𝑈 𝑗 for some 𝑗 ∈  𝑛−1, we
may split up the problem QRAP-NC into two smaller instances of QRAP-
NC that involve the variables 𝑥1,… , 𝑥𝑗 and 𝑥𝑗+1,… , 𝑥𝑛 respectively.
Thus, we assume without loss of generality that 𝐿𝑗 < 𝑈 𝑗 for all
vailable online 30 June 2021
305-0548/© 2021 The Author(s). Published by Elsevier Ltd. This is an open access a

https://doi.org/10.1016/j.cor.2021.105451
Received 15 September 2020; Received in revised form 25 June 2021; Accepted 26
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

June 2021

http://www.elsevier.com/locate/cor
http://www.elsevier.com/locate/cor
mailto:m.h.h.schootuiterkamp@utwente.nl
mailto:j.l.hurink@utwente.nl
mailto:m.e.t.gerards@utwente.nl
https://doi.org/10.1016/j.cor.2021.105451
https://doi.org/10.1016/j.cor.2021.105451
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2021.105451&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Computers and Operations Research 135 (2021) 105451M.H.H. Schoot Uiterkamp et al.

m
l
V
i
d
c
s
o
t
i
b
s
t
d
(

w
c
t
o
t
p
a
t
T
m
a
t
w
f

B

N
t

p
m
d
a
n
b

c
o
a
o
(
t
a
a
Q
i
t
(
t
d
s
f
a

t
A
d
p

f
a

𝑗 ∈  𝑛−1. Moreover, we may assume that 𝐿1 = 𝑙1, 𝑈1 = 𝑢1, and
𝐿𝑗 ≥ 𝐿𝑗−1 + 𝑙𝑗 and 𝑈 𝑗 ≤ 𝑈 𝑗−1 + 𝑢𝑗 for 𝑗 ∈  𝑛−1∖{1}.

The problem QRAP-NC has numerous applications in, among others,
achine learning, telecommunications, and speed optimization prob-

ems (see also the overviews in Akhil and Sundaresan (2018) and
idal et al. (2019)). Our particular motivation for studying QRAP-NC

s its application in decentralized energy management (DEM) for smart
istribution grids. In DEM, the goal is to optimize the joint energy
onsumption of multiple devices within, e.g., a neighborhood. In a DEM
ystem, devices optimize their own consumption locally but this local
ptimization is coordinated to obtain certain global objectives (hence
he term ‘‘decentralized’’). In the context of DEM, we are interested
n optimization of storage devices such as electrical batters and heat
uffers. Energy storage devices plays an important role in DEM systems
ince they are quite flexible in their energy usage and are thus suitable
o compensate for peak consumption or production of energy in the
istribution grid (see, e.g., Roberts and Sandberg (2011), Lund et al.
2016) and Zame et al. (2018)).

One important example of a device-level optimization problem
ithin DEM is the scheduling of a battery within a neighborhood. We

onsider the situation where the charging and discharging of the bat-
ery has to be scheduled over a set  of equidistant time intervals, each
f length 𝛥𝑡. Given the power profile 𝒑 ∶= (𝑝𝑖)𝑖∈ of the neighborhood,
he goal is to determine for each time interval 𝑖 ∈  the charging
ower 𝑥𝑖 of the battery during this interval so that the combined battery
nd neighborhood profile is flattened as much as possible. Aiming for
his goal reduces the stress put on the grid and the risk of blackouts.
he (physical) restrictions of the battery are given by a minimum and
aximum charging rate 𝑋min and 𝑋max and a capacity 𝐷. Given the

mount of energy present in the battery (the state-of-charge (SoC)) at
he start and end of the scheduling horizon, denoted by 𝑆start and 𝑆end,
e can formulate the resulting device-level optimization problem as

ollows (see also van der Klauw et al. (2017)):

ATTERY: min
𝒙∈R𝑛

∑

𝑖∈
(𝑝𝑖 + 𝑥𝑖)2

s.t. 0 ≤ 𝑆start + 𝛥𝑡
∑

𝑖∈ 𝑗

𝑥𝑖 ≤ 𝐷, 𝑗 ∈  𝑛−1,

𝑆start + 𝛥𝑡
∑

𝑖∈
𝑥𝑖 = 𝑆end,

𝑋min ≤ 𝑥𝑖 ≤ 𝑋max, 𝑖 ∈  .

ote that this is an instance of QRAP-NC by applying the variable
ransform 𝒚 ∶= 𝒑 + 𝒙.

Another important example is the scheduling of a combined heat
ump and buffer system. Here, a production schedule for the heat pump
ust be determined while for each time interval a prescribed heat
emand is satisfied and the heat production profile is flattened as much
s possible. Considering the same setting as for the scheduling of a
eighborhood as described in the previous paragraph, this problem can
e modeled as an instance of BATTERY where 𝒚 ∶= 𝒑+𝒙 is interpreted

as the vector of heat production and 𝒑 is the vector of heat demands.
An important feature within the DEM paradigm is that device-level

problems have to be solved locally. This means that the correspond-
ing device-level optimization algorithms are executed on embedded
systems with limited computational power (see, e.g., Beaudin and
Zareipour (2015)) that are located within, e.g., households. Since these
algorithms are called multiple times with the DEM system as a subrou-
tine, it is important that these algorithms are very efficient. Therefore,
efficient and tailored device-level optimization algorithms are crucial
ingredients for the real-life implementation of DEM systems. In partic-
ular, for the optimization of storage devices, this means that fast and
tailored algorithms to solve QRAP-NC are crucial. For more background
2

on DEM, we refer to Siano (2014) and Esther and Kumar (2016).
1.2. Background and contribution

An overview of several existing efficient algorithms for QRAP-NC
and some of its generalizations is given in Table 1. In particular,
there is a rich literature on solution approaches for QRAP-NC with
only upper nested constraints on sums of variables, i.e., only nested
constraints of the form ∑

𝑖∈ 𝑗 𝑥𝑖 ≤ 𝑈 𝑗 , 𝑗 ∈  𝑛−1 are given. This
ase has been studied mainly in the context of convex optimization
ver submodular constraints (see, e.g., Hochbaum (1994), Hochbaum
nd Hong (1995) and Vidal et al. (2016)). However, the literature
n the general case of QRAP-NC is limited. van der Klauw et al.
2017) propose an infeasibility-guided divide-and-conquer algorithm,
o which we shall refer in this article as ALGinf. This algorithm solves
relaxation of the problem where the nested constraints are ignored

nd, subsequently, splits up the problem into two smaller instances of
RAP-NC at the variable for which the lower or upper nested constraint

s violated most in the solution to the relaxation. The worst-case
ime complexity of this algorithm is 𝑂(𝑛2). Furthermore, Vidal et al.
2019) propose a decomposition-based algorithm, hereafter referred
o as ALGdec, that solves QRAP-NC in 𝑂(𝑛 log 𝑛) time. This algorithm
ecomposes QRAP-NC into a hierarchy of QRAP subproblems whose
ingle-variable bounds are optimal solutions to QRAP subproblems
urther down in the hierarchy. Currently, this is the most efficient
lgorithm for QRAP-NC.

As mentioned before, we are interested in algorithms for QRAP-NC
hat are fast in practice. Although the decomposition-based algorithm
LGdec has a good worst-case time complexity, we observe several
isadvantages of this approach that may make it less favorable in
ractice than its worst-case time complexity suggests:

1. Each level of recursion within ALGdec solves a series of instances
of QRAP whose parameters are determined by optimal solutions
to multiple instances of QRAP on earlier levels. Since each
instance is solved from scratch, much time is spent on initializing
the subproblems.

2. ALGdec achieves for each level of recursion an 𝑂(𝑛) time com-
plexity by solving the QRAP subproblems using an 𝑂(𝑛) time al-
gorithm such as the ones in Kiwiel (2008). These 𝑂(𝑛) time algo-
rithms repeatedly call linear-time algorithms such as Blum et al.
(1973) to find the median of a set. However, these median-find
algorithms are relatively slow in practice due to a big constant
factor in their complexity (Blum et al., 1973). Moreover, they are
significantly more difficult to implement than simple sorting or
sampling-based strategies (Kiwiel, 2005; Alexandrescu, 2017).

To alleviate these issues, we propose in this article a new algorithm
or QRAP-NC, called ALGseq, which has the same time complexity
s ALGdec, namely 𝑂(𝑛 log 𝑛), but in contrast requires only relatively

simple and fast subroutines to attain this complexity. As a conse-
quence, this algorithm is both faster in practice and easier to implement
than ALGdec. These are generally more important criteria for the ac-
tual adaptation of a given algorithm than the polynomial worst-case
time complexity (Müller-Hannemann and Schirra, 2010). Our algorithm
builds upon the monotonicity results for QRAP-NC derived in Vidal
et al. (2019) and solves a sequence of QRAP subproblems that have a
sequential nested structure rather than the divide-and-conquer struc-
ture of both ALGdec and ALGinf. More precisely, for each 𝑗 ∈  ,
the 𝑗th subproblem involves only the first 𝑗 variables 𝑥1,… , 𝑥𝑗 . As a
consequence, our approach can solve its first 𝑗 subproblems without
any knowledge on the parameters involving indices higher than 𝑗,
whereas both ALGinf and ALGdec require all problem parameters to
be known a priori. This makes our algorithm particularly useful in
situations where problem parameters arrive over time. This is, e.g., the
case when each variable denotes a decision for a specific time slot and
all parameters related to this time slot become available only during
or at the start of this time slot. Moreover, due to the nested structure,

each input and bookkeeping parameter is accessed within a relatively

Computers and Operations Research 135 (2021) 105451M.H.H. Schoot Uiterkamp et al.

i
u
S
g
s
m
N
f
t
f
t
s
W
a
f
v
2
W

i
u
s
i
a
e
W
r
t
O
o
p
e

Table 1
Overview of several algorithms for QRAP-NC. Technically, the complexity of the algorithms of Vidal et al. (2016, 2019) is 𝑂(𝑛 log𝑚) where 𝑚
is the number of nested constraints. However, since 𝑚 = 𝑛 − 1 in QRAP-NC, this complexity resolves to 𝑂(𝑛 log 𝑛).

Article Type Complexity for QRAP-NC
with only upper nested
constraints

Complexity for
general QRAP-NC

Hochbaum and Hong (1995) Iterative multiplier search 𝑂(𝑛 log 𝑛) n.a.
Vidal et al. (2016) Decomposition-based 𝑂(𝑛 log 𝑛) n.a.
van der Klauw et al. (2017) (ALGinf) Relaxation-based 𝑂(𝑛2) 𝑂(𝑛2)
Vidal et al. (2019) (ALGdec) Decomposition-based 𝑂(𝑛 log 𝑛) 𝑂(𝑛 log 𝑛)
This article (ALGseq) Sequential nested decomposition-based 𝑂(𝑛 log 𝑛) 𝑂(𝑛 log 𝑛)
l
small time period instead of frequently throughout the entire course
of the algorithm. This is beneficial for caching since this increases the
number of times a value can be accessed quickly from a cache instead
of relatively slowly from the main memory.

We attain the 𝑂(𝑛 log 𝑛) complexity using an efficient implementa-
tion of double-ended priority queues (Knuth, 1998; Brass, 2008) for
several bookkeeping parameters. This data type supports insertion of
arbitrary elements and finding and deletion of minimum and maximum
elements in at most 𝑂(log 𝑛) time. Our approach requires 𝑂(𝑛) of such
operations, which leads to an overall time complexity of 𝑂(𝑛 log 𝑛).
Double-ended priority queues can be implemented using specialized
data structures such as min–max heaps (Atkinson et al., 1986) or by a
simple coupling of a standard min-heap and max-heap (see also Brass
(2008)). The latter heaps are one of the most basic data structures
and many efficient implementation exist for different programming
languages (Brodal, 2013). Thus, we can achieve the time complexity
of 𝑂(𝑛 log 𝑛) using relatively simple data structures, as opposed to
ALGdec, where a more involved implementation of a linear-time median
algorithm is required.

Our algorithm for QRAP-NC also leads to efficient and fast algo-
rithms for instances of QRAP-NC where we replace each term 1

2
𝑥2𝑖
𝑎𝑖

by
𝑎𝑖𝑓 (

𝑥𝑖
𝑎𝑖
) for each 𝑖 ∈  with a given convex function 𝑓 . Such a structure

s present in many applications considered in the literature, in partic-
lar in most of the applications surveyed or evaluated in Akhil and
undaresan (2018) and Vidal et al. (2019). We obtain such efficient al-
orithms by a reduction result in Schoot Uiterkamp et al. (2021), which
tates that any optimal solution to an instance of QRAP-NC is also opti-
al for this instance when we take as objective function ∑

𝑖∈ 𝑎𝑖𝑓 (
𝑥𝑖
𝑎𝑖
).

ote that, alternatively, a slightly weaker reduction result follows
rom combining a result from Nagano and Aihara (2012), namely that
he reduction result holds for differentiable convex functions when the
easible set is given by submodular constraints, with the observation
hat QRAP-NC is a special case of separable convex optimization over
ubmodular constraints (see, e.g., Schoot Uiterkamp et al. (2021) and
u et al. (2021)). As a consequence of these reduction results, our

lgorithm solves also such problems in 𝑂(𝑛 log 𝑛) time. This leads to
aster algorithms for a wide range of practical problems, including the
essel speed optimization problem (Norstad et al., 2011; Hvattum et al.,
013) and processor scheduling with agreeable deadlines (Huang and
ang, 2009; Gerards, 2014).
We evaluate the performance of our algorithm ALGseq and compare

t to the state-of-the-art algorithms ALGinf and ALGdec. For this eval-
ation, we use both synthetic instances and instances of the battery
cheduling problem BATTERY using real power consumption data as
nput. With regard to the instances of BATTERY, we compare our
pproach to a tailored implementation of ALGinf within DEMKit, an
xisting simulation tool for DEM research (Hoogsteen et al., 2019).
ithin DEMKit, the battery scheduling problem is used as a sub-

outine within a distributed optimization framework that coordinates
he energy consumption of multiple devices (Gerards et al., 2015).
ur results indicate that the number of tight nested constraints in an
ptimal solution greatly influences which algorithm is faster for a given
roblem instance. In particular, ALGseq is on average faster than ALGinf,
xcept when the percentage of tight nested constraints is relatively
3

ow (less than 2%). Moreover, the execution time of ALGseq is more
stable than that of ALGinf, which makes our algorithm more suitable
for use in DEM systems that employ a high level of parallelism (see,
e.g., Hoogsteen et al. (2018)). With regard to the synthetic instances,
we study the scalability of ALGseq, ALGinf, and ALGdec. Our results
indicate that both our algorithm ALGseq and ALGinf are at least one
order of magnitude faster than ALGdec and that ALGseq is on average
more than twice as fast as ALGinf. In particular, ALGseq solves instances
with up to ten million variables in less than four minutes.

Summarizing, the contribution of this article is as follows:

• We present a fast and efficient algorithm for QRAP-NC that
matches the best-known time complexity of 𝑂(𝑛 log 𝑛) and can
attain this complexity using relatively simple and fast subroutines;

• We show that our algorithm is suitable for use in DEM systems
due to its fast and stable execution time;

• We show that our algorithm outperforms the currently most
efficient algorithm by at least one order of magnitude on the
studied problem instances.

The outline of the remainder of this article is as follows. In Section 2,
we present a simple procedure to solve QRAP, which forms an im-
portant ingredient for our eventual approach for solving QRAP-NC. In
Section 3, we present an initial sequential algorithm for solving QRAP-
NC with an 𝑂(𝑛2) worst-case time complexity. Based on this algorithm,
we derive in Section 4 our 𝑂(𝑛 log 𝑛) time algorithm ALGseq for this
problem. In Section 5, we evaluate the performance of this algorithm
and compare it to the state-of-the-art algorithms. Finally, we provide
our conclusions in Section 6.

2. A breakpoint search algorithm for QRAP

In this section, we discuss a simple approach to solve QRAP that be-
longs to the class of so-called breakpoint search methods (Kiwiel, 2008;
Patriksson and Strömberg, 2015) that structurally search for the opti-
mal Lagrange multiplier corresponding to the resource constraint (1).
This approach forms an important ingredient of our 𝑂(𝑛 log 𝑛) time
algorithm for QRAP-NC in Section 4.

We start by considering the Lagrangian relaxation of QRAP:

QRAP[𝛿] ∶ min
𝒙∈R𝑛

∑

𝑖∈

(

1
2
𝑥2𝑖
𝑎𝑖

− 𝛿𝑥𝑖

)

+ 𝛿𝑅

s.t. 𝑙𝑖 ≤ 𝑥𝑖 ≤ 𝑢𝑖, 𝑖 ∈  ,

where 𝛿 ∈ R is the Lagrange multiplier corresponding to the resource
constraint (1). We denote the optimal solution to this problem by
𝒙[𝛿] ∶= (𝑥𝑖[𝛿])𝑖∈ . Since the objective function of this problem is
separable, the optimal solution to QRAP[𝛿] is given by

𝑥𝑖[𝛿] =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑙𝑖 if 𝛿 < 𝑙𝑖
𝑎𝑖
,

𝑎𝑖𝛿 if 𝑙𝑖
𝑎𝑖

≤ 𝛿 < 𝑢𝑖
𝑎𝑖
,

𝑢𝑖 if 𝑢𝑖
𝑎𝑖

≤ 𝛿.

(3)

Observe that 𝑥𝑖[𝛿] is a continuous piecewise linear non-decreasing
function of 𝛿. More precisely, 𝑥 [𝛿] is constant for 𝛿 ≤ 𝑙𝑖 , linear with
𝑖 𝑎𝑖

Computers and Operations Research 135 (2021) 105451M.H.H. Schoot Uiterkamp et al.

𝛿

T
U
n

𝛽
t

i

𝛿

i

𝑅

I

𝛿

f

p
a
t
e
d
e
o

1
1
1
1
2
2
2
2

Fig. 1. The function 𝑥𝑖[𝛿] for a given 𝑖 ∈  . The slope of the line segment for
∈ [𝑙𝑖

𝑎𝑖
, 𝑢𝑖
𝑎𝑖
] is 𝑎𝑖.

able 2
pdating the bookkeeping sums 𝑃 (𝛿) and 𝑄(𝛿) when searching the breakpoints in
on-decreasing order.
Type of 𝛿 Update 𝑃 (𝛿) Update 𝑄(𝛿)

𝛿 ≡ 𝛼𝑖 𝑃 (𝛿) − 𝑙𝑖 𝑄(𝛿) + 𝑎𝑖
𝛿 ≡ 𝛽𝑖 𝑃 (𝛿) + 𝑢𝑖 𝑄(𝛿) − 𝑎𝑖

slope 𝑎𝑖 for 𝛿 ∈ [𝑙𝑖𝑎𝑖
, 𝑢𝑖𝑎𝑖

], and again constant for 𝛿 ≥ 𝑢𝑖
𝑎𝑖

(see also Fig. 1).
For each 𝑖 ∈  , we call the points where 𝑥𝑖[𝛿] has ‘‘kinks’’, i.e., where
𝑥𝑖[𝛿] is non-differentiable, the breakpoints of 𝑥𝑖[𝛿]. We denote these
breakpoints for 𝑖 ∈  by 𝛼𝑖 and 𝛽𝑖 respectively, i.e., 𝛼𝑖 ∶= 𝑙𝑖

𝑎𝑖
and

𝑖 ∶= 𝑢𝑖
𝑎𝑖

, where we refer to 𝛼𝑖 as the lower breakpoint of 𝑥𝑖[𝛿] and
o 𝛽𝑖 as the upper breakpoint of 𝑥𝑖[𝛿]. We denote the multiset of lower

breakpoints by  ∶= {𝛼𝑖 | 𝑖 ∈  } and the multiset of upper breakpoints
by  ∶= {𝛽𝑖 | 𝑖 ∈  }. The reason for defining  and  as multisets is
so that we can readily associate each breakpoint value in the set with
one index in  .

Note that also the sum 𝑧[𝛿] ∶=
∑

𝑖∈ 𝑥𝑖[𝛿] is continuous, piecewise
linear, and non-decreasing. Moreover, it has 2𝑛 breakpoints, namely
those of all terms 𝑥𝑖[𝛿]. Thus, the multiset of breakpoints of 𝑧[𝛿] is
given by  ∪ . Feasibility of the original problem QRAP implies that
there exists a value 𝛿 for the Lagrange multiplier 𝛿 such that 𝑧[𝛿] = 𝑅,
meaning that 𝑥[𝛿] is optimal not only for QRAP(𝛿) but also for the
original problem QRAP. Note that this multiplier is not necessarily
unique: in general, there may exist an interval 𝐼 ⊂ R such that 𝛿 ∈ 𝐼
mplies 𝑧[𝛿] = 𝑅.

Our approach to find the value 𝛿 consists of two steps. First, we aim
to find two consecutive breakpoints 𝛿1 and 𝛿2 such that 𝛿1 ≤ 𝛿 < 𝛿2.
Since 𝑧 is non-decreasing, this is equivalent to finding two consecutive
breakpoints 𝛿1 and 𝛿2 such that 𝑧[𝛿1] ≤ 𝑅 < 𝑧[𝛿2]. For this, we may
consider all breakpoints in ∪ in non-decreasing order until we have
found the first, i.e., smallest, breakpoint 𝛿 such that 𝛿 < 𝛿. In detail, for
each candidate breakpoint 𝛿, we compute 𝑧[𝛿] and if 𝑧[𝛿] > 𝑅, we set
𝛿2 ∶= 𝛿 and 𝛿1 as the previously considered breakpoint. To compute
𝑧[𝛿] efficiently, we keep track of the sums

𝑃 (𝛿) ∶=
∑

𝑖∶ 𝛿< 𝑙𝑖
𝑎𝑖

𝑙𝑖 +
∑

𝑖∶ 𝛿≥ 𝑢𝑖
𝑎𝑖

𝑢𝑖, 𝑄(𝛿) ∶=
∑

𝑖∶ 𝑙𝑖
𝑎𝑖
≤𝛿< 𝑢𝑖

𝑎𝑖

𝑎𝑖

and update these values each time a new breakpoint has been consid-
ered (see Table 2).

In a second step, given the consecutive breakpoints 𝛿1 and 𝛿2 with
̄ ∈ [𝛿1, 𝛿2), we determine 𝛿 and 𝑥[𝛿]. If 𝑧(𝛿1) = 𝑅, then 𝛿 = 𝛿1 and we
are done. Otherwise, we have for each 𝑖 ∈  :

• 𝑥𝑖[𝛿] = 𝑙𝑖 if and only if 𝑥𝑖(𝛿2) = 𝑙𝑖, and
• 𝑥𝑖[𝛿] = 𝑢𝑖 if and only if 𝑥𝑖(𝛿1) = 𝑢𝑖.

To see the first equivalence, first suppose that 𝑥𝑖[𝛿] = 𝑙𝑖. Since 𝛿 is
̄

4

no breakpoint, we have that 𝛿 < 𝛼𝑖. As a consequence, since there is
no breakpoint between 𝛿 and 𝛿2, we have that 𝛿2 ≤ 𝛼𝑖. It follows that
𝑥𝑖[𝛿2] = 𝑙𝑖. Second, suppose that 𝑥𝑖[𝛿2] = 𝑙𝑖. Since 𝑥[𝛿] is non-decreasing,
t follows that 𝑙𝑖 ≤ 𝑥𝑖[𝛿] ≤ 𝑥𝑖[𝛿2] = 𝑙𝑖 and thus that 𝑥𝑖[𝛿] = 𝑙𝑖. The second

equivalence holds analogously. Thus, given 𝛿1 and 𝛿2, we know whether
a given variable 𝑥𝑖[𝛿] equals its lower bound 𝑙𝑖, its upper bound 𝑢𝑖, or is
strictly in between these bounds. To find 𝑥𝑖[𝛿] for those variables that
are strictly in between their bounds, note that, by definition of 𝑥[𝛿],

= 𝑧[𝛿] =
∑

𝑖∶ 𝑥𝑖[𝛿]=𝑙𝑖

𝑙𝑖 +
∑

𝑖∶ 𝑙𝑖<𝑥𝑖[𝛿]<𝑢𝑖

𝑎𝑖𝛿 +
∑

𝑖∶ 𝑥𝑖[𝛿]=𝑢𝑖

𝑢𝑖.

t follows that

̄ =
𝑅 −

∑

𝑖∶ 𝑥𝑖[𝛿]=𝑙𝑖 𝑙𝑖 −
∑

𝑖∶ 𝑥𝑖[𝛿]=𝑢𝑖 𝑢𝑖
∑

𝑖∶ 𝑙𝑖<𝑥𝑖[𝛿]<𝑢𝑖 𝑎𝑖
,

rom which we can directly compute 𝑥𝑖[𝛿] by 𝑥𝑖[𝛿] = 𝑎𝑖𝛿.
Algorithm 1 summarizes the sketched approach. To efficiently com-

ute the minimum breakpoint 𝛿𝑘, we can implement the multisets 
nd  as sorted lists. As a consequence, each iteration of the algorithm
akes 𝑂(1) time. Since the maximum number of iterations is 2𝑛 (one for
ach breakpoint), the overall complexity of this approach is 𝑂(𝑛 log 𝑛)
ue to the initial sorting of the breakpoints. If this sorting is given (for
xample if the breakpoints have already been sorted in a previous run
f the algorithm), the time complexity of the algorithm reduces to 𝑂(𝑛).

