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In this paper we study the performance of splitting algorithms, and in par-
ticular the RESTART method, for the numerical approximation of the proba-
bility that a process leaves a neighborhood of a metastable point during some
long time interval [0, T ]. We show that, in contrast to alternatives such as
importance sampling, the decay rate of the second moment does not degrade
as T → ∞. In the course of the analysis we develop some related large de-
viation estimates that apply when the time interval of interest depends on the
large deviation parameter.

1. Introduction. In this paper we study exit probabilities for discrete time stochastic
processes, where the process escapes from some neighborhood of an attractor prior to a given
time. In contrast to existing work on exit probabilities, see, for example, [14, 17], we allow
the time by which the process has to exit to grow polynomially with the large deviations
scaling parameter. One motivation for considering this scaling is that when the time interval
is large and the escape probability is small, the probability closely approximates the inverse
of the mean escape time, and in particular the exponential decay rate for the probability and
growth rate for the escape time coincide. Although one can easily conjecture an expression
for the decay rate for such probabilities, it does not follow from standard sample path large
deviation estimates, which apply to bounded time intervals. A first contribution of this paper
is to apply Freidlin–Wentzell type arguments to rigorously determine the decay rate.

The main focus of this paper is on Monte Carlo estimation of the probability, and in par-
ticular on the use of splitting methods; see for instance, [15]. In rare event simulation the two
most commonly used methods are importance sampling and those based on interacting parti-
cles, which include splitting as a particular case. For a discussion on some of the differences
and similarities of importance sampling and splitting we refer to [4]. For both importance
sampling and splitting it turns out that one can design and analyze efficient Monte Carlo
schemes using subsolutions to a Hamilton–Jacobi–Bellman equation that is naturally associ-
ated to the process through the large deviation rate function; see [5, 6, 12]. This method has
been successfully applied in a variety of settings, such as queueing theory [10], and will also
be used in the current paper.

It was shown in [11] that importance sampling has some shortcomings when applied to the
problem of estimating probabilities to escape from the neighborhood of an attractor. For ex-
ample, when the time interval over which escape can occur is large, one is tempted to consider
subsolutions to the corresponding time independent Hamilton–Jacobi–Bellman equation for
the basis for algorithm design. It is sometimes the case (e.g., for reversible systems) that use-
ful subsolutions can be found much more easily for the time independent version. However,
as discussed in [11], since the attractor is inside the interior of the domain of interest, impor-
tance sampling schemes based on such time independent subsolutions generically degrade as

Received February 2019; revised September 2019.
MSC2020 subject classifications. 65C05, 60F10, 60G99.
Key words and phrases. Splitting algorithms, RESTART, Monte Carlo methods, large deviations, metastable

points.

2963

https://imstat.org/journals-and-publications/annals-of-applied-probability/
https://doi.org/10.1214/20-AAP1578
http://www.imstat.org
mailto:a.buijsrogge@utwente.nl
mailto:paul_dupuis@brown.edu
mailto:michael_snarski@brown.edu
https://mathscinet.ams.org/mathscinet/msc/msc2020.html


2964 A. BUIJSROGGE, P. DUPUIS AND M. SNARSKI

the time interval gets large. In this paper we will consider the design of splitting schemes,
and show that no such degradation occurs.

Within the setting of splitting schemes there are those which allow killing to improve effi-
ciency without introducing bias, with one of the most well known of such schemes being the
RESTART method [18]. The improvement in efficiency of RESTART over ordinary splitting
increases in proportion to the time interval, and so in this paper we focus mainly on this ver-
sion of splitting, though the theoretical results can be proved for ordinary splitting as well,
and in fact with simpler proofs.

We note that there are other particle based methods that produce unbiased estimates for
these problems, such as the interacting particle methods developed in [3, 7]. While these
methods have a number of demonstrated successes, at the present time there are no general
results on their performance in the small probability limit even for fixed time intervals, and
for this reason are not discussed in the paper.

The outline of the paper is as follows. In Section 2 we introduce the model, state conditions
that will hold throughout the paper and state some preliminary results. Then in Section 3 we
determine the decay rate for the probability to escape from a domain within some time T (n),
where n is the large deviation parameter and T (n) is allowed to grow polynomially in n. In
Section 4 we introduce RESTART and determine the asymptotic decay rate. We conclude in
Section 5 with some numerical results.

2. Model and preliminary results. The problem of interest is to estimate exit probabil-
ities of a discrete time process {Xn

i } from a bounded open set D ⊂ R
d over a time interval

[0, T (n)]. The index n serves a dual purpose: we assume that Xn satisfies a large deviations
principle (LDP) with rate n, and we also assume T (n) → ∞ as n → ∞.

Our results hold for a wide class of processes, and the techniques of the proof are agnostic
to the specific choice of model. All that is required is a sample path LDP which is uniform
with respect to the initial condition, as characterized in Definition 2.3 and required by Con-
dition 2.4, and that the local rate function has enough regularity to guarantee that the infima
over closed and open sets agree, as in Condition 2.2. However, it will be useful for the pur-
poses of discussion to make some of the quantities involved more concrete. A large class of
Markov processes satisfying the assumptions to be imposed can be obtained from recursive
chains of the form

(2.1) Xn
i+1 = Xn

i + 1

n
vi

(
Xn

i

)
,

where vi(·) are independent and identically distributed random vectors fields on R
d whose

distribution is given by a stochastic kernel μ(·|x), x ∈ R
d , so that P(vi(x) ∈ A) = μ(A|x).

To help the reader fix ideas, we provide an example which satisfies the conditions that we
provide below.

EXAMPLE 2.1. Consider the small-noise diffusion

(2.2) dXn(t) = b
(
Xn(t)

)
dt +

√
1

n
σ
(
Xn(t)

)
dB(t),

where B(·) is a standard d-dimensional Brownian motion, b and σ are Lipschitz continuous,
and σ(x)σ (x)T ≥ cI in the sense of symmetric matrices for some c > 0 and all x ∈ R

d . If we
consider the Euler–Maruyama discretization of this process with the convenient step size 1/n

we obtain the recursion

Xn
i+1 = Xn

i + 1

n
b
(
Xn

i

)+ 1

n
σ
(
Xn

i

)
ξi+1,
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with ξi being i.i.d. standard Gaussians, which is of the form (2.1) with μ(·|x) Gaussian with
mean b(x) and covariance matrix σ(x)σ (x)T .

If we assume also that and the drift generated by b(·) attracts the whole domain D to an
equilibrium point 0 ∈ D, then under boundedness of D and regularity of its boundary all of
the conditions assumed below will be satisfied. (Note that since D is assumed bounded, we
can redefine b and σ in any way that is convenient on the complement of D when checking
if the conditions hold).

A particularly relevant special case of (2.2) for the problem of escape over long time in-
tervals is the Ornstein–Uhlenbeck process, when b(x) = −Ax and σ(x) = � for suitable
matrices A and �. This is so because under mild conditions such processes provide the ap-
proximating diffusion model for (2.1) in a neighborhood of 0 when 0 is a stable equilibrium
for the ordinary differential equation with drift b(x) = ∫

Rd yμ(dy|x), and because the diffi-
culties associated with simulating over long times intervals are all due to the behavior in such
neighborhoods.

As an example that is not of the form (2.1) one could suppose that the drift b(x) and dif-
fusion σ(x) depend on an exogeneous finite-state Markov chain; this would be an example
of a “Markov-modulated” process; see [2] for the large deviation theory of such processes.
Although we use (2.1) as a canonical model for the discussion, it bears repeating that the
specific form of the process is not used in the proofs. The key assumption is that an appro-
priate uniform LDP is available, as required by Condition 2.4, with appropriate regularity
conditions.

Returning to the model in (2.1), the process Xn naturally induces a family of probability
measures Px , where Px(X

n(0) = x) = 1. We let Ex[·] denote the expected value with respect
to Px . Define the cumulant generating function of the vector fields by

H(x,α)
.= log

∫
Rd

e〈α,u〉μ(du|x).

We assume that the following conditions are satisfied by H and the stochastic kernel μ. As
noted in Example 2.1, when verifying the conditions we can at our convenience redefine
μ(·|x) off the closure of D.

CONDITION 2.1.

1. For all α ∈ R
d , we have supx∈Rd H(x,α) < ∞.

2. The map x → μ(·|x) is continuous in the topology of weak convergence.

The cumulant generating function H(x,α) is used to define the local rate associated to the
system (2.1) via the Legendre–Fenchel transformation. For (x,β) ∈ R

d , let

(2.3) L(x,β)
.= sup

α∈Rd

{〈α,β〉 − H(x,α)
}
.

We now provide conditions on the local rate L. For models of the form (2.1), since L

is the Legendre–Fenchel transform of a cumulant generating function it is automatic that
L(x, ·) is convex and that there is a unique b(x) such that L(x, b(x)) = 0 for each x ∈ R

d .
The remaining properties below can all be related to properties of the kernel μ(·|x) (see
[1, 8]).

CONDITION 2.2. We assume that L : Rd ×R
d → [0,∞] satisfies the following proper-

ties:

1. for every x ∈ R
d there is a unique b(x) such that L(x, b(x)) = 0, and b : Rd → R

d is
Lipschitz continuous;



2966 A. BUIJSROGGE, P. DUPUIS AND M. SNARSKI

2. for every x ∈R
d L(x, ·) is convex;

3. for every compact set K , there is r ∈ (0,∞) such that L(x,β) ≤ 1/r if x ∈ K , |β| ≤ r .

The most significant of these is the last property, which is used to establish that the infimum
of the rate function (defined below) over the interior and closure of sets of trajectories coin-
cide. This is not strictly necessary, but without it both the statement of results and their proofs
become much more complicated. The second property guarantees the existence and unique-
ness of solutions to the initial value problem ẋ(t) = b(x(t)), x(0) = x0 for any x0 ∈ R

d . We
call the ordinary differential equation ẋ(t) = b(x(t)) the noiseless dynamics.

To state the LDP for Xn
i , it is convenient to interpolate it as a piecewise constant process.

For fixed T ∈ (0,∞), define

Xn(t)
.= Xn

i , t ∈ [i/n, (i + 1)/n
)
, i = 0, . . . , 
nT �,

where 
a� is the integer part of a. We consider Xn as taking values in D([0, T ]) .= D([0, T ] :
R

d), with the usual Skorokhod topology [13]. We could also have considered a piecewise
linear interpolation that takes values in C([0, T ]) .= C([0, T ] : Rd) and obtain an LDP with
the same rate function, but then we would have to justify the use of the Markov property at
only the interpolation times and this seems to lead to more complicated proofs. We will make
use of the fact that the Skorokhod topology on D([0, T ]) relativized to C([0, T ]) coincides
with the uniform topology given by the metric

d(ϕ1, ϕ2)
.= ‖ϕ1 − ϕ2‖∞ = sup

0≤t≤T

∣∣ϕ1(t) − ϕ2(t)
∣∣.

We omit the implicit dependence of the metric d on the time interval [0, T ] for notational
simplicity, as it will be clear from the context what the interval is. For any set A ⊂ C([0, T ])
and ϕ ∈ C([0, T ]), we define d(ϕ,A)

.= infφ∈A d(ϕ,φ). For objects taking values in R
d we

use absolute values | · | to denote the standard Euclidean norm, and we use Eμ to denote a
ball of radius μ > 0 around 0: Eμ

.= {x ∈ R
d : |x| < μ}.

Under the conditions we will assume, the rate function associated with the process Xn

over the interval [0, T ] is

IT (ϕ)
.=
∫ T

0
L
(
ϕ(s), ϕ̇(s)

)
ds

if ϕ(t) is absolutely continuous, and IT (ϕ) = ∞ otherwise. Note that, owing to part 1 of
Condition 2.2, if IT (ϕ) = 0 then ϕ satisfies the noiseless dynamics ϕ̇(t) = b(ϕ(t)).

We phrase the uniform large deviations principle in terms of level sets of IT , which are
defined by

	x,T (s)
.= {

ϕ ∈ D
([0, T ]) : IT (ϕ) ≤ s, ϕ(0) = x

}
.

The formulation of the uniform large deviations principle presented here is taken from
[14], p. 74.

DEFINITION 2.3 (Uniform large deviations principle). The sequence Xn satisfies a uni-
form large deviations principle if:

1. the functional IT is lower semicontinuous on D([0, T ]) and for each T ∈ [0,∞), com-
pact K ⊂R

d and s < ∞, the set
⋃

x∈K 	x,T (s) is compact;
2. for any δ > 0, γ > 0, s0 < ∞ and any compact K ⊂ R

d , there is N ∈N such that

Px

(∥∥Xn − φ
∥∥∞ < δ

)≥ exp
(−n

(
IT (φ) + γ

))
for all n ≥ N , all x ∈ K and all φ ∈ 	x,T (s0);
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3. for any δ > 0, γ > 0, s0 < ∞ and any compact K ⊂ R
d , there exists N ∈ N such that

Px

(
d
(
Xn,	x,T (s)

)≥ δ
)≤ exp

(−n(s − γ )
)

for all n ≥ N , s ≤ s0 and x ∈ K .

This definition allows us to phrase the final assumption on the process Xn
i .

CONDITION 2.4. For each T ∈ (0,∞), the sequence {Xn,n ∈ N} satisfies the uniform
LDP in Definition 2.3 with a rate function IT (ϕ) of the form

IT (ϕ) =
∫ T

0
L
(
ϕ(s), ϕ̇(s)

)
ds

for some L satisfying Condition 2.2.

Having posed all conditions on this process, we return to our original problem. We seek to
estimate the probability that the process escapes from a domain D before some time T (n).
We will require the domain D to satisfy some mild regularity properties which are stated
below. We will make use of the following notation throughout the paper. For any subset A

of a topological space, we let A denote its closure, Ac its complement, and ∂A = A ∩ Ac its
boundary. We denote the first exit time of the process Xn from the set D by

ρn .= inf
{
t ≥ 0 : Xn(t) /∈ D

}
.

