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1. Introduction

In 1/f noise, the power spectral density (PSD) of the noise is
inversely proportional to the frequency f. A 1/f PSD reflects
the scale-invariant correlations of the underlying physical pro-
cesses in a broad scope of systems for information process-
ing.[1–7] The slow fluctuations corresponding to the low-
frequency end of 1/f noise impose boundary conditions on
the systems’ operation, which sometimes require additional sig-
nal conditioning techniques such as filtering. Therefore, under-
standing the underlying mechanism(s) of 1/f noise facilitates
achieving optimal performance, by optimizing the individual

components and the system design.
In doped semiconductors, the 1/f noise
was attributed to electron trapping and
de-trapping,[8] whereas recently Burin
et al. suggested that this noise involves
transitions of multi-electron clusters
between two almost degenerate states.[9]

Healthy brains also exhibit 1/f noise,[6,7]

hypothetically because the large-scale
complex neural networks are poised at
criticality,[6,10-12] i.e., at the border of a
phase transition such as the onset of
synchronous activity.[4,12] In spite of the
occurrence of 1/f noise in many natural
and artificial systems, and decades of
research, a unified explanation of 1/f noise
has not been agreed upon. In the context of
developing efficient physical hardware for

machine intelligence,[3,5,13-16] 1/f noise in individual compo-
nents, such as memristors, has been studied.[3,5] Yet, the mech-
anisms underlying 1/f noise may differ in different electronic
devices[1,3,9,17] and vary across scales from device level to system
level. Whether there is a correlation between the presence of 1/f
noise in a complex network and its capability of information
processing is an open question.[18,19] In large-scale biological
or man-made hardware networks,[6,10-12,14] the computational
capability stems from complex nonlinear interactions, which
can, at the same time, lead to critical behavior and, therefore,
1/f noise.[12] That is to say, nonlinear interactions may be a
two-edged sword. So far, how to achieve the optimal computa-
tional properties of large-scale physical networks in the presence
of emergent 1/f noise has remained elusive. Here, we examine
the 1/f noise of a dopant atom network in silicon in the variable-
range hopping (VRH) regime.

The dopant network,[14] formed by electrostatically coupled
dopant atoms in silicon and referred to as dopant network
processing unit (DNPU),[20,21] has a typical footprint of only
300� 300 nm2 and consumes a power of �1 μW or even less.
We have shown that a single DNPU is capable of carrying out
canonical machine learning tasks using “material learning”
techniques.[13,14] From a dopant network connected to eight
electrodes, we can choose M input electrodes on which voltages
representing input data are applied and one output electrode
where output current is measured. Then, the input–output rela-
tion can be configured by the voltages applied on the remaining
7�M control electrodes. Through artificial evolution of the con-
trol voltages by a genetic algorithm, thereby tuning the potential
landscape, the intrinsic nonlinearity of the DNPU can be har-
nessed for information processing. We previously demonstrated
that the DNPU can perform a range of nonlinear classification
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Noise exists in nearly all physical systems ranging from simple electronic devices
such as transistors to complex systems such as neural networks. To understand a
system’s behavior, it is vital to know the origin of the noise and its characteristics.
Recently, it was shown that the nonlinear electronic properties of a disordered
dopant atom network in silicon can be exploited for efficiently executing clas-
sification tasks through “material learning.”Here, we study the dopant network’s
intrinsic 1/f noise arising from Coulomb interactions, and its impact on the
features that determine its computational abilities, viz., the nonlinearity and the
signal-to-noise ratio (SNR), is investigated. The findings on optimal SNR
and nonlinear transformation of data by this nonlinear network provide a
guideline for the scaling of physical learning machines and shed light on neu-
roscience from a new perspective.
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tasks, such as arbitrary Boolean logic in a 2-input-1-output
(M¼ 2) configuration and image feature filtering in a 4-input-
1-output configuration (M¼ 4). The DNPU leverages the
atomic-scale interactions among localized dopant states for
computation, thus potentially achieving unprecedented energy
efficiency and computational density comparable to the human
brain.[13,14] The DNPU can be an efficient building block for
machine intelligence.[14] Understanding the effect of 1/f noise
is, therefore, crucial for scaling up DNPU-based learning
machines.[20,21]