Algorithm 1 An 𝑂(𝑛 log 𝑛) time algorithm for QRAP.
1: Input: Parameters 𝒂 ∈ R𝑛

>0, 𝑅 ∈ R, and 𝒍, 𝒖 ∈ R𝑛

2: Output: Optimal solution 𝒙̄ to QRAP
3: Compute the breakpoint multisets  and 
4: Initialize 𝑃 ∶=

∑

𝑖∈ 𝑙𝑖; 𝑄 ∶= 0
5: repeat
6: Determine smallest breakpoint 𝛿𝑖 ∶= min( ∪ )
7: if 𝑃 +𝑄𝛿𝑖 = 𝑅 then
8: 𝛿 = 𝛿𝑖; compute 𝑥[𝛿] using Equation (3)
9: return

10: else if 𝑃 +𝑄𝛿𝑖 > 𝑅 then {𝛿 < 𝛿𝑖}
11: 𝛿 = 𝑅−𝑃

𝑄 ; compute 𝑥[𝛿] using Equation (3)
12: return
13: else
14: if 𝛿𝑖 is lower breakpoint (𝛿𝑖 = 𝛼𝑖) then
15: 𝑃 ∶= 𝑃 − 𝑙𝑖; 𝑄 ∶= 𝑄 + 𝑎𝑖
6:  ∶= ∖{𝛼𝑖}
7: else
8: 𝑃 ∶= 𝑃 + 𝑢𝑖; 𝑄 ∶= 𝑄 − 𝑎𝑖
9:  ∶= ∖{𝛽𝑖}
0: end if
1: end if
2: until multiplier 𝛿 has been found
3: return Optimal solution 𝒙̄ ∶= 𝒙[𝛿]

We conclude this subsection with two observations that are crucial
for the efficiency of our algorithm for QRAP-NC presented in the
following section:

1. Instead of searching the breakpoints in non-decreasing order, we
may also search them in non-increasing order and continue the
search until we find the first, i.e., largest breakpoint 𝛿1 such that
𝛿1 < 𝛿.

2. Solving two instances of QRAP that differ only in the value
of 𝑅 in the resource constraint (1) can be done simultaneously
in one run of Algorithm 1. This is because the multisets of
the breakpoints for these two instances of QRAP are the same.
Thus, we can modify Algorithm 1 such that it continues the
breakpoint search after the optimal multiplier for the smallest
of the given values of 𝑅 has been found. Note that, essentially,

the optimal multiplier for a given value 𝑅 serves as the starting

Computers and Operations Research 135 (2021) 105451M.H.H. Schoot Uiterkamp et al.

(
a
g
w
a
s

i
t
s
p

candidate for the optimal multiplier for instances with a higher
value of 𝑅. This is in fact one of the two crucial observations for
our approach for solving QRAP-NC, which we discuss further in
Section 4.2.

3. An initial sequential algorithm for QRAP-NC

In this section, we present our initial sequential algorithm for the
problem QRAP-NC. This algorithm solves the problem as a sequence
of 2𝑛 − 1 instances of QRAP whose single-variable bounds (2) are
optimal solutions to previous QRAP subproblems. For this, we consider
a sequence of restricted subproblems where we take into account only
a subset of the variables. More precisely, we define for each 𝑗 ∈  and
𝐶 ∈ R the following subproblem:

QRAP-NC𝑗 (𝐶) ∶ min
𝒙∈R𝑗

∑

𝑖∈ 𝑗

1
2
𝑥2𝑖
𝑎𝑖

s.t.
∑

𝑖∈ 𝑗

𝑥𝑖 = 𝐶, (4)

𝐿𝑘 ≤
∑

𝑖∈ 𝑘

𝑥𝑖 ≤ 𝑈𝑘, 𝑘 ∈  𝑗−1, (5)

𝑙𝑖 ≤ 𝑥𝑖 ≤ 𝑢𝑖, 𝑖 ∈  𝑗 .

Throughout this article, we denote the optimal solution to this subprob-
lem by 𝒙𝑗 (𝐶) ∶= (𝑥𝑗𝑖 (𝐶))𝑖∈ 𝑗 , where we use the brackets (⋅) instead
of [⋅] to emphasize the distinction of this solution from an optimal
solution 𝒙[𝛿] of the Lagrangian relaxation QRAP(𝛿) of QRAP. Note
that this optimal solution is unique since the objective function of the
corresponding problem is strictly convex and all constraints are linear.
Moreover, observe that the 𝑛th subproblem QRAP-NC𝑛(𝑅) is equal to
the original problem QRAP-NC.

The key ingredient to our algorithm is that we can replace the
nested constraints (5) by specific single-variable constraints without
changing the optimal solution. By doing this, we transform an instance
of QRAP-NC into an equivalent instance of QRAP. More precisely,
we show that each subproblem QRAP-NC𝑗 (𝐶) yields the same optimal
solution as the following instance of QRAP:

QRAP𝑗 (𝐶) ∶ min
𝒚∈R𝑗

∑

𝑖∈ 𝑗

1
2
𝑦2𝑖
𝑎𝑖

s.t.
∑

𝑖∈ 𝑗

𝑦𝑖 = 𝐶, (6)

𝑥𝑗−1𝑖 (𝐿𝑗−1) ≤ 𝑦𝑖 ≤ 𝑥𝑗−1𝑖 (𝑈 𝑗−1), 𝑖 ∈  𝑗−1, (7)

𝑙𝑗 ≤ 𝑦𝑗 ≤ 𝑢𝑗 , (8)

where the bounds 𝒙𝑗−1(𝐿𝑗−1) and 𝒙𝑗−1(𝑈 𝑗−1) in (7) are the optimal
solutions of the problems QRAP-NC𝑗−1(𝐿𝑗−1) and QRAP-NC𝑗−1(𝑈 𝑗−1)
respectively. Note that the single-variable bounds for 𝑥𝑗 in (8) are the
same as those of the original subproblem QRAP-NC𝑗 (𝐶).

The validity of this transformation is proven by Lemmas 1–3. First,
Lemma 1 shows that the optimal solution 𝒙𝑗 (𝐶) to the subproblem
QRAP-NC𝑗 (𝐶) is non-decreasing in 𝐶. Subsequently, Lemma 2 uses
this property to show that when adding the alternative single-variable
bounds (7) to the problem formulation of QRAP-NC𝑗 (𝐶), the optimal
solution 𝒙𝑗 (𝐶) to QRAP-NC𝑗 (𝐶) is not cut off. Finally, Lemma 3 shows
that the alternative single-variable bounds (7) are stronger than the
nested constraints (5).

Lemma 1. If 𝐿𝑗 ≤ 𝐴 ≤ 𝐵 ≤ 𝑈 𝑗 , we have 𝒙𝑗 (𝐴) ≤ 𝒙𝑗 (𝐵) for a given
𝑗 ∈  .

Proof. This proof is based on the proof of Theorem 2 in Vidal et al.
(2019) and given in Appendix A.1. □

Lemma 2. For a given 𝑗 ∈  𝑛−1 and 𝐶 ∈ [𝐿𝑗 , 𝑈 𝑗], we have that
𝑗 𝑗 𝑗+1 𝑗 𝑗
5

𝑥𝑖 (𝐿) ≤ 𝑥𝑖 (𝐶) ≤ 𝑥𝑖 (𝑈). d
Proof. Let 𝒙′ ∶= (𝑥𝑗+11 (𝐶),… , 𝑥𝑗+1𝑗 (𝐶)) be the vector of the first 𝑗
components of the optimal solution to the problem QRAP-NC𝑗+1(𝐶).
Since 𝒙′ is feasible for all nested constraints (5) for 𝑘 ∈  𝑗 , this vector
is also the optimal solution to QRAP-NC𝑗 (𝐴) where 𝐴 ∶=

∑

𝑖∈ 𝑗 𝑥′𝑖 ,
i.e., we have 𝒙′ = 𝒙𝑗 (𝐴). Since 𝐴 ∈ [𝐿𝑗 , 𝑈 𝑗], Lemma 1 implies that
𝑥𝑗𝑖 (𝐿

𝑗) ≤ 𝑥𝑗𝑖 (𝐴) ≤ 𝑥𝑗𝑖 (𝑈
𝑗) for all 𝑖 ∈  𝑗 . It follows that 𝑥𝑗𝑖 (𝐿

𝑗) ≤
𝑥𝑗+1𝑖 (𝐶) ≤ 𝑥𝑗𝑖 (𝑈

𝑗) for all 𝑖 ∈  𝑗 . □

Lemma 3. If for a given 𝑗 ∈  𝑛−1 and vector 𝒚 ∈ R𝑗 we have 𝒙𝑗 (𝐿𝑗) ≤
𝒚 ≤ 𝒙𝑗 (𝑈 𝑗), then 𝐿𝑘 ≤

∑

𝑖∈ 𝑘 𝑦𝑖 ≤ 𝑈𝑘 for all 𝑘 ∈  𝑗 .

Proof. The sum of the inequalities 𝑥𝑗𝑖 (𝐿
𝑗) ≤ 𝑦𝑖 ≤ 𝑥𝑗𝑖 (𝑈

𝑗) over all 𝑖 ∈  𝑘

yields
∑

𝑖∈ 𝑘

𝑥𝑗𝑖 (𝐿
𝑗) ≤

∑

𝑖∈ 𝑘

𝑦𝑖 ≤
∑

𝑖∈ 𝑘

𝑥𝑗𝑖 (𝑈
𝑗).

Since 𝒙𝑗 (𝐿𝑗) and 𝒙𝑗 (𝑈 𝑗) are feasible for QRAP-NC𝑗 (𝐿𝑗) and QRAP-
NC𝑗 (𝑈 𝑗) respectively and 𝑘 ≤ 𝑗, we have 𝐿𝑘 ≤

∑

𝑖∈ 𝑘 𝑥𝑗𝑖 (𝐿
𝑗) and

∑

𝑖∈ 𝑘 𝑥𝑗𝑖 (𝑈
𝑗) ≤ 𝑈𝑘 and the result of the lemma follows. □

Lemma 2 implies that, given optimal solutions 𝒙𝑗−1(𝐿𝑗−1) and
𝒙𝑗−1(𝑈 𝑗−1), we can replace the nested constraints (5) in QRAP-NC𝑗 (𝐶)
by the single-variable bounds (7) without cutting off the optimal
solution to QRAP-NC𝑗 (𝐶). Moreover, since these single-variable bounds
are stronger than the nested constraints by Lemma 3, adding these
constraints does not change the optimal objective value. It follows
directly that any optimal solution to QRAP𝑗 (𝐶) is also optimal for
QRAP-NC𝑗 (𝐶).

Based on Lemmas 1–3, the following approach can be used to
solve QRAP-NC. We successively solve the subproblems QRAP𝑗 (𝐿𝑗) and
QRAP𝑗 (𝑈 𝑗) from 𝑗 = 1 to 𝑛 − 1 and finally the subproblem QRAP𝑛(𝑅),
whereby in each step we use the optimal solutions to the preceding
subproblems QRAP𝑗−1(𝐿𝑗−1) and QRAP𝑗−1(𝑈 𝑗−1) as input. Note that
each of the subproblems is an instance of QRAP. This approach is
summarized in Algorithm 2.

Algorithm 2 An initial sequential algorithm for QRAP-NC.

1: Input: Parameters 𝒂 ∈ R𝑛
>0, 𝑳,𝑼 ∈ R𝑛−1, 𝑅 ∈ R, and 𝒍, 𝒖 ∈ R𝑛

2: Output: Optimal solution 𝒙̄ to QRAP-NC
3: Initialize 𝑥11(𝐿

1) = 𝐿1; 𝑥11(𝑈
1) = 𝑈1

4: for 𝑗 = 2,… , 𝑛 − 1 do
5: Compute optimal solutions 𝒙𝑗 (𝐿𝑗) and 𝒙𝑗 (𝑈 𝑗) to QRAP𝑗 (𝐿𝑗) and

QRAP𝑗 (𝑈 𝑗) respectively
6: end for
7: Compute optimal solution 𝒙𝑛(𝑅) to QRAP𝑛(𝑅)
8: return Optimal solution 𝒙̄ ∶= 𝒙𝑛(𝑅)

Since each subproblem QRAP𝑗 (⋅) can be solved in 𝑂(𝑛) time
(Brucker, 1984), the worst-case time complexity of Algorithm 2 is
𝑂(𝑛2). However, linear-time algorithms for QRAP such as Brucker
1984) attain their linear time complexity by employing linear-time
lgorithms for median finding, which are, as already mentioned, in
eneral slower than simple sorting- or sampling-based approaches (Ki-
iel, 2005; Alexandrescu, 2017). Note, that also the 𝑂(𝑛 log 𝑛) time
lgorithm ALGdec attains its worst-case time complexity by using such
low linear-time algorithms as a subroutine.

In the next section, we propose an algorithm to solve QRAP-NC
n 𝑂(𝑛 log 𝑛) time that, as opposed to ALGdec, does not require linear-
ime median-finding algorithms. Instead, it only requires a simple data
tructure for double-ended priority queues to store several bookkeeping
arameters.

We conclude this section with two remarks that may be of indepen-
ent interest:

Computers and Operations Research 135 (2021) 105451M.H.H. Schoot Uiterkamp et al.

f

m

1. It can be shown that Lemmas 1–3 also hold for the case where
the variables are integer-valued, i.e., 𝒙 ∈ Z𝑛 (see also Theorem 5
in Vidal et al. (2019)), given that all parameters 𝒂, 𝑳, 𝑼 , 𝒍, and
𝒖 are also integer-valued and nonnegative. As a consequence,
when solving each subproblem QRAP𝑗 (⋅) with integer variables,
Algorithm 2 computes an optimal solution to QRAP-NC with in-
teger variables. The worst-case time complexity of this algorithm
is 𝑂(𝑛2) since each QRAP𝑗 (⋅) subproblem with integer variables
can be solved in 𝑂(𝑗) time (Ibaraki and Katoh, 1988).

2. Lemmas 1–3 can be generalized to the case where the objec-
tive function is the sum of separable convex cost functions 𝑓𝑖,
i.e., where we replace each term 1

2
𝑥2𝑖
𝑎𝑖

by a convex function
𝑓𝑖(𝑥𝑖). For this more general problem, this leads to a sequential
algorithm that is very similar to Algorithm 2. However, initial
computational tests indicated that both this algorithm and Al-
gorithm 2 are in practice much slower than both ALGinf and
ALGdec.

4. A fast 𝑶(𝒏 𝐥𝐨𝐠𝒏) time algorithm for QRAP-NC

The sequential algorithm derived in the previous section does not
match the best known time complexity of the algorithm in Vidal et al.
(2019). However, we show in this section that we can implement
Algorithm 2 such that its time complexity reduces to 𝑂(𝑛 log 𝑛) without
requiring a linear-time median finding algorithm. Instead, we only
require a data type that supports insertion of elements and the finding
and removing of minimum and maximum elements in 𝑂(log 𝑛) time
such as a double-ended priority queue.

The key to efficiency in our approach is that we do not explicitly
compute the solution to each QRAP subproblem. Instead, we only
compute an optimal Lagrange multiplier corresponding to the resource
constraint (6) that characterizes the entire optimal solution to this
subproblem. Subsequently, we use these multipliers to reconstruct the
optimal solution to the original problem QRAP-NC using two sets of
simple recursive relations that can be executed in 𝑂(𝑛) time. In order
to compute the Lagrange multipliers without explicitly storing interme-
diate solutions, we exploit the special structure of these multipliers and
of a specific algorithm for solving QRAP.

First, in Section 4.1, we introduce some of the used notation.
Second, in Section 4.2, we derive an efficient approach for computing
the optimal Lagrange multipliers of the subproblems QRAP𝑗 (𝐿𝑗) and
QRAP𝑗 (𝑈 𝑗). Based on these optimal Lagrange multipliers, we derive in
Section 4.3, two simple recursions to compute the optimal solution 𝑥
to QRAP-NC. Finally, in Section 4.4, we present an 𝑂(𝑛 log 𝑛) algorithm
for QRAP-NC and discuss an implementation that attains this worst-case
time complexity.

4.1. Notation

We introduce the following notation concerning the subproblems
QRAP𝑗 (𝐿𝑗) and QRAP𝑗 (𝑈 𝑗) that we use throughout the remainder of
this article (see also Table 3). We denote for 𝑗 ∈  the lower and upper
single-variable bounds (7) and (8) of QRAP𝑗 (𝐶) with 𝐶 ∈ [𝐿𝑗 , 𝑈 𝑗] by
𝒍̄𝑗 ∶= (𝑙𝑗𝑖)𝑖∈ 𝑗 and 𝒖̄𝑗 ∶= (𝑢̄𝑗𝑖)𝑖∈ 𝑗 , where 𝑙𝑗𝑖 ∶= 𝑥𝑗−1𝑖 (𝐿𝑗−1) and 𝑢̄𝑗𝑖 ∶=
𝑥𝑗−1𝑖 (𝑈 𝑗−1) for 𝑖 < 𝑗, and 𝑙𝑗𝑗 ∶= 𝑙𝑗 and 𝑢̄𝑗𝑗 ∶= 𝑢𝑗 . Furthermore, we denote
by 𝜶𝑗 ∶= (𝛼𝑗𝑖)𝑖∈ 𝑗 and 𝜷𝑗 ∶= (𝛽𝑗𝑖)𝑖∈ 𝑗 the lower and upper breakpoints
for the QRAP𝑗 (𝐶) subproblem. We call the breakpoints corresponding
to 𝑖 = 𝑗, i.e., 𝛼𝑗𝑗 and 𝛽𝑗𝑗 , initial breakpoints since QRAP𝑗 (𝐶) is the first
subproblem, i.e., with lowest index 𝑗, in which we have to compute
breakpoint values for the variable 𝑥𝑗 . Note that we can compute these
breakpoints directly as 𝛼𝑗𝑗 ∶= 𝑙𝑗

𝑎𝑗
and 𝛽𝑗𝑗 ∶= 𝑢𝑗

𝑎𝑗
by definition of the

subproblem QRAP𝑗 (𝐶).
Furthermore, let 𝜅𝑗 and 𝜆𝑗 denote the optimal Lagrange multipliers

or the subproblems QRAP𝑗 (𝐿𝑗) and QRAP𝑗 (𝑈 𝑗) respectively and define
𝜿 ∶= (𝜅𝑗) and 𝝀 ∶= (𝜆𝑗) , where we set 𝜅1 ∶= 𝛼1
6

𝑗∈ 𝑗∈ 1 and
Table 3
Overview of the used notation with regard to the subproblems QRAP𝑗 (𝐿𝑗), QRAP𝑗 (𝑈 𝑗),
and QRAP𝑗 (𝐶) for 𝐶 ∈ [𝐿𝑗 , 𝑈 𝑗].

Symbol Definition

𝒍̄𝒋 ∶= (𝑙𝑗𝑖)𝑖∈ 𝑗 Lower single-variable bounds of QRAP𝑗 (𝐶)
𝒖̄𝒋 ∶= (𝑢̄𝑗𝑖)𝑖∈ 𝑗 Lower single-variable bounds of QRAP𝑗 (𝐶)
𝜶𝑗 ∶= (𝛼𝑗

𝑖)𝑖∈ 𝑗 Lower breakpoints for QRAP𝑗 (𝐶)
𝜷𝑗 ∶= (𝛽𝑗𝑖)𝑖∈ 𝑗 Upper breakpoints for QRAP𝑗 (𝐶)
𝛼𝑗
𝑗 , 𝛽

𝑗
𝑗 Initial breakpoints of QRAP𝑗 (𝐶)

𝜅𝑗 Optimal Lagrange multiplier for QRAP𝑗 (𝐿𝑗)
𝜆𝑗 Optimal Lagrange multiplier for QRAP𝑗 (𝑈 𝑗)
𝑗 Set of lower breakpoints of QRAP𝑗 (𝐶)
𝑗 Set of upper breakpoints of QRAP𝑗 (𝐶)

𝜆1 ∶= 𝛽11 . If the optimal Lagrange multiplier for a given subproblem
QRAP𝑗 (𝐿𝑗) is not unique, we define without loss of generality 𝜅𝑗 as the
aximum optimal Lagrange multiplier. Analogously, we define 𝜆𝑗 as

the minimum optimal Lagrange multiplier of subproblem QRAP𝑗 (𝑈 𝑗).
Note that 𝒙𝑗 (𝐿𝑗) = 𝒙𝑗 [𝜅𝑗] and 𝒙𝑗 (𝑈 𝑗) = 𝒙𝑗 [𝜆𝑗] by definition of the
subproblems QRAP𝑗 (𝐿𝑗) and QRAP𝑗 (𝑈 𝑗) and of 𝜅𝑗 and 𝜆𝑗 . Finally, for a
given subproblem QRAP𝑗 (𝐶), we define the set of its lower breakpoints
as 𝑗 ∶= {𝛼𝑗𝑖 | 𝑖 ∈  𝑗} and the set of its upper breakpoints as
𝑗 ∶= {𝛽𝑗𝑖 | 𝑖 ∈  𝑗}. Recall that in Section 2 we defined breakpoint
sets as multisets for convenience when solving QRAP. However, for
our approach for a fast algorithm for QRAP-NC, it is crucial that the
breakpoint sets do not contain duplicate elements. Therefore, in this
section and the remainder of this article, we regard 𝑗 and 𝑗 as
ordinary sets.

4.2. Computing the optimal Lagrange multipliers of the subproblems

The goal of this subsection is to derive an efficient approach for
computing the optimal Lagrange multiplier of each QRAP subproblem
in Algorithm 2 without explicitly calculating any of the intermediate
optimal solutions 𝒙𝑗 (𝐿𝑗) and 𝒙𝑗 (𝑈 𝑗) for 𝑗 ∈  . If we would follow the
latter strategy, i.e., if we solve each pair of subproblems QRAP𝑗 (𝐿𝑗) and
QRAP𝑗 (𝑈 𝑗) from scratch, e.g., using Algorithm 1, we would have to ex-
plicitly compute the breakpoint sets for each pair of subproblems. This
leads to 𝑂(𝑛2) computations and thus forms an efficiency bottleneck
within this algorithm.

We show that we can apply the breakpoint search procedure in
Algorithm 1 for solving the subproblems such that each breakpoint
set 𝑗+1 can be obtained from the previous set 𝑗 in 𝑂(1) amor-
tized steps, i.e., the total number of steps required to carry out this
construction for all 𝑗 ∈  𝑛−1 is 𝑂(𝑛). This can be done because of
two intermediate results that we show in this subsection. First, the
number of distinct values that the breakpoints can take is not 𝑂(𝑛2)
but 𝑂(𝑛). We obtain this result by unveiling a useful relation between
breakpoints of consecutive subproblems, i.e., between 𝜶𝑗 , 𝜷𝑗 and 𝜶𝑗+1,
𝜷𝑗+1. Second, when constructing the breakpoint sets, each distinct
breakpoint value is included in or removed from a breakpoint set at
most twice during the entire procedure. For this, it is important that we
solve each lower subproblem QRAP𝑗 (𝐿𝑗) by considering the breakpoints
in non-decreasing order and each upper subproblem QRAP𝑗 (𝑈 𝑗) by
considering the breakpoints in non-increasing order. Together, these
two results imply that the construction of the breakpoint sets requires
in total 𝑂(𝑛) additions and removals of breakpoint values. By using
an appropriate data structure such as double-ended priority queues for
maintaining the breakpoint sets, each of these steps can be executed
in 𝑂(log 𝑛) time, which leads to an overall 𝑂(𝑛 log 𝑛) complexity for
computing the optimal Lagrange multipliers 𝜿 and 𝝀.