We assume that the process exits the set D in finite time with probability 1, that is, for all
x ∈ D, Px(ρ

n < ∞) = 1.

CONDITION 2.5. We impose the following conditions on the set D ⊂ R
d :

1. D is a bounded open subset of Rd ;
2. D satisfies a regularity condition at all points of its boundary: for any δ > 0 and p ∈ ∂D,

there is a point q in the interior of Dc with |p − q| < δ;
3. the noiseless dynamics ẋ(t) = b(x(t)) possess a unique equilibrium point O ∈D which

is asymptotically stable on a neighborhood of D: there is open D′ ⊃ D such that for any
x0 ∈ D′ and μ > 0, there is T = T (x0,μ) ∈ [0,∞) such that ẋ(t) = b(x(t)) for t ≥ 0 and
x(0) = x0 together imply |x(T ) − O| < μ. Without loss of generality, we take O to be the
origin 0 ∈ R

d .

The assumption that D is bounded is not necessary for the results on the decay rate of
RESTART to hold, since one can always restrict to an appropriately chosen bounded subset
of the domain, that is, take a compact set K ⊂ D large enough that escape outside of K

is superexponentially small. Such a generalization is straightforward but cumbersome and is
therefore omitted. We also note that the noiseless dynamics may exit the domain when started
at certain initial conditions x0 ∈ D, though they must eventually re-enter.

With regard to T (n) we assume the following.

CONDITION 2.6. T (n) grows polynomially in n, by which we mean

lim
n→∞T (n) = ∞ and lim

n→∞
[
logT (n)

]
/n = 0.

Throughout the paper several interdependent parameters are used. For instance, a statement
which holds for all n greater than some threshold value N that depends on ε. We highlight the
important dependencies by explicitly writing the parameters at the outset, for example, N(ε),
and thereafter using only N . We highlight only the most relevant dependencies and ignore
others. For instance, N might also depend on the domain D, but since D is fixed throughout
we do not include it in the list of dependencies.
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2.1. Preliminary results. In this section we will state some results that will be used in
Section 3 to estimate the rate of decay of the exit probability from D by some time T (n).
The proofs of the lemmas in this section follow more or less directly from the conditions that
were presented in Section 2 and hence these proofs can be found in Appendix A.

The uniform bound on the cumulant generating function H(x,α) allows us to establish
an asymptotic bound on the maximum jump size of the process, which is the content of
Lemma 2.7. The proof follows from Chebyshev’s inequality and since n−1 log(nT (n)) → 0,
and is omitted.

LEMMA 2.7. Assume Condition 2.1. Then for all δ > 0,

lim sup
n→∞

sup
x∈Rd

1

n
logPx

(
max

0≤i≤nT (n)

∣∣Xn
i+1 − Xn

i

∣∣≥ δ
)

= −∞.

Next, we define a function which will be used throughout the paper and will be commonly
referred to as the “cost to exit,” starting at a given point. Let

(2.4) W(x)
.= inf

{
IT (ϕ) : ϕ(0) = x,ϕ(T ) /∈ D, T < ∞}

for x ∈ D and W(x)
.= 0 otherwise. The function W(·) has the following properties.

LEMMA 2.8. Under Condition 2.2, the function W(·) satisfies:

1. W(·) is continuous on R
d ,

2. for every x ∈ D, W(x) ≤ W(0).

The last lemma in this section gives an upper bound on the probability that the process
does not enter the μ-neighborhood of the origin within some finite time T , starting at some
point x that is not in the μ-neighborhood of the origin. The proof of this lemma uses the same
argument as [14], Lemma 2.2, Chapter 4.

LEMMA 2.9. For any μ > 0 and any M < ∞, there are T (μ,M) < ∞ and N(μ,M) <

∞ such that for any initial point x ∈ D \ Eμ, where Eμ = {x : |x| < μ}, we have

Px

(
Xn(t) ∈D \ Eμ,0 ≤ t ≤ T

)≤ e−nM

for all n ≥ N .

3. Long time estimates. The main result of this section is the following estimate.

THEOREM 3.1. Suppose Conditions 2.1, 2.2, 2.4, 2.5 and 2.6 are met. Then for any
x ∈ D we have

(3.1) lim
n→∞

1

n
logPx

(
ρn ≤ T (n)

)= −W(x).

Since T (n) → ∞, this is not covered by an LDP of the form in Definition 2.3, and in
fact requires a Freidlin–Wentzell analysis appropriate for large time problems as in [14].
Theorem 3.1 follows directly from Lemmas 3.3 and 3.4 below, which give upper and lower
bounds for the decay of Px(ρ

n ≤ T (n)). We remark that in fact Theorem 3.1 holds uniformly
in x, but it is not stated as such since only the upper bound in Lemma 3.3 is proved in its
uniform version as it is required for the proof of Theorem 4.7. The lower bound is easier and
holds uniformly as well, but since it is not used in the analysis of RESTART we only establish
the pointwise estimate in the interest of saving space.

We start with the upper bound when the process starts in a small neighborhood of the
attracting point 0.
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LEMMA 3.2. Assume the conditions of Theorem 3.1 are met. For any ε > 0, there is a
μ(ε) > 0 and N(ε) < ∞ such that for all n ≥ N and all y ∈ Eμ = {x : |x| < μ},

(3.2)
1

n
logPy

(
ρn ≤ T (n)

)≤ −W(y) + ε.

PROOF. Let ε > 0. The function y → W(y) is continuous on D by Lemma 2.8, hence
uniformly continuous on any bounded neighborhood of 0. For the given ε > 0, there is μ > 0
such that

(3.3)
∣∣W(x) − W(y)

∣∣< ε/8 whenever |x − y| < 2μ.

We choose such a μ > 0 and any η ∈ (0,μ/2). We also assume μ small enough that Eμ ⊂ D.
Both μ and η will remain fixed for the rest of the proof. For readability we have divided the
proof into 5 steps.

Step 1. A priori estimates. Define the sets

�η
μ

.= {
x : μ − η ≤ |x| ≤ μ

}
,

γ η
μ

.=
{
x : μ

2
− η ≤ |x| ≤ μ

2

}
.

We will choose a time T1 such that the probability that the process does not enter the μ/2-
neighborhood of the attracting point 0 is superexponentially small. By Lemma 2.9, there are
T1(μ) and N1(μ) such that T ≥ T1 and n ≥ N1 together imply, for any x ∈ D \ Eμ/2, that

(3.4) Px

(
Xn(t) ∈D \ Eμ/2, t ∈ [0, T1])≤ e−n(W̄+1),

where W̄
.= infx∈�

η
μ
W(x). Without loss of generality, we may assume that W̄ > ε.

We claim there is δ(ε) > 0 such that any path ϕ which satisfies ϕ(0) ∈ �
η
μ ⊂ D and ϕ(t) /∈

D for some t ∈ [0, T1] also satisfies

d
(
ϕ,	ϕ(0),T1(W̄ − ε/4)

)≥ δ > 0.

If not, for any δ > 0 we could find a path ϕδ with ϕδ(0) ∈ �
η
μ and ϕδ(t∗) /∈ D for some

t∗ ∈ [0, T1], and d(ϕδ,	ϕδ(0),T1
(W̄ − ε/4)) < δ. By Lemma A.1, on the compact set K =

{x : infz∈D |x − z| ≤ 1} there is c ∈ (0,∞) such that for all x, y ∈ K , we can construct ϕxy

satisfying ϕxy(0) = x, ϕxy(τ ) = y with τ ∈ (0,∞) and Iτ (ϕxy) ≤ c|x − y|.
Choose δ ∈ (0, ε/8c), and without loss of generality assume δ < 1. We obtain a

path ϕδ starting in �
η
μ for which ϕδ(t∗) /∈ D at some t∗ ∈ [0, T1]. Under the assump-

tion that d(ϕδ,	ϕδ(0),T1
(W̄ − ε/4)) < δ, we can find φ ∈ 	ϕδ(0),T1

(W̄ − ε/4) such that
‖φ − ϕδ‖∞ < δ. Since φ(0) = ϕδ(0) ∈ �

η
μ, the definition of W̄ implies that φ(t∗) ∈ D ⊂ K ,

while δ < 1 ensures ϕδ(t∗) ∈ K . Applying Lemma A.1 to the points x = φ(t∗) and y = ϕδ(t∗),
we obtain a path ϕxy connecting x and y in time τ with cost Iτ (ϕxy) ≤ cδ < ε/8. Concate-
nating φ on [0, t∗] with ϕxy on (t∗, t∗ + τ ], we obtain a path starting in �

η
μ and ending outside

of D at time t∗ + τ < ∞, with cost less than It∗(φ) + Iτ (ϕxy) ≤ W̄ − ε/8. This contradicts
the definition of W̄ . Thus δ > 0 must exist as claimed.

As a consequence of the above discussion, for any y ∈ �
η
μ,{

ρn ≤ T1,X
n(0) = y

}⊂ {
d
(
Xn,	y,T1(W̄ − ε/4)

)≥ δ
}
.

By the uniform large deviations upper bound on the interval [0, T1], there is N2(ε, T1) < ∞
for which n ≥ N2 implies, for any y ∈ �

η
μ,

(3.5) Py

(
ρn ≤ T1

)≤ Py

(
d
(
Xn,	y,T1(W̄ − ε/4)

)≥ δ
)≤ e−n(W̄− ε

2 ).
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FIG. 1. The piecewise constant process Xn(t) moving between the sets �
η
μ and γ

η
μ . The process in the figure

has not exited the domain D nor hit γ
η
μ at time τn

3 , since it wandered around for time longer than T1. Thus, σn
3 is

triggered when the process returns to �
η
μ.

With T1 chosen, we introduce the stopping times σ0
.= 0, and for j ≥ 1,

τn
j

.= inf
{
t > σn

j−1 : Xn(t) ∈ (γ η
μ ∪Dc)}∧ (T1 + σn

j−1
)
,

σ n
j

.= inf
{
t > τn

j : Xn(t) ∈ �η
μ

}
.

The stopping times τn
j and σn

j also depend on η and μ, but we do not include this dependence
to avoid an overload of notation. Figure 1 shows a sample path with its associated stopping
times.

Step 2. The probability of an excursion to ∂D within time T (n) is approximately the prob-
ability of excursion over a single time interval (σ n

j−1, τ
n
j ) times the expected number of such

intervals. Define the random variables

Bn
j

.=
{

1 if Xn(τn
j

)
/∈D or τn

j − σn
j−1 ≥ T1,

0 else.

For any y ∈ �
η
μ it holds that

Py

(
ρn ≤ T (n)

)
≤ Py

(
Bn

j = 1 for some j with τn
j ≤ T (n)

)

= Py

(
Bn

j = 1 for some j with

(
τn

1 − σn
0 +

j∑
i=2

τn
i − τn

i−1

)
≤ T (n)

)

≤ Py

(
Bn

j = 1 for some j with

( j∑
i=1

τn
i − σn

i−1

)
≤ T (n)

)

≤ Ey

[
Mn∑
i=1

Bn
i

]
,

(3.6)

where Mn .= inf{j ≥ 1 :∑j
i=1 τn

i − σn
i−1 > T (n)}. We can bound (3.6) by

(3.7) Ey

[
Mn∑
i=1

Bn
i

]
≤ Ey

[
Mn] sup

x∈�
η
μ

Ex

[
Bn

1
]

for any y ∈ �
η
μ. The proof of this statement can be found in Appendix B, Lemma B.1.

Step 3. The expected number of intervals (σn
j−1, τ

n
j ) in time T (n) is approximately T (n)

divided by the expected duration of each interval. A lower bound on the expected duration
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gives an upper bound on the expected number of intervals. For any y ∈ �
η
μ, we have

Ey

[
Mn] inf

x∈�
η
μ

Ex

[
τn

1
]≤ Ey

[
Mn∑
i=1

τn
i − σn

i−1

]

≤ T (n) + τn
Mn − σn

Mn−1

≤ T (n) + T1.

See Lemma B.1 for the proof of the first inequality.
It takes some positive time to travel from �

η
μ to either γ

η
μ or to escape D, so Ex[τn

1 ] ≥ s > 0
for some fixed s independent of y ∈ �

η
μ and all sufficiently large n. A precise proof can be

found in Lemma B.2. Hence, for all y ∈ �
η
μ,

(3.8) Ey

[
Mn]≤ T (n) + T1

s
.

Step 4. Combine estimates for y ∈ �
η
μ. From equations (3.6) and (3.7), we find for any

y ∈ �
η
μ

(3.9) Py

(
ρn ≤ T (n)

)≤ Ey

[
Mn]( sup

x∈�
η
μ

Ex

[
Bn

1
])

.

The first factor in (3.9) was bounded above in (3.8). For the second factor, note that for any
y ∈ �

η
μ,

(3.10) Ey

[
Bn

1
]= Py

(
Bn

1 = 1
)= Py

({
Xn(τ1) /∈D, τ1 ≤ T1

}∪ {τ1 ≥ T1}).
We consider the two events separately and then bound the probability of the union by the sum
of the probabilities. The probability of the first event is upper bounded in (3.5) for n ≥ N2.
For the second event, note that

{τ1 ≥ T1} ⊂ {
Xn(t) ∈ D \ Eμ/2, t ∈ [0, T1]}∪

{
max

0≤i≤nT (n)

∣∣Xn
i+1 − Xn

i

∣∣≥ η
}

for if the process did enter the μ/2-neighborhood of the origin but did not trigger the
event τ1, then at some time index i = 0, . . . , nT (n) it must have jumped over the set γ

η
μ .

From Lemma 2.7, we can choose N3(μ,η) < ∞ for which n ≥ N3 implies

(3.11) Py

(
max

0≤i≤nT (n)

∣∣Xn
i+1 − Xn

i

∣∣≥ η
)

≤ e−n(W̄+1).