Through electrical measurements, we show here that the 1/f
noise power and the DNPU response to external signals scale
differently with the mean output current. As a consequence,
the DNPU’s signal-to-noise ratio (SNR), related to its dynamic
range, shows a peak when plotted against the bias voltage that
energizes the hopping transport in a three-terminal measure-
ment. The DNPU’s computational capability, which we ascribe
to its nonlinearity,[13-16] diminishes with rising SNR. Our results
suggest that a DNPU should be biased at a critical point to enable
a discernable response to an input signal on the one hand and to
retain the ability of nonlinear data transformation on the other
hand. We deem this an important guiding principle for natural
computing[5,13-16] and speculate that the dependence of perfor-
mance on bias conditions can be generalized to biological neural
networks and potentially facilitates the understanding of the
functioning of brain.[22-27]

2. 1/f Noise in Hopping Conduction

In the hopping regime, the charge carriers, holes in boron-doped
silicon (or electrons in arsenic-doped silicon, see Supporting
Information), hop sequentially from one dopant atom to another
when a bias voltage is applied (Figure 1A). The hopping rate
decays exponentially with distance and energy difference
between two hopping sites, when this energy difference is posi-
tive.[28] Together with the electrostatic Coulomb interactions
between all charges, this leads to nontrivial electronic properties.
As a result, the hopping conduction through the dopant network
exhibits complex nonlinear behavior.[14] This nonlinearity results

in intricate dynamics and is a useful asset for information proc-
essing. We have previously observed that the output current of
the network exhibits fluctuations that are intrinsic to the
device.[13,14] We will address these fluctuations, or noise, in
the present work. To quantify the DNPU’s noise, we performed
current–voltage (I–V ) measurements by applying a bias voltage
to a source electrode (see the inset of Figure 1B) and measuring
the current output at an adjacent drain electrode (essentially
grounded by the I/V converter). One of the other electrodes,
the gate electrode, was grounded, and the remaining electrodes
were floating. The main panel of Figure 1B shows the mean
drain current (DC) versus bias voltage, which clearly exhibits
nonlinearity and can be modeled as voltage-activated hopping
conduction.[14]

Four typical current traces are plotted in Figure 2A. Their cor-
responding noise PSDs S( f ) (see Experimental Section) are
plotted in Figure 2B. At low bias voltages, the current traces show
the characteristics of white noise (Figure 2A, lowest panel), as
confirmed by the flat PSD (Figure 2B, lowest panel). This white
noise originates from the measurement setup, mainly from the
input resistance of the I/V converter (102 kΩ, see Experimental
Section), and is independent of the device under study. Low-
frequency noise emerges at larger bias voltages (from 0.4 V
onward).

The PSDs in Figure 2B (top two panels) follow a power law
Sðf Þ ∝ 1=f α. Theoretically, α equals 1 in the VRH regime.[9]

We extracted the corresponding exponents α by fitting the
PSDs on a logarithmic scale. When the bias voltage exceeds
a threshold voltage VSD,th (defined below), the exponent α
increases from zero to a value in the range between 0.8 and 1
(Figure 2C). In three datasets collected from two independent
devices (one boron DNPU, one arsenic DNPU), the exponents
fall in similar ranges without significant bias-dependence above
VSD,th (see Figure S3 and S4, Supporting Information).
This range of exponents agrees with previous reports of 1/f noise
arising from hopping conduction in the impurity band of doped
silicon.[2] We plot the PSD at 1 Hz S(1 Hz) as a function of the
DC in Figure 2D, where two regimes are visible. When the cur-
rent exceeds �0.08 nA, the noise power is proportional to the
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Figure 1. Hopping conduction through a dopant network. A) Schematic of charge carrier (yellow) hopping among dopant atoms (purple spheres) in
silicon (grey spheres). B) Drain current (DC) at 77 K as a function of voltage between source (S) and drain (D), with grounded drain and gate (G). The red
solid line is a fit with a model for voltage-activated hopping conduction.[14] The inset shows an atomic force microscope image of the dopant network
device, which consists of doped silicon (dark region) and eight nanoelectrodes. The scale bar is 300 nm.
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current squared, in accordance with Hooge’s law (Figure 2D,
lower inset).[9,17] Below �0.08 nA, the noise intensity does not
change with current, corresponding to the noise floor of the mea-
surement equipment. The intersection of the straight lines fitting