The outline of the remainder of this subsection is as follows. First,
in Section 4.2.1, we analyze the relation between breakpoints of con-
secutive subproblems and show that the number of distinct breakpoint
values is 𝑂(𝑛). Subsequently, in Section 4.2.2, we use this information

and the structure of Algorithm 1 to construct the breakpoint sets for

Computers and Operations Research 135 (2021) 105451M.H.H. Schoot Uiterkamp et al.

b
𝛼
p
o

𝛼

a

p
t



A



T
t
a
i
r
d
a
b
M
w
t
𝜅

p

each subproblem from those of the preceding subproblems. Finally, in
Section 4.2.3, we discuss how the updating of the bookkeeping param-
eters within the breakpoint search procedure must be adjusted when
applying this procedure to the subproblems QRAP𝑗 (𝐿𝑗) and QRAP𝑗 (𝑈 𝑗).

4.2.1. Relation between consecutive breakpoints
We first show how we can efficiently obtain the breakpoint set

of a given subproblem QRAP𝑗+1(𝐶) based on the breakpoint set and
optimal Lagrange multipliers of the preceding subproblems QRAP𝑗 (𝐿𝑗)
and QRAP𝑗 (𝑈 𝑗). We establish for a given 𝑗 ∈  𝑛−1 and 𝑖 < 𝑗 the
following relation between the subsequent lower breakpoints 𝛼𝑗𝑖 and
𝛼𝑗+1𝑖 :

• If 𝜅𝑗 < 𝛼𝑗𝑖 , it follows from Eq. (3) that 𝑥𝑗𝑖 [𝜅
𝑗] = 𝑙𝑗𝑖 since 𝛼𝑗𝑖 =

𝑙𝑗𝑖
𝑎𝑖

.
This implies that 𝑙𝑗+1𝑖 = 𝑥𝑗𝑖 (𝐿

𝑗) = 𝑥𝑗𝑖 [𝜅
𝑗] = 𝑙𝑗𝑖 and thus 𝛼𝑗+1𝑖 = 𝛼𝑗𝑖 .

• If 𝛼𝑗𝑖 ≤ 𝜅𝑗 < 𝛽𝑗𝑖 , it follows from Eq. (3) that 𝑥𝑗𝑖 [𝜅
𝑗] = 𝑎𝑖𝜅𝑗 . Thus,

𝛼𝑗+1𝑖 =
𝑙𝑗+1𝑖
𝑎𝑖

=
𝑥𝑗𝑖 (𝐿

𝑗)
𝑎𝑖

=
𝑥𝑗𝑖 [𝜅

𝑗]
𝑎𝑖

= 𝜅𝑗 .

• If 𝛽𝑗𝑖 ≤ 𝜅𝑗 , then it follows from Eq. (3) that 𝑥𝑗𝑖 [𝜅
𝑗] = 𝑢̄𝑗𝑖 . This

implies that 𝑙𝑗+1𝑖 = 𝑥𝑗𝑖 (𝐿
𝑗) = 𝑥𝑗𝑖 [𝜅

𝑗] = 𝑢̄𝑗𝑖 and thus 𝛼𝑗+1𝑖 = 𝛽𝑗𝑖 .

Summarizing, we can determine 𝛼𝑗+1𝑖 from the previous breakpoints 𝛼𝑗𝑖
and 𝛽𝑗𝑖 and the optimal Lagrange multiplier 𝜅𝑗 as follows:

𝛼𝑗+1𝑖 =

⎧

⎪

⎨

⎪

⎩

𝛼𝑗𝑖 if 𝜅𝑗 < 𝛼𝑗𝑖 ,
𝜅𝑗 if 𝛼𝑗𝑖 ≤ 𝜅𝑗 < 𝛽𝑗𝑖 ,
𝛽𝑗𝑖 if 𝛽𝑗𝑖 ≤ 𝜅𝑗 .

(9)

Analogously, we obtain the following expression for the upper break-
point 𝛽𝑗+1𝑖 in terms of the previous breakpoints 𝛼𝑗𝑖 and 𝛽𝑗𝑖 and the
optimal Lagrange multiplier 𝜆𝑗 :

𝛽𝑗+1𝑖 =

⎧

⎪

⎨

⎪

⎩

𝛽𝑗𝑖 if 𝜆𝑗 > 𝛽𝑗𝑖 ,
𝜆𝑗 if 𝛽𝑗𝑖 ≥ 𝜆𝑗 > 𝛼𝑗𝑖 ,
𝛼𝑗𝑖 if 𝛼𝑗𝑖 ≥ 𝜆𝑗 .

(10)

Note that it follows from these relations that 𝛼𝑗𝑖 ≤ 𝛼𝑗+1𝑖 and 𝛽𝑗𝑖 ≥ 𝛽𝑗+1𝑖
for each 𝑗 ∈  𝑛−1. Moreover, note that the only values that the
reakpoints 𝛼𝑗+1𝑖 and 𝛽𝑗+1𝑖 can take are those of the initial breakpoints
𝑖
𝑖 and 𝛽𝑖𝑖 or of the optimal Lagrange multipliers in 𝜿 and 𝝀. More
recisely, by applying Eqs. (9) and (10) recursively, we obtain the set
f all possible values of 𝛼𝑗+1𝑖 as follows:
𝑗+1
𝑖 ∈ {𝜅𝑗 , 𝛼𝑗𝑖 , 𝛽

𝑗
𝑖 } ⊆ {𝜅𝑗 , 𝜅𝑗−1, 𝛼𝑗−1𝑖 , 𝛽𝑗−1𝑖 , 𝜆𝑗−1}

⊆ {𝜅𝑗 , 𝜅𝑗−1, 𝜅𝑗−2, 𝛼𝑗−2𝑖 , 𝛽𝑗−2𝑖 , 𝜆𝑗−2, 𝜆𝑗−1}

⊆ ⋯ ⊆ {𝜅𝑗 ,… , 𝜅𝑖, 𝛼𝑖𝑖 , 𝛽
𝑖
𝑖 , 𝜆

𝑖,… , 𝜆𝑗−1}.

Analogously, we have that 𝛽𝑗+1𝑖 ∈ {𝜅𝑗−1,… , 𝜅𝑖, 𝛼𝑖𝑖 , 𝛽
𝑖
𝑖 , 𝜆

𝑖,… , 𝜆𝑗}. This
implies that the number of distinct values among all breakpoints is
limited by 4𝑛.

4.2.2. Constructing consecutive breakpoint sets
As observed at the end of Section 2, we can solve a given QRAP

subproblem by searching its breakpoints either in non-decreasing or
non-increasing order. In particular, we can solve all lower subproblems
QRAP𝑗 (𝐿𝑗) by searching the breakpoints in non-decreasing order and
ll upper subproblems QRAP𝑗 (𝑈 𝑗) by searching the breakpoints in non-

increasing order. When doing this, note that for solving the upper
subproblem QRAP𝑗 (𝑈 𝑗) we can use as breakpoint sets the sets that
‘‘remain’’ from the breakpoint search for the lower subproblem. More
precisely, instead of the sets 𝑗 and 𝑗 that we also use as breakpoint
sets for the lower subproblem QRAP𝑗 (𝐿𝑗), we can use the sets {𝛼𝑗𝑖 ∈
𝑗

| 𝛼𝑗𝑖 ≥ 𝜅𝑗} and {𝛽𝑗𝑖 ∈ 𝑗
| 𝛽𝑗𝑖 ≥ 𝜅𝑗} respectively. This is because

𝜅𝑗 ≤ 𝜆𝑗 and thus in the breakpoint search for the upper problem
𝑗 𝑗 𝑗
7

QRAP (𝑈) no breakpoints smaller than 𝜅 need to be considered. i
We define the sets ̃𝑗 and ̃𝑗 as the sets of lower and upper
breakpoints that remain to be considered after solving the subprob-
lems QRAP𝑗 (𝐿𝑗) and QRAP𝑗 (𝑈 𝑗) in the way described in the previous
paragraph, i.e., we have

̃𝑗 ∶= {𝛼𝑗𝑖 ∈ 𝑗
| 𝜅𝑗 ≤ 𝛼𝑗𝑖 ≤ 𝜆𝑗},

̃𝑗 ∶= {𝛽𝑗𝑖 ∈ 𝑗
| 𝜅𝑗 ≤ 𝛽𝑗𝑖 ≤ 𝜆𝑗}.

We call these sets the remaining breakpoint sets of the subproblems
QRAP𝑗 (𝐿𝑗) and QRAP𝑗 (𝑈 𝑗). In the following, we relate these two
remaining breakpoint sets to the breakpoint sets of the next two sub-
problems, i.e., to the sets 𝑗+1 and 𝑗+1. For this, we focus on the
relation between the lower remaining breakpoint sets ̃𝑗 and the
lower breakpoint set 𝑗+1; the relation between the upper remaining
breakpoint set ̃𝑗 and the upper breakpoint set 𝑗+1 is analogous.

For each 𝑖 ∈  𝑗 , we determine the value of 𝛼𝑗+1𝑖 based on the values
of 𝛼𝑗𝑖 , and 𝛽𝑗𝑖 compared to those of 𝜅𝑗 , 𝜆𝑗 . More precisely, we consider
the following four cases:

1. If 𝜅𝑗 ≤ 𝛼𝑗𝑖 ≤ 𝜆𝑗 , it follows from Eq. (9) that 𝛼𝑗+1𝑖 = 𝛼𝑗𝑖 . Thus, all
values in ̃𝑗 act as breakpoint values for the next subproblems,
i.e., ̃𝑗 ⊆ 𝑗+1.

2. If 𝛼𝑗𝑖 < 𝜅𝑗 and 𝜅𝑗 < 𝛽𝑗𝑖 , it follows from Eq. (9) that 𝛼𝑗+1𝑖 = 𝜅𝑗 .
3. If 𝛼𝑗𝑖 < 𝜅𝑗 and 𝛽𝑗𝑖 ≤ 𝜅𝑗 , it follows from Eqs. (9) and (10) that

𝑥𝑗𝑖 (𝐿
𝑗) = 𝑢̄𝑗𝑖 and 𝛽𝑗+1𝑖 = 𝛽𝑗𝑖 = 𝛼𝑗+1𝑖 respectively. Thus,

𝛽𝑗+1𝑖 = 𝛼𝑗+1𝑖 ≤ ⋯ ≤ 𝛼𝑛𝑖 ≤ 𝛽𝑛𝑖 ≤ ⋯ ≤ 𝛽𝑗+1𝑖 .

This means that 𝛼𝑗
′

𝑖 = 𝛽𝑗
′

𝑖 = 𝛽𝑗𝑖 and 𝑙𝑗
′

𝑖 = 𝑢̄𝑗
′

𝑖 = 𝑢̄𝑗𝑖 for all
𝑗′ > 𝑗. Thus, in all remaining subproblems, the lower and upper
breakpoints of 𝑖 coincide and 𝑥𝑗

′

𝑖 (𝐶) = 𝑢̄𝑗𝑖 for any 𝑗′ > 𝑗 and
𝐿𝑗′ ≤ 𝐶 ≤ 𝑈 𝑗′ , regardless of the values of the future optimal
Lagrange multipliers 𝜅𝑗′ and 𝜆𝑗′ . This means that we can remove
this index (variable) from the breakpoint search.

4. Finally, if 𝛼𝑗𝑖 > 𝜆𝑗 , it follows from Eqs. (9) and (10) that 𝛼𝑗+1𝑖 = 𝛼𝑗𝑖
and 𝛽𝑗+1𝑖 = 𝛼𝑗𝑖 respectively. Thus, 𝛼𝑗+1𝑖 = 𝛽𝑗+1𝑖 = 𝛼𝑗𝑖 . Analogously
to the case 𝛼𝑗𝑖 ≤ 𝛽𝑗𝑖 < 𝜅𝑗 , it follows that 𝑙𝑗

′

𝑖 = 𝑢̄𝑗
′

𝑖 = 𝑙𝑗𝑖 and
𝑥𝑗

′

𝑖 (𝐶) = 𝑙𝑗𝑖 for all 𝑗′ > 𝑗 and 𝐿𝑗′ ≤ 𝐶 ≤ 𝑈 𝑗′ . Thus, also in this
case we can remove the index 𝑖 from the breakpoint search.

Note that these four cases are mutually exclusive and cover all
ossible values of 𝛼𝑗𝑖 and 𝛽𝑗𝑖 (see also Table 4). These four cases imply
hat we can construct 𝑗+1 from ̃𝑗 as follows:

𝑗+1 = ̃𝑗 ∪ {𝛼𝑗+1𝑗+1} ∪

{

{𝜅𝑗} if there exists 𝑖 such that 𝛼𝑗𝑖 < 𝜅𝑗 < 𝛽𝑗𝑖 ,
∅ otherwise.

nalogously, we can construct 𝑗+1 from ̃𝑗 as follows:

𝑗+1 = ̃𝑗 ∪ {𝛽𝑗+1𝑗+1} ∪

{

{𝜆𝑗} if there exists 𝑖 such that 𝛼𝑗𝑖 < 𝜆𝑗 < 𝛽𝑗𝑖 ,
∅ otherwise.

he above constructions show how the breakpoint sets evolve from 𝑗
o 𝑗 + 1, i.e., how we obtain 𝑗+1 and 𝑗+1 from 𝑗 and 𝑗 . First,
fter the breakpoint search procedure of Algorithm 1, we obtain the
ntermediate sets ̃𝑗 and ̃𝑗 that contain all breakpoints in 𝑗 and 𝑗

espectively that have not been considered as candidate breakpoints
uring the search procedure. Second, the new breakpoint sets 𝑗+1

nd 𝑗+1 are obtained by adding to ̃𝑗 and ̃𝑗 respectively the initial
reakpoints 𝛼𝑗+1𝑗+1 and 𝛽𝑗+1𝑗+1 corresponding to the (𝑗 + 1)th subproblems.
oreover, we must add any value of the new breakpoints 𝛼𝑗+1𝑖 and 𝛽𝑗+1𝑖
ith 𝑖 < 𝑗 + 1 that is not yet present in these sets. For this, based on

he analysis in this subsection, we conclude that it is sufficient to add
𝑗 to ̃𝑗 if there exists 𝑖 ∈  𝑗 such that 𝛼𝑗𝑖 < 𝜅𝑗 < 𝛽𝑗𝑖 and to add 𝜆𝑗 to
̃𝑗 if there exists 𝑖 ∈  𝑗 such that 𝛼𝑗𝑖 < 𝜆𝑗 < 𝛽𝑗𝑖 (see also Table 4). In
articular, this means that updating the breakpoint steps can be done

n 𝑂(𝑛) steps, i.e., by 𝑂(𝑛) additions and removals of breakpoint values.

Computers and Operations Research 135 (2021) 105451M.H.H. Schoot Uiterkamp et al.

w
r
𝑃
s
a
T

s

t

𝒙
s
L
m
s
t

L
h

P

Table 4
Clarification of the four cases used to determine 𝛼𝑗+1

𝑖 .

Value of 𝛼𝑗
𝑖 Value of 𝛽𝑗𝑖 Covered by Resulting value of 𝛼𝑗+1

𝑖

𝛼𝑗
𝑖 < 𝜅𝑗 𝛽𝑗𝑖 ≤ 𝜅𝑗 Case 3 𝛽𝑗+1𝑖 ; already not present in ̃𝑗

𝛼𝑗
𝑖 < 𝜅𝑗 𝛽𝑗𝑖 > 𝜅𝑗 Case 2 𝜅𝑗

𝜅𝑗 ≤ 𝛼𝑗
𝑖 ≤ 𝜆𝑗 Any Case 1 𝛼𝑗

𝑖
𝜆𝑗 < 𝛼𝑗

𝑖 Any Case 4 𝛼𝑗
𝑖 ; already not present in ̃𝑗

4.2.3. Updating bookkeeping parameters
In order to efficiently compute the sums 𝑧𝑗 [𝛿] ∶=

∑

𝑖∈ 𝑗 𝑥𝑗𝑖 [𝛿] for a
given breakpoint 𝛿, we define the following bookkeeping parameters
analogously to those in the breakpoint search procedure for QRAP in
Algorithm 1:

𝑃 𝑗 (𝛿) ∶=
∑

𝑖≤𝑗∶ 𝛿<
𝑙𝑗𝑖
𝑎𝑖

𝑙𝑗𝑖 +
∑

𝑖≤𝑗∶ 𝛿𝑗≥
𝑢̄𝑗𝑖
𝑎𝑖

𝑢̄𝑗𝑖 ; 𝑄𝑗 (𝛿) ∶=
∑

𝑖≤𝑗∶
𝑙𝑗𝑖
𝑎𝑖
≤𝛿<

𝑢̄𝑗𝑖
𝑎𝑖

𝑎𝑖;

Each breakpoint value 𝜅𝑗′ and 𝜆𝑗′ in a given breakpoint set acts as a
collective breakpoint for one or multiple activities. As a consequence,
within the breakpoint search procedure, they have the same function as
the ‘‘regular’’ initial lower and upper breakpoint values 𝛼𝑖𝑖 and 𝛽𝑖𝑖 . Thus,

hen a breakpoint value of the form 𝜅𝑗′ or 𝜆𝑗′ has been considered, we
equire an efficient update of the bookkeeping sums 𝑃 𝑗 (𝜅𝑗′), 𝑄𝑗 (𝜅𝑗′) or
𝑗 (𝜆𝑗′), 𝑄𝑗 (𝜆𝑗′) respectively. In the case of 𝜅𝑗′ , we update 𝑃 𝑗 (𝜅𝑗′) by

ubtracting from this value the sum of the lower bounds 𝑙𝑗𝑖 of those
ctivities 𝑖 whose lower breakpoint equals 𝜅𝑗′ , i.e., for which 𝛼𝑗𝑖 = 𝜅𝑗′ .
he sum of these values is
∑

𝑖<𝑗∶ 𝛼𝑗𝑖 =𝜅
𝑗′
𝑙𝑗𝑖 =

∑

𝑖<𝑗∶ 𝛼𝑗𝑖 =𝜅
𝑗′
𝑎𝑖𝛼

𝑗
𝑖 =

∑

𝑖<𝑗∶ 𝛼𝑗𝑖 =𝜅
𝑗′
𝑎𝑖𝜅

𝑗′ = 𝜅𝑗′
∑

𝑖≤𝑗′∶ 𝛼𝑗
′
𝑖 ≤𝜅𝑗′<𝛽𝑗

′
𝑖

𝑎𝑖

= 𝑄𝑗′ (𝜅𝑗′)𝜅𝑗′ ,

ince 𝛼𝑗𝑖 =
𝑙𝑗𝑖
𝑎𝑖

for each 𝑖 ∈  𝑗 and we have that 𝛼𝑗𝑖 = 𝜅𝑗′ if and

only if 𝛼𝑗
′′

𝑖 = 𝜅𝑗′ for all 𝑗′′ ∈ {𝑗′,… , 𝑗}. Analogously, we update
he bookkeeping sum 𝑄𝑗 (𝜅𝑗′) by adding to this value the sum of the

parameters 𝑎𝑖 for those 𝑖 with 𝛼𝑗𝑖 = 𝜅𝑗′ . This sum is
∑

𝑖<𝑗∶ 𝛼𝑗𝑖 =𝜅
𝑗′
𝑎𝑖 =

∑

𝑖≤𝑗′∶ 𝛼𝑗
′
𝑖 ≤𝜅𝑗′<𝛽𝑗

′
𝑖

𝑎𝑖 = 𝑄𝑗′ (𝜅𝑗′).

Thus, the updates take the form 𝑃 𝑗 (𝜅𝑗′) − 𝑄𝑗′ (𝜅𝑗′)𝜅𝑗′ and 𝑄𝑗 (𝜅𝑗′) +
𝑄𝑗′ (𝜅𝑗′).

The updates for the case of 𝜆𝑗′ , i.e., for 𝑃 𝑗 (𝜆𝑗′) and 𝑄𝑗 (𝜆𝑗′), are
analogous to those for the case of 𝜅𝑗′ . Table 5 provides an overview
of the updates of the bookkeeping sums for both these cases for each
of the four breakpoint values types 𝛼𝑖𝑖 , 𝛽

𝑖
𝑖 , 𝜅

𝑗′ , and 𝜆𝑗′ .

4.3. Recovering the optimal solution to QRAP-NC

In the previous section, we found an efficient way to compute the
optimal Lagrange multipliers 𝜅𝑗 and 𝜆𝑗 for the QRAP subproblems
QRAP𝑗 (𝐿𝑗) and QRAP𝑗 (𝑈 𝑗). In this section, we show how we can use
these values to compute the optimal solution 𝒙𝑛(𝑅). For this, we first
determine which nested constraints are tight in 𝑥𝑛(𝑅) and use this
information to reconstruct the individual terms 𝑥𝑛𝑖 (𝑅) for 𝑖 ∈  . To
this end, for each 𝑗 ∈  𝑛−1, let 𝑣𝑗 denote the smallest index larger
than or equal to 𝑗 such that one of its corresponding nested constraints
is tight in 𝒙𝑛(𝑅). More precisely,

𝑣𝑗 ∶= min

(

𝑘 ≥ 𝑗
|

|

|

|

|

∑

𝑖∈ 𝑘

𝑥𝑛𝑖 (𝑅) = 𝐿𝑘 or
∑

𝑖∈ 𝑘

𝑥𝑛𝑖 (𝑅) = 𝑈𝑘

)

.

Furthermore, let 𝑉 𝑗 denote the value of the tight nested constraint
corresponding to the index 𝑣𝑗 and 𝜒 𝑗 the corresponding multiplier,
i.e., 𝑉 𝑗 ∈ {𝐿𝑣𝑗 , 𝑈𝑣𝑗 } and 𝜒 𝑗 ∈ {𝜅𝑣𝑗 , 𝜆𝑣𝑗 }. More precisely,

• ∑

𝑥𝑛(𝑅) = 𝐿𝑣𝑗 implies 𝑉 𝑗 = 𝐿𝑣𝑗 and 𝜒 𝑗 = 𝜅𝑣𝑗 ;
8

𝑖∈ 𝑣𝑗 𝑖
• ∑

𝑖∈ 𝑣𝑗 𝑥𝑛𝑖 (𝑅) = 𝑈𝑣𝑗 implies 𝑉 𝑗 = 𝑈𝑣𝑗 and 𝜒 𝑗 = 𝜆𝑣𝑗 .

The main result in this subsection is that the values 𝜒 𝑗 act as optimal
Lagrange multipliers for the resource constraint (6) in the subproblem
QRAP𝑛(𝑅). As a consequence, given these values, we can calculate
𝑛(𝑅) directly using a relation similar to the Lagrangian relaxation
olution in Eq. (3). To show this result, we prove Lemmas 4 and 5. First,
emma 4 shows how we can iteratively compute 𝝌 from the optimal
ultipliers 𝜿 and 𝝀 using a simple recursive relation. Second, Lemma 5

hows how we can calculate 𝒙𝑛(𝑅) from 𝝌 using a relation similar to
hat in Eq. (3).

emma 4. We have 𝜒𝑛 = 𝜅𝑛 = 𝜆𝑛. Moreover, for each 𝑗 ∈  𝑛−1, we
ave:

1. 𝜒 𝑗+1 ≤ 𝜅𝑗 implies ∑𝑖∈ 𝑗 𝑥𝑛𝑖 (𝑅) = 𝐿𝑗 and 𝜒 𝑗 = 𝜅𝑗 ;
2. 𝜆𝑗 ≤ 𝜒 𝑗+1 implies ∑𝑖∈ 𝑗 𝑥𝑛𝑖 (𝑅) = 𝑈 𝑗 and 𝜒 𝑗 = 𝜆𝑗 ,
3. 𝜅𝑗 < 𝜒 𝑗+1 < 𝜆𝑗 implies 𝐿𝑗 <

∑

𝑖∈ 𝑗 𝑥𝑛𝑖 (𝑅) < 𝑈 𝑗 and 𝜒 𝑗 = 𝜒 𝑗+1.

roof. See Appendix A.2. □

Lemma 5. For each 𝑖 ∈  , we have

𝑥𝑛𝑖 (𝑅) =

⎧

⎪

⎨

⎪

⎩

𝑙𝑖 if 𝜒 𝑖 < 𝛼𝑖𝑖 ,
𝑎𝑖𝜒 𝑖 if 𝛼𝑖𝑖 ≤ 𝜒 𝑖 < 𝛽𝑖𝑖 ,
𝑢𝑖 if 𝛽𝑖𝑖 ≤ 𝜒 𝑖.

(11)

Proof. See Appendix A.3. □

Note that, starting from 𝜒𝑛 = 𝜅𝑛 and using Lemma 4, we can
compute the values 𝜒 𝑗 recursively as

𝜒 𝑗 =

⎧

⎪

⎨

⎪

⎩

𝜅𝑗 if 𝜒 𝑗+1 ≤ 𝜅𝑗 ,
𝜆𝑗 if 𝜒 𝑗+1 ≥ 𝜆𝑗 ,
𝜒 𝑗+1 otherwise.