The event {Xn(t) ∈D \ Eμ/2, t ∈ [0, T1]} is also superexponentially small, as the constant T1
was originally chosen so that any y ∈ �

η
μ ⊂ (D \ Eμ/2) satisfies (3.4) for all n ≥ N1.

Set N4 = max(N1,N2,N3). Then, by (3.4), (3.5), (3.10) and (3.11), for any n ≥ N4 and
any y ∈ �

η
μ

Ey

[
Bn

1
]≤ Py

(
ρn ≤ T1

)+ Py

(
Xn(t) ∈ D \ Eμ/2, t ∈ [0, T1])

+ Py

(
max

0≤i≤nT (n)

∣∣Xn
i+1 − Xn

i

∣∣≥ η
)

≤ e−n(W̄− ε
2 ) + 2e−n(W̄+1).

From (3.8) and (3.9) it follows that

Py

(
ρn ≤ T (n)

)≤ T (n) + T1

s

(
e−n(W̄− ε

2 ) + 2e−n(W̄+1)).



2972 A. BUIJSROGGE, P. DUPUIS AND M. SNARSKI

We can now take logarithms and scale by n. By using Condition 2.6 we can choose N5 ∈
(N4,∞), so that n ≥ N5 implies

1

n
logPy

(
ρn ≤ T (n)

)≤ −W̄ + ε

2
+ ε

8
.

The additional error term of ε/8 appears to account for the polynomial factor and the addi-
tional exponential term which decays at rate W̄ + 1.

Since |x − y| < 2μ whenever x, y ∈ �
η
μ, (3.3) ensures that −W̄ ≤ −W(y) + ε/8. We

conclude that whenever n ≥ N5 and y ∈ �
η
μ, we have

(3.12)
1

n
logPy

(
ρn ≤ T (n)

)≤ −W̄ + ε

2
+ ε

8
≤ −W(y) + 3ε

4
.

In particular, (3.2) holds for y ∈ �
η
μ.

Step 5. Extend estimate to y ∈ Eμ. The estimate (3.12), which we have just shown holds
for all y ∈ �

η
μ, can be harnessed to obtain (3.2) for all y ∈ Eμ. Let z ∈ Eμ \ �

η
μ, and define the

stopping time

Hn
�

.= inf
{
t ≥ 0 : Xn(t) ∈ �η

μ

}
.

In order to escape D, a trajectory starting at z must pass through �
η
μ, or else jump over it. In

the latter case we have

Pz

(
ρn < Hn

�

)≤ Pz

(
max

i=0,...,nT (n)

∣∣Xn
i+1 − Xn

i

∣∣≥ η
)
.

Owing to Lemma 2.7, the probability of jumping over �
η
μ is superexponentially small: we

can choose N6(μ,η) < ∞ so large that

(3.13) Pz

(
max

i=0,...,nT (n)

∣∣Xn
i+1 − Xn

i

∣∣≥ η
)

≤ e−n(W̄+1)

for all n ≥ N6. By the law of total probability,

Pz

(
ρn ≤ T (n)

)= Pz

(
ρn ≤ T (n) | ρn < Hn

�

)
Pz

(
ρn < Hn

�

)
+ Pz

(
ρn ≤ T (n) | ρn > Hn

�

)
Pz

(
ρn > Hn

�

)
≤ e−n(W̄+1) + PXn(Hn

�)

(
ρn ≤ T (n) − Hn

�

)
,

(3.14)

where the last step follows from the strong Markov property applied at Hn
� . Since Xn(Hn

�) ∈
�

η
μ by definition of Hn

� , and since Hn
� ≥ 0, it also holds that

PXn(Hn
�)

(
ρn ≤ T (n) − Hn

�

)≤ sup
y∈�

η
μ

Py

(
ρn ≤ T (n)

)
.

Recall that the choice of μ > 0 in (3.3) ensures W(z) ≤ W(y) + ε/8. Using (3.12) in (3.14),
we obtain for the given z ∈ Eμ \ �

η
μ and n ≥ max(N5,N6) that

Pz

(
ρn ≤ T (n)

)≤ e−n(W̄+1) + e−n(W(y)− 3ε
4 ) ≤ 2e−n(W(z)−7ε/8).

By choosing n large enough and applying the logarithmic scaling, we can absorb the coeffi-
cient of 2 into the remaining ε/8 of room for error. This establishes the desired estimate for
z ∈ Eμ \ �

η
μ and thus for all y ∈ Eμ. �

The next lemma extends the asymptotic upper bound to all points in D. It is stated in its
uniform version as required for the proof of Theorem 4.7.
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LEMMA 3.3. Under the conditions of Theorem 3.1,

(3.15) lim sup
n→∞

1

n
logPz

(
ρn ≤ T (n)

)≤ −W(z)

uniformly in z ∈ D.

PROOF. To establish the lemma, we claim it suffices to show that for any z ∈ D and for
any ε > 0, there exist α(z, ε) > 0 and N(z, ε) < ∞ such that

(3.16)
1

n
logPy

(
ρn ≤ T (n)

)≤ −W(y) + ε

for all n ≥ N(z, ε) and y ∈ Bα(z,ε)(z)
.= {y : |z − y| < α(z, ε)}.

To justify the claim, first observe that for any choice of α(z, ε) > 0, we have D ⊂⋃
z∈D Bα(z,ε)(z). Since D is compact, there are K < ∞ and {zi}Ki=1 ⊂ D such that D ⊂⋃K
i=1 Bα(zi,ε)(zi). If N

.= maxK
i=1 N(zi, ε) < ∞, then (3.16) holds for any n ≥ N and any

y ∈D. Since ε > 0 is arbitrary, (3.15) follows.
We now establish (3.16). The particular case of z = 0 is covered by Lemma 3.2, for which

one can simply take α = μ, so it suffices to consider z ∈D \ {0}.
Next, we eliminate the case where W(z) = 0. Since W is continuous on R

d , there is
α(z, ε) > 0 such that 0 < −W(y) + ε for all y ∈ Bα(z). Since Py(ρ

n ≤ T (n)) ≤ 1, it au-
tomatically follows that (3.16) holds for all y ∈ Bα(z), as required. Furthermore, we observe
that W(z) = 0 for any z /∈ D, and so we may focus on points z ∈D \ {0}.

Let then z ∈ D \ {0} with W(z) > 0, and let ε > 0 be given. Without any loss of generality,
we may assume that 0 < ε < W(z). By Lemma 3.2, there is μ0(ε) > 0 and N1(ε) < ∞ such
that n ≥ N1 implies, for all y ∈ Eμ0 = {x : |x| < μ0}, that

(3.17)
1

n
logPy

(
ρn ≤ T (n)

)≤ −W(y) + ε

4
.

We claim that we can choose μ(z, ε) ∈ (0,μ0) and α(z, ε) such that: (1) Bα(z) ⊂ D \ Eμ and
(2) we have the inequality

(3.18) W(y) ≤ inf
x∈Eμ

W(x) + ε

2

for all y ∈ Bα(z).
We first choose μ. By part 2 of Lemma 2.8 we have W(z) ≤ W(0), and by the first part

of the same lemma W is continuous at 0. Thus we can choose μ > 0 such that W(0) <

W(x) + ε/4 for all x ∈ Eμ, and without loss of generality μ < min(|z|/2,μ0). In particular,

(3.19) W(z) ≤ inf
x∈Eμ

W(x) + ε

4
.

Next, since μ < |z|/2 we can take α(z, ε,μ) > 0 small enough that Bα(z) ∩ Eμ = ∅ and
moreover we may insist that Bα(z) ⊂D because z ∈ D and D is open. Since W is continuous
at z, α can be taken even smaller to guarantee

(3.20)
∣∣W(y1) − W(y2)

∣∣< ε/4

for all y1, y2 ∈ Bα(z). Note that μ depends only on z and ε, so α inherently depends only
on z and ε as well. Combined with (3.19), an application of the triangle inequality shows that
this choice of α guarantees (3.18).

Define

ζ n
μ

.= inf
{
t > 0 : Xn(t) /∈D \ Eμ

}
,
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which is the first time the process enters the μ-neighborhood of the attracting point 0 or
escapes the set D. By Lemma 2.9, there are T1(μ) < ∞ and N2(μ) < ∞ so large that n ≥ N2
implies, for any x /∈ Eμ,

(3.21) Px

(
ζ n
μ > T1

)≤ e−n(W(x)+1).

Then, for any y ∈ Bα(z),

Py

(
ρn ≤ T (n)

)= Py

(
ρn ≤ T1

)+ Py

(
T1 < ρn ≤ T (n), ζ n

μ ≤ T1
)

+ Py

(
T1 < ρn ≤ T (n), ζ n

μ > T1
)
.

(3.22)

We estimate each term separately. For the first term, we use the finite time uniform large
deviations upper bound, part 3 of Definition 2.3. Let W̄

.= infy∈Bα(z) W(y). Since the closure
of Bα(z) is compact, an argument similar to the one in Step 1 of Lemma 3.2 shows that for
the given ε > 0 there is δ(ε) > 0 such that, for all y ∈ Bα(z),{

ρn ≤ T1,X
n(0) = y

}⊂ {
d
(
Xn,	y,T1(W̄ − ε/8)

)≥ δ
}
.

Applying the large deviations upper bound on the compact set Bα(z) with s0 = W̄ −ε/8, γ =
ε/8 and δ > 0 as above, we find N3(ε, T1) < ∞ for which n ≥ N3 implies, for all y ∈ Bα(z),
Py(ρ

n ≤ T1) ≤ e−n(W̄−ε/4). By the choice of α in (3.20) we have W(y) ≤ W̄ + ε/4, and so

(3.23) Py

(
ρn ≤ T1

)≤ e−n(W̄−ε/4) ≤ e−n(W(y)−ε/2)

for all y ∈ Bα(z).
For the second term, note that on the event {T1 < ρn ≤ T (n)} ∩ {ζ n

μ ≤ T1}, the process
has entered the μ-neighborhood of 0, which is contained in the μ0-neighborhood of 0 by
the choice of μ. After entering Eμ at time ζ n

μ , it has T (n) − ζ n
μ time remaining to exit D.

By allowing T (n) time we increase the probability of exiting. Thus, by (3.17) and the strong
Markov property, n ≥ N1 implies

Py

(
T1 < ρn ≤ T (n), ζ n

μ < T1
)≤ sup

x∈Eμ

Px

(
ρn ≤ T (n)

)

≤ e
−n(infx∈Eμ W(x)−ε/4)

.

(3.24)

For the last term in (3.22), we use the estimate (3.21),

(3.25) Py

(
T1 < ρn ≤ T (n), ζ n

μ > T1
)≤ Py

(
ζ n
μ > T1

)≤ e−n(W(y)+1),

which holds for all y ∈ Bα(z) ⊂ D \ Eμ whenever n ≥ N2.
Set N4

.= max(N1,N2,N3). Using (3.23), (3.24) and (3.25) in (3.22), we find for all n ≥
N4 and y ∈ Bα(z)

(3.26) Py

(
ρn ≤ T (n)

)≤ e−n(W(y)−ε/2) + e
−n(infx∈Eμ W(x)−ε/4) + e−n(W(y)+1).

From (3.18), for any y ∈ Bα(z), e
−n(infx∈Eμ W(x)−ε/4) ≤ e−n(W(y)−3ε/4) for all n ≥ N4. It

therefore follows from (3.26) that, for all y ∈ Bα(z),

1

n
logPy

(
ρn ≤ T (n)

)≤ −W(y) + 3ε

4
+ 3

n
,

and choosing N4 ≤ N(z, ε) < ∞ large enough that 3/n < ε/4, we obtain (3.16) for all y ∈
Bα(z), as required. �

Next we prove the lower bound for the decay of Px(ρ
n ≤ T (n)). We remind the reader

that Lemma 3.4 also holds uniformly in x, but in the interest of space we only establish the
pointwise version.



RARE EVENT SIMULATION OVER LONG TIMES 2975

LEMMA 3.4. Assume the conditions of Theorem 3.1. For any x ∈D, we have

lim inf
n→∞

1

n
logPx

(
ρn ≤ T (n)

)≥ −W(x).

PROOF. It suffices to show that for any x ∈ D and any ε > 0, there is N(ε) < ∞ such
that n ≥ N guarantees

1

n
logPx

(
ρn ≤ T (n)

)≥ −W(x) − ε.

To establish the estimate, we will take a trajectory which is within ε of the infimum in the def-
inition of W(x), and use part 3 of Condition 2.2 in conjunction with part 2 of Condition 2.5 to
extend the trajectory a little past the boundary. This will allow us to apply the large deviations
lower bound, which is stated in its uniform version as part 2 of Definition 2.3.

Fix x ∈ D and let ε > 0. By the variational definition of W(x), there is a trajectory ϕ and
T < ∞ such that ϕ(0) = x, ϕ(T ) /∈ D and IT (ϕ) ≤ W(x)+ ε/4. Define the compact set K =
{y : infz∈D |y − z| ≤ 1}. By Lemma A.1, there is c ∈ (0,∞) such that for all p,q ∈ K , we can
find ϕpq and τ which satisfy ϕpq(0) = p, ϕpq(τ ) = q , τ ∈ (0,∞) and Iτ (ϕpq) ≤ c|p − q|.
Let a ∈ (0, ε/4c) and assume without loss of generality that a < 1.

IT (ϕ) < ∞ implies ϕ must be absolutely continuous, so there is a time s ∈ (0, T ] such
that ϕ(s) ∈ ∂D. Set p

.= ϕ(s) and note that p ∈ K . By the regularity property in part 2
of Condition 2.5, there is a point q in the interior of Dc which satisfies |p − q| < a, and
since a < 1 we also have q ∈ K . From Lemma A.1 we obtain a trajectory ϕpq and τ > 0 as
described above with cost

Iτ (ϕpq) ≤ ca < ε/4.

