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The rapidly increasing penetration of distributed energy resources (DERs) calls for a hierarchical framework
where aggregating entities handle the energy management decisions of small DERs and represent these DERs
upstream. These energy management decisions are typically envisaged to be made via market-based frame-
works, aspiring the so-called Local Electricity Markets (LEMs). A rich literature of studies models such LEMs

Smart Grid . . . . . . . .
P::earl:To-rI;eer Energy Markets adopting various modeling assumptions and proposes various Market Mechanisms towards making dispatch
Market Clearing and pricing decisions. In this paper, we make a systematic presentation of a LEM formulation, elaborating on

the cornerstone attributes of the market model, i.e. the Market Scope, the Modeling Assumptions, the Market
Objective, and the Market Mechanism. We discuss the different market model choices and their implications
and then focus on the prevailing approaches of Market Mechanisms. Finally, we classify the relevant literature
based on the market model that it adopts and the proposed Market Mechanism, visualize the results and also
discuss patterns and trends.

Distributed Energy Resources
Mechanism Design

1. Introduction and bear balance responsibility). A computational barrier presents itself
towards tracking globally efficient solutions in a system with high pen-
etration of small DERs. The computational complexity is burdensome

due to the large numbers of small resources (instead of a few bulk

Global decarbonization goals are currently triggering a series of
fundamental changes in electricity systems. At the same time, market
liberalization and bottom-up investments are envisaged as a catalytic
driver towards fast and sustainable penetration of Renewable Energy
Sources (RES). In the face of these transitions, electricity systems and
markets are facing major challenges with respect to their design and

power plants), the increased amounts of uncertainty that they bring,
as well as the non-convexities that stem from the distribution network
flow constraints and from the DER models.

operation. One major challenge relates to the uncertainty of RES output
which comes in stark contrast to the (almost) deterministic dispatcha-
bility of traditional power plants. Notably, such uncertainty aggravates
the need for corrective actions close to real-time. Such a need can
be significantly costly, while it also brings over-provisioning measures
(e.g. grid reinforcement) to secure the system’s operation robustly. In
this context, enhancing the system’s flexibility comes as a new approach
paradigm that replaces system over-provision.

Another major challenge is the increased presence of RES and
other energy resources in low-voltage grids, which necessitates active
energy management at the edge of the network. In particular, the safe
operation of the distribution network needs to be ensured, while these
Distributed Energy Resources (DERs) need to be integrated into the
macroscopic network energy management (e.g. offer balancing services
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Towards accommodating these challenges, the pivotal drivers are
reported to be the better use of networks and the safer and more secure
operation through information and communication systems ([1] page
7). In the face of the above developments, a significant amount of work
in the research literature is headed towards designing novel market
frameworks towards efficient, scalable, and uncertainty-aware system
operation.

The integration of DERs has motivated novel electricity markets that
stem from a hierarchical market architecture where aggregating entities
represent multiple DERs upstream. These aggregation schemes are of
the general form illustrated in Fig. 1. In the architecture of Fig. 1, four
types of actors/entities can be identified:
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Fig. 1. Hierarchical Market Architectures and the Role of Local Electricity Markets.

» The Transmission System Operator (TSO) is the entity responsible
for balancing the electricity system through operating the balanc-
ing market. In different regulation frameworks, this entity can
also be called Independent System Operator.

The Distribution System Operator (DSO) is the entity responsi-
ble for the safety of a particular distribution network. For this
purpose, a DSO can acquire services from assets located in nodes
of its own distribution network, through a flexibility market [2].
The regulatory framework that relates to the operation of relevant
markets is still under development, and part of the literature
refers to the Flexibility Market Operator as an entity that operates
the flexibility market on behalf of the DSO [3].

A DER or DER facility can be any asset, e.g., generator, storage,
flexible load, or an assets’ cluster, e.g., a building.