(12)

Thus, given the optimal Lagrange multipliers 𝜿 and 𝝀, we can compute
the optimal solution 𝒙̄ to QRAP-NC in 𝑂(𝑛) time as 𝒙𝑛(𝑅) using the two
relatively simple recursions in Eqs. (11) and (12).

4.4. An 𝑂(𝑛 log 𝑛) time algorithm for QRAP-NC

In the previous two subsections, we derived an efficient approach to
compute the optimal Lagrange multipliers 𝜿 and 𝝀 for the QRAP𝑗 (𝐿𝑗)
and QRAP𝑗 (𝑈 𝑗) subproblems and to compute from these multipliers the
optimal solution 𝒙̄. In this subsection, we combine these two ingredi-
ents to formulate a fast and efficient algorithm for QRAP-NC (Algorithm
3). More precisely, in the first part of this subsection, Section 4.4.1,
we present our algorithm and discuss several of its details regard-
ing the subroutines for computing the optimal Lagrange multipliers
of the QRAP𝑗 (𝐿𝑗) and QRAP𝑗 (𝑈 𝑗) subproblems. This includes several
procedures that deal with corner cases and with the updating of the
breakpoint sets and the bookkeeping parameters. In the second part,
Section 4.4.2, we focus on the efficiency of the algorithm. In particular,
we prove in Lemma 6 that the algorithm has an 𝑂(𝑛 log 𝑛) worst-case
time complexity when using an appropriate data structure. Finally, in
the third part, we compare the complexities of the three algorithms
ALGseq, ALGinf, and ALGdec and present. In particular, we discuss a
worst-case instance for ALGseq that is essentially a best-case instance
for ALGinf and a worst-case instance for ALGinf that is essentially a
best-case instance for ALGseq.

4.4.1. Description of the algorithm
Algorithm 3 captures our approach for solving QRAP-NC. First, in

Lines 3–13, the algorithm initializes all problem parameters, the initial

breakpoint values and breakpoint sets, and the initial bookkeeping

Computers and Operations Research 135 (2021) 105451M.H.H. Schoot Uiterkamp et al.

o
b
𝜅
e
t
s

1
1
1
1
1
1
1
1
1
1
2
2
2

p

s

Table 5
Updating the bookkeeping sums 𝑃 𝑗 (𝛿) and 𝑄𝑗 (𝛿) when searching the breakpoints in non-decreasing order (QRAP𝑗 (𝐿𝑗)) and
non-increasing order (QRAP𝐽 (𝑈 𝑗)).

Type of 𝛿 In QRAP𝑗 (𝐿𝑗) (non-decreasing search) In QRAP𝑗 (𝑈 𝑗) (non-increasing search)

𝑃 𝑗 (𝛿) 𝑄𝑗 (𝛿) 𝑃 𝑗 (𝛿) 𝑄𝑗 (𝛿)

𝛿 ≡ 𝛼𝑖
𝑖 𝑃 𝑗 (𝛿) − 𝑙𝑖 𝑄𝑗 (𝛿)𝑖 + 𝑎𝑖 𝑃 𝑗 (𝛿) + 𝑙𝑖 𝑄𝑗 (𝛿) − 𝑎𝑖

𝛿 ≡ 𝛽𝑖𝑖 𝑃 𝑗 (𝛿) + 𝑢𝑖 𝑄𝑗 (𝛿) − 𝑎𝑖 𝑃 𝑗 (𝛿) − 𝑢𝑖 𝑄𝑗 (𝛿) + 𝑎𝑖
𝛿 ≡ 𝜅𝑗′ , 𝑗′ < 𝑗 𝑃 𝑗 (𝛿) −𝑄𝑗′ (𝜅𝑗′)𝜅𝑗′ 𝑄𝑗 (𝛿) +𝑄𝑗′ (𝜅𝑗′) 𝑃 𝑗 (𝛿) +𝑄𝑗′ (𝜅𝑗′)𝜅𝑗′ 𝑄𝑗 (𝛿) −𝑄𝑗′ (𝜅𝑗′)
𝛿 ≡ 𝜆𝑗′ , 𝑗′ < 𝑗 𝑃 𝑗 (𝛿) +𝑄𝑗′ (𝜆𝑗′)𝜆𝑗′ 𝑄𝑗 (𝛿) −𝑄𝑗′ (𝜆𝑗′) 𝑃 𝑗 (𝛿) −𝑄𝑗′ (𝜆𝑗′)𝜆𝑗′ 𝑄𝑗 (𝛿) +𝑄𝑗′ (𝜆𝑗′)
parameters. Throughout the entire algorithm, it maintains four separate
sets , , , and  of breakpoint values corresponding to the ‘‘source’’
f the values, i.e., this specifies whether they are one of the initial
reakpoint values 𝛼𝑖𝑖 or 𝛽𝑖𝑖 or one of the optimal Lagrange multipliers
𝑗 or 𝜆𝑗 respectively. Second, in Lines 14–16, the algorithm applies for
ach 𝑗 ∈ ∖{1} the procedure SolveSubproblems(𝑗) (see Algorithm 4)
hat computes the optimal Lagrange multipliers 𝜅𝑗 and 𝜆𝑗 for the two
ubproblems QRAP𝑗 (𝐿𝑗) and QRAP𝑗 (𝑈 𝑗). Finally, using the obtained

vectors of optimal Lagrange multipliers 𝜅 and 𝜆, the algorithm com-
putes in Lines 17–22 the (alternative) multiplier values 𝜒 using the
recursion in Eq. (12) and from these values the solution 𝒙𝑛(𝑅) using
Eq. (11).

Algorithm 3 An 𝑂(𝑛 log 𝑛) time algorithm for QRAP-NC.

1: Input: Parameters 𝒂 ∈ R𝑛
>0, 𝑳,𝑼 ∈ R𝑛−1, 𝑅 ∈ R, and 𝒍, 𝒖 ∈ R𝑛

2: Output: Optimal solution 𝒙̄ to QRAP-NC
3: 𝐿1 = 𝑙1 = max(𝐿1, 𝑙1); 𝑈1 = 𝑢1 = min(𝑈1, 𝑢1)
4: for 𝑗 = 2 to 𝑛 do
5: 𝐿𝑗 = max(𝐿𝑗 , 𝐿𝑗−1 + 𝑙𝑗)
6: 𝑈 𝑗 = min(𝑈 𝑗 , 𝑈 𝑗−1 + 𝑢𝑗)
7: end for
8: for 𝑖 = 1 to 𝑛 do
9: 𝛼𝑖𝑖 =

𝑙𝑖
𝑎𝑖

; 𝛽𝑖𝑖 =
𝑢𝑖
𝑎𝑖

0: end for
1: 𝜅1 = 𝛼11 ; 𝜆1 = 𝛽11 ; 𝜅𝑗 = ∞, 𝜆𝑗 = −∞ for 𝑗 > 1
2: Initialize breakpoint sets:  ∶= {𝛼11};  ∶= {𝛽11};  ∶= ∅;  ∶= ∅
3: Initialize bookkeeping sums: 𝑃 1

𝐿 = 𝑃 1
𝑈 = 0; 𝑄̄1

𝐿 = 𝑄̄1
𝑈 = 𝑎1

4: for 𝑗 = 2 to 𝑛 do
5: Apply procedure SolveSubproblems(𝑗)
6: end for
7: 𝜒𝑛 ∶= 𝜅𝑛

8: for 𝑖 = 𝑛 − 1 down to 1 do
9: Compute 𝜒 𝑖 using Equation (12)
0: end for
1: Compute 𝒙𝑛(𝑅) using Equation (11)
2: return Optimal solution 𝒙̄ ∶= 𝒙𝑛(𝑅)

The procedure SolveSubproblems(𝑗) carries out the breakpoint search
rocedure for the subproblems QRAP𝑗 (𝐿𝑗) and QRAP𝑗 (𝑈 𝑗) as described

in Section 2 (Lines 39–59). This is done by first initializing the book-
keeping parameters for these breakpoint search procedures in Lines 39–
46 and Lines 49–56 and subsequently applying the procedures
LowerSubproblem(𝑗) (Line 47, Algorithm 5) and UpperSubproblem(𝑗)
(Line 57, Algorithm 6), which are identical in nature to Lines 5–22
of Algorithm 1. Before carrying out the breakpoint search procedure,
two possible corner cases are considered in Lines 1–38 with regard to
relation between the to-be-computed multipliers 𝜅𝑗 and 𝜆𝑗 and their
predecessors 𝜅𝑗−1 and 𝜆𝑗−1. We briefly discuss these corner cases for
𝜅𝑗 ; the corner cases for 𝜆𝑗 are analogous.

The first corner case occurs when 𝜅𝑗 = 𝜅𝑗−1 (Lines 1–9 in
SolveSubproblems(𝑗)). This case corresponds to Lines 7–9 in Algorithm
1, where the currently considered candidate multiplier 𝛿𝑖 leads to a
olution 𝑥[𝛿𝑖] that sums to 𝐶, i.e., 𝑧[𝛿𝑖] = 𝐶. For QRAP-NC𝑗 (𝐿𝑗), this

𝑗−1 𝑗 𝑗 𝑗
9

case thus occurs if and only if 𝐿 + 𝑥𝑗 [𝜅] = 𝐿 , i.e., if and only if
𝑥𝑗𝑖 (𝐿
𝑗) = 𝑥𝑗−1𝑖 (𝐿𝑗−1) for all 𝑖 ∈  𝑗−1 and 𝐿𝑗−1 + max(𝑙𝑗 ,min(𝑎𝑗𝜒 𝑗 , 𝑢𝑗)) =

𝐿𝑗 . The second case (Lines 10–13) occurs when 𝜅𝑗 < 𝜅𝑗−1 and corre-
sponds to Lines 10–12 of Algorithm 1, where the candidate multiplier 𝛿𝑖
leads to a solution 𝒙[𝛿𝑖] whose sum is larger than 𝐶, i.e., 𝑧[𝛿𝑖] > 𝐶.
In QRAP-NC𝑗 (𝐿𝑗), this case occurs if and only if 𝐿𝑗−1 + 𝑥𝑗𝑗 [𝜅

𝑗] > 𝐿𝑗 ,
i.e., if and only if 𝑥𝑗𝑖 (𝐿

𝑗) = 𝑥𝑗−1𝑖 (𝐿𝑗−1) for all 𝑖 ∈  𝑗−1 and 𝐿𝑗−1 +
max(𝑙𝑗 ,min(𝑎𝑗𝜒 𝑗 , 𝑢𝑗)) > 𝐿𝑗 . In both cases, it is not necessary to carry
out the actual breakpoint search to find 𝜅𝑗 since either 𝜅𝑗 = 𝜅𝑗−1 (the
first case) or 𝜅𝑗 = (𝐿𝑗 − 𝐿𝑗−1)∕𝑎𝑗 (the second case).

Whether or not one of the above mentioned corner cases occurs
partly determines whether or not we have to include the new initial
breakpoint values 𝛼𝑗𝑗 and 𝛽𝑗𝑗 in the breakpoint search procedure. The
algorithm makes this decision in Lines 33–38: 𝛼𝑗𝑗 and 𝛽𝑗𝑗 are included
only if they are in between the lowest and highest breakpoint values
that can be considered in the breakpoint search. This lowest value is
𝜅𝑗 if 𝜅𝑗 ≤ 𝜅𝑗−1 (when one of the two corner cases for 𝜅𝑗 occurs and
thus this value has already been determined) and 𝜅𝑗−1 otherwise (when
breakpoint search is required to find 𝜅𝑗). Analogously, the highest value
is 𝜆𝑗 if 𝜆𝑗 ≥ 𝜆𝑗−1 and 𝜆𝑗−1 otherwise.

4.4.2. Time complexity
We now establish the worst-case time complexity of Algorithm 3 by

means of the following lemma:

Lemma 6. Algorithm 3 can be implemented such that its worst-case time
complexity is 𝑂(𝑛 log 𝑛).

Proof. Observe that, throughout the algorithm and all its procedures,
all operations have a total time complexity of 𝑂(𝑛) except for four
operations on the sets , , , and  of to-be-considered breakpoints.
For each of these breakpoint sets, say , these are finding the minimum
and maximum breakpoint in  (Lines 2 and 18 in Algorithm 4 and
Line 2 in Algorithms 5 and 6), inserting a breakpoint value in 
(Lines 13, 29, 34, and 37 in Algorithm 4), and removing the minimum
or maximum breakpoint from  (Lines 15 and 31 in Algorithm 4 and
Lines 16, 20, 24, and 28 in Algorithms 5 and 6). As we showed in
Section 4.2, each breakpoint value is inserted and removed at most
once during the course of the algorithm. Moreover, in the worst case,
we have to find the minimum and maximum breakpoint value in  a
number of 𝑛 times. Thus, the total number of breakpoint set operations
is 𝑂(𝑛). If we maintain the breakpoint sets as min–max heaps (Atkinson
et al., 1986), each of these operations can be executed in 𝑂(1) (finding
the minimum and maximum) and 𝑂(log 𝑛) (inserting and removing a
breakpoint) time. This means that the total time complexity of all four
breakpoint set operations is 𝑂(𝑛 log 𝑛) if we use min–max heaps to store
the breakpoint sets. It follows that Algorithm 3 can be implemented
such that its worst-case time complexity is 𝑂(𝑛 log 𝑛). □

We expect the average-case performance of Algorithm 3 to be much
better than 𝑂(𝑛 log 𝑛) since the size of the breakpoint sets is limited by
the iteration index 𝑗. More precisely, in iteration 𝑗, the size of each
breakpoint set , , , and  is at most 𝑗. As a consequence, the time
complexity of insertion and removal of a breakpoint during iteration 𝑗
is 𝑂(log 𝑗) instead of 𝑂(log 𝑛).

In practice, carrying out the breakpoint set operations might be

faster if we use a different data structure than min–max heaps to

Computers and Operations Research 135 (2021) 105451M.H.H. Schoot Uiterkamp et al.

s
b
t
t
s
s
m
T
a
p
f
(
a
o
h
c
(
s

4

Algorithm 4 Procedure SolveSubproblems(𝑗).

1: if 𝐿𝑗−1 + max(𝑙𝑗 ,min(𝑎𝑗𝜅𝑗−1, 𝑢𝑗)) = 𝐿𝑗 then {𝜅𝑗 = 𝜅𝑗−1}
2: Replace 𝜅𝑗−1 in  by 𝜅𝑗

3: if 𝜅𝑗 < 𝛼𝑗𝑗 then
4: 𝑃 𝑗

𝐿 ∶= 𝑃 𝑗−1
𝐿 + 𝑙𝑗 ; 𝑄̄

𝑗
𝐿 ∶= 𝑄̄𝑗−1

𝐿
5: else if 𝛽𝑗𝑗 < 𝜅𝑗 then
6: 𝑃 𝑗

𝐿 = 𝑃 𝑗−1
𝐿 + 𝑢𝑗 ; 𝑄̄

𝑗
𝐿 ∶= 𝑄̄𝑗−1

𝐿
7: else
8: 𝑃 𝑗

𝐿 ∶= 𝑃 𝑗−1
𝐿 ; 𝑄̄𝑗

𝐿 ∶= 𝑄̄𝑗−1
𝐿 + 𝑎𝑗

9: end if
10: else if 𝐿𝑗−1 + max(𝑙𝑗 ,min(𝑎𝑗𝜅𝑗−1, 𝑢𝑗)) > 𝐿𝑗 then {𝜅𝑗 < 𝜅𝑗−1}
11: 𝜅𝑗 = (𝐿𝑗 − 𝐿𝑗−1)∕𝑎𝑗
12: 𝑃 𝑗

𝐿 ∶= 𝐿𝑗−1; 𝑄̄𝑗
𝐿 ∶= 𝑎𝑗

13: Add 𝜅𝑗 to 
14: else {𝜅𝑗 > 𝜅𝑗−1}
15: Remove 𝜅𝑗−1 from 
16: end if
17: if 𝑈 𝑗−1 + max(𝑙𝑗 ,min(𝑎𝑖𝜆𝑗−1, 𝑢𝑗)) = 𝑈 𝑗 then {𝜆𝑗 = 𝜆𝑗−1}
18: Replace 𝜆𝑗−1 in  by 𝜆𝑗

19: if 𝜆𝑗 < 𝛼𝑗𝑗 then
20: 𝑃 𝑗

𝑈 ∶= 𝑃 𝑗−1
𝑈 + 𝑙𝑗 , 𝑄̄

𝑗
𝑈 ∶= 𝑄̄𝑗−1

𝑈
21: else if 𝛽𝑗𝑗 < 𝜆𝑗 then
22: 𝑃 𝑗

𝑈 = 𝑃 𝑗−1
𝑈 + 𝑢𝑗 ; 𝑄̄

𝑗
𝑈 ∶= 𝑄̄𝑗−1

𝑈
23: else
24: 𝑃 𝑗

𝑈 ∶= 𝑃 𝑗−1
𝑈 ; 𝑄̄𝑗

𝑈 ∶= 𝑄̄𝑗−1
𝑈 + 𝑎𝑗

25: end if
26: else if 𝑈 𝑗−1 + max(𝑙𝑗 ,min(𝑎𝑗𝜆𝑗−1, 𝑢𝑗)) < 𝑈 𝑗 then {𝜆𝑗 > 𝜆𝑗−1}
27: 𝜆𝑗 = (𝑈 𝑗 − 𝑈 𝑗−1)∕𝑎𝑗
28: 𝑃 𝑗

𝑈 ∶= 𝑈 𝑗−1; 𝑄̄𝑗
𝑈 ∶= 𝑎𝑗

29: Add 𝜆𝑗 to 

30: else {𝜆𝑗 < 𝜆𝑗−1}
31: Remove 𝜆𝑗−1 from 
32: end if
33: if min(𝜅𝑗−1, 𝜅𝑗) < 𝛼𝑗𝑗 ≤ max(𝜆𝑗−1, 𝜆𝑗) then
34: Add 𝛼𝑗𝑗 to 
35: end if
36: if min(𝜅𝑗−1, 𝜅𝑗) ≤ 𝛽𝑗𝑗 < max(𝜆𝑗−1, 𝜆𝑗) then
37: Add 𝛽𝑗𝑗 to 
38: end if
39: if 𝜅𝑗 > 𝜅𝑗−1 then
40: if 𝜅𝑗−1 < 𝛼𝑗𝑗 then
41: 𝑃 ∶= 𝑃 𝑗−1

𝐿 + 𝑙𝑗 ; 𝑄 ∶= 𝑄̄𝑗−1
𝐿

42: else if 𝛼𝑗𝑗 ≤ 𝜅𝑗−1 < 𝛽𝑗𝑗 then
43: 𝑃 ∶= 𝑃 𝑗−1

𝐿 ; 𝑄 ∶= 𝑄̄𝑗−1
𝐿 + 𝑎𝑗

44: else
45: 𝑃 ∶= 𝑃 𝑗−1

𝐿 + 𝑢𝑗 ; 𝑄 ∶= 𝑄̄𝑗−1
𝐿

46: end if
47: Apply procedure LowerSubproblem(𝑗)
48: end if
49: if 𝜆𝑗 < 𝜆𝑗−1 then
50: if 𝛽𝑗𝑗 < 𝜆𝑗−1 then
51: 𝑃 ∶= 𝑃 𝑗−1

𝑈 + 𝑢𝑗 ; 𝑄 ∶= 𝑄̄𝑗−1
𝑈

52: else if 𝛼𝑗𝑗 < 𝜆𝑗−1 ≤ 𝛽𝑗𝑗 then
53: 𝑃 ∶= 𝑃 𝑗−1

𝑈 ; 𝑄 ∶= 𝑄̄𝑗−1
𝑈 + 𝑎𝑗

54: else
55: 𝑃 ∶= 𝑃 𝑗−1

𝑈 + 𝑙𝑗 ; 𝑄 ∶= 𝑄̄𝑗−1
𝑈

56: end if
57: Apply procedure UpperSubproblem(𝑗)
58: end if
c
a
t
a
t
𝛺

W

N
a
2
W

L
i
r

P

i

maintain the breakpoint sets , , , and . For instance, when 𝑛 is
mall, simple arrays might be sufficient for fast insertion and removal of
reakpoints, even though this increases the worst-case time complexity
o 𝑂(𝑛2). On the other hand, Hochbaum and Hong (1995) suggest
o keep the breakpoint sets by means of a so-called disjoint set data
tructure (see, e.g., Cormen et al. (2009)). Using such a structure, a
equence of 𝑂(𝑛) breakpoint insertions and deletions in sets of size at
ost 𝑛 can be done in 𝑂(𝑛) time using the algorithm in Gabow and
arjan (1985). However, it is unclear whether the algorithm in Gabow
nd Tarjan (1985) is fast in practice for two reasons. First, it is com-
licated and cumbersome to implement compared to other algorithms
or insertion and removal operations on disjoint set data structures
Galil and Italiano, 1991). Second, although the authors mention in

preliminary study (Gabow and Tarjan, 1983) that their algorithm
utperforms the state-of-the-art at that moment, the literature contains
ardly if any studies on its practical performance. Alternatively, one
ould use other algorithms (e.g., those evaluated in Patwary et al.
2010)) that have a worse worst-case time complexity but have been
hown to be fast in practice.

.4.3. A comparison of worst-case instances
To compare the difference in performance between ALGseq, ALGinf,

and ALGdec, we discuss in this section one worst-case instance for
ALGseq and one worst-case instance for ALGinf. In fact, we show that
this worst-case instance for ALGseq is essentially a best-case instance for
ALGinf and that the discussed worst-case instance for ALGinf is a best-
case instance for ALGseq. This suggests that the algorithms are in a sense
complementary. In general, these analyses may provide additional
insights into the strengths and weaknesses of these algorithms.
10

t

First, we discuss a worst-case instance for ALGseq. From the time
omplexity analysis for ALGseq in Section 4.4.2, we may conclude that
worst-case instance for ALGseq is one where the maximum size of

he breakpoint set  is 𝛺(𝑛). In particular, if for a given instance first
ll breakpoints are inserted in and afterwards removed from , the
ime complexity all breakpoint operations together is ∑

𝑖∈ 𝛺(log 𝑖) =
(𝑛 log 𝑛). This holds, e.g., for the following instance:

C-1: min
𝒙∈R𝑛

∑

𝑖∈

1
2
𝑥2𝑖

s.t.
∑

𝑖∈
= 2𝑛2 + 𝑛 − 1

2
𝑛(𝑛 + 1) − 1

2
,

1
2
𝑗(𝑗 + 1) ≤

∑

𝑖∈ 𝑗

𝑥𝑖 ≤ 2𝑗𝑛 + 𝑗 − 1
2
𝑗(𝑗 + 1), 𝑗 ∈  𝑛−1,

𝑖 ≤ 𝑥𝑖 ≤ 2𝑛 + 1 − 𝑖, 𝑖 ∈  .

ote that this is in fact an instance of QRAP since the nested constraints
re redundant, i.e., we have ∑

𝑖∈ 𝑗 𝑖 = 1
2 𝑗(𝑗+1) and ∑

𝑖∈ 𝑗 (2𝑛+1− 𝑖) =
𝑗𝑛+ 𝑗− 1

2 𝑗(𝑗+1) for all 𝑗 ∈  𝑛−1. We show by means of Lemma 7 that
C-1 is indeed a worst-case instance of ALGseq:

emma 7. When applying ALGseq to WC-1, first 𝛺(𝑛) breakpoints are
nserted in the breakpoint set  and subsequently 𝛺(𝑛) breakpoints are
emoved from  throughout the course of the algorithm.

roof. See Appendix A.4. □

Considering the performance of the two other algorithms for this
nstance, note that the time complexity of ALGinf reduces to 𝑂(𝑛) since

he nested constraints are redundant and thus not violated in the

Computers and Operations Research 135 (2021) 105451M.H.H. Schoot Uiterkamp et al.
Algorithm 5 Procedure LowerSubproblem(𝑗).
1: repeat
2: Choose minimum to-be-considered breakpoint: 𝛿 ∶=

max(,,,) and corresponding member set  ∈ {,,,}
3: if 𝑃 +𝑄𝛿 = 𝐿𝑗 then
4: 𝜅𝑗 ∶= 𝛿; add 𝜅𝑗 to 
5: 𝑃 𝑗

𝐿 ∶= 𝑃 , 𝑄̄𝑗
𝐿 ∶= 𝑄

6: return
7: else if 𝑃 +𝑄𝛿 > 𝐿𝑗 then
8: (𝜅𝑗 < 𝛿:) 𝜅𝑗 ∶= (𝐿𝑗 − 𝑃)∕𝑄; add 𝜅𝑗 to 
9: 𝑃 𝑗

𝐿 ∶= 𝑃 , 𝑄̄𝑗
𝐿 ∶= 𝑄

10: return
11: else
12: (𝜅𝑗 > 𝛿:) breakpoint 𝛿 will be considered
13: if  ≡  then
14: Let breakpoint be 𝛿 ≡ 𝛼𝑘𝑘
15: 𝑃 ∶= 𝑃 − 𝑙𝑘; 𝑄 ∶= 𝑄 + 𝑎𝑘
16: Remove 𝛼𝑘𝑘 from 
17: else if  ≡  then
18: Let breakpoint be 𝛿 ≡ 𝛽𝑘𝑘
19: 𝑃 ∶= 𝑃 + 𝑢𝑘; 𝑄 ∶= 𝑄 − 𝑎𝑘
20: Remove 𝛽𝑘𝑘 from 
21: else if  ≡  then
22: Let breakpoint be 𝛿 ≡ 𝜅𝑘

23: 𝑃 ∶= 𝑃 − 𝑄̄𝑘
𝐿𝜅

𝑘, 𝑄 ∶= 𝑄 + 𝑄̄𝑘
𝐿

24: Remove 𝜅𝑘 from 
25: else
26: Let breakpoint be 𝛿 ≡ 𝜆𝑘

27: 𝑃 ∶= 𝑃 + 𝑄̄𝑘
𝑈𝜆

𝑘; 𝑄 ∶= 𝑄 − 𝑄̄𝑘
𝑈

28: Remove 𝜆𝑘 from 
29: end if
30: end if
31: until 𝜅𝑗 has been determined

relaxation of the problem. Furthermore, the time complexity of ALGdec
remains 𝑂(𝑛 log 𝑛) since the parameter choices do not influence the level
of recursion and the number of subproblems that must be solved at each
level of the recursion hierarchy.