Let φ denote the concatenation of the paths ϕ on [0, s] and ϕpq on (s, s + τ ], that is,

φ(t) =
{
ϕ(t), t ∈ [0, s],
ϕpq(t − s), t ∈ (s, s + τ ],

and note that φ is continuous at s. Moreover,

Is+τ (φ) ≤ IT (ϕ) + Iτ (ϕpq) ≤ W(x) + ε/2.

Finally, since q lies in the interior of Dc, there is δ > 0 such that |q − z| < δ implies z ∈ Dc.
In particular, if ‖φ′ −φ‖∞ < δ, then φ′(s + τ) ∈ Dc. If n is large enough to guarantee T (n) ≥
s + τ , then {∥∥Xn − φ

∥∥∞ < δ
}⊂ {

ρn ≤ T (n)
}
.

Applying part 2 of Definition 2.3 with s0 = W(x) + 1, γ = ε/2, and the given δ > 0, we find
N < ∞ such that for all n ≥ N ,

Px

(∥∥Xn − φ
∥∥∞ < δ

)≥ exp
(−n

(
IT (φ) + ε/2

))
.

Taking logarithms and using IT (φ) ≤ W(x) + ε/2, we obtain the desired result. �

4. RESTART. In this section we describe how splitting can be used to estimate the prob-
ability that the process Xn exits before time T (n) using simulation. In [11], importance sam-
pling is used to estimate the probability that Xn exits within some fixed finite time T , and
the decay rate of the second moment is analyzed in the limit as n → ∞. In Section 4.3 we
discuss why RESTART (and ordinary splitting) is preferred over importance sampling when
the time grows polynomially with the large deviations scaling parameter n. Until Section 4.2,
we will omit the dependence on the large deviations scaling parameter for simplicity.
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Both ordinary splitting and RESTART are based on the following principle. If the evolution
of the process seems “promising”, we split the trajectory into multiple ones. After splitting
the process, all copies are independent and moreover, they evolve according to the same
dynamics as the original process. The splitting of trajectories happens at certain thresholds,
which we explicitly define later, and the number of trajectories it splits into is called the
splitting rate R. Note that we do not need to keep track of the full trajectories. Instead, we
only need to keep track of the positions of the underlying branching process, so that at each
time step i we have a labeled list of locations we refer to as particles.

With ordinary splitting schemes for exit problems on a finite time interval [0, T ], one
simulates particles until one of the following two conditions are met: either the particle exits
the domain of interest, or the maximum time T is reached (without exit from the domain).
When T is large, in the latter case one spends significant computational effort to simulate
particles which contribute little to the estimate relative to their simulation cost.

The RESTART algorithm overcomes this issue by “killing” particles of this type once they
fall outside the threshold in which they were created. To compensate for these lost particles,
splitting occurs whenever a particle enters a threshold, even if it has been previously visited
by that particle. It turns out that this compensation is exactly what is needed to make the
estimator unbiased. The proof of unbiasedness is not trivial and can be found in [6]. In this
paper, we will focus on the RESTART algorithm, since for the problem of interest killing
of particles is used more and more as the time gets larger. Thus, for the problem of interest
RESTART has computational advantages over ordinary splitting and moreover, it is more
complicated to analyze than ordinary splitting.

The main challenge in defining splitting schemes is the selection of the thresholds, that is,
where splitting takes place. The splitting scheme we define will be phrased in terms of an
importance function U , which is a continuous mapping U : Rd → R that is bounded from
below. Only the relative values of U(x) at different points matter, so we assume for simplicity
that U(x) ≥ 0 for all x ∈R

d .
The splitting thresholds are based on closed sets Cj , for 0 ≤ j ≤ J − 1 .= �U(0)/�� − 1,

which are defined by

(4.1) Cj
.= {

x ∈ D : U(x) ≤ j�
}
,

and CJ
.= D, where �

.= log(R). We define the function σ(x)
.= j when x ∈ Cj \ Cj−1.

Furthermore, we define a piecewise constant approximation to the importance function U by

Ū (x)
.= j� for x ∈ Cj \ Cj−1

for 0 ≤ j ≤ J , where C−1
.= ∅ by convention.

Splitting occurs whenever a threshold with a lower index is entered. It may happen that
several thresholds are crossed at one step, even though this may be unlikely. In that case, it
is important to know which killing thresholds to assign to the newly created particles. As
in [6], we let q�(j, k) denote the number of new particles that are given killing threshold �,
assuming the particle moves from x ∈ Cj \ Cj−1 to x ∈ Ck \ Ck−1 for k < j .

Suppose we have a splitting rate R, that is, the number of descendants from each particle is
R−1 when crossing one threshold. If the particle moves from x ∈ Cj \Cj−1 to x ∈ Ck \Ck−1
we define

q�(j, k)
.=
{

0 if j ≤ k,

(R − 1)Rj−�−1 if k ≤ j − 1 and k ≤ � ≤ j − 1.

This is the correct assignment of thresholds for unbiasedness, and is what one would get if
the particle were moved past the j − k thresholds sequentially (but in zero time), producing
R − 1 descendents in each. If a particle escapes D at some time i ≤ T then it is killed on the
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next step, so that there is only one contribution from that particle to the estimator (4.2). Note
that this killing is distinct from the killing used to improve efficiency.

Before precisely defining the estimator and the RESTART algorithm, we need to introduce
some more notation. Let Ni be the number of particles at time i, Zi,j the position of the j th
particle at time i, Ci,j the current threshold of the j th particle at time i and Ki,j the killing
threshold of the j th particle at time i. We define the unnormalized empirical measure δ̄Zi

by

δ̄Zi

.=
Ni∑

j=1

δZi,j
,

and the estimator γ then equals

(4.2) γ
.=

T∑
i=0

∫
Rd

1Dc (x)eŪ(x)−Ū(0)δ̄Zi
(dx).

Note that the weight exp(Ū(x)− Ū (0)) in (4.2) equals Rj−J when x ∈ Dj = Cj \Cj−1. The

state-dependence of 1Dc (x)eŪ(x)−Ū(0) in (4.2) is to account for the fact that the process can
exit D at different thresholds.

The RESTART Algorithm can be found in Appendix C, and can also be found in, for ex-
ample, [1] and [6]. Note that the pseudocode represents a “parallel” version of the algorithm,
since the particles for a given threshold are split and then simulated until it is terminated,
which occurs when the particle reaches the next threshold, the target set, or is killed. One
could also implement a “sequential” version in which a particle is simulated until it either
reaches the target set or is killed, while recording the times and locations of splitting. Once
the particle is terminated, the algorithm returns to the highest threshold for which particles
remain to be simulated and starts anew.

4.1. Subsolutions. We recall that the proposed method for generating importance func-
tions is through a function V̄ which will satisfy a subsolution property associated to the
underlying dynamics of the sequence of processes {Xn}.

To motivate the use of a subsolution, one can ask what kind of properties one seeks in a
general importance function U . Recall that U specifies the splitting thresholds via (4.1). If U

decreases too slowly then splitting occurs infrequently and the scheme is not very helpful,
while if U decreases too rapidly then splitting occurs too often and there is an exponential
growth in the number of particles, which makes the scheme impossible to simulate.

Let πj denote the entrance distribution on the threshold Cj , and let p denote the proba-
bility of a particle distributed according to πj reaching Cj−1 before being killed. Out of R

independent particles distributed according to πj , we expect Rp particles to make it to Cj−1,
so choosing Rp ≤ 1 avoids an explosion in the number of particles. When Xn satisfies a
large deviations principle, for fixed n ≥ 1 we have the heuristic approximation p ≈ e−nIT (ϕj ),
where ϕj is a trajectory satisfying ϕj (0) ∈ ∂Cj and ϕj (T ) ∈ Cj−1 with minimal cost. If we
scale the splitting rate as R = en�, then we want en�−nIT (ϕj ) ≤ 1. The definition of thresh-
old implies U(ϕj (0)) − U(ϕj (T )) ≈ �. Taking logarithms in Rp ≤ 1 and dividing by n, we
obtain

U
(
ϕj (0)

)− U
(
ϕj (T )

)≤ IT (ϕj ).

This rough estimate conveys why subsolutions as defined in Definition 4.1 may be appropriate
importance functions. It also suggests the appropriate scaling of thresholds which will be used
in the following section.

In general one could consider subsolutions that depend on time, in which case one would
treat time as a state variable and split accordingly. However, when the time interval is large
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one is tempted to use a simpler subsolution that does not depend on time. Although as men-
tioned previously such time-independent subsolutions are not effective for importance sam-
pling [11], see also Section 4.3, we recall that a goal of the present paper is to show that they
in fact work well for splitting, and in particular for the RESTART implementation.

The subsolution property is phrased in terms of a calculus of variations problem. The prob-
lem data are the local rate L and the escape set D. For the phrasing in terms of a corresponding
partial differential equation see [1, 5, 12], as well as Section 5.

DEFINITION 4.1. A continuous function V̄ : Rd → R is a subsolution if it is bounded
from below and

(4.3) V̄ (x) ≤ inf
ϕ(0)=x;ϕ(T )/∈D;ϕ(s)∈D,s∈(0,T ),T <∞

{∫ T

0
L
(
ϕ(s), ϕ̇(s)

)
ds + V̄

(
ϕ(T )

)}

for all x ∈ D, and V̄ (z) ≤ 0 for z /∈D, where the infimum is taken over all absolutely contin-
uous trajectories.

A subsolution V̄ is never greater than the solution to the corresponding calculus of vari-
ations problem, which is given by W(x) as defined in (2.4), with W(x) = 0 for x /∈ D. In
particular, V̄ (x) ≤ W(x) for all x ∈ D.

It turns out that we can make a particularly convenient choice of subsolution which is
appropriate for the problem of escape from D over a long time interval. To do so, we define
the notion of a quasipotential.

DEFINITION 4.2. The quasipotential is the function Q : Rd ×R
d → [0,∞] defined for

y, x ∈ R
d by

Q(y,x)
.= inf

ϕ(0)=y,ϕ(T )=x,T <∞

{∫ T

0
L
(
ϕ(s), ϕ̇(s)

)
ds

}
,

where the infimum is over all absolutely continuous trajectories. The quasipotential with
respect to the unique attracting point 0 is Q(x)

.= Q(0, x).

We note that Q(x) < ∞ for x ∈ D, and that under Condition 2.2, Q(x) is a continuous
function—this is proved similarly to the way it is proved for W in Lemma 2.8. Finally, it
follows from the definitions of Q and W that

(4.4) min
x∈∂D

Q(x) = W(0).

The quasipotential is related to the subsolution property in the following way.

LEMMA 4.3. For any constant c ≤ infx /∈D Q(x), V̄ (x) = −Q(x) + c is a subsolution in
the sense of Definition 4.1.

PROOF. First consider the case x /∈ D. Note that the infimum of Q on the boundary of D
agrees with its infimum on the complement of D, since the positivity of L(x,β) ensures that
any point in Dc cannot have lower cost than a point in D. If c ≤ infx /∈D Q(x), then for x /∈ D,
c − Q(x) ≤ 0 and therefore c − Q(x) satisfies the boundary condition.

For x ∈ D, observe that Definition 4.1 for the choice V̄ (x) = −Q(x) + c is equivalent to

−Q(x) ≤ inf
ϕ(0)=x;ϕ(T )/∈D;ϕ(s)∈D,s∈(0,T ),T <∞

{
IT (ϕ) − Q

(
ϕ(T )

)}
.

If we temporarily assume the infimum is achieved and write Q(ϕ(T )) ≤ Q(x) + IT (ϕ), we
can heuristically interpret this as saying that the cost to exit starting at 0 must be less than the
cost to go from 0 to x and then exit starting from x.
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FIG. 2. Left figure: The quasipotential Q(x) for a simple one-dimensional domain, and V̄ (x) = −Q(x) +
minx∈∂D Q(x). Right figure: The dashed level lines indicate a spacing of �, starting from V̄ (0) = J�. The
shaded region indicates the set of x ∈ CJ−1 = {x : V̄ (0) − V̄ (x) ≥ �}.

To make this heuristic precise, we note that Q(x,y) ≤ IT (ϕ) whenever ϕ(0) = x,

ϕ(T ) = y. Let ϕ be any function appearing in the characterization of the subsolution property,
and let y = ϕ(T ) /∈ D. It follows from the definition of Q and a standard dynamic program-
ming argument that for any x, y, z ∈ R

d

(4.5) Q(z, y) ≤ Q(z, x) + Q(x,y).

Rearranging gives

−Q(z, x) + c ≤ −Q(z, y) + c + Q(x,y).

Letting z = 0 and using Q(x,y) ≤ IT (ϕ) when ϕ(0) = x,ϕ(T ) = y, we have

V̄ (x) ≤ V̄ (y) + IT (ϕ).

Since ϕ is any function appearing in the definition of a subsolution, (4.3) holds, that is, V̄ is
a subsolution. �

Figure 2 illustrates a subsolution given as the negative of the quasipotential plus a constant,
which we interpret as follows. Q(x) provides a lower bound on the cost of going from 0 to x,
while a subsolution provides a lower bound on the cost to exit starting at x. If we were to
choose the point x on the boundary which minimizes Q(x), we would obtain a lower bound
on the cost to escape starting at 0. The cost of every other point in D can be related to the
cost at origin by the dynamic programming inequality (4.5).

We denote the minimum cost to exit via cQ
.= minx /∈D Q(x), and we remark that continuity

of Q implies cQ = minx∈∂D Q(x). The constant cQ will be referred to a few times in the fol-
lowing chapters, but we emphasize that it plays no role in the determination of the RESTART
algorithm since the thresholds are determined by differences of the subsolution. Rather, we
will see that the optimality of a subsolution V̄ is determined by whether or not V̄ (0) = cQ.