these two trends is defined as the threshold voltage VSD,th

(black arrow in Figure 2D), which marks the transition to
hopping-dominated noise. The total noise power, obtained by
integrating the PSD over the full bandwidth, also shows two
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Figure 2. 1/f noise in the hopping conduction regime. A) DC traces at different bias voltages, shown for 3 s segments (see Figure S1, Supporting
Information, for segments of 500 s). B) PSD of the current traces. The dashed lines in the top two panels are guides to the eye, corresponding to
S∝ 1/f. The short-dashed line in the top panel indicates the roll-off of the low-pass filter of the measurement setup (�70 Hz, see Experimental
Section and Figure S2, Supporting Information). The peaks at 50 and 150Hz are due to interference from the mains source. C) The exponent α as
obtained by fitting the PSDs at different bias voltages as shown in (B) to Sðf Þ ∝ 1=f α. The yellow shade around the red curve shows the 95% confidence
interval of the fit. We note that this interval indicates the good fitting quality, but not the standard deviation of α upon repeated sampling. At low bias, α
fluctuates around zero, indicating white noise. When the bias voltage exceeds the threshold VSD,th (black dashed line) defined in (D), α increases and
eventually settles around 1, indicating 1/f noise. D) Noise power S( f¼ 1 Hz) plotted against the DC on a logarithmic scale. The green and purple dashed
lines fit in the two different noise regimes. They intersect around 0.08 nA, corresponding to a bias voltage of around 0.37 V. The lower inset shows S(1 Hz)
as a function of the square of the DC, and the red curve is a linear fit. According to Hooge’s law,[9,17] the noise PSD Sðf Þ ¼ KID2. Here, we use, for
simplicity, one proportionality constant K to encompass a few parameters. The upper inset shows the total noise power integrated over the whole
frequency range (400 Hz) versus the DC. As in the main panel, two regimes are identified.
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regimes (Figure 2D, upper inset). The intersection of the noise
power regimes occurs at a larger voltage than VSD,th defined for
S(1 Hz), because with increasing bias, the low-frequency noise
exceeds the noise floor earlier than the higher frequency noise.

In VRH conduction, a single hop of an electron or hole not
only alters the occupation of the source and destination dopant
sites,[9] but also influences the potential energies of other dopant
atoms in the whole network because of the Coulomb interaction.
The change in potential landscape causes rearrangements of
clusters of charge carriers at different time scales.[9] The collec-
tive rearrangement of larger clusters features a larger time con-
stant, associated with a lower frequency, and induces larger
fluctuations of the network’s conductivity than small clusters,
leading to the characteristic 1/f noise.[9] As the DNPU needs
to be in the VRH regime to function,[14] 1/f noise is concomitant
with computational functionality. Therefore, 1/f noise in DNPU
plays a different role from in conventional electronic devices that
normally operate in the band-conduction regime.

3. SNR under External Stimulation

To investigate how the DNPU responds to external stimulation,
we applied a small sinusoidal voltage signal (0.1 V amplitude,
1 Hz frequency, see Experimental Section and Supporting
Information) to the gate electrode (Figure 1B, inset) and recorded
the DC for different bias voltages applied to the source.[14]

The gate electrode is far away from the source and drain electro-
des. Therefore, the current between the gate electrode and the
source/drain electrodes is below the noise floor and, thus,
negligible, as confirmed by I–V measurements. The resulting
1Hz signal superimposed on the DC has been extracted with
a lock-in amplifier using the gate voltage as a reference
(see Experimental Section). A 1Hz signal emerges when the bias
voltage crosses the threshold VSD,th (Figure 3, upper inset).
The SNR, defined as the ratio of the output signal power at

1 Hz to the total noise power (see Experimental Section), exhibits
a peak around a source�drain voltage of 0.45 V (Figure 3). This
peak results from the different scaling of signal and noise with
the DC. The noise power scales linearly with DC squared accord-
ing to Hooge’s law (Figure 2D, lower inset), whereas the signal
scales in a sublinear way (Figure 3, lower inset). The sublinear
dependency of the signal on DC can be understood as follows.
When the bias voltage increases, the dopant energy level shifts
induced by the 0.1 V gate modulation become relatively weaker,
and therefore, the corresponding output signal superimposed on
the DC also becomes relatively weaker (see Supporting
Information for an analytical formulation).