Now we discuss a worst-case instance for ALGinf. This instance is
described in Wu et al. (2021) under the additional requirement that
the decision variables are integer-valued. However, the conclusion of
their analysis, namely that the instance is a worst-case instance, is not
affected by this requirement. As a consequence, it is also a worst-case
instance of QRAP-NC with continuous variables for ALGinf.

The instance is given by

WC-2: min
𝒙∈R𝑛

∑

𝑖∈

1
2
𝑥2𝑖

s.t.
∑

𝑖∈
𝑥𝑖 = (−1)𝑛𝑛,

(−1)𝑗𝑗 ≤
∑

𝑖∈ 𝑗

𝑥𝑖 ≤ (−1)𝑗𝑗 + 1, 𝑗 ∈  𝑛−1,

− 2𝑛 ≤ 𝑥𝑖 ≤ 2𝑛, 𝑖 ∈  .

In the following, we determine for this instance the number of break-
point operations and the size of the breakpoint sets in ALGseq. For
this particular instance, we can derive a closed-form expression for the
multipliers of the QRAP subproblems, i.e., 𝜿 and 𝝀:

Lemma 8. For the instance WC-2, the Lagrange multipliers 𝜅𝑗 and 𝜆𝑗 as
computed by ALGseq are given for each 𝑗 ∈  𝑛−1 by

𝜅𝑗 ∶= (−1)𝑗
(

2𝑗 − 3
2

)

− 1
2
, 𝜆𝑗 ∶= (−1)𝑗

(

2𝑗 − 3
2

)

+ 1
2
.

Proof. See Appendix A.5. □
11
Algorithm 6 Procedure UpperSubproblem(𝑗).
1: repeat
2: Choose maximum to-be-considered breakpoint: 𝛿 ∶=

min(,,,) and corresponding member set  ∈ {,,,}
3: if 𝑃 +𝑄𝛿 = 𝑈 𝑗 then
4: 𝜆𝑗 ∶= 𝛿; add 𝜆𝑗 to 
5: 𝑃 𝑗

𝑈 ∶= 𝑃 , 𝑄̄𝑗
𝑈 ∶= 𝑄

6: return
7: else if 𝑃 +𝑄𝛿 < 𝑈 𝑗 then
8: (𝜆𝑗 > 𝛿:) 𝜆𝑗 ∶= (𝑈 𝑗 − 𝑃)∕𝑄); add 𝜆𝑗 to 
9: 𝑃 𝑗

𝑈 ∶= 𝑃 , 𝑄̄𝑗
𝑈 ∶= 𝑄

10: return
11: else
12: (𝜆𝑗 < 𝛿): breakpoint will be considered
13: if  ≡  then
14: Let breakpoint be 𝛿 ≡ 𝛼𝑘𝑘
15: 𝑃 ∶= 𝑃 + 𝑙𝑘, 𝑄 ∶= 𝑄 − 𝑎𝑘
16: Remove 𝛼𝑘𝑘 from 
17: else if  ≡  then
18: Let breakpoint be 𝛿 ≡ 𝛽𝑘𝑘
19: 𝑃 ∶= 𝑃 − 𝑢𝑘; 𝑄 ∶= 𝑄 + 𝑎𝑘
20: Remove 𝛽𝑘𝑘 from 
21: else if  ≡  then
22: Let breakpoint be 𝛿 ≡ 𝜅𝑘

23: 𝑃 ∶= 𝑃 + 𝑄̄𝑘
𝐿𝜅

𝑘, 𝑄 ∶= 𝑄 − 𝑄̄𝑘
𝐿

24: Remove 𝜅𝑘 from 
25: else
26: Let breakpoint be 𝛿 ≡ 𝜆𝑘

27: 𝑃 ∶= 𝑃 − 𝑄̄𝑘
𝑈𝜆

𝑘; 𝑄 ∶= 𝑄 + 𝑄̄𝑘
𝑈

28: Remove 𝜆𝑘 from 
29: end if
30: end if
31: until 𝜆𝑗 has been determined

Note that Lemma 8 implies that 𝜅𝑗 < 𝜅𝑗−1 and 𝜆𝑗 < 𝜆𝑗−1 for 𝑗
uneven and 𝜅𝑗 > 𝜅𝑗−1 and 𝜆𝑗 > 𝜆𝑗−1 for 𝑗 even. Thus, in procedure
SolveSubproblems(𝑗), either 𝜅𝑗 is added to  (Line 13) and 𝜆𝑗−1 is
removed from  (Line 31) or 𝜅𝑗−1 is removed from  (Line 15) and 𝜆𝑗

is added to  (Line 29). Moreover, since 𝜅𝑗 > −2𝑛 = 𝛼𝑗𝑗 and 𝜆𝑗 < 2𝑛 = 𝛽𝑗𝑗
for all 𝑗 > 2, none of the initial breakpoints 𝛼𝑗𝑗 and 𝛽𝑗𝑗 are added to 
and  in Lines 33–38. Together, this means that the maximum number
of breakpoints in  =  ∪  ∪ ∪  at any moment during the course
of the algorithm is at most 3 (the initial number of breakpoints in 
plus one). Thus, the maximum required depth of the heaps that store
the breakpoint sets is independent of the problem size 𝑛. This means
that also the efficiency of each individual breakpoint operation on these
heaps is 𝑂(1) and thus the time complexity of all operations together
reduces from 𝑂(𝑛 log 𝑛) to 𝑂(𝑛). Since all other operations of ALGseq
have a total time complexity of 𝑂(𝑛), the time complexity of ALGseq
for the considered instance is 𝑂(𝑛).

We conclude this section with a final remark on the applicability
of ALGseq to the case where the variables are integer-valued. At the
end of Section 3, we mentioned that the initial sequential Algorithm
2 can be extended to integer-valued decision variables. The reason
for this is that, in this algorithm, the QRAP subproblems are solved
explicitly. Thus, these intermediate solutions can be used directly as
lower and upper single-variable bounds for the next subproblem. In
ALGseq, the unique optimal solution to each subproblem is not explic-
itly computed. Instead, we compute the (unique) Lagrange multiplier
corresponding to this solution. However, in the problem with integer
variables, subproblems may not have unique optimal solutions. More-
over, the characterizing property of Lagrange multipliers does not hold
anymore. This means that there may be multiple optimal solutions that

are characterized by the same Lagrange multiplier or such a multiplier

Computers and Operations Research 135 (2021) 105451M.H.H. Schoot Uiterkamp et al.

a

5

p
a
K
o
o
T
w
t
D
t
s
W
b
a
a
a
w

t
s
d

5

A
g
c
b
p
r
t
d
t
a
l
T
o
w
c
(
c

𝑈
f
d
𝑤
𝑈

5

i
(
t
d
b
f
f
(

L
d
q
(
e
m
o
l
P
m
b
a
m
s
i
a
b
t

5

t
i
w
t
T
v
e
m
c
s

e
s
t
t
i
l
e

Table 6
Parameter choices for the battery scheduling problem for each scenario.

𝑋min 𝑋max 𝐷

Small −4.0 ⋅ 103 4.0 ⋅ 103 8.0 ⋅ 104

Medium −2.0 ⋅ 104 2.0 ⋅ 104 4.0 ⋅ 105

Large −3.6 ⋅ 104 3.6 ⋅ 104 7.2 ⋅ 105

might not even exist. Since the uniqueness of the optimal solutions
and the presented characterization of solutions via Lagrange multipliers
play a crucial role in ALGseq, we believe that a direct extension of this
lgorithm to integer-valued decision variables might not be possible.

. Evaluation

In this section, we evaluate the performance of our Algorithm 3 as
resented in Section 4.4, to which we shall refer as ALGseq for clarity,
nd compare it with the state-of-the-art algorithms ALGinf from van der
lauw et al. (2017) and ALGdec from Vidal et al. (2019). We carry
ut two types of experiments. First, we evaluate the performance of
ur algorithm on instances of the battery scheduling problem BAT-
ERY using measured power consumption data as input. For this,
e tailor ALGseq to this problem and compare this implementation

o a tailored implementation of ALGinf within the simulation tool
EMKit (Hoogsteen et al., 2019). Second, we compare the execution

ime and scalability of our algorithm and of ALGinf and ALGdec on
ynthetic instances with sizes ranging from 10 to ten million variables.
e have implemented all three algorithms in Python (version 3.5) to

e able to compare them to the implementation in DEMKit, which is
lso written in Python, and made the corresponding code available
t https://github.com/mhhschootuiterkamp/QRAP_NC. All simulations
nd computations have been executed on a 2.60 GHz Dell Inspiron 15
ith an Intel Core i7-6700HQ CPU and 16 GB of RAM.

In Section 5.1, we describe in more detail the problem instances
hat we use in the evaluation. Subsequently, in Section 5.2, we discuss
everal implementation choices and in Section 5.3 we present and
iscuss the results of our evaluation.

.1. Problem instances

For the comparison of the tailored implementation of our algorithm
LGseq with the tailored implementation of ALGinf within DEMKit, we
enerate instances of the problem BATTERY using measured power
onsumption data as input. For this, we consider the setting where a
attery charging schedule for two consecutive days needs to be com-
uted. This scheduling horizon is divided into 15-minute time intervals,
esulting in 𝑛 = 192. To study the influence of the battery size on
he solving time, we consider three scenarios that correspond to three
ifferent battery sizes and denote them by Small, Medium, and Large. In
hese scenarios, the battery capacity is 20 kWh, 100 kWh, or 180 kWh
nd the (dis)charging rate is 4 kW, 20 kW, or 36 kW respectively. This
eads to 𝛥𝑡 = 1

4 and to the values for 𝑋min, 𝑋max, and 𝐷 as given in
able 6. Note that this is equivalent to the situation where either 10, 50,
r 90 percent of the households have installed a smaller ‘‘home’’ battery
ith a capacity of 5 kWh and a (dis)charging rate of 1 kW, which

orresponds to real-life field tests such as described in Reijnders et al.
2018). We set both the initial and target SoC to a given fraction of the
apacity, i.e., 𝑆start = 𝑆end = 𝑠𝐷, where 𝑠 ∈ {0, 0.1, 0.2,… , 1}. For each

scenario, we simulate 50 battery schedules of two days. As input for the
base load 𝒑, we use measurement data of the actual power consumption
of 40 households for 100 consecutive days that were obtained in the
field test described in Hoogsteen et al. (2017).

For the scalability analysis, we generate synthetic instances in the
same way as in Vidal et al. (2019). For this, we consider instance sizes 𝑛
in the set {10, 20, 50, 100, 200, 500,… , 107} and for each of these sizes,
we generate 10 instances. In each instance, we sample the parameters
12
𝑎, 𝑙, and 𝑢 from the uniform distributions 𝑈 (0, 1), 𝑈 (0.1, 0.5), and
(0.5, 0.9) respectively. To generate the nested bounds 𝐿 and 𝑈 , we

irst draw for each 𝑖 ∈  two values 𝑋𝑖 and 𝑌𝑖 from the uniform
istribution 𝑈 (𝑙𝑖, 𝑢𝑖). Subsequently, we define for each 𝑗 ∈  the values
𝑗
1 ∶=

∑

𝑖∈ 𝑗 𝑋𝑖 and 𝑤𝑗
2 ∶=

∑

𝑖∈ 𝑗 𝑌𝑖 and we set 𝐿𝑗 ∶= min(𝑤𝑗
1, 𝑤

2
𝑗) and

𝑗 ∶= max(𝑤𝑗
1, 𝑤

𝑗
2) for 𝑗 < 𝑛 and 𝐿𝑛 = 𝑈𝑛 = 1

2 (𝑤
𝑛
1 +𝑤𝑛

2).

.2. Implementation details

In both the divide-and-conquer algorithm ALGdec and the
nfeasibility-guided algorithm ALGinf, we use the algorithm from Kiwiel
2008) to solve the QRAP subproblems. In this algorithm, we replaced
he proposed linear-time procedure for finding medians by the proce-
ure statistics.median(). The reason for this is, as mentioned
efore, that linear-time algorithms such as in Blum et al. (1973) for
inding medians are relatively slow in practice due to the large constant
actor in their complexity (see also Kiwiel (2005) and Alexandrescu
2017)).

For the double-ended queues needed in ALGseq for the optimal
agrange multipliers 𝜅 and 𝜆, we use the Python container data type
eque. Moreover, we initially implemented the double-ended priority
ueues for the lower and upper initial breakpoint values (𝛼𝑖𝑖)𝑖∈ and
𝛽𝑖𝑖)𝑖∈ as symmetric min–max heaps (Arvind and Rangan, 1999). How-
ver, initial tests indicated that using instead a coupled min-heap and
ax-heap implementation with total correspondence leads to similar

r even lower execution times of the overall algorithm. Moreover, the
atter data structure is much simpler to implement using the standard
ython library heapq. Therefore, we use this method instead of min–
ax heaps. In this alternative method, we insert new breakpoints in

oth the min-heap and the max-heap and use the min-heap to find
nd delete a minimum breakpoint (in the lower subproblems) and the
ax-heap to find and delete a maximum breakpoint (in the upper

ubproblems). Moreover, we assign to each breakpoint a flag that
s 1 if the breakpoint has been removed from either of the heaps
nd 0 otherwise. This prevents that we find a minimum (maximum)
reakpoint in the min-heap (max-heap) that was already considered in
he other heap and thus has been removed from the breakpoint search.

.3. Results and discussion

In this section, we present and discuss the results of our evalua-
ion. First, we discuss the results of the comparison of the tailored
mplementation of ALGseq with the tailored implementation of ALGinf
ithin DEMKit. Fig. 2 shows the ratios between the execution times of

he tailored implementation of ALGinf and that of ALGseq. Moreover,
ables 7–9 contain for each scenario and each initial and target SoC
alue the mean, maximum, and coefficient of variation (CoV) of the
xecution times. The CoV is the sample deviation divided by the sample
ean and is a suitable measure of the variation between samples when

omparing different collections of samples with significantly different
ample means.

Tables 7–9 show that the mean execution time of ALGseq is similar in
ach scenario, whereas that of ALGinf appears to decrease as the battery
ize increases. This implies that also the ratios between the execution
imes decrease as the battery size increases, which is confirmed by
he boxplots in Fig. 2. In particular, a smaller battery size seems to
mply that ALGseq is likely to be faster than ALGinf whereas ALGinf is
ikely to be faster for larger battery size. The reason for this is that the
xecution time of ALGinf heavily depends on the number of tight nested

constraints in an optimal solution, i.e., on the number of distinct values
of 𝑣𝑗 for 𝑗 ∈  (see also Section 4.3). To support this fact, we plot
in Fig. 3 boxplots of these numbers. Note that when the initial SoC is
20% or 30% of the battery capacity in the scenario Large, in only 4
of the 50 instances the number of tight constraints was more than 1,
meaning that in the remaining 46 instances the optimal solution to the

relaxation of the problem did not violate any of the nested constraints.

https://github.com/mhhschootuiterkamp/QRAP_NC

Computers and Operations Research 135 (2021) 105451M.H.H. Schoot Uiterkamp et al.
Fig. 2. Boxplots of the execution time of the tailored implementation of ALGinf within DEMKit divided by that of the tailored implementation of ALGseq for the three scenarios.
Ratios larger than 1 imply that ALGseq was faster than ALGinf.
Fig. 3. Boxplots of the number of tight constraints in the optimal solutions for the three scenarios.
Table 7
The mean, maximum, and coefficient of variation of the execution times of the tailored
implementation of ALGseq and the tailored implementation of ALGinf within DEMKit for
the scenario Small.
𝑠 ALGseq ALGinf within DEMKit

Mean (s) Max (s) CoV Mean (s) Max (s) CoV

0 1.80 ⋅ 10−3 2.09 ⋅ 10−3 5.80 ⋅ 10−2 6.15 ⋅ 10−3 7.23 ⋅ 10−3 7.61 ⋅ 10−2

0.1 1.78 ⋅ 10−3 2.14 ⋅ 10−3 6.18 ⋅ 10−2 6.15 ⋅ 10−3 7.16 ⋅ 10−3 6.52 ⋅ 10−2

0.2 1.81 ⋅ 10−3 2.77 ⋅ 10−8 9.19 ⋅ 10−2 6.10 ⋅ 10−3 7.15 ⋅ 10−3 7.17 ⋅ 10−2

0.3 1.79 ⋅ 10−3 2.25 ⋅ 10−3 7.70 ⋅ 10−2 6.10 ⋅ 10−3 7.10 ⋅ 10−3 7.34 ⋅ 10−2

0.4 1.79 ⋅ 10−3 2.44 ⋅ 10−3 7.25 ⋅ 10−2 6.07 ⋅ 10−3 7.11 ⋅ 10−3 7.10 ⋅ 10−2

0.5 1.77 ⋅ 10−3 2.25 ⋅ 10−3 6.28 ⋅ 10−2 6.02 ⋅ 10−3 6.94 ⋅ 10−3 6.41 ⋅ 10−2

0.6 1.83 ⋅ 10−3 4.00 ⋅ 10−3 1.89 ⋅ 10−1 6.01 ⋅ 10−3 7.09 ⋅ 10−3 6.78 ⋅ 10−2

0.7 1.77 ⋅ 10−3 2.21 ⋅ 10−3 6.49 ⋅ 10−2 6.05 ⋅ 10−3 6.97 ⋅ 10−3 7.69 ⋅ 10−2

0.8 1.80 ⋅ 10−3 2.68 ⋅ 10−3 1.00 ⋅ 10−1 6.05 ⋅ 10−3 7.06 ⋅ 10−3 7.52 ⋅ 10−2

0.9 1.79 ⋅ 10−3 2.87 ⋅ 10−3 1.24 ⋅ 10−1 5.97 ⋅ 10−3 7.88 ⋅ 10−3 8.48 ⋅ 10−2

1 1.79 ⋅ 10−3 2.18 ⋅ 10−3 6.02 ⋅ 10−2 6.01 ⋅ 10−3 8.22 ⋅ 10−3 8.81 ⋅ 10−2

Table 8
The mean, maximum, and coefficient of variation of the execution times of the tailored
implementation of ALGseq and the tailored implementation of ALGinf within DEMKit for
the scenario Medium.
𝑠 ALGseq ALGinf within DEMKit

Mean (s) Max (s) CoV Mean (s) Max (s) CoV

0 1.71 ⋅ 10−3 2.40 ⋅ 10−3 1.19 ⋅ 10−1 1.88 ⋅ 10−3 3.45 ⋅ 10−3 3.10 ⋅ 10−1

0.1 1.64 ⋅ 10−3 1.96 ⋅ 10−3 7.39 ⋅ 10−2 1.45 ⋅ 10−3 3.31 ⋅ 10−3 4.47 ⋅ 10−1

0.2 1.66 ⋅ 10−3 2.40 ⋅ 10−3 1.03 ⋅ 10−1 1.47 ⋅ 10−3 3.34 ⋅ 10−3 4.78 ⋅ 10−1

0.3 1.76 ⋅ 10−3 3.50 ⋅ 10−3 1.85 ⋅ 10−1 1.68 ⋅ 10−3 3.43 ⋅ 10−3 4.41 ⋅ 10−1

0.4 1.65 ⋅ 10−3 2.36 ⋅ 10−3 1.07 ⋅ 10−1 1.76 ⋅ 10−3 3.51 ⋅ 10−3 3.45 ⋅ 10−1

0.5 1.66 ⋅ 10−3 2.42 ⋅ 10−3 1.08 ⋅ 10−1 1.95 ⋅ 10−3 3.27 ⋅ 10−3 2.83 ⋅ 10−1

0.6 1.65 ⋅ 10−3 2.48 ⋅ 10−3 9.75 ⋅ 10−2 2.23 ⋅ 10−3 3.52 ⋅ 10−3 2.26 ⋅ 10−1

0.7 1.68 ⋅ 10−3 2.09 ⋅ 10−3 8.46 ⋅ 10−2 2.32 ⋅ 10−3 3.42 ⋅ 10−3 1.85 ⋅ 10−1

0.8 1.64 ⋅ 10−3 1.94 ⋅ 10−3 6.79 ⋅ 10−2 2.36 ⋅ 10−3 3.19 ⋅ 10−3 1.61 ⋅ 10−1

0.9 1.70 ⋅ 10−3 2.17 ⋅ 10−3 1.02 ⋅ 10−1 2.53 ⋅ 10−3 3.50 ⋅ 10−3 1.63 ⋅ 10−1

1 1.67 ⋅ 10−3 2.11 ⋅ 10−3 8.41 ⋅ 10−2 2.61 ⋅ 10−3 4.05 ⋅ 10−3 1.54 ⋅ 10−1

The relation between the number of tight nested constraints and the
ratios is also strongly visible when comparing Figs. 2 and 3: the ratios
increase as the number of tight constraints increases.
13

t

Table 9
The mean, maximum, and coefficient of variation of the execution times of the tailored
implementation of ALGseq and the tailored implementation of ALGinf within DEMKit for
the scenario Large.
𝑠 ALGseq ALGinf within DEMKit

Mean (s) Max (s) CoV Mean (s) Max (s) CoV

0 1.59 ⋅ 10−3 2.15 ⋅ 10−3 7.33 ⋅ 10−2 1.60 ⋅ 10−3 2.76 ⋅ 10−3 2.98 ⋅ 10−1

0.1 1.58 ⋅ 10−3 1.90 ⋅ 10−3 7.33 ⋅ 10−2 8.93 ⋅ 10−4 2.11 ⋅ 10−3 5.22 ⋅ 10−1

0.2 1.58 ⋅ 10−3 1.94 ⋅ 10−3 8.61 ⋅ 10−2 7.82 ⋅ 10−4 2.04 ⋅ 10−3 4.77 ⋅ 10−1

0.3 1.55 ⋅ 10−3 2.16 ⋅ 10−3 8.79 ⋅ 10−2 7.45 ⋅ 10−4 2.00 ⋅ 10−3 4.66 ⋅ 10−1

0.4 1.54 ⋅ 10−3 2.05 ⋅ 10−3 7.06 ⋅ 10−2 8.22 ⋅ 10−4 2.30 ⋅ 10−3 5.18 ⋅ 10−1

0.5 1.54 ⋅ 10−3 2.05 ⋅ 10−3 7.67 ⋅ 10−2 1.02 ⋅ 10−3 2.42 ⋅ 10−3 5.51 ⋅ 10−1

0.6 1.53 ⋅ 10−3 1.83 ⋅ 10−3 6.24 ⋅ 10−2 1.34 ⋅ 10−3 2.63 ⋅ 10−3 4.38 ⋅ 10−1

0.7 1.55 ⋅ 10−3 1.77 ⋅ 10−3 6.22 ⋅ 10−2 1.72 ⋅ 10−3 2.61 ⋅ 10−3 2.75 ⋅ 10−1

0.8 1.53 ⋅ 10−3 1.86 ⋅ 10−3 5.80 ⋅ 10−2 2.09 ⋅ 10−3 2.95 ⋅ 10−3 1.87 ⋅ 10−1

0.9 1.53 ⋅ 10−3 1.94 ⋅ 10−3 6.34 ⋅ 10−2 2.31 ⋅ 10−3 2.98 ⋅ 10−3 1.69 ⋅ 10−1

1 1.52 ⋅ 10−3 1.77 ⋅ 10−3 4.58 ⋅ 10−2 2.51 ⋅ 10−3 3.16 ⋅ 10−3 1.36 ⋅ 10−1

Table 10
Percentage of instances where the tailored implementation of ALGseq is faster than the
tailored implementation of ALGinf within DEMKit given the number of tight nested
constraints in their optimal solutions.