A final remark is that while in the current paper we only consider estimating probabilities,
one could very well consider the estimation of so-called “risk-sensitive functionals” of the
form Ex[e−F(Xn(ρn)))/ε1{ρn≤T (n)}], where F : Rd → [0,∞) is measurable. The same notion
of subsolution would yield asymptotically optimal estimators, though one would have to
appropriately modify the boundary conditions. For more information; see, for example, [5]
and [12].

4.2. Performance measures and the rare event setting. A natural performance measure
used to judge the quality of an estimator is its variance. If we restrict to unbiased estima-
tors, then minimizing the variance is equivalent to minimizing the second moment. Let γ n

denote the RESTART estimator for the escape probability of Xn from D, and let Sn(V̄ ) de-
note the second moment E0[(γ n)2] when the subsolution V̄ is used to construct the splitting
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scheme. Owing to the large deviations scaling of the escape probability, it is convenient to
frame the minimization of the second moment as the maximization of the scaled quantity
−n−1 logSn(V̄ ).

Recall that Theorem 3.1 guarantees −n−1 logP0(ρ
n ≤ T (n)) → W(0) as n → ∞. It fol-

lows from Jensen’s inequality and unbiasedness of γ n that

lim sup
n→∞

−1

n
logSn(V̄ ) ≤ lim sup

n→∞
−2

n
logP0

(
ρn ≤ T (n)

)2 = 2W(0).(4.6)

Thus there is a natural upper bound on the decay rate −n−1 logSn, which motivates the
following definition.

DEFINITION 4.4. If the estimator γ n satisfies

(4.7) lim inf
n→∞ −1

n
logSn(V̄ ) = 2W(0),

we say that γ n is asymptotically optimal.

The expression for asymptotic optimality over a finite time interval, as in [11], is the same
as in the above definition. However, the distinction between finite and increasing time inter-
vals is important, and we shall see in Section 4.3 that the finite time result does not imply
optimality in the sense of Definition 4.4.

In this section we introduce the objects associated with the splitting scheme with an ap-
propriate n-dependent scaling. We state pre-asymptotic upper bounds for the second moment
which will be used in Section 4.3 to establish asymptotic lower bounds on the decay rate
in terms of the value of the subsolution at 0. Since the negative of the quasipotential plus
a constant is a subsolution (see Lemma 4.3) and cQ = W(0) from (4.4), it will follow that
V̄ (x) = −Q(x) + cQ will yield an estimator which is asymptotically optimal in the sense of
Definition 4.4.

To begin, we specify the scaled spacing in terms of some fixed � > 0, as we had before,
and set �n = �/n. The corresponding thresholds are

Cn
j = {

x : V̄ (0) − V̄ (x) ≥ (Jn − j
)
�n

}
for j = 0, . . . , J n, where Jn is the smallest positive integer such that Jn�n ≥ V̄ (0) − V̄ (x)

for all x ∈ D.
For any subsolution V̄ , Jn�n approximates the maximum of V̄ (0) − V̄ (x) on D:

(4.8) Jn�n → M
.= max

x∈D̄
{
V̄ (0) − V̄ (x)

}
.

For simplicity we define the difference sets Dn
j

.= Cn
j \Cn

j−1, where Cn−1 =∅ by convention.
Next we define the n-dependent piecewise continuous importance functions associated to

a subsolution V̄ . We will denote these by Ūn, but we will speak of the splitting scheme
associated to V̄ . For x ∈ R

d the piecewise constant function Ūn is defined by

(4.9) Ūn(x)
.=

Jn∑
j=0

j�n1Dn
j
(x).

For ease of notation we write Ūn
j = Ūn(x) for x ∈ Dn

j . Observe that for x ∈ Dn
j , we have by

(4.8) and (4.9)

(4.10)
∣∣Ūn(x) − Ūn(0) − (V̄ (x) − V̄ (0)

)∣∣≤ �n.
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Thus, the differences Ūn(x) − Ūn(y) converge uniformly to the differences V̄ (x) − V̄ (y) as
n → ∞.

We make a remark on the computational cost of the algorithm. Let Nn
i denote the number

of particles at time i. In our pre-asymptotic performance measure −n−1 logSn(V̄ ), we ne-
glect the cost of simulating all the branched trajectories, as counted by Nn

i , and it is perhaps
more appropriate to consider the work-normalized error, see [16],

lim
n→∞

1

n
log

Sn(V̄ )E0[wn]
P0(ρn ≤ T (n))

,

where the computational work wn is defined as

(4.11) wn .=
nT (n)∑
i=1

Nn
i .

It has been shown in [6], Theorem 5.7, that over finite time intervals the computational work
of the RESTART scheme is sub-exponential when based on a subsolution, that is, when
T (n) ≡ T > 0 for all n ≥ 1, we have

lim
n→∞

1

n
logE0

[
wn]= 0.

An argument similar to the one in [6] shows that the same result holds for work over the
increasing time intervals [0, T (n)]. The work-normalized error achieves its optimal value
of 0 if and only if the work is subexponential and the scheme is asymptotically optimal in
the sense of Definition 4.4. Since the work is subexponential when the RESTART scheme is
based on a subsolution, to demonstrate that the work-normalized error decays to its optimal
value of zero, it suffices to establish asymptotic optimality in the sense of Definition 4.4. We
will also record the work wn in our numerical examples.

We have from Theorem 17.6 in [1] the following pre-asymptotic upper bound for the sec-
ond moment of RESTART. The inequality first appeared in [6], Theorem 4.5, and is pre-
sented here in a slightly modified form, that is, in [6] the RESTART algorithm is not limited
to estimating probabilities and hence their notation is different. The statement concerns the
estimator without explicit dependence on a scaling parameter n, and so we denote the second
moment of the RESTART estimator by S(Ū).

THEOREM 4.5. Suppose that A is open, B is closed with A ∩ B = ∅, Yi is a discrete
time Markov chain, and that the stopping time H

.= inf{i ≥ 1 : Yi ∈ A ∪ B} is almost surely
finite. Then if Ū is used to design the splitting scheme, for all y0 ∈ (A ∪ B)c we have

S(Ū ) ≤ e−Ū(y0)Ey0

[
H∑

i=1

eŪ(Yi−1)
[
PYi

(YH ∈ B)
]2]

+ e−Ū (y0)Ey0

[
eŪ(YH )1B(YH )

]
,

(4.12)

where S(Ū ) is the second moment of the RESTART estimator for Py0(YH ∈ B).

We will apply this theorem to deduce an analogous result for the present situation of exiting
the domain D within some time T (n). We do so by introducing time as a state variable and
judiciously choosing A and B .
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COROLLARY 4.6. For an open domain D, fix some n ∈ N and let ρn .= inf{i ≥ 0 :
Xn

i /∈ D}. If V̄ is used to determine the importance functions nŪn used to construct the
splitting scheme, we have

Sn(V̄ ) ≤ e−nŪn(0)
E0

[
nT (n)∑
i=1

enŪn(Xn
i−1)
[
PXn

i

(
ρn ≤ T (n) − i/n

)]2]

+ e−nŪn(0)
E0
[
e
nŪn(Xn

ρn)1
{
ρn ≤ T (n)

}]
.

PROOF. Fix any n ≥ 1 and set A = D × (T (n),∞) and B = Dc × [0, T (n)]. Note that
A is open, B is closed and A ∩ B = ∅. We will apply Theorem 4.5 to the Markov chain
Yi = (Xn

i , i/n), with Ū (x, t) = nŪn(x) being the importance function used to design the
splitting scheme. The stopping time H

.= inf{i ≥ 1 : Yi ∈ (A ∪ B)} is finite almost surely by
finiteness of T (n) for each n ≥ 1.

Given y = (x, k/n) ∈ D × [0, T (n)], Py(YH ∈ B) is the probability that there is some
i ∈ {k + 1, . . . , nT (n)} for which Xn

i /∈D, conditioned on Xn
k = x. By the Markov property

PYi
(YH ∈ B) = P(Xn

i ,i/n)

(
ρn ≤ T (n) − i/n

)
,

where ρn on the right-hand side above is the first escape time from D for the process started
at Xn

i . Applying this observation to the first term in (4.12), we obtain with y0 = (0,0)

e−nŪ(y0)Ey0

[
H∑

i=1

enŪ(Yi−1)
[
PYi

(YH ∈ B)
]2]

≤ e−nŪn(0)
E(0,0)

[
nT (n)∑
i=1

enŪn(Xn
i−1)
[
P(Xn

i ,i/n)

(
ρn ≤ T (n) − i/n

)]2]
.

The inequality follows because H ≤ nT (n), so one is taking a sum over a larger number of
positive terms. The Markov chain Xn

i is time-homogeneous, so with an abuse of notation,

P(Xn
i ,i/n)

(
ρn ≤ T (n) − i/n

)= PXn
i

(
ρn ≤ T (n) − i/n

)
.

For the second term in (4.12), note that 1B(YH ) = 1{ρn ≤ T (n)}, and YH = Xn
ρn . By again

using y0 = (0,0) and time-homogeneity of Xn
i , we conclude the proof. �

4.3. Analysis of asymptotic performance. The main result of this section is to establish
a lower bound on the decay rate of the RESTART estimator for the problem of escape from
a domain D over increasing time intervals [0, T (n)]. The lower bound is stated in terms of
the value of the subsolution V̄ at the origin. Recalling that W(0) is the minimal cost to exit
D starting at 0, we show that V̄ (0) = W(0) ensures asymptotic optimality in the sense of
Definition 4.4. In particular, when the subsolution is defined in terms of the quasipotential
with the constant cQ = W(0) as in Lemma 4.3, the RESTART estimator is asymptotically
optimal. An upper bound on the decay rate is automatic from Jensen’s inequality, as discussed
at the beginning of Section 4.2.

It would also be possible to establish upper and lower bounds on the decay rate in terms of
a variational problem, and with such a formulation one could obtain a limit on the asymptotic
decay rate (the upper and lower bounds would agree). Instead of formulating the analysis in
terms of escape from D, one would have to consider the problem of moving from any point
x ∈ D to any other point y ∈ D. While limits for the asymptotic decay rate (as opposed to
just lower bounds) are useful for the comparison of estimators, the main goal of this paper
is to demonstrate that the decay rate of splitting algorithms does not degrade over long time
intervals, and this is accomplished with only lower bounds.
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Before stating and proving the main result, we first point out that the increasing time
intervals [0, T (n)] can indeed ruin asymptotic optimality when using importance sampling
instead of splitting. It has been shown in [11], where stochastic differential equation models
are considered, that when importance sampling is based on a time-independent subsolution,
the following lower bound on the second moment holds:

Sn(V̄ ) ≥ eC1(T −K)e−nC2 .

Here T is the time interval for escape, C1 and C2 are positive constants, and K < T is a fixed
constant. If T were n dependent, for example, T (n) = n2, then

lim sup
n→∞

1

n
logSn(V̄ ) = ∞.

Not only is the estimator not asymptotically efficient, the decay rate of this importance sam-
pling scheme is worse than ordinary Monte Carlo simulation.

For one-dimensional stochastic differential equations, it is possible to construct time-
dependent subsolutions which ensure that the importance sampling schemes do not degrade
over long time intervals. These time-dependent subsolutions are difficult to construct and it
is not known how to construct them in any generality for higher dimensions.

We show that these problems do not arise with splitting in Theorem 4.7. As discussed
in [11], the lower decay rate of importance sampling is due to the exponential growth of the
likelihood ratio when the trajectory stays near the origin, which it can do with large enough
probability over a long time interval. In contrast, such trajectories do not affect the decay rate
of splitting schemes since they are not multiplied by a likelihood ratio; all that matters is that
on average, out of R particles born in a threshold, one of them reaches a threshold with a
lower index.

The analysis is carried out for the RESTART scheme, but for ordinary splitting the result
will be the same and the analysis will be easier. By using techniques similar to the ones in [5]
it is straightforward to get estimates on the second moment.

The main result is stated in the following theorem. It places a lower bound on the asymp-
totic decay rate in terms of the value of the subsolution at the origin.

THEOREM 4.7. Suppose Conditions 2.1, 2.2, 2.4, 2.5 and 2.6 are met. Let V̄ be a sub-
solution in the sense of Definition 4.1, and let Sn(V̄ ) denote the second moment of the esti-
mator γ n when V̄ is used to determine the piecewise constant importance functions Ūn. We
have the following lower bound:

lim inf
n→∞ −1

n
logSn(V̄ ) ≥ V̄ (0) + W(0).

PROOF. We first consider a general subsolution V̄ used to construct the importance func-
tion Ūn(x) defined by (4.9). From Corollary 4.6,

Sn(V̄ ) ≤ E0

[
nT (n)∑
i=1

en(Ūn(Xn
i−1)−Ūn(0))[

PXn
i

(
ρn ≤ T (n) − i/n

)]2]

+E0
[
en(Ūn(Xn(ρn))−Ūn(0)))1

{
ρn ≤ T (n)

}]
.

(4.13)

There are two terms in (4.13), and both are positive and n-dependent. If two sequences of
positive numbers {a1

n} and {a2
n} satisfy lim infn→∞ −n−1 log(ai

n) ≥ a, then

(4.14) lim inf
n→∞ −n−1 log

(
a1
n + a2

n

)≥ a.

It therefore suffices to check the limit on both terms individually.
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The second term is easier to handle. If x /∈ D, then V̄ (x) ≤ 0 by the boundary condition for
the subsolution property in Definition 4.1. Since Xn(ρn) /∈ D, it is straightforward to show
using (4.10) and Theorem 3.1 that

lim inf
n→∞ −1

n
logE0

[
en(Ūn(Xn(ρn))−Ūn(0))1

{
ρn ≤ T (n) − i/n

}]≥ V̄ (0) + W(0).