The SNR peak observed here differs from what is observed in
the so-called stochastic resonance experiments in living
systems.[23-25] In such experiments, external (white) noise is
added to a weak time-dependent input signal. The SNR then
maximizes at a certain noise intensity, a mechanism also known
as noise-induced threshold crossing.[29] Our present study,
however, implies that the DNPU’s response to an external
signal maximizes when the system is energized (voltage biased)
optimally with respect to its internal (1/f ) noise. On the one
hand, the network must be sufficiently energized to allow for
a measurable response signal. On the other hand, the bias voltage
should not be too large, to not overshadow the effects of the exter-
nal stimulation.

4. Nonlinearity and Machine Intelligence

To characterize the DNPU’s capability to process information at
different bias voltages, we slowly ramped up the gate voltage
from �0.25 to 0.25 V (see Experimental Section) and acquired
a complex gate effect on the DC.[14] With a low bias voltage
applied to the source electrode, the gate voltage modulates the
output DC in a highly nonlinear way (Figure 4A), displaying non-
monotonic features and leading to both negative and positive
transconductance, Gmn and Gmp. This behavior resembles the
inhibition and excitation of biological neurons,[22] enabling not
only performing additive operations but also operations that need
negation such as NAND and NOR Boolean functions. As the bias
voltage increases, the nonlinearity is reduced, and the current
changes monotonically under gate modulation. For a large bias
voltage, the charge carriers always hop along the resulting strong
source–drain electric field,[30] so that the gate-induced electric
field is not able to significantly affect the current.

The computational power of our dopant network device[13,14]

as well as that of other physical computing hardware[15,16] is
largely attributed to their nonlinearity. A suitable nonlinear
transformation of linearly inseparable input data into a high-
dimensional space can make the data linearly separable, thus
facilitating classification.[31] Therefore, we define a simple
“intelligence index”

1� ðððnðGmpÞ � nðGmnÞÞ=ðnðGmpÞ þ nðGmnÞÞÞ2 (1)

based on the nonlinearity of the curves in Figure 4A, to assess the
potential computational capacity, where n is the number of data
points with positive or negative transconductance. The intelli-
gence index reaches 1 when there are equal numbers of positive
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Figure 3. SNR as a function of source–drain voltage VSD. As the bias volt-
age increases, the SNR first increases to a peak located around 0.45 V, and
then decreases (red dashed curve is a guide to the eye). Upper inset: the
measured signal power (see Experimental Section) due to the gate mod-
ulation of 0.1 V and 1 Hz. The signal rises when the bias voltage crosses
threshold VSD,th (defined in Figure 2D). Lower inset: the signal power
plotted as a function of the squared DC for easy comparison with the noise
scaling (Figure 2D, lower inset), showing a sublinear dependence.

www.advancedsciencenews.com www.small-science-journal.com

Small Sci. 2021, 1, 2000014 2000014 (4 of 7) © 2021 The Authors. Small Science published by Wiley-VCH GmbH