Number of tight nested constraints 1 2 3 4 5 6 ≥ 7

‘‘Win’’ percentage 0.0 2.2 30.2 62.8 83.8 93.4 100

From these results, we can derive a ‘‘rule of thumb’’ for the choice
of a proper algorithm to use given the expected number of tight nested
constraints. To this end, we compute for each number of tight con-
straints the percentage of instances where the tailored implementation
of ALGseq runs faster than the tailored implementation of ALGinf within
DEMKit given the optimal solution has this particular number of tight
nested constraints (see Table 10). These values suggest that when
the number of tight constraints is more than 4

192 ≈ 2.1 percent, our
algorithm is faster in more than 50% of the instances. In particular,
when the number of tight constraints is 7

192 ≈ 3.6 percent or more, the
tailored implementation of our algorithm ALGseq is always faster.

Note that this rule-of-thumb is in line with the physical interpreta-
ion of tight nested constraints in BATTERY. For this, note that a battery

Computers and Operations Research 135 (2021) 105451M.H.H. Schoot Uiterkamp et al.

A
m

s
o

e
A

m
t
a

W
a
c
i

o
i
e
t
r
s
a
Q
m
o

i
t
o
i
c
t
t

A
o
n
l
(
v
a
i

(
w

6

a
s
c
u
c
m
t
s

o
p
a
s
i
t
w
n
b
p
W
t
t
r
t
n

o
a
D
a

Table 11
Mean and coefficient of variation of the execution times.
𝑛 Mean (s) CoV

ALGseq ALGinf ALGdec ALGseq ALGinf ALGdec

10 1.33 ⋅ 10−4 2.54 ⋅ 10−4 1.44 ⋅ 10−3 9.97 ⋅ 10−1 5.40 ⋅ 10−1 1.77 ⋅ 10−1

20 1.80 ⋅ 10−4 4.12 ⋅ 10−4 3.11 ⋅ 10−3 7.32 ⋅ 10−2 2.32 ⋅ 10−1 8.01 ⋅ 10−2

50 5.00 ⋅ 10−4 1.05 ⋅ 10−3 9.41 ⋅ 10−3 3.06 ⋅ 10−1 2.53 ⋅ 10−1 2.24 ⋅ 10−1

100 9.06 ⋅ 10−4 1.97 ⋅ 10−3 2.07 ⋅ 10−2 6.51 ⋅ 10−2 3.44 ⋅ 10−1 1.35 ⋅ 10−1

200 1.90 ⋅ 10−3 4.02 ⋅ 10−3 4.16 ⋅ 10−2 6.92 ⋅ 10−2 3.83 ⋅ 10−1 5.18 ⋅ 10−2

500 4.98 ⋅ 10−3 1.05 ⋅ 10−2 1.20 ⋅ 10−1 9.34 ⋅ 10−2 3.08 ⋅ 10−1 3.90 ⋅ 10−2

1,000 9.76 ⋅ 10−3 1.98 ⋅ 10−2 2.55 ⋅ 10−1 4.90 ⋅ 10−2 3.75 ⋅ 10−1 4.62 ⋅ 10−2

2,000 2.04 ⋅ 10−2 4.48 ⋅ 10−2 5.47 ⋅ 10−1 1.92 ⋅ 10−2 2.27 ⋅ 10−1 1.86 ⋅ 10−2

5,000 5.27 ⋅ 10−2 1.07 ⋅ 10−1 1.48 3.22 ⋅ 10−2 3.40 ⋅ 10−1 2.98 ⋅ 10−2

10,000 1.13 ⋅ 10−1 2.25 ⋅ 10−1 3.11 8.73 ⋅ 10−2 3.59 ⋅ 10−1 3.06 ⋅ 10−2

20,000 2.23 ⋅ 10−1 4.61 ⋅ 10−1 6.56 3.06 ⋅ 10−2 2.48 ⋅ 10−1 1.80 ⋅ 10−2

50,000 5.76 ⋅ 10−1 1.35 1.77 ⋅ 1001 3.02 ⋅ 10−2 3.44 ⋅ 10−1 2.35 ⋅ 10−2

100,000 1.18 2.88 3.77 ⋅ 1001 1.99 ⋅ 10−2 2.52 ⋅ 10−1 1.76 ⋅ 10−2

200,000 2.49 5.21 7.92 ⋅ 1001 4.97 ⋅ 10−2 2.66 ⋅ 10−1 2.20 ⋅ 10−2

500,000 6.66 1.37 ⋅ 1001 2.11 ⋅ 1002 7.78 ⋅ 10−2 1.70 ⋅ 10−1 1.26 ⋅ 10−2

1,000,000 1.42 ⋅ 1001 3.35 ⋅ 1001 4.49 ⋅ 1002 3.23 ⋅ 10−2 3.01 ⋅ 10−1 1.50 ⋅ 10−2

2,000,000 2.94 ⋅ 1001 5.11 ⋅ 1001 9.34 ⋅ 1002 7.04 ⋅ 10−2 3.16 ⋅ 10−1 1.26 ⋅ 10−2

5,000,000 9.26 ⋅ 1001 1.96 ⋅ 1002 2.54 ⋅ 1003 8.01 ⋅ 10−2 1.91 ⋅ 10−1 1.58 ⋅ 10−2

10,000,000 1.80 ⋅ 1002 3.48 ⋅ 1002 5.27 ⋅ 1003 1.69 ⋅ 10−1 2.87 ⋅ 10−1 1.44 ⋅ 10−2

being completely empty or full is equivalent to a nested constraint of
BATTERY being tight. When the charging rates of the battery are large,
the battery is better able to, at a given moment, flatten large peaks
or drops in power consumption. However, the latter is also dependent
on whether there is enough space (energy) left in the battery to store
(dispatch) this energy, which is more likely when the battery capacity
is large. Thus, when adopting a large battery for load profile flattening,
it is less likely that it will be completely empty or full.

Although the ratio between the execution times of ALGseq and
LGinf appears to depend significantly on the battery size, the maxi-
um and CoV of the execution times of ALGseq is on average around

1.9 and 3.0 times smaller than that of ALGinf respectively. This means
that the execution times of ALGseq are on average more stable than
those of ALGinf, regardless of the battery size. For DEM in general
and DEMKit in particular, this is beneficial since the coordination and
optimization of schedules for different devices is often done in parallel
due to the decentralized nature of the coordination (see, e.g., Hoogsteen
et al. (2018)). As a consequence, the execution time of the entire
coordination and optimization framework is constrained by the max-
imum execution time required for solving one (subset of) device-level
optimization problem(s). Thus, using ALGseq instead of ALGinf within
uch a framework may significantly reduce the overall execution time
f the framework.

In the following, we present and discuss the results of the scalability
valuation. Fig. 4 shows the execution times of the three algorithms
LGseq, ALGinf, and ALGdec, and Table 11 shows for each studied

instance size 𝑛 the mean and CoV of the execution times of the cor-
responding instances. The added regression lines in Fig. 4 are the fitted
power laws of the execution times, i.e., for each algorithm we fit the
function 𝜙(𝑛) = 𝑐1 ⋅ 𝑛𝑐2 to the execution times. These lines indicate that
the practical execution time of all three algorithms is close to 𝑂(𝑛),
with ALGseq and ALGinf being very close together and closer to 𝑂(𝑛)
than ALGdec. However, the CoVs for ALGinf are around one order of

agnitude larger than those of both ALGseq and ALGdec. This suggests
hat the execution time of the latter two algorithms is significantly less
ffected by the choice of problem parameters than ALGinf. This is in line

the results of the comparison of the tailored implementation of ALGseq
for BATTERY with that of ALGinf within DEMKit.

The results in Fig. 4 and Table 11 indicate that on average ALGseq
is 26.7 times faster than ALGdec and 2.14 times faster than ALGinf.

ith regard to the performance of ALGdec, we acknowledge that ALGdec
nd in particular the updating scheme for the single-variable bounds
an probably be implemented more efficiently than in the current
14

mplementation. To reduce the influence of the overall implementation I
n the results of this study, we measured the total time that is spent
n ALGdec on solving QRAP subproblems and compared this to the
xecution times of ALGseq and ALGinf. This alternative time represents
he time that is minimally required to solve all QRAP subproblems
egardless of the implementation of the scheme used to update the
ingle-variable bounds. These measurements indicate that on average
round 61% of the total execution time of ALGdec is spent on solving
RAP subproblems. However, this time is still on average 16.3 times
ore than the execution time of ALGseq and 8.3 times more than that

f ALGinf.
Furthermore, Table 12 reports on several implementation-

ndependent statistics of the algorithm execution. More precisely, the
able shows the mean and CoV of the number of executed breakpoint
perations in ALGseq and the number of solved QRAP subproblems
n ALGinf and ALGdec. These operations and subproblems are the
omputational bottleneck of the corresponding algorithms and thus
hese results provide additional insight in the practical performance of
he algorithms.

Table 12 indicates that the number of breakpoint operations within
LGseq appears to grow linearly in 𝑛. This is in line with the proof
f Lemma 6 where we stated that this number is 𝑂(𝑛). Moreover, the
umber of QRAP subproblems that is solved in ALGinf is significantly
ess than in ALGdec. This is in line with the findings in Wu et al.
2021), who studied among others QRAP-NC with discrete decision
ariables. One reason for this is that the decomposition within ALGdec
lgorithm always happens through the middle, i.e., a QRAP subproblem
n 𝑘 variables is split into two smaller QRAP subproblems in ⌊

𝑘
2 ⌋

and ⌈

𝑘
2 ⌉ respectively. As a consequence, the number of solved QRAP

subproblems for an instance with 𝑛 variables is always given by 8𝑛 − 4
see also Vidal et al. (2019) and Wu et al. (2021)). This also explains
hy the CoV for ALGdec is always zero.

. Conclusions

We proposed an 𝑂(𝑛 log 𝑛) time algorithm for quadratic resource
llocation problems with lower and upper bound constraints on nested
ums of variables. As opposed to existing algorithms with the same time
omplexity, our algorithm can achieve the 𝑂(𝑛 log 𝑛) time complexity
sing only basic data structures and is therefore easier to implement. In
omputational experiments, we demonstrate the good practical perfor-
ance of our approach, both on synthetic data and on instances from

he application area of decentralized energy management (DEM) for
mart grids that use measured power consumption data as input.

Our approach builds upon monotonicity arguments that find their
rigin in the validity of greedy algorithms for convex optimization
roblems over submodular constraints (Hochbaum, 1994; Hochbaum
nd Hong, 1995). Such monotonicity arguments have been primarily
tudied for resource allocation problems where the objective function
s separable, i.e., can be written as the sum of single-variable func-
ions. However, in previous work (Schoot Uiterkamp et al., 2020)
e prove the validity of similar monotonicity arguments to solve a
onseparable resource allocation problem with so-called generalized
ound constraints. Moreover, recent results on the use of interior-
oint methods for nested resource allocation problems (Slager, 2019;
right and Lim, 2020) suggest that incorporating specific nonseparable

erms in the objective function does not increase the complexity of
he used solution method. Thus, one interesting direction for future
esearch is to investigate whether one can use monotonicity arguments
o derive efficient algorithms for resource allocation problems over
ested constraints with nonseparable objective functions.

With regard to the application within DEM systems, we compared
ur algorithm with an existing implementation of the state-of-the-art
lgorithm of van der Klauw et al. (2017) within a simulation tool for
EM research. One of our objectives was to decide which of these two
lgorithm is more suitable to use for a given (type of) problem instance.

t would be worthwhile to conduct a more thorough comparison and

Computers and Operations Research 135 (2021) 105451M.H.H. Schoot Uiterkamp et al.

o
G
S

Fig. 4. Execution times of ALGseq (circles, black), ALGinf (triangles, gray), and ALGdec (squares, open).
Table 12
Mean and coefficient of variation of the number of breakpoint operations (ALGseq) and number of solved QRAP subproblems (ALGinf
and ALGdec).
𝑛 Mean CoV

Breakpoint operations QRAP subproblems Breakpoint operations QRAP subproblems

ALGseq ALGinf ALGdec ALGseq ALGinf ALGdec

10 70.2 10.1 76 9.70 ⋅ 10−2 4.15 ⋅ 10−1 0
20 151.8 15.2 156 4.58 ⋅ 10−2 3.37 ⋅ 10−1 0
50 396.3 33.0 396 5.64 ⋅ 10−2 4.77 ⋅ 10−1 0

100 820.2 40.4 796 3.45 ⋅ 10−2 4.93 ⋅ 10−1 0
200 1,653.9 50.8 1,596 1.74 ⋅ 10−2 6.34 ⋅ 10−1 0
500 4,149.3 112.2 3,996 1.53 ⋅ 10−2 5.71 ⋅ 10−1 0

1,000 8,315.1 154.2 7,996 1.10 ⋅ 10−2 8.16 ⋅ 10−1 0
2,000 16,655.1 258.6 15,996 6.99 ⋅ 10−3 5.91 ⋅ 10−1 0
5,000 41,744.7 347.4 39,996 4.23 ⋅ 10−3 8.08 ⋅ 10−1 0

10,000 83,438.6 564.8 79,996 2.28 ⋅ 10−3 7.95 ⋅ 10−1 0
20,000 166,985.2 610.2 159,996 2.61 ⋅ 10−3 7.94 ⋅ 10−1 0
50,000 417,593.7 1,586.4 399,996 2.42 ⋅ 10−3 8.12 ⋅ 10−1 0

100,000 835 373.5 2,273.4 799,996 6.72 ⋅ 10−4 6.06 ⋅ 10−1 0
200,000 1,671,822.2 2,304.0 1,599,996 7.61 ⋅ 10−4 7.01 ⋅ 10−1 0
500,000 4,179,134.5 3,375.4 3,999,996 4.88 ⋅ 10−4 7.52 ⋅ 10−1 0

1,000,000 8,360,418.0 8,048.6 7,999,996 1.98 ⋅ 10−4 5.99 ⋅ 10−1 0
2,000,000 16,720,079.0 5,234.0 15,999,996 1.73 ⋅ 10−4 1.15 0
5,000,000 41,799,020.3 18,175.2 39,999,996 1.13 ⋅ 10−4 6.82 ⋅ 10−1 0

10,000,000 83,608,186.8 18,871.4 79,999,996 9.08 ⋅ 10−5 8.64 ⋅ 10−1 0
to develop an automated procedure to decide which algorithm is most
likely to be faster. Moreover, the nonseparable version of the studied
problem mentioned in the previous paragraph is related to energy
management of batteries in three-phase distribution networks, where
load profile flattening on all three phases together is required to avoid
blackouts in these networks (Weckx and Driesen, 2015; Hoogsteen
et al., 2017; Schoot Uiterkamp et al., 2020). Thus, research in this
direction is also relevant in the context of DEM.

CRediT authorship contribution statement

Martijn H.H. Schoot Uiterkamp: Conceptualization, Methodology,
Software, Validation, Formal analysis, Writing - original draft, Writing
- review & editing. Johann L. Hurink: Conceptualization, Methodol-
gy, Validation, Writing - review & editing, Supervision. Marco E.T.
erards: Conceptualization, Validation, Writing - review & editing,
upervision.
15
Acknowledgments

The authors thank the anonymous referees for their thorough assess-
ment of the manuscript and their constructive feedback. This research
has been conducted within the SIMPS project (647.002.003) supported
by NWO, The Netherlands and Eneco, The Netherlands.

Appendix. Proofs of Lemmas 1, 4, 5, 7, and 8

A.1. Proof of Lemma 1

Lemma 1. If 𝐿𝑗 ≤ 𝐴 ≤ 𝐵 ≤ 𝑈 𝑗 , we have 𝒙𝑗 (𝐴) ≤ 𝒙𝑗 (𝐵) for a given
𝑗 ∈  .

Proof. For convenience, we include the equality constraint (4) into the
nested constraints (5) by replacing these nested constraints by

𝐿̃𝑘 ≤
∑

𝑥𝑖 ≤ 𝑈̃𝑘, 𝑘 ∈  𝑗 ,

𝑖∈ 𝑘

Computers and Operations Research 135 (2021) 105451M.H.H. Schoot Uiterkamp et al.

K
V

H

e

where 𝐿̃𝑘 = 𝐿𝑘 and 𝑈̃𝑘 = 𝑈𝑘 for 𝑘 < 𝑗, and 𝐿̃𝑗 = 𝑈̃ 𝑗 = 𝐶. The
arush–Kuhn–Tucker (KKT) optimality conditions (see, e.g., Boyd and
andenberghe (2004)) for the subproblem QRAP-NC𝑗 (𝐶) are as follows:

𝑥𝑖
𝑎𝑖

+
𝑗
∑

𝑘=𝑖
(𝜂𝑗𝑘 − 𝜁 𝑗𝑘) + 𝜇𝑗

𝑖 − 𝜈𝑗𝑖 = 0, 𝑖 ∈  𝑗 , (A.1a)

𝐿̃𝑖 ≤
∑

𝑘∈ 𝑖

𝑥𝑘 ≤ 𝑈̃ 𝑖, 𝑖 ∈  𝑗 , (A.1b)

𝜂𝑗𝑖

(

𝑈̃ 𝑖 −
∑

𝑘∈ 𝑖

𝑥𝑘

)

= 0, 𝑖 ∈  𝑗 , (A.1c)

𝜁 𝑗𝑖

(

∑

𝑘∈ 𝑖

𝑥𝑘 − 𝐿̃𝑖

)

= 0, 𝑖 ∈  𝑗 , (A.1d)

𝜇𝑗
𝑖 (𝑢𝑖 − 𝑥𝑖) = 0, 𝑖 ∈  𝑗 , (A.1e)

𝜈𝑗𝑖 (𝑥𝑖 − 𝑙𝑖) = 0, 𝑖 ∈  𝑗 , (A.1f)

𝜂𝑗𝑖 , 𝜁
𝑗
𝑖 , 𝜇

𝑗
𝑖 , 𝜈

𝑗
𝑖 ≥ 0, 𝑖 ∈  𝑗 . (A.1g)

Let (𝜻 𝑗 (𝐶), 𝜼𝑗 (𝐶),𝝁𝑗 (𝐶), 𝝂𝑗 (𝐶)) denote the Lagrange multipliers cor-
responding to the optimal solution 𝒙𝑗 (𝐶). Thus, (𝒙𝑗 (𝐶), 𝜻 𝑗 (𝐶), 𝜼𝑗 (𝐶),
𝝁𝑗 (𝐶), 𝝂𝑗 (𝐶)) satisfy the KKT-conditions (A.1).

Suppose that there exists an index 𝑠 ∈  such that 𝑥𝑗𝑠(𝐴) > 𝑥𝑗𝑠(𝐵).
Let 𝑟 be the largest index with 𝑟 ≤ 𝑠 such that ∑

𝑘∈ 𝑟−1 𝑥𝑗𝑘(𝐴) ≥
∑

𝑘∈ 𝑟−1 𝑥𝑗𝑘(𝐵), and let 𝑡 be the smallest index with 𝑡 ≥ 𝑠 such that
∑

𝑘∈ 𝑡 𝑥𝑗𝑘(𝐴) ≤
∑

𝑘∈ 𝑡 𝑥𝑗𝑘(𝐵). By definition of 𝑟, 𝑠, and 𝑡, we have that

𝑡
∑

𝑖=𝑟
𝑥𝑗𝑖 (𝐵) =

∑

𝑖∈ 𝑡

𝑥𝑗𝑖 (𝐵) −
∑

𝑖∈ 𝑟−1

𝑥𝑗𝑖 (𝐵) ≥
∑

𝑖∈ 𝑡

𝑥𝑗𝑖 (𝐴) −
∑

𝑖∈ 𝑟−1

𝑥𝑗𝑖 (𝐴)

=
𝑡

∑

𝑖=𝑟
𝑥𝑗𝑖 (𝐴).

Moreover, observe that we cannot have 𝑟 = 𝑠 = 𝑡 simultaneously.
Indeed, if 𝑟 = 𝑠 = 𝑡, then we have by definition of 𝑟, 𝑠, and 𝑡 that
∑

𝑘∈ 𝑠

𝑥𝑗𝑘(𝐴) ≤
∑

𝑘∈ 𝑠

𝑥𝑗𝑘(𝐵) ≤
∑

𝑘∈ 𝑠−1

𝑥𝑗𝑘(𝐴) + 𝑥𝑗𝑠(𝐵).

This implies 𝑥𝑗𝑠(𝐴) ≤ 𝑥𝑗𝑠(𝐵), which is a contradiction. Thus, either 𝑟 < 𝑠
or 𝑠 < 𝑡 or both.

We show that we obtain a contradiction if 𝑟 < 𝑠. The proof for the
case where 𝑠 < 𝑡 is symmetrical. If 𝑟 < 𝑠, the following holds:

• By definition of 𝑟 and 𝑠, we have
∑

𝑘∈ 𝑟

𝑥𝑗𝑘(𝐴) <
∑

𝑘∈ 𝑟

𝑥𝑗𝑘(𝐵) =
∑

𝑘∈ 𝑟−1

𝑥𝑗𝑘(𝐵)+𝑥𝑗𝑟(𝐵) ≤
∑

𝑘∈ 𝑟−1

𝑥𝑗𝑘(𝐴)+𝑥𝑗𝑟(𝐵).

Thus, 𝑥𝑗𝑟(𝐴) < 𝑥𝑗𝑟(𝐵).
• For each 𝑘 such that 𝑟 ≤ 𝑘 ≤ 𝑠− 1, we have by definition of 𝑟 and
𝑠 and KKT-condition (A.1b) that

𝐿̃𝑘 ≤
∑

𝑖∈ 𝑘

𝑥𝑗𝑖 (𝐴) <
∑

𝑖∈ 𝑘

𝑥𝑗𝑖 (𝐵) ≤ 𝑈̃𝑘.

It follows from KKT-conditions (A.1c), (A.1d), and (A.1g) that
𝜁 𝑗𝑘(𝐵) = 𝜂𝑗𝑘(𝐴) = 0. Thus, for each 𝑟 ≤ 𝑘 ≤ 𝑠 − 1, we have

𝑗
∑

𝑖=𝑘
(𝜂𝑗𝑖 (𝐴) − 𝜁 𝑗𝑖 (𝐴)) −

𝑗
∑

𝑖=𝑘+1
(𝜂𝑗𝑖 (𝐴) − 𝜁 𝑗𝑖 (𝐴)) = 𝜂𝑗𝑘(𝐴) − 𝜁 𝑗𝑘(𝐴) ≤ 0

and
𝑗
∑

𝑖=𝑘
(𝜂𝑗𝑖 (𝐵) − 𝜁 𝑗𝑖 (𝐵)) −

𝑗
∑

𝑖=𝑘+1
(𝜂𝑗𝑖 (𝐵) − 𝜁 𝑗𝑖 (𝐵)) = 𝜂𝑗𝑘(𝐵) − 𝜁 𝑗𝑘(𝐵) ≥ 0.