We remark that the second term contributes to the overall rate of decay even though it might
seem negligible compared to the first term in (4.13). This is because we expect the highest
contributions to the variance to come from the particles which split closest to the escape set,
which is what the term represents, since these particles are highly correlated.

Next we handle the first term. Again, let ε > 0. Owing to the polynomial growth of T (n)

and the logarithmic scaling in the statement of the theorem, it suffices to bound each term in
the sum (similarly to (4.14)). Observe that for any i ∈ {0, . . . , nT (n)},

E0
[
en(Ūn(Xn

i−1)−Ūn(0))
PXn

i

(
ρn ≤ T (n) − i/n

)2]

=
Jn∑

j=0

E0
[
1{Xn

i ∈Dn
j }en(Ūn(Xn

i−1)−Ūn(0))
PXn

i

(
ρn ≤ T (n) − i/n

)2]
.

Since Jn grows linearly with n, owing to the logarithmic scaling—similarly to (4.14)—we
may estimate the expected value individually on each set Dn

j . To do this, we first resolve
the time index disparity between the indicator 1{Xn

i ∈Dn
j } and the point Xn

i−1 appearing in the

argument of Ūn. We will show that the probability of Xn
i and Xn

i−1 not lying in the same
set Dn

j is negligible as n → ∞. Define

δn
i

.= [
Ūn(Xn

i−1
)− Ūn(0)

]− [Ūn(Xn
i

)− Ūn(0)
]= Ūn(Xn

i−1
)− Ūn(Xn

i

)
.

Since D is bounded and Ūn is piecewise constant on D,

(4.15) B
.= sup

x,y∈D
∣∣Ūn(x) − Ūn(y)

∣∣< ∞.

For any ε1 > 0 and each i ∈ {0, . . . , nT (n)}, we have

E0
[
1{Xn

i ∈Dn
j }en(Ūn(Xn

i−1)−Ūn(0))
PXn

i

(
ρn ≤ T (n) − i/n

)2]
= E0

[
1{Xn

i ∈Dn
j }en(Ūn(Xn

i )−Ūn(0))enδn
i PXn

i

(
ρn ≤ T (n) − i/n

)2]
≤ enε1E0

[
1{Xn

i ∈Dn
j }en(Ūn(Xn

i )−Ūn(0))
PXn

i

(
ρn ≤ T (n) − i/n

)2]
+E0

[
en(B+δn

i )1
{∣∣δn

i

∣∣≥ ε1
}]

.

(4.16)

Inequality (4.10) implies that Ūn(0) − Ūn(x) → V̄ (0) − V̄ (x) uniformly in x, so for the
given ε1 > 0 there is N1(ε1) < ∞ such that n ≥ N1 and |δn

i | ≥ ε1 implies∣∣V̄ (Xn
i−1
)− V̄

(
Xn

i

)∣∣≥ ε1/2.

By the uniform continuity of V̄ on D, there is η(ε1) > 0 such that |V̄ (z) − V̄ (y)| ≥ ε1/2
implies |z − y| ≥ η. Thus for the given ε1 > 0 we have η > 0 such that{∣∣δn

i

∣∣≥ ε1
}⊂ {∣∣Xn

i−1 − Xn
i

∣∣> η
}
.

Lemma 2.7 implies that for any η > 0, we can find N2(η) < ∞ large enough that, for all
i ∈ {0, . . . , nT (n)} and n ≥ N2,

Px

(∣∣Xn
i − Xn

i−1

∣∣≥ η
)≤ e−n(2B+V̄ (0)+W(0)+1).
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From equation (4.15) we have |δn
i | ≤ B , so the last term in (4.16) satisfies

E0
[
en(δn

i +B)1
{∣∣δn

i

∣∣≥ ε1
}]≤ en2Be−n(2B+V̄ (0)+W(0)+1)

= e−n(V̄ (0)+W(0)+1),

(4.17)

whenever n ≥ N3 = max(N1,N2). For large enough n, this exponential decay is strictly
greater than the claimed decay of V̄ (0) + W(0), hence it will become clear later that this
term can be ignored when we establish the lower bound on the decay rate of the second
moment of the estimator.

For fixed i and j , the third term in (4.16) satisfies

enε1E0
[
1{Xn

i ∈Dn
j }en(Ūn(Xn

i )−Ūn(0))
PXn

i

(
ρn ≤ T (n) − i/n

)2]
≤ enε1 sup

z∈Dn
j

Pz

(
ρn ≤ T (n)

)

×E0
[
1{Xn

i ∈Dn
j }en(Ūn

j −Ūn(0))
PXn

i

(
ρn ≤ T (n) − i/n

)]
.

(4.18)

In the inequality above, we used the shorthand notation Ūn
j = Ūn(x) for x ∈ Dj , and we

enlarged the set {ρn ≤ T (n) − i/n} to {ρn ≤ T (n)}. Since we are interested in taking limits
as n → ∞, it suffices to demonstrate the upper bound (or lower bound on the rate) for any
sequence {jn}n≥1 such that, as n → ∞,

jn�n → θ ∈ [0,M],
where we recall from (4.8) that M = maxx∈D̄{V̄ (0) − V̄ (x)} and Jn�n → M .

The limits for jn and Jn determine a limit for Un
jn

− Un(0) as follows. Let

L(θ)
.= {

x : V̄ (0) − V̄ (x) = M − θ
}
.

If xn ∈ Dn
jn

= Cn
jn

\ Cn
jn−1 for all n ≥ 1, then

xn ∈ {x : (Jn − jn + 1)�n > V̄ (0) − V̄ (x) ≥ (Jn − jn)�n

}
.

By passing to a convergent subsequence we may assume without loss of generality that
xn → x̄. Then x̄ ∈ L(θ) and V̄ (xn) − V̄ (0) → θ − M . By (4.10) we have for the given ε > 0
that

Ūn
jn

− Ūn(0) ≤ θ − M + ε/2

for all sufficiently large n. This will allow us to estimate the Ūn
j − Ūn(0) term in (4.18)

when j is replaced by jn. Furthermore, the supremum over z ∈ Dn
jn

in (4.18) will be replaced
in the limit by one over z ∈ L(θ). Finally, the Markov property for {Xn

i } implies that

E0
[
1{Xn

i ∈Dn
jn

}PXn
i

(
ρn ≤ T (n) − i/n

)]≤ P0
(
ρn ≤ T (n)

)
.

Thus an upper bound on (4.18) with j = jn is

(4.19) en(θ−M+ε1+ε/2) sup
z∈Dn

jn

Pz

(
ρn ≤ T (n)

)
P0
(
ρn ≤ T (n)

)

for all sufficiently large n.
To summarize, (4.19) provides an upper bound on the first term in (4.16) via (4.18), and

the second term in (4.16) will turn out to be exponentially negligible compared to the first
term owing to the estimate (4.17). It remains to determine the asymptotic behavior of (4.19).
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We first show a lower bound on the decay of the second term of (4.19), that is,

(4.20) lim inf
n→∞ −1

n
log
(

sup
z∈Dn

jn

Pz

(
ρn ≤ T (n)

))≥ inf
z∈L(θ)

W(z).

It suffices to establish the corresponding bound when nk is any subsequence along which the
left hand side of (4.20) converges. Let {nk}k≥1 denote such a subsequence, and let ε2 > 0 be
given. By Lemma 3.3, there is N4(ε2) < ∞ such that, for all z ∈ D and n ≥ N4,

(4.21) −1

n
logPz

(
ρn ≤ T (n)

)≥ W(z) − ε2.

Let K1(N4) < ∞ be such that nk ≥ N4 for all k ≥ K1. For each k ≥ 1, choose znk
∈ D

nk

jnk

such that

(4.22) sup
z∈D

nk
jnk

1

nk

logPz

(
ρnk ≤ T (nk)

)
<

1

nk

logPznk

(
ρnk ≤ T (nk)

)+ ε2.

By passing to a further subsequence if necessary, we may assume without any loss that znk
→

z̄ ∈ L(θ). If znk
∈ D, (4.21) applies with z = znk

and n = nk for all k ≥ K1, while for znk
/∈

D we have W(znk
) = 0 and the same estimate holds for any k ≥ 1. Moreover, since W is

continuous and znk
→ z̄, there is K2(ε2) < ∞ such that W(znk

) > W(z̄) − ε2 for all k ≥ K2.
Combining this with (4.22) and using monotonicity of the logarithm, we find, for all k ≥
max(K1,K2),

− 1

nk

log
(

sup
z∈Dnk

Pz

(
ρnk ≤ T (nk)

))
> − 1

nk

logPznk

(
ρnk ≤ T (nk)

)− ε2

≥ W(znk
) − 2ε2

> W(z̄) − 3ε2.

Since z̄ ∈ L(θ), we automatically have W(z̄) ≥ infz∈L(θ) W(z). Since {nk}k≥1 and ε2 > 0
were arbitrary, we conclude that (4.20) holds.

We now return to (4.19). We first take logarithms, scale by −n, and take the limit inferior.
Using superadditivity of the limit inferior, (4.20), and another application of Lemma 3.3 for
the probability starting at 0, we obtain

lim inf
n→∞ −1

n
log
(
en(θ−M+ε1+ε/2) sup

z∈Dn
jn

Pz

(
ρn ≤ T (n)

)
P0
(
ρn ≤ T (n)

))

≥ M − θ − ε1 − ε/2 + inf
z∈L(θ)

W(z) + W(0).

To conclude the proof, we use the subsolution property of V̄ , which implies that V̄ (x) ≤
W(x) for all x. For z ∈ L(θ), V̄ (z) = V̄ (0) − M + θ , so infz∈L(θ) W(z) ≥ V̄ (0) − M + θ .
Thus,

M − θ − ε1 − ε/2 + inf
z∈L(θ)

W(z) + W(0) ≥ V̄ (0) + W(0) − ε1 − ε/2.

Since both ε and ε1 were arbitrary, we send them to zero and arrive at the desired result for a
general subsolution V̄ . �

COROLLARY 4.8. If the subsolution is defined through V̄ (x) = −Q(x) + cQ, then
V̄ (0) = cQ = W(0) and the estimator is asymptotically optimal.
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PROOF. In the case where V̄ (x) = −Q(x) + cQ, we recall that Lemma 4.3 shows
−Q(x) + cQ is indeed a subsolution. From Theorem 4.7, we have the lower bound

lim inf
n→∞ −1

n
logSn(V̄ ) ≥ cQ + W(0),

while Jensen’s inequality implies the corresponding upper bound as in (4.6). Equation (4.4)
implies cQ = W(0), which yields asymptotic optimality in the sense of Definition 4.4. �

5. Numerical results. In this section we present numerical results, for which we first
introduce some general terminology. The simulation of a single γ n defined in (4.2) requires
the simulation of multiple trajectories started at points where a threshold is crossed. We refer
to the simulation of a single γ n as a sample of the estimator. For a given estimation prob-
lem, we generate multiple samples and average the result to obtain an estimate. We refer to
the collection of all samples and the resulting estimate as a single trial, and we record the
simulation time for a trial in seconds.

Suppose γ n
k , k = 1, . . . ,K are samples of the estimator, together comprising a single trial.

We record the following quantities:

• the estimate γ̄ n = 1
K

∑K
k=1 γ n

k ,
• the formal confidence interval [γ̄ n − 1.96σn/

√
K, γ̄ n + 1.96σn/

√
K], where σn =√

1
K−1

∑K
k=1(γ

n
k − γ̄ n)2,

• the relative error σn/(γ̄ n
√

K),
• the empirical decay rate (− log( 1

K

∑K
k=1(γ

n
k )2))/(− log γ̄ n),

• the average work 1
K

∑K
k=1 wn

k , where wn
k is the work for the simulated sample γ n

k , as in
(4.11),

• the average maximum number of particles at any given time i in the simulation, N̄n =
1
K

∑K
k=1 maxi N

n
i,k , where Nn

i,k denotes the number of particles at time i for the kth sample γ n
k ,

and we also record the maximum over all trials, maxi,k Nn
i,k ,

• the simulation time, which is estimated directly on the computer.

We also provide the large deviations approximation e−nW(0).
All simulations were run in MATLAB on a 2013 Macbook Air with a 1.7 GHz i7 processor

and 8 GB DDR3 RAM. The code is a near-verbatim transcript of the pseudo-code provided
in Algorithm 1 and is therefore completely unoptimized. In particular, the simulation time is
provided only as a baseline for comparison.

We next comment on the performance of the algorithms. Theorem 4.7 provides a lower
bound on the decay rate achieved by a splitting scheme generated through a subsolution V̄ in
terms of V̄ (0). In practice, the most difficult step is to verify that V̄ is actually a subsolution.
It turns out one can characterize subsolutions in terms of a partial differential equation (PDE)
known as the Hamilton–Jacobi–Bellman equation (HJB). To streamline the presentation of
examples, we briefly explain the relationships between the local rate L(x,β), the quasipoten-
tial, and the yet-to-be defined HJB PDE; for a complete discussion, see [14], Theorem 4.3 in
Chapter 5.

Recall that H(x,α) denotes the cumulant generating function and L(x,β) its Legendre
transform; see (2.3). Consider the problem of finding a function Z, continuous on D and
continuously differentiable on D, such that Z(0) = 0, Z(x) > 0 for x ∈ D \{0}, and ∇Z(x) �=
0 for x ∈D \ {0}, and which satisfies the HJB PDE

(5.1) H(x,∇Z) = 0.
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It is a classical result of Freidlin and Wentzell’s (Theorem 4.3 of Chapter 4 in [14]) that then
Z(x) = Q(x) for x on the sublevel set {x : Z(x) ≤ cQ}, where we recall cQ = miny∈∂D Q(y)

and Q(x) is the quasipotential.
If we restrict to continuously differentiable subsolutions V̄ , one can show by using a ver-

ification argument that the subsolution property given by Definition 4.1 is equivalent to the
differential inequality and boundary condition

(5.2)

{
H(x,−∇V̄ ) ≤ 0, x ∈D,

V̄ (x) ≤ 0, x ∈ ∂D.