http://www.advancedsciencenews.com
http://www.small-science-journal.com


and negative transconductance points, and drops to 0 when the
current changes monotonically with gate voltage. It requires both
additive and subtractive operations to perform nonlinear classi-
fication tasks such as the prototypical linearly inseparable XOR
problem,[13,14] as is evident by the expression A XOR
B¼ Aþ B� 2AB, where A and B are two inputs that can be
either 0 or 1. Therefore, the existence of both positive and nega-
tive transconductance, i.e., a non-zero intelligence index, is favor-
able and a necessary condition for the network to perform
nonlinear classification tasks. As most real-life classification
tasks are nonlinear, we consider the intelligence index a useful
indicator of the DNPU’s potential computational capability, even
though the exact functionalities also rely on other criterions such
as dopant concentration and electrode configuration. As dis-
played in Figure 4B, the intelligence index starts to fall when
the bias voltage crosses the threshold VSD,th (Figure 4B), which
holds for different sampling frequencies (see Experimental
Section). The rising edge of the SNR, thus, coincides with the
falling edge of the intelligence index, suggesting that the network
should be energized near VSD,th for optimal information process-
ing. This observation (see also Figure S3 and S4, Supporting
Information) is intriguing and remarkably consistent with our
previous findings from an exhaustive search for computational
functionality,[14] which has revealed that there exist optimal
ranges of control voltages energizing the dopant network.

The observations reported earlier are established in both
boron and arsenic DNPUs (see Figure S3 and S4, Supporting
Information). We speculate that a peak in the SNR, as well as
a co-occurrence of rising SNR and diminishing nonlinearity,
exists in similar nonlinear networks when their bias conditions
are changed. The activation of a biological neural population is
also a nonlinear function (as in Figure 1B) of its total energizing
input current,[22] and the 1/f noise is found to be concomitant
with neural activity.[6,7] We propose that neurological experi-
ments are carried out to validate this speculation. These experi-
ments will enhance the understanding of neural modulation
and potentially advance brain-disorder treatments, such as

deep-brain stimulation techniques.[26,27] It is worth mentioning
that the properties of the DNPU’s electron dynamics, i.e., non-
linear interactions, many-electron rearrangements, and a
stationary response under steady-state driving (Figure S1,
Supporting Information), are sufficient conditions for so-called
self-organized criticality (SOC),[4,32] which has been claimed to
occur in the brain.[6,10,12] In SOC, an avalanching system with
nonlinear internal interactions can self-organize to criticality
without fine-tuning of any control parameter.[32] Bak et al. have
proposed SOC as the underlying mechanism of 1/f noise.[33]

Although direct evidence for the occurrence of SOC in the
dopant network, such as the observation of multi-scale
avalanching,[34] is still lacking, it is worth noticing the common
attributes, in particular, the 1/f noise in both dopant networks
and neural networks.

5. Conclusion

As in conventional transistors, the electronic properties of
DNPUs vary under different bias conditions. Yet, their large
number of internal degrees of freedom exceeds that of conven-
tional electronic components and gives rise to functionality
comparable to that of small neural networks.[14,22] Unlike
conventional electronics, the functionality and 1/f noise of
DNPUs are fundamentally linked to their complexity and nonlin-
ear behavior, which may also be the case in neural networks.
Therefore, the conditions for optimal information processing
by the dopant network in the presence of the concomitant 1/f
noise[35] can potentially be generalized to other complex nonlin-
ear physical systems. These general rules are anticipated to
increase our understanding of both artificial and natural intelli-
gence. Concepts from neuroscience have largely stimulated the
development of artificial intelligence.[5,12-14,31] Now, reversely,
concepts from physical systems exhibiting a rudimentary form
of artificial intelligence may yield useful insights into the prin-
ciples behind the working of the brain.
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Figure 4. Nonlinearity and intelligence index of the dopant network. A) Percental DC change δID as a function of the gate voltage for different source–
drain biases. The gate voltage increases from �0.25 to 0.25 V in around 16 s. The current was smoothed with the Savitzky–Golay method
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due to the diminishing nonlinearity in (A).
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6. Experimental Section

Device Fabrication: We have used both boron and arsenic DNPUs in this
study. The device fabrication is detailed in our previous work.[14] For boron
DNPU, the boron atoms have been implanted in an n-type silicon
substrate (resistivity 1–10Ω cm), with a boron surface concentration
exceeding 1020 atoms cm�3 to ensure ohmic contact with the electrodes.
After patterning Pd/Ti nanoelectrodes, the central silicon area that is not
covered by the electrodes has been etched back to reduce the dopant con-
centration to the order of 1017 atoms cm�3. The arsenic dopant network
device has been fabricated following the same procedure, but with a p-type
silicon substrate (resistivity 1–20Ω cm) and Al/Ti electrodes. Both types of
devices can be evolved to perform arbitrary Boolean logic functions in the
way described in our previous work.[14]