In particular, this implies that
𝑗
∑

(𝜂𝑗𝑖 (𝐴) − 𝜁 𝑗𝑖 (𝐴)) ≤
𝑗
∑

(𝜂𝑗𝑖 (𝐴) − 𝜁 𝑗𝑖 (𝐴)) (A.2)
16

𝑖=𝑟 𝑖=𝑠
and
𝑗
∑

𝑖=𝑟
(𝜂𝑗𝑖 (𝐵) − 𝜁 𝑗𝑖 (𝐵)) ≥

𝑗
∑

𝑖=𝑠
(𝜂𝑗𝑖 (𝐵) − 𝜁 𝑗𝑖 (𝐵)). (A.3)

• We have 𝑙𝑟 ≤ 𝑥𝑗𝑟(𝐴) < 𝑥𝑗𝑟(𝐵) ≤ 𝑢𝑟. It follows from KKT-
conditions (A.1e)–(A.1g) that

𝜈𝑗𝑟 (𝐵) = 𝜇𝑗
𝑟 (𝐴) = 0. (A.4)

Similarly, since 𝑙𝑠 ≤ 𝑥𝑗𝑠(𝐵) < 𝑥𝑗𝑠(𝐴) ≤ 𝑢𝑠, we have by KKT-
conditions (A.1e)–(A.1g) that

𝜈𝑗𝑠 (𝐴) = 𝜇𝑗
𝑠(𝐵) = 0. (A.5)

We can now derive a contradiction as follows:
𝑗
∑

𝑖=𝑠
(𝜂𝑗𝑖 (𝐴) − 𝜁 𝑗𝑖 (𝐴)) = −

𝑥𝑗𝑠(𝐴)
𝑎𝑠

− 𝜇𝑗
𝑠(𝐴) + 𝜈𝑗𝑠 (𝐴) (A.6a)

< −
𝑥𝑗𝑠(𝐵)
𝑎𝑠

− 𝜇𝑗
𝑠(𝐵) + 𝜈𝑗𝑠 (𝐵) (A.6b)

=
𝑗
∑

𝑖=𝑠
(𝜂𝑗𝑖 (𝐵) − 𝜁 𝑗𝑖 (𝐵)) (A.6c)

≤
𝑗
∑

𝑖=𝑟
(𝜂𝑗𝑖 (𝐵) − 𝜁 𝑗𝑖 (𝐵)) (A.6d)

= −
𝑥𝑗𝑟(𝐵)
𝑎𝑟

− 𝜇𝑗
𝑟 (𝐵) + 𝜈𝑗𝑟 (𝐵) (A.6e)

< −
𝑥𝑗𝑟(𝐴)
𝑎𝑟

− 𝜇𝑗
𝑟 (𝐴) + 𝜈𝑗𝑟 (𝐴) (A.6f)

=
𝑗
∑

𝑖=𝑟
(𝜂𝑗𝑖 (𝐴) − 𝜁 𝑗𝑖 (𝐴)) (A.6g)

≤
𝑗
∑

𝑖=𝑠
(𝜂𝑗𝑖 (𝐴) − 𝜁 𝑗𝑖 (𝐴)). (A.6h)

ere,

• (A.6a), (A.6c), (A.6e), and (A.6g) follow from KKT-condition
(A.1a);

• (A.6b) follows from Eq. (A.5) and the fact that 𝑥𝑗𝑠(𝐴) > 𝑥𝑗𝑠(𝐵) and
𝑎𝑠 > 0;

• (A.6d) follows from Eq. (A.3);
• (A.6f) follows from Eq. (A.4) and the fact that 𝑥𝑗𝑟(𝐴) < 𝑥𝑗𝑟(𝐵) and
𝑎𝑠 > 0;

• (A.6h) follows from Eq. (A.2).

It follows that 𝑥𝑗𝑠(𝐴) ≤ 𝑥𝑗𝑠(𝐵). □

A.2. Proof of Lemma 4

Lemma 4. We have 𝜒𝑛 = 𝜅𝑛 = 𝜆𝑛. Moreover, for each 𝑗 ∈  𝑛−1, we
have:

1. 𝜒 𝑗+1 ≤ 𝜅𝑗 implies ∑𝑖∈ 𝑗 𝑥𝑛𝑖 (𝑅) = 𝐿𝑗 and 𝜒 𝑗 = 𝜅𝑗 ;
2. 𝜆𝑗 ≤ 𝜒 𝑗+1 implies ∑𝑖∈ 𝑗 𝑥𝑛𝑖 (𝑅) = 𝑈 𝑗 and 𝜒 𝑗 = 𝜆𝑗 ,
3. 𝜅𝑗 < 𝜒 𝑗+1 < 𝜆𝑗 implies 𝐿𝑗 <

∑

𝑖∈ 𝑗 𝑥𝑛𝑖 (𝑅) < 𝑈 𝑗 and 𝜒 𝑗 = 𝜒 𝑗+1.

Proof. We have 𝜒𝑛 = 𝜅𝑛 = 𝜆𝑛 since we defined 𝐿𝑛 = 𝑈𝑛 = 𝑅 and by
definition of the solution 𝒙𝑛(𝑅) the nested constraints 𝐿𝑛 ≤

∑

𝑖∈ 𝑥𝑛𝑖 (𝐿
𝑛)

and ∑

𝑖∈ 𝑥𝑛𝑖 (𝑈
𝑛) ≤ 𝑈𝑛 are tight. We prove the lemma by considering

ach of its three cases separately for each 𝑗 < 𝑛:

1. We prove this part of the lemma for the case that 𝑗 is the largest
index smaller than 𝑣𝑗+1 such that 𝜒 𝑗+1 ≤ 𝜅𝑗 , i.e., 𝜒𝑘+1 > 𝜅𝑘 for
all 𝑘 ∈ {𝑗 +1,… , 𝑣𝑗+1 −1}. Using this result, we show as follows
that the other case, i.e., both the situations where either 𝑗 = 𝑣𝑗+1

or where there exists an index 𝑘 > 𝑗 that it is the largest index
𝑗+1 𝑘+1 𝑘
in the set {𝑗 + 1,… , 𝑣 − 1} such that 𝜒 ≤ 𝜅 , leads to a

Computers and Operations Research 135 (2021) 105451M.H.H. Schoot Uiterkamp et al.
contradiction. In the former situation, it follows that 𝑗 + 1 > 𝑗 =
𝑣𝑗+1 ≥ 𝑗 + 1, which is a contradiction. In the latter situation,
the lemma applies for 𝑘, meaning that ∑

𝑖∈ 𝑘 𝑥𝑛𝑖 (𝑅) = 𝐿𝑘 and
thus 𝑣𝑘 = 𝑘. However, we also have by definition of 𝑣𝑗+1 that
𝑣𝑘 = 𝑣𝑗+1 since 𝑗 + 1 ≤ 𝑘 < 𝑣𝑗+1. This implies 𝑘 = 𝑣𝑗+1, which is
a contradiction.
If 𝜒 𝑗+1 ≤ 𝜅𝑗 , it follows from the lower breakpoint relations
in Eq. (9) that we have either 𝛼𝑗+1𝑖 ≥ 𝜅𝑗 ≥ 𝜒 𝑗+1 (if 𝜅𝑗 < 𝛽𝑗𝑖)
or 𝛼𝑗+1𝑖 = 𝛽𝑗𝑖 ≤ 𝜅𝑗 ≤ 𝜆𝑗 (if 𝛽𝑗𝑖 ≤ 𝜅𝑗) for all 𝑖 ≤ 𝑗 + 1. We show that
in both cases it holds that 𝑥𝑣𝑗+1𝑖 (𝑉 𝑣𝑗+1) = 𝑥𝑗𝑖 (𝐿

𝑗):

• In the former case, note that 𝛼𝑘𝑖 ≤ 𝛼𝑘+1𝑖 for all 𝑘 < 𝑛
by Eq. (9) and that 𝜒 𝑗+1 = 𝜒𝑘 for all 𝑘 ∈ {𝑗 + 1,… , 𝑣𝑗+1}
by definition of 𝜒 𝑗+1. Since 𝜒𝑘+1 > 𝜅𝑘 for all 𝑘 ∈ {𝑗 +
1,… , 𝑣𝑗+1 − 1}, we have that 𝛼𝑘𝑖 ≥ 𝛼𝑗+1𝑖 ≥ 𝜒 𝑗+1 = 𝜒𝑘+1 > 𝜅𝑘

for all 𝑘 ∈ {𝑗 + 1,… , 𝑣𝑗+1 − 1}. Thus, 𝑥𝑘𝑖 (𝐿
𝑘) = 𝑙𝑘𝑖 =

𝑥𝑘−1𝑖 (𝐿𝑘−1) for all 𝑘 ∈ {𝑗 + 1,… , 𝑣𝑗+1 − 1}, which implies
that 𝑥𝑗𝑖 (𝐿

𝑗) = 𝑥𝑣𝑗+1−1𝑖 (𝐿𝑣𝑗+1−1). Moreover, note that since
𝛼𝑣𝑗+1 ≥ 𝛼𝑗+1 ≥ 𝜒 𝑗+1 = 𝜒𝑣𝑗+1 , we have that 𝑥𝑣𝑗+1𝑖 (𝑉 𝑣𝑗+1) =
𝑥𝑣𝑗+1−1𝑖 (𝐿𝑣𝑗+1−1). It follows that 𝑥𝑣𝑗+1𝑖 (𝑉 𝑣𝑗+1) = 𝑥𝑗𝑖 (𝐿

𝑗).
• The latter case implies that 𝑥𝑗𝑖 (𝐿

𝑗) = 𝑥𝑗𝑖 (𝑈
𝑗) = 𝑢̄𝑗𝑖 . It follows

by Lemmas 1 and 2 that 𝑥𝑣𝑗+1𝑖 (𝑉 𝑣𝑗+1) ≤ 𝑥𝑣𝑗+1𝑖 (𝑈𝑣𝑗+1) ≤
𝑥𝑗𝑖 (𝑈

𝑗) = 𝑥𝑗𝑖 (𝐿
𝑗) ≤ 𝑥𝑣𝑗+1𝑖 (𝐿𝑣𝑗+1) ≤ 𝑥𝑣𝑗+1𝑖 (𝑉 𝑣𝑗+1).

On the one hand, if 𝑉 𝑣𝑗+1 = 𝐿𝑣𝑗+1 , we have

𝐿𝑗 =
∑

𝑖 𝑗

𝑥𝑗𝑖 (𝐿
𝑗) =

∑

𝑖∈ 𝑗

𝑥𝑣
𝑗+1

𝑖 (𝐿𝑣𝑗+1) = 𝐿𝑣𝑗+1 −
𝑣𝑗+1
∑

𝑖=𝑗+1
𝑥𝑣

𝑗+1
𝑖 (𝐿𝑣𝑗+1)

≥
∑

𝑖∈ 𝑣𝑗+1

𝑥𝑛𝑖 (𝑅) −
𝑣𝑗+1
∑

𝑖=𝑗+1
𝑥𝑛𝑖 (𝑅)

=
∑

𝑖∈ 𝑗

𝑥𝑛𝑖 (𝑅) ≥ 𝐿𝑗 ,

where the inequality follows since ∑

𝑖∈ 𝑣𝑗+1 𝑥𝑛𝑖 (𝑅) = 𝐿𝑣𝑗+1 and
by Lemma 2. On the other hand, if 𝑉 𝑣𝑗+1 = 𝑈𝑣𝑗+1 , we have by
Lemma 2 that

𝐿𝑗 =
∑

𝑖∈ 𝑗

𝑥𝑗𝑖 (𝐿
𝑗) =

∑

𝑖∈ 𝑗

𝑥𝑣
𝑗+1

𝑖 (𝑈𝑣𝑗+1) ≥
∑

𝑖∈ 𝑗

𝑥𝑛𝑖 (𝑈
𝑛) ≥ 𝐿𝑗 .

In both cases, it follows that ∑

𝑖∈ 𝑗 𝑥𝑛𝑖 (𝑅) = 𝐿𝑗 , from which it
follows directly that 𝜒 𝑗 = 𝜅𝑗 .

2. The proof for the case 𝜆𝑗 ≥ 𝜒 𝑗+1 is analogous to the proof for
the case 𝜒 𝑗+1 ≤ 𝜅𝑗 .

3. Suppose that 𝑥𝑗𝑖 (𝐿
𝑗) = 𝑥𝑛𝑖 (𝐿

𝑛) holds for all 𝑖 < 𝑗+1. By Lemma 2,
this implies that 𝑥𝑘𝑖 (𝐿

𝑘) = 𝑥𝑗𝑖 (𝐿
𝑗) = 𝑥𝑛𝑖 (𝐿

𝑛) for all 𝑘 ∈ {𝑗,… , 𝑛}
and 𝑖 < 𝑗 + 1. In particular, we have that 𝑥𝑘𝑖 (𝐿

𝑘) = 𝑙𝑘𝑖 for all
𝑘 ∈ {𝑗 + 1,… , 𝑛}, which implies that 𝜅𝑘 ≤ 𝛼𝑘𝑖 . Furthermore, note
that for any 𝑘′ ∈  there is at least one index 𝑖𝑘′ ≤ 𝑘 such
that 𝛼𝑘′𝑖𝑘′ ≤ 𝜅𝑘′ < 𝛽𝑘′𝑖𝑘′ . Otherwise, there exists 𝜖 > 0 such that
𝜅𝑘′ + 𝜖 is an optimal Lagrange multiplier. It follows from the
relation between 𝛼𝑘′𝑖𝑘′ and 𝛼𝑘

′+1
𝑖𝑘′

in Eq. (9) that 𝛼𝑘
′+1

𝑖𝑘′
= 𝜅𝑘′ for

any 𝑘′ < 𝑛. This implies in particular that 𝛼𝑘+1𝑖𝑘
= 𝜅𝑘 ≤ 𝛼𝑘𝑖𝑘−1 for

all 𝑘 ∈ {𝑗 + 1,… , 𝑛}. It follows that 𝜅𝑣𝑗+1 ≤ 𝛼𝑗+1𝑖𝑗
= 𝜅𝑗 and thus

that 𝜅𝑣𝑗+1 < 𝜒 𝑗+1 = 𝜒𝑣𝑗+1 . Since 𝜒𝑣𝑗+1 ∈ {𝜅𝑣𝑗+1 , 𝜆𝑣𝑗+1}, we have
𝜒𝑣𝑗+1 = 𝜆𝑣𝑗+1 , from which it follows that ∑𝑖∈ 𝑣𝑗+1 𝑥𝑛𝑖 (𝑅) = 𝑈𝑣𝑗+1 .
However, this implies that
∑

𝑖∈ 𝑣𝑗+1

𝑥𝑣
𝑗+1

𝑖 (𝐿𝑣𝑗+1) =
∑

𝑖∈ 𝑣𝑗+1

𝑥𝑣
𝑗+1

𝑖 (𝑅) = 𝑈𝑣𝑗+1 ≥
∑

𝑖∈ 𝑣𝑗+1

𝑥𝑣
𝑗+1

𝑖 (𝑈𝑣𝑗+1)

≥
∑

𝑖∈ 𝑣𝑗+1

𝑥𝑣
𝑗+1

𝑖 (𝐿𝑣𝑗+1).

This implies that ∑

𝑖∈ 𝑣𝑗+1 𝑥𝑣
𝑗+1

𝑖 (𝐿𝑣𝑗+1) =
∑

𝑖∈ 𝑣𝑗+1 𝑥𝑣
𝑗+1

𝑖 (𝑈𝑣𝑗+1),
𝑣𝑗+1 𝑣𝑗+1
17

from which it follows that 𝐿 = 𝑈 by the monotonicity of
𝑥𝑣𝑗+1 (⋅) as proven in Lemma 1. However, this is a contradiction
with the assumption that 𝐿𝑘 < 𝑈𝑘 for all 𝑘 < 𝑛. Hence, there
must be at least one index 𝑖′ such that 𝑥𝑗𝑖′ (𝐿

𝑗) < 𝑥𝑛𝑖′ (𝑅). It follows
that 𝐿𝑗 =

∑

𝑖∈ 𝑗 𝑥𝑗𝑖 (𝐿
𝑗) <

∑

𝑖∈ 𝑗 𝑥𝑛𝑖 (𝑅).
To prove that ∑𝑖∈ 𝑗 𝑥𝑛𝑖 (𝑅) < 𝑈 𝑗 , we can use a similar argument
wherein we show that the proposition 𝑥𝑗𝑖 (𝑈

𝑗) = 𝑥𝑛𝑖 (𝑅) cannot be
true for all 𝑖 < 𝑛. Together, this implies that 𝐿𝑗 <

∑

𝑖∈ 𝑗 𝑥𝑛𝑖 (𝑅) <
𝑈 𝑗 , from which it follows directly that 𝜒 𝑗 = 𝜒𝑣𝑗+1 = 𝜒 𝑗+1. □

A.3. Proof of Lemma 5

Lemma 5. For each 𝑖 ∈  , we have

𝑥𝑛𝑖 (𝑅) =

⎧

⎪

⎨

⎪

⎩

𝑙𝑖 if 𝜒 𝑖 < 𝛼𝑖𝑖 ,
𝑎𝑖𝜒 𝑖 if 𝛼𝑖𝑖 ≤ 𝜒 𝑖 < 𝛽𝑖𝑖 ,
𝑢𝑖 if 𝛽𝑖𝑖 ≤ 𝜒 𝑖.

Proof. Let  denote the set of indices whose corresponding nested
lower or upper constraint is tight in 𝒙𝑛(𝑅). More precisely,

 ∶= {𝑣𝑗 | 𝑗 ∈  } ≡ {𝑗1,… , 𝑗𝑞},

where 𝑞 ∶= | | and 𝑗1 < ⋯ < 𝑗𝑞 . For a given 𝑝 ∈ {1,… , 𝑞}, note
that since either the lower or upper nested constraint corresponding
to 𝑗𝑝 is tight in the solution 𝒙𝑛(𝑅), we have that ∑

𝑖∈ 𝑗𝑝 𝑥𝑛𝑖 (𝑅) = 𝑉 𝑗𝑝 .
This implies that the vector (𝑥𝑛𝑖 (𝑅))1≤𝑖≤𝑗𝑝 is the optimal solution to the
subproblem QRAP-NC𝑗𝑝 (𝑉 𝑗𝑝), i.e., to the problem

QRAP-NC𝑗𝑝 (𝑉 𝑗𝑝) ∶ min
𝒙∈R𝑗𝑝

∑

𝑖∈ 𝑗𝑝

1
2
𝑥2𝑖
𝑎𝑖

s.t.
∑

𝑖∈ 𝑗𝑝

𝑥𝑖 = 𝑉 𝑗𝑝 ,

𝐿𝑘 ≤
∑

𝑖∈ 𝑘

𝑥𝑖 ≤ 𝑈𝑘, 𝑘 ∈ {1,… , 𝑗𝑝 − 1},

(A.7)
𝑙𝑖 ≤ 𝑥𝑖 ≤ 𝑢𝑖, 𝑖 ∈ {1,… , 𝑗𝑝}.

Note that in the optimal solution (𝑥𝑛𝑖 (𝑅))𝑖∈ 𝑗𝑝 to this problem, none
of the nested constraints (A.7) for 𝑘 with 𝑗𝑝−1 < 𝑘 < 𝑗𝑝 are tight.
As a consequence, when deriving the reformulated equivalent problem
QRAP𝑗𝑝 (𝑉 𝑗𝑝), it follows from Lemmas 2 and 3 that we may replace the
single-variable bounds (7) for 𝑖 with 𝑗𝑝−1 < 𝑖 < 𝑗𝑝 by the original vari-
able bounds 𝑙𝑖 ≤ 𝑥𝑖 ≤ 𝑢𝑖. Thus, we can reformulate QPRAP-NC𝑗𝑝 (𝑉 𝑗𝑝)
to

QRAP𝑗𝑝 (𝑉 𝑗𝑝) ∶ min
𝒙∈R𝑗

∑

𝑖∈ 𝑗𝑝

1
2
𝑥2𝑖
𝑎𝑖

s.t.
∑

𝑖∈ 𝑗𝑝

𝑥𝑖 = 𝑉 𝑗𝑝 ,

𝑥
𝑗𝑝−1
𝑖 (𝐿𝑗𝑝−1) ≤ 𝑥𝑖 ≤ 𝑥

𝑗𝑝−1
𝑖 (𝑈 𝑗𝑝−1),

𝑖 ∈ {1,… , 𝑗𝑝−1},

𝑙𝑗 ≤ 𝑥𝑗 ≤ 𝑢𝑗 , 𝑖 ∈ {𝑗𝑝−1 + 1,… , 𝑗𝑝}.

Recall that 𝜒 𝑗𝑝 is the optimal Lagrange multiplier for this problem. As
a consequence, we can directly compute 𝑥

𝑗𝑝
𝑖 (𝑅) for 𝑖 ∈ {𝑗𝑝−1 + 1,… , 𝑗𝑝}

using Eq. (3):

𝑥𝑛𝑖 (𝑅) = 𝑥
𝑗𝑝
𝑖 (𝑉 𝑗𝑝) =

⎧

⎪

⎨

⎪

⎩

𝑙𝑖 if 𝜒 𝑗𝑝 < 𝛼𝑖𝑖 ,
𝑎𝑖𝜒

𝑗𝑝 if 𝛼𝑖𝑖 ≤ 𝜒 𝑗𝑝 < 𝛽𝑖𝑖 ,
𝑢𝑖 if 𝛽𝑖𝑖 ≤ 𝜒 𝑗𝑝 .

The result of the lemma follows since we have 𝜒 𝑗𝑝 = 𝜒 𝑖 for each
𝑖 ∈ {𝑗𝑝−1,… , 𝑗𝑝} by definition of 𝑗𝑝 and 𝜒 𝑖. □

Computers and Operations Research 135 (2021) 105451M.H.H. Schoot Uiterkamp et al.

d

B
b
a
o

t
a
𝜅
b
a
s
i

A

L

𝜅

I
(

A.4. Proof of Lemma 7

Lemma 7. When applying ALGseq to WC-1, first 𝛺(𝑛) breakpoints are
inserted in the breakpoint set  and subsequently 𝛺(𝑛) breakpoints are
removed from  throughout the course of the algorithm.

Proof. First, note that for this instance we have 𝛼𝑖𝑖 = 𝑖 and 𝛽𝑖𝑖 = 2𝑛+1−𝑖
for 𝑖 ∈  and 𝜅1 = 1 and 𝜆1 = 2𝑛. Moreover, its optimal solution is
given by 𝑥̄1 = 2𝑛 + 1

2 and 𝑥̄𝑖 = 2𝑛 + 1 − 𝑖 for 𝑖 ∈ ∖{1}.
When we follow all steps of Algorithm 3 and the relevant proce-

ures, we observe the following:

• In SolveSubproblems(2), we have 𝐿1 + max(𝑙2,min(𝜅1, 𝑢2)) = 1 +
2 = 3 = 𝐿2. Hence, the condition of the if-statement in Line 1
applies and thus 𝜅2 = 𝜅1 = 1. Analogously, we have 𝑈1 +
max(𝑙2,min(𝜆1, 𝑢2)) = 2𝑛 + 2𝑛 − 1 = 4𝑛 − 1 = 𝑈2 and thus the
condition of the if-statement in Line 17 applies and we have
𝜆2 = 𝜆1 = 2𝑛. It follows from Lines 33–38 that both 𝛼22 and 𝛽22
are added to the breakpoint sets  and  respectively. Moreover,
it follows from Lines 39–58 that no breakpoints are removed from
these sets.

• Suppose that 𝜅𝑗 = 𝜅1 = 1 and 𝜆𝑗 = 𝜆1 = 2𝑛 for some 𝑗 ≥ 2. Then
𝐿𝑗−1 + max(𝑙𝑗 ,min(𝜅𝑗−1, 𝑢𝑗)) =

1
2 𝑗(𝑗 − 1) + 𝑗 = 1

2 𝑗(𝑗 + 1) = 𝐿𝑗 and
𝑈 𝑗−1+max(𝑙𝑗 ,min(𝜆𝑗−1, 𝑢𝑗)) = 2(𝑗−1)𝑛+𝑗−1− 1

2 𝑗(𝑗−1)+2𝑛+1−𝑗 =
2𝑗𝑛 + 𝑗 − 1

2 𝑗(𝑗 + 1) = 𝑈 𝑗 . Following the same reasoning as for the
case 𝑗 = 2, it follows that both 𝛼𝑗𝑗 and 𝛽𝑗𝑗 are added to  and 
respectively and that no breakpoints are removed from these sets.

y applying the principle of induction, we may conclude that all
reakpoints 𝛼𝑖𝑖 and 𝛽𝑖𝑖 for 𝑖 ∈  𝑛−1 are added to the breakpoint sets
nd that none of them have been removed from these sets by the start
f iteration 𝑗 = 𝑛.