Since Q(x) satisfies (5.1), V̄ (x) = −Q(x) + cQ satisfies the above subsolution property.
The problem of finding subsolutions that result in an asymptotically optimal estimator can

therefore be broken into two steps: first, find by any means possible a function V̄ satisfying
the differential inequality H(x,−∇V̄ ) ≤ 0 on D̄, and second, verify asymptotic optimality
by checking that the function V̄ can be shifted by a constant so that V̄ (0) = cQ while sat-
isfying the boundary condition V̄ (x) ≤ 0 on ∂D. We remark that in practice we will have
H(x,−∇V̄ ) = 0 rather than an inequality and it will be automatic that V̄ can be shifted so
that V̄ (0) = cQ.

EXAMPLE 5.1 (One-dimensional Ornstein–Uhlenbeck).
DYNAMICS AND DOMAIN. Consider the one-dimensional discrete time process given by

Xn
i+1 = Xn

i − 1

n
Xn

i + 1

n
Ui, X0 = 0,

where the Ui are standard normal random variables with mean 0 and variance 1. One can
compare this discrete-time process with the continuous-time Ornstein–Uhlenbeck process

dXn(t) = −Xn(t) dt + 1√
n

dB(t).

We take the domain to be D = (−1,0.75).
SUBSOLUTION. For vi(x) = Ui − x, the cumulant generating function is

H(x,α) = logE
[
eαvi(x)]= 1

2
α2 − αx.

Though supx∈R H(x,α) = ∞ for all α �= 0, the drift of the process can be modified outside
of D to ensure Condition 2.1, without affecting the escape probabilities of the process.

We claim that the quasipotential starting at 0 is Q(x) = x2. Indeed, Q satisfies the HJB
PDE:

H
(
x,∇Q(x)

)= 1

2
(2x)2 − 2x2 = 0.

It remains to identify cQ. Since ∂D = {−1,0.75}, cQ = minx∈∂D Q(x) = 0.752. Thus, a
subsolution that results in an asymptotically optimal estimator is V̄ (x) = −x2 + 0.752.

SIMULATION AND RESULTS. We consider n = 10,20,30,40, with T (n) = n2/10 and a
splitting rate of R = 4. We run one trial for each n, and for each trial we generate K = 2000
samples (see Table 1).

The estimates have a reasonable confidence interval, given that each trial consists of K =
2000 samples. The decay rate tends to 2, as expected. The average work (and consequently
the simulation time) increases for two reasons: first, the time interval is growing, and second,
as n increases the discretization gets finer and more steps are required to exit D. However,
even though the average work seems to grow quickly, n−1 logwn tends to zero.
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TABLE 1
Results for the one-dimensional Ornstein–Uhlenbeck process

(n,T )

(10,10) (20,40) (30,90) (40,160)

LDP estimate 3.60 × 10−3 1.30 × 10−5 4.69 × 10−8 1.61 × 10−10

Estimate 2.47 × 10−2 5.15 × 10−4 5.46 × 10−6 3.99 × 10−8

Confidence interval [2.24,2.69] × 10−2 [4.86,5.44] × 10−4 [5.23,5.69] × 10−6 [3.85,4.12] × 10−8

Relative error 0.45 0.28 0.02 0.02
Decay rate 1.56 1.87 1.95 1.97
maxi,k Nn

i,k 1032 1295 4400 5166
Avg. max N̄n 27 113 247 414
Average work wn 222 2426 9838 26,719
n−1 logwn 0.5403 0.3897 0.3065 0.2548
Simulation time (s) 13 136 550 1505

COMPARISON WITH IMPORTANCE SAMPLING. For this example we also present results
using the importance sampling estimator in [12] with the same subsolution. As discussed at
the beginning of Section 4.3, the decay rate of the importance sampling estimator drops when
trajectories are allowed to linger around the rest point, which is seen in the results below.

To compare the computational cost of the estimators we use the simulation time. The sim-
ulation time is not meant to be an accurate measure of the computational cost, since the
runtime is highly dependent on the implementation of the algorithm and architecture of the
machine. We only use the simulation time for purposes of comparison. Moreover, we note
that the MATLAB implementations we use highly favors the importance sampling estimator,
in the sense that we expect the improvements to be much greater for RESTART than impor-
tance sampling when both are well written in a compiled language. The implementation of
RESTART is written for transparency of code rather than efficiency and manages memory
poorly. For instance, in the RESTART implementation, the arrays storing information about
the particles can resize every time step. Despite this imbalance, we will find that splitting
vastly outperforms importance sampling.

We first consider the case of (n,T (n)) = (20,40). To compute a ground “truth” value, we
use K = 1.5 × 105 samples of the RESTART estimator to find

P
(
ρ20 ≤ 40

)≈ 5.24 × 10−4.

In Table 2, we show estimates produced by the importance sampling estimator using K =
2 × 103,4 × 105 and 106 samples for (n,T (n)) = (20,40) and using the same subsolution.

Observe that none of the estimates come close to the baseline value of 5.24 × 10−4. By
comparison, with K = 2000 the RESTART estimator gave an estimate of 5.15 × 10−4 in 136

TABLE 2
Importance sampling results for the one-dimensional Ornstein–Uhlenbeck process

K

2 × 103 4 × 105 1 × 106

Estimate 8.29 × 10−5 1.93 × 10−4 2.19 × 10−4

Relative error 0.12 0.11 0.13
Decay rate 1.64 1.00 0.84
Simulation time (s) 1.3 297 937
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seconds. Note that the relative error remains roughly the same when increasing the number
of samples, while this intuitively should give a decrease. Also note that the estimate of the
decay rate decreases as the number of samples is increased. Both of these quantities do not
behave as might be expected since there is an increase in variance due to “rogue” trajectories
which linger around the rest point and contribute heavily to the second moment, though they
are needed for unbiasedness of the importance sampling estimator and cannot be discarded.
As the number of samples is increased, the importance sampling estimate approaches the
baseline value.

The results for other pairs (n,T (n)) show similar results, with the importance sampling
estimator not being even within an order of magnitude of the RESTART estimate when using
the same number of samples. For example, when (n,T (n)) = (30,90) and using K = 2.5 ×
106 samples we obtain a relative error of 0.46, which is far worse than for RESTART based
on 2000 samples. In comparison with (n,T (n)) = (20,40), we also see that the relative error
is diverging, as predicted by the theoretical results of [11].

EXAMPLE 5.2 (Two-dimensional single-well potential).
DYNAMICS AND DOMAIN. Consider the two-dimensional single-well potential

P(x) = (
x2

1 + 2x4
2
)2

,

which is strictly convex and has its global minimum at 0. To obtain a Markov chain with
stationary distribution

πn(x) dx = 1

Zn
e−nP (x) dx, Zn =

∫
R2

e−nP (x) dx,

we could proceed as in the previous example and use a discrete time approximation to the
diffusion

dXn(t) = −∇P(x)dt + 1√
n

dB(t).

One might be interested in other dynamics with the same stationary distribution. The
Metropolis–Hastings algorithm is a well-known method for producing a Markov chain with
a given stationary distribution. So long as the proposal distribution qn(·|x) is supported on a
compact set containing x, or has sub-exponential tails outside some compact set, the quasipo-
tential will be a suitable importance function for the resulting Markov chain. One only needs
to verify that the resulting process {Xn} satisfies an LDP on D([0, T ]), which can be done
via standard weak convergence arguments.

To illustrate, we use a Metropolis–Hastings algorithm to simulate a Markov chain Xn with
Xn(0) = (0,0) and stationary distribution πn as above. The proposal distribution qn used is
that of a symmetric random walk,

qn(x, ·) ∼ x + 1

n
ξv,

where v is a vector drawn uniformly from {e1,−e1, e2,−e2}, e1 = (1,0) and e2 = (0,1), and
ξ ∼ Unif([−1,1]) is an independently drawn uniform random variable.

The domain to escape D is taken to be the unit ball around the initial point (0,0); D = {x :
x2

1 + x2
2 < 1}.

SUBSOLUTION. Under suitable assumptions, the stationary distribution πn of the Markov
chain identifies the quasipotential via

Q(x) = lim
n→∞−1

n
logπn(x).
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TABLE 3
Results for the two-dimensional single-well potential

(n,T )

(10,20) (20,40) (30,60) (40,80)

LDP estimate 4.73 × 10−4 2.24 × 10−7 1.05 × 10−10 5.01 × 10−14

Estimate 7.91 × 10−4 3.35 × 10−7 1.42 × 10−10 4.54 × 10−16

Confidence interval [0.47,1.11] × 10−3 [0.44,6.26] × 10−7 [0,3.77] × 10−10 [0,1.35] × 10−15

Relative error 0.29 0.44 0.84 1.00
Decay rate 1.37 1.59 1.67 1.78
maxi,k Nn

i,k 4097 19,767 95,888 65,537
Avg max N̄n 29 117 319 380
Average work wn 341 1498 3994 6243
n−1 logwn 0.58 0.36 0.27 0.22
Simulation time (s) 80 348 915 1631

See, for instance, Theorem 4.3, Chapter 4 in [14]. Thus Q(x) = P(x) on D. As in the pre-
vious example, we can verify that −Q(x) satisfies the HJB PDE with a Hamiltonian associ-
ated to the jump vector vi(x) = −∇P(x) + ui , where ui are i.i.d. standard normal random
variables.

To find the value cQ, we use Lagrange multipliers to find that the smallest value of P(x) on
∂D is (7/8)2 = 0.7656, at (

√
3/2,1/2). Thus, cQ = (7/8)2, and a subsolution V̄ that results

in an asymptotically optimal estimator is given by

V̄ (x) = −P(x) + 0.7656.

SIMULATION AND RESULTS. We consider values of n = 10,20,30,40, with T (n) = 2n

and a splitting rate of R = 4. We run one trial for each n, and for each trial we generate
K = 2000 samples (see Table 3).

We note that over many samples, the maximum number of particles can deviate signifi-
cantly from the average maximum. For instance, with n = 40, the maximum over all sam-
ples is 65,537, while on average the maximum in a single sample is 380. This suggests that
the subsolution-based scheme typically does not usually lead to an explosion in the num-
ber of particles, but it is inevitable that splitting can occur many times, especially with the
RESTART algorithm.

Note also that the relative error is increasing as n increases, whereas in the previous exam-
ple it was decreasing. This is in part due to the sizes of the estimated probabilities which are
smaller in this example.

Finally, we remark that for n = 30,40 the left side of the confidence interval is 0, as
otherwise the reported value would be negative; this suggests more samples are needed. These
are more time-consuming to generate in this example due to the fact that the dynamics are
simulated via a Metropolis–Hastings algorithm.

EXAMPLE 5.3 (M/M/∞ queue).
DYNAMICS AND DOMAIN. The M/M/∞ queue is a Markov process with Poisson arrivals

at a fixed rate λ and infinitely many servers available, each having exponential service time
with rate μ. We are interested in the number of occupied servers Q(t), the dynamics of which
can be specified via the infinitesimal generator

(Lf )(x) = λ
[
f (x + 1) − f (x)

]+ μx1{x≥1}
[
f (x − 1) − f (x)

]
.
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TABLE 4
Results for the M|M|∞ queue

(n,T )

(10,20) (15,30) (20,40)

LDP estimate 2.10 × 10−2 4.41 × 10−4 9.26 × 10−6

Estimate 4.84 × 10−3 1.80 × 10−4 3.15 × 10−6

Confidence interval [4.55,5.11] × 10−3 [1.70,1.91] × 10−4 [2.98,3.31] × 10−6

Relative error 2.93 × 10−2 2.94 × 10−2 2.66 × 10−2

Decay rate 1.72 1.83 1.89
maxn

i,k Ni,k 50 78 145
Avg max N̄n 10 16 26
Average work wn 596 1498 3238
n−1 logwn 0.63 0.48 0.40
Simulation time (s) 130 270 577

We consider the scaled process Xn(t) = 1
n
Q(nt), with λ = μ = 1, and we take the domain to

escape to be D = {x : x ∈ [0,2]}. In other words, we are looking for the probability of using
more than 2n servers over [0, T (n)].

SUBSOLUTION. It is well known that the stationary distribution of Q is given by π(k) =
e−λ/μ(λ/μ)k/k!. Thus, the stationary distribution of Xn is, for x = k/n and k ≥ 0,

πn(x) = e−nλ/μ (nλ/μ)nx

(nx)! .

For λ = μ = 1, the quasipotential is given by

Q(x) = lim
n→∞−1

n
logπn(x) = x logx − x + 1.

The most likely point of exit is at x = 2, so cQ = 2 log 2 − 1 ≈ 0.3863. A subsolution
which yields an asymptotically optimal estimator is therefore given by V̄ (x) = −Q(x)+ cQ.

SIMULATION AND RESULTS. We consider values of n = 20,30,40 with T (n) = n/2 and
a splitting rate of R = 4. We run one trial for each n, and for each n we generate K = 4000
samples (see Table 4).

In this example the simulation time is significantly lower and we can run more samples
(K = 4000 as opposed to K = 2000 in the previous examples). This is in particular due to
the fact that there are fewer thresholds, as determined by V̄ (0) − V̄ (2) = cQ. One can also
increase the splitting rate R to decrease the number of thresholds, but in such a case more
particles are generated and the overall effect on the simulation time does not seem to change
much.