Measurement Setup: The dopant network devices were cooled down to
77 K with a customized dipstick in liquid nitrogen to enter the VRH
regime.[14] The DC voltages were applied by an electronics rack equipped
with digital-to-analog converters (DACs), and the output current was con-
verted to a voltage with an I/V converter. In the present study, the parasitic
wire capacitances (�4 nF) and input resistance (102 kΩ when the gain was
set to 100MΩ) of the I/V converter result in a bandwidth of about 200 Hz.
Before digitizing, an isolated-output module (set at 100 Hz bandwidth)
following the I/V converter further limited the bandwidth of the output
signal for anti-aliasing purposes. The generation of the input waveform
for the gate modulation and the data acquisition of the output current were
implemented with an Adwin-Gold II module, a real-time waveform gener-
ator and digitizer. The sampling frequency fs is 800 Hz for noise data col-
lection and for sensitivity measurements. The noise traces were sampled
for 500 s (Figure S1, Supporting Information).

For the nonlinearity characterization, the sampling frequency was
reduced to 300 Hz. The gate voltage rises from �0.25 to 0.25 V with
0.1 mV per step. Further reducing the sampling frequency resulted in
slightly different curves due to hysteresis, but qualitatively the same extent
of nonlinearity, confirming the robustness of the proposed intelligence
index.

To measure the setup’s bandwidth, we performed a two-terminal test.
A sine wave (10mV amplitude) with a frequency increasing from 1 to
200 Hz was superimposed on the bias voltage applied to the source elec-
trode. The output signal at each corresponding frequency is extracted and
plotted in Figure S2, Supporting Information. The roll-off beginning at
�70 Hz confirms that the slope at the high-frequency end in the top panel
of Figure 2B (see the short-dashed line) is due to the measurement setup.

Signal Processing: The PSD of the output signal has been evaluated with
Welch’s method, i.e., by splitting up the output signal into overlapping
shorter segments, and averaging their corresponding PSDs calculated with
periodogram to reduce the fluctuations in the overall PSD.

To extract the signal superimposed on the output current at a specific
frequency f, we used the principle of a lock-in amplifier. The output current
waveform vector is denoted by ID(k), where k runs from 1 to N, the total
number of data points. The normalized inner product of the current wave-
form with sin(2πkf/fs) and cos(2πkf/fs) yields the in-phase and quadrature
components of the signal at f, respectively.

X ¼ 2IDðkÞ sinð2πkf =f sÞ=N (2)

Y ¼ 2IDðkÞ cosð2πkf =f sÞ=N (3)

The signal amplitude is then Isig ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X2 þ Y2
p

, and the signal power is
Psig ¼ Isig2. The phase is θ¼ arctan(Y/X ). The phase θ corresponding to
the dataset shown in Figure 3 is plotted against the bias voltage in
Figure S5, Supporting Information. As shown, at low bias, the phase is
around 80�, indicating a weak signal due to capacitive coupling between
the wires of the measurement setup. As the bias voltage exceeds the
threshold VSD,th, the phase drops to nearly zero. This drop implies that
the quadrature component Y due to capacitive coupling is now negligible
compared with the signal caused by the gate modulation. Theoretically, as
long as the input signal frequency is much smaller than the intrinsic hop-
ping rate of the dopant network (on the order of 100MHz), the output

signal amplitude should be the same (see also Supporting
Information). However, in practice, we keep the input frequency low
(1 Hz) to reduce cross coupling. Further decrease in the frequency,
e.g., to 0.5 Hz, does not change the behavior of SNR.

To reveal the nonlinearity of the DC under gate modulation (Figure 4A),
we adopt the Savitsky–Golay method, i.e., fitting a segment of the current
trace (corresponding to 0.1 V interval of gate voltage) with the second-
order polynomials to estimate the current in the middle of the range,
which filters the noise and smoothens the data.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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