Since 𝐿𝑛 > 1
2 𝑛(𝑛 − 1) and 𝑈𝑛 < 2𝑛2 + 𝑛 − 1

2 𝑛(𝑛 + 1), the else-
statements of Lines 14–15 and 30–31 apply. Thus, the values 𝜅𝑛−1 ≡
𝜅1 and 𝜆𝑛−1 ≡ 𝜆1 are removed from the multiplier sets  and 
respectively (leaving them empty), the breakpoints 𝛼𝑛𝑛 and 𝛽𝑛𝑛 are added
to  and  respectively, and the procedures LowerSubproblem(𝑛) and
UpperSubproblem(𝑛) are applied since 𝜅𝑛 > 𝜅𝑛−1 and 𝜆𝑛 < 𝜆𝑛−1. Since in
he optimal solution the variable 𝑥̄1 is strictly in between its bounds
nd all other variables equal their upper bound, we know that 𝛽𝑖𝑖 <
𝑛 < 𝛽11 for all 𝑖 > 1. Thus, in the procedures LowerSubproblem(𝑗), all
reakpoints except 𝛽11 have been considered as candidate multipliers
nd have afterwards been removed from the corresponding breakpoint
et. Summarizing, we conclude that first 𝛺(𝑛) breakpoints have been
nserted and subsequently 𝛺(𝑛) breakpoints have been deleted. □

.5. Proof of Lemma 8

emma 8. For the instance WC-2, the Lagrange multipliers 𝜅𝑗 and 𝜆𝑗 as
computed by ALGseq are given for each 𝑗 ∈  𝑛−1 by

𝑗 ∶= (−1)𝑗
(

2𝑗 − 3
2

)

− 1
2
, 𝜆𝑗 ∶= (−1)𝑗

(

2𝑗 − 3
2

)

+ 1
2
.

Proof. We prove the lemma by induction. First, it follows from Lines 3–
10 of Algorithm 3 that 𝜅1 = 𝛼11 = 𝑙1 = 𝐿1 = −1 and 𝜆1 = 𝛽11 = 𝑢1 = 𝑈1 =
0. Also, we have (−1)1

(

2 ⋅ 1 − 3
2

)

− 1
2 = −1 and (−1)1

(

2 ⋅ 1 − 3
2

)

+ 1
2 = 0,

so the lemma holds for 𝑗 = 1.
Second, suppose that the lemma holds for all 𝑗′ < 𝑗 for some

𝑗 ∈  𝑛−1. We show that this implies that the lemma also holds for 𝑗.
Here, we prove the lemma for the case that 𝑗 is even (the proof for the
case that 𝑗 is uneven is symmetrical). If 𝑗 is even, then 𝑗 − 1 is uneven
and thus 𝜆𝑗−1 = −

[

2(𝑗 − 1) − 3
2

]

+ 1
2 = −2𝑗 + 4. This implies that

𝑈 𝑗−1 + max(𝑙𝑗 ,min(𝜆𝑗−1, 𝑢𝑗)) = −(𝑗 − 1) + 1 + max(−2𝑛,min(−2𝑗 + 4, 2𝑛))
𝑗

18

= −3𝑗 + 6 < 𝑗 + 1 = 𝑈 .
Thus, the condition in the if-statement of Line 26 of Algorithm 4 is
satisfied and we have

𝜆𝑗 = 𝑈 𝑗 − 𝑈 𝑗−1 = 𝑗 + 1 − [−(𝑗 − 1) + 1] = 2𝑗 − 1 = (−1)𝑗
(

2𝑗 − 3
2

)

+ 1
2
.

Furthermore, note that 𝜆𝑗−1 < 𝜅𝑗 since otherwise

𝐿𝑗 =
∑

𝑖∈ 𝑗

𝑥𝑗𝑖 (𝐿
𝑗) =

∑

𝑖∈ 𝑗−1

𝑥𝑗𝑖 (𝐿
𝑗) + max(𝑙𝑖,min(𝜅𝑗 , 𝑢𝑖))

≤ 𝑈 𝑗−1 + max(𝑙𝑖,min(𝜆𝑗−1, 𝑢𝑖)) = −3𝑗 + 6 < 𝑗 = 𝐿𝑗 ,

which is a contradiction. This implies that 𝑥𝑗−1𝑖 (𝑈 𝑗−1) ≤ 𝑥𝑗𝑖 (𝐿
𝑗) for all

𝑖 ≤ 𝑗 − 1 and thus that

𝐿𝑗 =
∑

𝑖∈ 𝑗

𝑥𝑗𝑖 (𝐿
𝑗) =

∑

𝑖∈ 𝑗−1

𝑥𝑗𝑖 (𝐿
𝑗)+𝜅𝑗 ≥

∑

𝑖∈ 𝑗−1

𝑥𝑗−1𝑖 (𝑈 𝑗−1)+𝜅𝑗 = 𝑈 𝑗−1+𝜅𝑗 .

t follows that 𝜅𝑗 = 𝐿𝑗 − 𝑈 𝑗−1 = 𝑗 − [−(𝑗 − 1) + 1] = 2𝑗 − 2 =
−1)𝑗

(

2𝑗 − 3
2

)

− 1
2 . By the induction principle, we have thereby proven

the lemma for all 𝑗 ∈  𝑛−1. □

References

Akhil, P.T., Sundaresan, R., 2018. Algorithms for separable convex optimization with
linear ascending constraints. Sādhanā 43 (9), 146. http://dx.doi.org/10.1007/
s12046-018-0890-2.

Alexandrescu, A., 2017. Fast deterministic selection. In: Iliopoulos, C.S., Pissis, S.P.,
Puglisi, S.J., Raman, R. (Eds.), Leibniz International Proceedings in Informatics,
LIPIcs, Vol. 75. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, pp. 24:1–24:9.
http://dx.doi.org/10.4230/LIPIcs.SEA.2017.24, arXiv:1606.00484.

Arvind, A., Rangan, C., 1999. Symmetric min-max heap: A simpler data structure for
double-ended priority queue. Inf. Process. Lett. 69 (4), 197–199. http://dx.doi.org/
10.1016/S0020-0190(99)00014-9.

Atkinson, M.D., Sack, J.-R., Santoro, N., Strothotte, T., 1986. Min-max heaps and
generalized priority queues. Commun. ACM 29 (10), 996–1000. http://dx.doi.org/
10.1145/6617.6621.

Beaudin, M., Zareipour, H., 2015. Home energy management systems: A review of
modelling and complexity. Renew. Sustain. Energy Rev. 45, 318–335. http://dx.
doi.org/10.1016/j.rser.2015.01.046.

Blum, M., Floyd, R.W., Pratt, V., Rivest, R.L., Tarjan, R.E., 1973. Time bounds for
selection. J. Comput. System Sci. 7 (4), 448–461. http://dx.doi.org/10.1016/S0022-
0000(73)80033-9.

Boyd, S., Vandenberghe, L., 2004. Convex Optimization, seventh ed. Cambridge
University Press, Cambridge, MA.

Brass, P., 2008. Advanced Data Structures, first ed. Cambridge University Press,
Cambridge, MA, http://dx.doi.org/10.1017/CBO9780511800191.

Brodal, G.S., 2013. A survey on priority queues. In: Brodnik, A., López-Ortiz, A., Ra-
man, V., Viola, A. (Eds.), Space-Efficient Data Structures, Streams, and Algorithms.
Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 150–163. http://dx.doi.org/10.
1007/978-3-642-40273-9_11.

Brucker, P., 1984. An 𝑂(𝑛) algorithm for quadratic knapsack problems. Oper. Res. Lett.
3 (3), 163–166. http://dx.doi.org/10.1016/0167-6377(84)90010-5.

Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C., 2009. Introduction to Algorithms,
third ed. The MIT Press, Cambridge, MA.

Esther, B.P., Kumar, K.S., 2016. A survey on residential demand side management
architecture, approaches, optimization models and methods. Renew. Sustain. Energy
Rev. 59, 342–351. http://dx.doi.org/10.1016/j.rser.2015.12.282.

Gabow, H.N., Tarjan, R.E., 1983. A linear-time algorithm for a special case of disjoint
set union. In: Proceedings of the Fifteenth Annual ACM Symposium on Theory of
Computing (STOC). In: STOC ’83, ACM, Boston, MA, pp. 246–251. http://dx.doi.
org/10.1145/800061.808753.

Gabow, H.N., Tarjan, R.E., 1985. A linear-time algorithm for a special case of disjoint
set union. J. Comput. System Sci. 30 (2), 209–221. http://dx.doi.org/10.1016/
0022-0000(85)90014-5.

Galil, Z., Italiano, G.F., 1991. Data structures and algorithms for disjoint set union
problems. ACM Comput. Surv. (CSUR) 23 (3), 319–344. http://dx.doi.org/10.1145/
116873.116878.

Gerards, M.E.T., 2014. Algorithmic Power Management: Energy Minimisation under
Real-Time Constraints (Ph.D. thesis). University of Twente, http://dx.doi.org/10.
3990/1.9789036536790.

Gerards, M.E.T., Toersche, H.A., Hoogsteen, G., van der Klauw, T., Hurink, J.L.,
Smit, G.J.M., 2015. Demand side management using profile steering. In: 2015
IEEE Eindhoven PowerTech. IEEE, Eindhoven, http://dx.doi.org/10.1109/PTC.
2015.7232328.

Hochbaum, D.S., 1994. Lower and upper bounds for the allocation problem and
other nonlinear optimization problems. Math. Oper. Res. 19 (2), 390–409. http:
//dx.doi.org/10.1287/moor.19.2.390.

http://dx.doi.org/10.1007/s12046-018-0890-2
http://dx.doi.org/10.1007/s12046-018-0890-2
http://dx.doi.org/10.1007/s12046-018-0890-2
http://dx.doi.org/10.4230/LIPIcs.SEA.2017.24
http://arxiv.org/abs/1606.00484
http://dx.doi.org/10.1016/S0020-0190(99)00014-9
http://dx.doi.org/10.1016/S0020-0190(99)00014-9
http://dx.doi.org/10.1016/S0020-0190(99)00014-9
http://dx.doi.org/10.1145/6617.6621
http://dx.doi.org/10.1145/6617.6621
http://dx.doi.org/10.1145/6617.6621
http://dx.doi.org/10.1016/j.rser.2015.01.046
http://dx.doi.org/10.1016/j.rser.2015.01.046
http://dx.doi.org/10.1016/j.rser.2015.01.046
http://dx.doi.org/10.1016/S0022-0000(73)80033-9
http://dx.doi.org/10.1016/S0022-0000(73)80033-9
http://dx.doi.org/10.1016/S0022-0000(73)80033-9
http://refhub.elsevier.com/S0305-0548(21)00203-3/sb7
http://refhub.elsevier.com/S0305-0548(21)00203-3/sb7
http://refhub.elsevier.com/S0305-0548(21)00203-3/sb7
http://dx.doi.org/10.1017/CBO9780511800191
http://dx.doi.org/10.1007/978-3-642-40273-9_11
http://dx.doi.org/10.1007/978-3-642-40273-9_11
http://dx.doi.org/10.1007/978-3-642-40273-9_11
http://dx.doi.org/10.1016/0167-6377(84)90010-5
http://refhub.elsevier.com/S0305-0548(21)00203-3/sb11
http://refhub.elsevier.com/S0305-0548(21)00203-3/sb11
http://refhub.elsevier.com/S0305-0548(21)00203-3/sb11
http://dx.doi.org/10.1016/j.rser.2015.12.282
http://dx.doi.org/10.1145/800061.808753
http://dx.doi.org/10.1145/800061.808753
http://dx.doi.org/10.1145/800061.808753
http://dx.doi.org/10.1016/0022-0000(85)90014-5
http://dx.doi.org/10.1016/0022-0000(85)90014-5
http://dx.doi.org/10.1016/0022-0000(85)90014-5
http://dx.doi.org/10.1145/116873.116878
http://dx.doi.org/10.1145/116873.116878
http://dx.doi.org/10.1145/116873.116878
http://dx.doi.org/10.3990/1.9789036536790
http://dx.doi.org/10.3990/1.9789036536790
http://dx.doi.org/10.3990/1.9789036536790
http://dx.doi.org/10.1109/PTC.2015.7232328
http://dx.doi.org/10.1109/PTC.2015.7232328
http://dx.doi.org/10.1109/PTC.2015.7232328
http://dx.doi.org/10.1287/moor.19.2.390
http://dx.doi.org/10.1287/moor.19.2.390
http://dx.doi.org/10.1287/moor.19.2.390

Computers and Operations Research 135 (2021) 105451M.H.H. Schoot Uiterkamp et al.
Hochbaum, D.S., Hong, S.-P., 1995. About strongly polynomial time algorithms for
quadratic optimization over submodular constraints. Math. Program. 69, 269–309.
http://dx.doi.org/10.1007/BF01585561.

Hoogsteen, G., Gerards, M.E.T., Hurink, J.L., 2018. On the scalability of decentralized
energy management using profile steering. In: 2018 IEEE PES Innovative Smart
Grid Technologies Conference Europe (ISGT-Europe). IEEE, Sarajevo, http://dx.doi.
org/10.1109/ISGTEurope.2018.8571823.

Hoogsteen, G., Hurink, J.L., Smit, G.J.M., 2019. Demkit: a decentralized energy
management simulation and demonstration toolkit. In: 2019 IEEE PES Innovative
Smart Grid Technologies Europe (ISGT-Europe). IEEE, Bucharest, http://dx.doi.org/
10.1109/ISGTEurope.2019.8905439.

Hoogsteen, G., Molderink, A., Hurink, J.L., Smit, G.J., Kootstra, B., Schuring, F.,
2017. Charging electric vehicles, baking pizzas, and melting a fuse in lochem.
CIRED - Open Access Proc. J. 2017 (1), 1629–1633. http://dx.doi.org/10.1049/oap-
cired.2017.0340.

Huang, W., Wang, Y., 2009. An optimal speed control scheme supported by media
servers for low-power multimedia applications. Multimedia Syst. 15 (2), 113–124.
http://dx.doi.org/10.1007/s00530-009-0153-5.

Hvattum, L.M., Norstad, I., Fagerholt, K., Laporte, G., 2013. Analysis of an exact
algorithm for the vessel speed optimization problem. Netw. 62 (2), 132–135.
http://dx.doi.org/10.1002/net.21503.

Ibaraki, T., Katoh, N., 1988. Resource Allocation Problems: Algorithmic Approaches,
first ed. The MIT Press, Cambridge, MA.

Kiwiel, K.C., 2005. On Floyd and Rivest’s SELECT algorithm. Theoret. Comput. Sci. 347
(1), 214–238. http://dx.doi.org/10.1016/j.tcs.2005.06.032.

Kiwiel, K.C., 2008. Breakpoint searching algorithms for the continuous quadratic
knapsack problem. Math. Program. 112 (2), 473–491. http://dx.doi.org/10.1007/
s10107-006-0050-z.

van der Klauw, T., Gerards, M.E.T., Hurink, J.L., 2017. Resource allocation problems
in decentralized energy management. OR Spectr. 39 (3), 749–773. http://dx.doi.
org/10.1016/0167-6377(84)90010-5.

Knuth, D.E., 1998. The Art of Computer Programming - Volume 3: Sorting and
Searching, second ed. Addison-Wesley, Reading, MA.

Lund, H., Østergaard, P.A., Connolly, D., Ridjan, I., Mathiesen, B.V., Hvelplund, F.,
Thellufsen, J.Z., Sorknæs, P., 2016. Energy storage and smart energy systems. Int.
J. Sustain. Energy Plan. Manag. 11, 3–14. http://dx.doi.org/10.5278/ijsepm.2016.
11.2.

Müller-Hannemann, M., Schirra, S. (Eds.), 2010. Algorithm Engineering: Bridging the
Gap between Algorithm Theory and Practice, first ed. Springer Berlin Heidelberg,
Berlin, Heidelberg, http://dx.doi.org/10.1007/978-3-642-14866-8_1.

Nagano, K., Aihara, K., 2012. Equivalence of convex minimization problems over base
polytopes. Jpn. J. Ind. Appl. Math. 29 (3), 519–534. http://dx.doi.org/10.1007/
s13160-012-0083-z.

Norstad, I., Fagerholt, K., Laporte, G., 2011. Tramp ship routing and scheduling with
speed optimization. Transp. Res. C 19 (5), 853–865. http://dx.doi.org/10.1016/j.
trc.2010.05.001.
19
Patriksson, M., 2008. A survey on the continuous nonlinear resource allocation problem.
European J. Oper. Res. 185 (1), 1–46. http://dx.doi.org/10.1016/j.ejor.2006.12.
006.

Patriksson, M., Strömberg, C., 2015. Algorithms for the continuous nonlinear resource
allocation problem - new implementations and numerical studies. European J. Oper.
Res. 243 (3), 703–722. http://dx.doi.org/10.1016/j.ejor.2015.01.029.

Patwary, M.M.A., Blair, J., Manne, F., 2010. Experiments on union-find algorithms
for the disjoint-set data structure. In: Festa, P. (Ed.), International Symposium on
Experimental Algorithms (SEA). Springer Berlin Heidelberg, Berlin, Heidelberg, pp.
411–423. http://dx.doi.org/10.1007/978-3-642-13193-6_35.

Reijnders, V.M.J.J., Gerards, M.E.T., Hurink, J.L., Smit, G.J.M., 2018. Testing grid-
based electricity prices and batteries in a field test. In: CIRED 2018 Workshop
Proceedings. CIRED, Ljubljana, http://dx.doi.org/10.34890/219.

Roberts, B.P., Sandberg, C., 2011. The role of energy storage in development of
smart grids. Proc. IEEE 99 (6), 1139–1144. http://dx.doi.org/10.1109/JPROC.2011.
2116752.

Schoot Uiterkamp, M.H.H., Gerards, M.E.T., Hurink, J.L., Quadratic Nonseparable
Resource Allocation Problems with Generalized Bound Constraints, University of
Twente, ArXiv: arXiv:2007.06280. 2020.

Schoot Uiterkamp, M.H.H., Gerards, M.E.T., Hurink, J.L., 2021. On a reduction for a
class of resource allocation problems. INFORMS J. Comput. in press.

Siano, P., 2014. Demand response and smart grids - a survey. Renew. Sustain. Energy
Rev. 30, 461–478. http://dx.doi.org/10.1016/j.rser.2013.10.022.

Slager, J., 2019. Nonlinear Convex Optimisation Problems in the Smart Grid (B.Sc.
thesis). University of Twente.

Vidal, T., Gribel, D., Jaillet, P., 2019. Separable convex optimization with nested lower
and upper constraints. INFORMS J. Optim. 1 (1), 71–90. http://dx.doi.org/10.
1287/ijoo.2018.0004.

Vidal, T., Jaillet, P., Maculan, N., 2016. A decomposition algorithm for nested resource
allocation problems. SIAM J. Optim. 26 (2), 1322–1340. http://dx.doi.org/10.
1137/140965119.

Weckx, S., Driesen, J., 2015. Load balancing with EV chargers and PV inverters
in unbalanced distribution grids. IEEE Trans. Sustain. Energy 6 (2), 635–643.
http://dx.doi.org/10.1109/TSTE.2015.2402834.

Wright, S.E., Lim, S., 2020. Solving nested-constraint resource allocation problems with
an interior point method. Oper. Res. Lett. 48 (3), 297–303. http://dx.doi.org/10.
1016/j.orl.2020.04.001.

Wu, Z., Nip, K., He, Q., 2021. A new combinatorial algorithm for separable convex
resource allocation with nested bound constraints. INFORMS J. Comput. http:
//dx.doi.org/10.1287/ijoc.2020.1006.

Zame, K.K., Brehm, C.A., Nitica, A.T., Richard, C.L., Schweitzer III, G.D., 2018. Smart
grid and energy storage: Policy recommendations. Renew. Sustain. Energy Rev. 82,
1646–1654. http://dx.doi.org/10.1016/j.rser.2017.07.011.

http://dx.doi.org/10.1007/BF01585561
http://dx.doi.org/10.1109/ISGTEurope.2018.8571823
http://dx.doi.org/10.1109/ISGTEurope.2018.8571823
http://dx.doi.org/10.1109/ISGTEurope.2018.8571823
http://dx.doi.org/10.1109/ISGTEurope.2019.8905439
http://dx.doi.org/10.1109/ISGTEurope.2019.8905439
http://dx.doi.org/10.1109/ISGTEurope.2019.8905439
http://dx.doi.org/10.1049/oap-cired.2017.0340
http://dx.doi.org/10.1049/oap-cired.2017.0340
http://dx.doi.org/10.1049/oap-cired.2017.0340
http://dx.doi.org/10.1007/s00530-009-0153-5
http://dx.doi.org/10.1002/net.21503
http://refhub.elsevier.com/S0305-0548(21)00203-3/sb25
http://refhub.elsevier.com/S0305-0548(21)00203-3/sb25
http://refhub.elsevier.com/S0305-0548(21)00203-3/sb25
http://dx.doi.org/10.1016/j.tcs.2005.06.032
http://dx.doi.org/10.1007/s10107-006-0050-z
http://dx.doi.org/10.1007/s10107-006-0050-z
http://dx.doi.org/10.1007/s10107-006-0050-z
http://dx.doi.org/10.1016/0167-6377(84)90010-5
http://dx.doi.org/10.1016/0167-6377(84)90010-5
http://dx.doi.org/10.1016/0167-6377(84)90010-5
http://refhub.elsevier.com/S0305-0548(21)00203-3/sb29
http://refhub.elsevier.com/S0305-0548(21)00203-3/sb29
http://refhub.elsevier.com/S0305-0548(21)00203-3/sb29
http://dx.doi.org/10.5278/ijsepm.2016.11.2
http://dx.doi.org/10.5278/ijsepm.2016.11.2
http://dx.doi.org/10.5278/ijsepm.2016.11.2
http://dx.doi.org/10.1007/978-3-642-14866-8_1
http://dx.doi.org/10.1007/s13160-012-0083-z
http://dx.doi.org/10.1007/s13160-012-0083-z
http://dx.doi.org/10.1007/s13160-012-0083-z
http://dx.doi.org/10.1016/j.trc.2010.05.001
http://dx.doi.org/10.1016/j.trc.2010.05.001
http://dx.doi.org/10.1016/j.trc.2010.05.001
http://dx.doi.org/10.1016/j.ejor.2006.12.006
http://dx.doi.org/10.1016/j.ejor.2006.12.006
http://dx.doi.org/10.1016/j.ejor.2006.12.006
http://dx.doi.org/10.1016/j.ejor.2015.01.029
http://dx.doi.org/10.1007/978-3-642-13193-6_35
http://dx.doi.org/10.34890/219
http://dx.doi.org/10.1109/JPROC.2011.2116752
http://dx.doi.org/10.1109/JPROC.2011.2116752
http://dx.doi.org/10.1109/JPROC.2011.2116752
https://arxiv.org/abs/2007.06280
http://refhub.elsevier.com/S0305-0548(21)00203-3/sb40
http://refhub.elsevier.com/S0305-0548(21)00203-3/sb40
http://refhub.elsevier.com/S0305-0548(21)00203-3/sb40
http://dx.doi.org/10.1016/j.rser.2013.10.022
http://refhub.elsevier.com/S0305-0548(21)00203-3/sb42
http://refhub.elsevier.com/S0305-0548(21)00203-3/sb42
http://refhub.elsevier.com/S0305-0548(21)00203-3/sb42
http://dx.doi.org/10.1287/ijoo.2018.0004
http://dx.doi.org/10.1287/ijoo.2018.0004
http://dx.doi.org/10.1287/ijoo.2018.0004
http://dx.doi.org/10.1137/140965119
http://dx.doi.org/10.1137/140965119
http://dx.doi.org/10.1137/140965119
http://dx.doi.org/10.1109/TSTE.2015.2402834
http://dx.doi.org/10.1016/j.orl.2020.04.001
http://dx.doi.org/10.1016/j.orl.2020.04.001
http://dx.doi.org/10.1016/j.orl.2020.04.001
http://dx.doi.org/10.1287/ijoc.2020.1006
http://dx.doi.org/10.1287/ijoc.2020.1006
http://dx.doi.org/10.1287/ijoc.2020.1006
http://dx.doi.org/10.1016/j.rser.2017.07.011

	A fast algorithm for quadratic resource allocation problems with nested constraints
	Introduction
	Resource allocation problems and energy management
	Background and contribution

	A breakpoint search algorithm for QRAP
	An initial sequential algorithm for QRAP-NC
	A fast O(n n) time algorithm for QRAP-NC
	Notation
	Computing the optimal Lagrange multipliers of the subproblems
	Relation between consecutive breakpoints
	Constructing consecutive breakpoint sets
	Updating bookkeeping parameters

	Recovering the optimal solution to QRAP-NC
	An O(n n) time algorithm for QRAP-NC
	Description of the algorithm
	Time complexity
	A comparison of worst-case instances

	Evaluation
	Problem instances
	Implementation details
	Results and discussion

	Conclusions
	CRediT authorship contribution statement
	Acknowledgments
	Appendix. Proofs of ??env=Lemmas]lemmamono, 4, 5, 7, and 8
	Proof of lemmamono
	Proof of lemmachi
	Proof of lemmaxn
	Proof of lemmaWC1
	Proof of lemmaclosedform

	References