EXAMPLE 5.4 (Multidimensional Ornstein–Uhlenbeck).
DYNAMICS AND DOMAIN. We consider once again the Ornstein–Uhlenbeck process, this

time taking values in R
4 with drift matrix A,

Xn
i+1 = Xn

i − 1

n
AXn

i + 1

n
ui,

where X0 = (0,0,0,0) and the ui are normal random variables with mean vector (0,0,0,0)

and covariance given by the identity matrix I4×4. The drift matrix A is given by A = PDP T ,
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where D is a diagonal matrix and P is orthogonal, P −1 = P T . We take

P =

⎛
⎜⎜⎜⎝

1/
√

2 −1/
√

2 0 0
1/

√
2 1/

√
2 0 0

0 0 1 0
0 0 0 1

⎞
⎟⎟⎟⎠ , D =

⎛
⎜⎜⎝

1 0 0 0
0 1/2 0 0
0 0 1/4 0
0 0 0 1/8

⎞
⎟⎟⎠ ,

A =

⎛
⎜⎜⎝

3/4 1/4 0 0
1/4 3/4 0 0
0 0 1/4 0
0 0 0 1/8

⎞
⎟⎟⎠ .

Observe that the matrix A is symmetric and positive definite, with eigenvalues given by the
diagonal of D. We take the domain to escape to be

D = {
x ∈ R

4 : |x1| < 1/2, x2 + x3 < 1/8, x3 < 1/4, x4 < 1/8
}
.

Note that D is not bounded since x2, x3, x4 can take arbitrarily negative values, and escape
can occur for arbitrarily negative x2. As noted in the Introduction, this does not affect the use
of the subsolution since the probability of escape at a location where x2 is very negative is
negligible compared to the probability of escape.

SUBSOLUTION. The associated Hamiltonian is

H(x,α) = 1

2
‖α‖2 − 〈α,Ax〉.

As in Example 5.1, the drift can be modified outside D to ensure supx∈Rd H(x,α) < ∞. The
quasipotential Q(x) is 〈x,Ax〉.

A location of most likely escape is at x = (1/2,−1/8,1/4,1/8), which determines the
constant cQ = 0.1855. The subsolution based on the quasipotential is given by V̄ (x) =
−Q(x) + cQ. Another subsolution derived from this one is given by 0.95V̄ (x). The fac-
tor of 0.95 ensures that this subsolution is strict, in the sense that the defining inequality of a
subsolution is strict. One reason for using a strict subsolution is to better control the number
of particles, but with an expected reasonable increase in variance; see, for instance, [5]. We
run the simulation for both subsolutions and compare the results.

SIMULATION AND RESULTS. We consider values of n = 40,80,120 with T (n) = n/10
and a splitting rate of R = 5. We run one trial for each n and each subsolution, and for each n

we generate K = 1000 samples. The choice of K is limited by the computational cost. Table 5
is based on the subsolution V̄ (x), and Table 6 is based on 0.95V̄ (x).

We first make some remarks which apply to the results from both subsolutions. The sim-
ulation time is longer than in the previous example owing to the higher dimension of the
process, and the relative errors are large owing to the small number of samples. In both cases
the decay rate increases with n as the large deviation approximation becomes increasingly
accurate.

Observe that the decay rate for the strict subsolution 0.95V̄ (x) is slightly lower for all
three pairs (n,T (n)), though the disparity between the decay rates decreases as n increases.
The relative errors are also larger for the strict subsolution. Nevertheless, the estimates seem
comparable in both cases, and the confidence intervals also show significant overlap. Most
importantly, we see significant decrease in the total work and therefore the simulation time,
especially for the case of n = 120. We recall that the simulation time is not used as a measure
of computational cost but rather as a basis of comparison. We refer to Tables 8 and 9 in [5]
for a similar comparison.
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TABLE 5
Results for the multidimensional Ornstein–Uhlenbeck process using the subsolution V̄ (x)

(n,T )

(40,4) (80,8) (120,12)

LDP estimate 5.98 × 10−4 3.57 × 10−7 2.13 × 10−10

Estimate 2.38 × 10−5 6.37 × 10−8 8.89 × 10−11

Confidence interval [1.04,3.73] × 10−5 [3.89,8.85] × 10−8 [0.59,1.19] × 10−10

Relative error 2.87 × 10−1 1.98 × 10−1 1.71 × 10−1

Decay rate 1.58 1.77 1.85
maxn

i,k Ni,k 293 1442 4997
Avg max N̄n 49 251 737
Average work wn 1767 32,233 221,551
n−1 logwn 0.19 0.13 0.10
Simulation time (s) 100 1843 12,584

TABLE 6
Results for the multidimensional Ornstein–Uhlenbeck process using the subsolution 0.95V̄ (x)

(n,T )

(40,4) (80,8) (120,12)

LDP estimate 5.98 × 10−4 3.57 × 10−7 2.13 × 10−10

Estimate 5.49 × 10−5 4.71 × 10−8 8.10 × 10−11

Confidence interval [1.90,9.08] × 10−5 [2.15,7.26] × 10−8 [0.45,1.16] × 10−10

Relative error 3.33 × 10−1 2.77 × 10−1 2.24 × 10−1

Decay rate 1.52 1.74 1.83
maxn

i,k Ni,k 272 797 1255
Avg max N̄n 38 136 270
Average work wn 1301 16,533 72,050
n−1 logwn 0.18 0.12 0.09
Simulation time (s) 92 1142 5364

APPENDIX A: PROOFS FROM SECTION 2

The following is an easy consequence of Condition 2.2.

LEMMA A.1. Under Condition 2.2, for any compact set K there is c ∈ (0,∞) such
that for any x and y ∈ K , there exists τ ∈ (0,∞) and a smooth function ϕ, with ϕ(0) = x,
ϕ(τ) = y, τ = |x − y|/r for which Iτ (ϕ) < c|x − y|.

PROOF OF LEMMA 2.8. First we prove that W is continuous at any point x ∈ D. By
Lemma A.1 applied to the compact set D̄, there is c ∈ (0,∞) such that for any x, y ∈ D
satisfying |x − y| < ε/2c, the cost of going from x to y in some finite time τ ∈ (0,∞) is
less than ε/2. By concatenating this path from x to y with a near-minimizing one from y

to some point not in D, and using additivity of IT on disjoint time segments, we obtain
|W(x) − W(y)| < ε.

If x ∈ D \ D then W(x) = 0, and the above proof can be repeated on a neighborhood N

of x, separating into the cases y ∈ N ∩D and y /∈ N ∩D. Finally, W is constant on the open
set Dc

and hence continuous there as well.
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Next we show that for any ε > 0 and any x ∈ D, W(x) ≤ W(0) + ε, which implies that
W(x) ≤ W(0) for all x ∈ D. Note that we might have W(x) = 0, if the noiseless dynam-
ics starting at x pass through the complement of D before reaching any sufficiently small
neighborhood of the origin, in which case W(x) ≤ W(0) automatically since W(0) ≥ 0. Oth-
erwise, since W is continuous at 0, there is δ > 0 such that any y ∈ Eδ = {x : |x| < δ} satisfies
W(y) < W(0) + ε. Since 0 is the unique attracting fixed point, for any x ∈ D there is T > 0
and a trajectory ϕ ∈ C([0, T ]) with ϕ(0) = x such that IT (ϕ) = 0 and ϕ(T ) ∈ Eδ . Thus,

W(x) ≤ IT (ϕ) + W
(
ϕ(T )

)
< W(0) + ε,

as claimed. �

APPENDIX B: PROOFS FROM SECTION 3

LEMMA B.1. For all y ∈ �
η
μ,

(B.1) Ey

[
Mn∑
i=1

Bn
i

]
≤ Ey

[
Mn] sup

x∈�
η
μ

Ex

[
Bn

1
]

and

(B.2) Ey

[
Mn∑
i=1

τn
i − σn

i−1

]
≥ Ey

[
Mn] inf

x∈�
η
μ

Ex

[
τn

1
]
.

PROOF OF LEMMA B.1. Consider

Sn
k =

k∑
i=1

τn
i − σn

i−1.

Let Fn
i = σ(Xn

j ,0 ≤ j ≤ i), F = σ(
⋃∞

i=1 Fn
i ) and Gn

k = Fn
σn

k
, where

Fn
σn

k
= {

A ∈F : A ∩ {σn
k ≤ m

} ∈ Fn
m,m ≥ 1

}
,

is the sigma-algebra of the stopping time σn
k . Since σn

i ≥ τn
i , Sn

k is Gn
k -measurable. Let

Mn .= inf
{
k ≥ 1 : Sn

k > T (n)
}
.

Then Mn is a stopping time with respect to the filtration generated by Sn
k and hence Gn

k . In
particular, {Mn ≥ k} = {Mn ≤ k − 1}c is Gn

k−1-measurable. We have

Ey

[
Mn∑
i=1

EXn
σn
i−1

Bn
1

]
= Ey

[
Mn∑
i=1

Ey

[
Bn

i |Xn
σn

i−1

]]= Ey

[
Mn∑
i=1

Ey

[
Bn

i |Gn
i−1
]]

=
∞∑
i=1

Ey

[
1{Mn≥i}Ey

[
Bn

i |Gn
i−1
]]= ∞∑

i=1

Ey

[
1{Mn≥i}Bn

i

]

= Ey

[
Mn∑
i=1

Bn
i

]
.

In the above display, the first two equalities follow from the strong Markov property condi-
tioned on Xn

σn
i−1

, and pulling out the infinite sum from the expectation sign is permitted by
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Tonelli’s theorem because all terms in the sum are positive. The result in (B.1) immediately
follows. Similarly, we have

Ey

[
Mn∑
i=1

τn
i − σn

i−1

]
= Ey

[
Mn∑
i=1

EXn
σn
i−1

τn
1

]
,

and thus (B.2) follows. �

LEMMA B.2. There exist s > 0 and N < ∞ such that for all n ≥ N and any y ∈ �
η
μ, we

have Py(τ
n
1 ≤ s) ≤ 1

2 .

PROOF. We may assume that s ≤ 1 without any loss, since the probability is decreased
by decreasing s. The probability Py(τ

n
1 ≤ s) is the probability that Xn exits D or enters γ

η
μ

before time s. If instead of the piecewise constant interpolation of Xn we had taken the
piecewise continuous one, it would not be possible for Xn to jump over the set γ

η
μ and the

probability Py(τ
n
1 ≤ s) would be increased. Consequently, it suffices to establish the desired

inequality when Xn is the piecewise continuous interpolation. For the purposes of this proof
it is convenient to do so, and by an abuse of notation we use Xn to denote this process, so
that Xn ∈ C([0,1]) Py-almost surely for the remainder of the proof.

Let � = min(μ/2 − η,dist(Eμ, ∂D)) > 0 where Eμ = {x : |x| < μ}. Any trajectory which
starts in �

η
μ and exits D or enters γ

η
μ must travel a distance of at least � > 0 at some point in

time. Let

As = {
ϕ ∈ C

([0, s]) : ∣∣ϕ(t) − ϕ(0)
∣∣≥ � for some t ∈ [0, s], ϕ(0) ∈ �η

μ

}
.

Then {τn
1 ≤ s} ⊂ {Xn ∈ As}. To get an upper bound on the probability of {Xn ∈ As} we place

a lower bound on the cost of any ϕ ∈ As .
By Condition 2.1, H̄ (α) = supx∈Rd H(x,α) is finite for all α ∈ R

d . It is also convex,
and its Legendre transform L̄(β) = supα∈Rd {〈α,β〉 − H̄ (α)} satisfies L̄(β) ≤ L(x,β) for all
x ∈ R

d . The finiteness of H̄ implies that L̄ is superlinear:

lim
c→∞ inf

β:|β|≥c

1

c
L̄(β) = ∞.

Choose c ∈ (0,∞) such that infβ:|β|≥c
1
c
L̄(β) ≥ 1, and then choose s > 0 such that �/s = c.

Then for any ϕ ∈ As we have either Is(ϕ) = ∞ (when ϕ is not absolutely continuous) or∫ s

0
L̄
(
ϕ̇(r)

)
dr ≥

∫ t

0
L̄
(
ϕ̇(r)

)
dr ≥ tL̄

(
1

t

∫ t

0
ϕ̇(r) dr

)
≥ t

�

t
= �,

where t ∈ (0, s] is a point such that |ϕ(t) − ϕ(0)| ≥ � and therefore | ∫ t
0 ϕ̇(r) dr/t | ≥ �/t .

Since L̄(β) ≤ L(x,β) for all x ∈ R
d , it follows that Is(ϕ) ≥ �. According to Theorem 1.1.

in [9] applied to the closed set As , for any ε > 0 there is N(ε) < ∞ such for any x ∈ �
η
μ and

any n ≥ N

Px

(
Xn ∈ As

)≤ exp
(−n

(
Is(ϕ) − ε

))
.

If we choose ε = �/2 and use Is(ϕ) ≥ �, then for n large enough we find Px{Xn ∈ As} ≤
1/2. �
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APPENDIX C: RESTART ALGORITHM

Initialization;
N0 = 1, Z0,1 = 0, C0,1 = J , K0,1 = J , γ = 0, i = 0;
while Ni �= 0 do

Ni+1 = 0;
for j = 1, . . . ,Ni do

If the particle did not reach the boundary;
if Zi,j ∈D then

Generate dummy variable Yi,j according to the law of Xi+1;

If the particle is not killed;
if σ(Yi,j ) ≤ Ki,j then

Ni+1 = Ni+1 + 1;
Zi+1,Ni+1 = Yi,j ;
Ci+1,Ni+1 = σ(Yi,j );
Ki+1,Ni+1 = Ki,j ;

If the particle needs to be branched;
if σ(Yi,j ) < Ci,j then

for k = 1, . . . , J do
for � = 1, . . . qk(Ci,j , σ (Yi,j )) do

Ni+1 = Ni+1 + 1;
Zi+1,Ni+1 = Yi,j ;
Ci+1,Ni+1 = σ(Yi,j );
Ki+1,Ni+1 = k;

end
end

end
end

end

If the particle reached the boundary;
if Zi,j /∈D then

γ = γ + eŪ(Zi,j );
end

end
i = i+1;

end

γ = e−Ū (0)γ ;
Algorithm 1: RESTART Algorithm
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