The Aggregator is a central entity of the architecture since it
is responsible for representing its portfolio assets upstream. An
Aggregator participates in the balancing energy market by un-
dertaking balance responsibility,®> for its registered assets and
aggregating their balancing services. The TSO instructs a balanc-
ing action (dispatch) to the Aggregator, and the latter needs to
solicit the corresponding balancing energy from its registered as-
sets, in order to implement the TSO’s instruction. The Aggregator,
thus, dispatches the assets in its portfolio, either via direct control
or through a Market Mechanism, the scope of which is local

2 In some systems (predominantly European) a party that undertakes bal-
ance responsibility is called a Balance Responsible Party (BRP) which is a more
general term that includes not only Aggregators. For example, a big power
plant can be the BRP of itself, an energy supplier is the BRP of its consumers
even though it cannot interact and manage their consumption, etc.

i.e., only among assets registered with this Aggregator. Different
entities can act as Aggregators, e.g. Demand Response Aggrega-
tor, Community Manager, Electricity Service Provider and more,
also depending on the characteristics of the set of assets they
represent.

Moreover, by referring to Fig. 1, four types of markets can be

identified:

« Existing markets: These are the markets where Aggregators partic-
ipate. These markets’ role is to balance electricity supply and de-
mand while also providing the TSO with the necessary frequency
restoration reserves. The most representative of such markets is
the real-time balancing market and the day-ahead spot market,
while there are also intra-day and forward markets where partic-
ipants trade among themselves in order to fix their position or
hedge their risks.

Flexibility Markets: These are the markets where DSOs acquire
services from assets connected to their distribution system to
ensure the operational safety of the distribution network. It is a
relatively new proposition, and their design is an area of vibrant
research [4]. Market models have been proposed for this use case
as well [2].

Local Electricity Markets (LEMs): In a LEM, the assets of an
Aggregator trade with the Aggregator (or among each other) to
decide each asset’s dispatch, also depending on the position of the
whole community/Aggregator. Such LEMs go by various names
in the literature, e.g. “Transactive Energy” [5] or “Demand Side
Management”, while sometimes they are also called “flexibility
markets”, albeit they do not have to be local in the geographical
sense, i.e. a community may encompass assets located in differ-
ent distribution networks as seen in the left and middle LEMs
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of Fig. 1. Also, studies that propose peer-to-peer (P2P) market
frameworks (e.g. [6]) usually refer to this type of markets. Finally,
many studies propose LEMs (e.g. [7]) that try to maximize the
community’s self sufficiency by minimizing the exchange with the
wholesale market. The motivation is that there is a price spread
between the price for energy sold (e.g. feed-in-tariff) and the price
for energy bought (e.g. retail price), which deems such trades
unprofitable. A study of how this price spread affects the level
of self-sufficiency is presented in [8].

Hybrid LEMs and flexibility markets: A mixture of a LEM and a
flexibility market is formed for the case where the assets consti-
tuting a particular distribution system also jointly participate in
the existing markets, as in the LEM on the right of Fig. 1. In such a
case, DSO constraints and balance responsibility are co-optimized.
Under this perspective, a Microgrid can also be perceived as a
community with an exclusively-defined geographical location. A
Microgrid is usually deemed to be balance-responsible, i.e., the
Microgrid operator is an Aggregator, also called a “Distribution
Company - DISCO” sometimes.

Following the elaborations above, a generic framework is envisaged,
where Aggregators and/or Community Managers participate in the
existing markets, while each one runs an internal market® to further
decide the dispatch of the parties that it represents. It is to these
internal markets that the term “LEM” refers.

Literature review papers have addressed several aspects of LEMs.
In [4], the concept of local flexibility markets is surveyed from a DSO
point of view. [9,10] focus on energy communities, the former present-
ing different business models and offering policy insights, while the
latter also discussing socio-economic aspects. [11] focuses on electric
vehicles and reviews control algorithms for smart charging (centralized
control, transactive control, time-of-use pricing). The authors in [12]
adopt a methodology-oriented viewpoint by reviewing applications of
artificial intelligence techniques in demand response contexts. [13] of-
fers a broad, high-level view of different peer-to-peer markets use cases
and discusses relevant pilot projects. Authors in [14] discuss engineer-
ing aspects of DERs, including a discussion on which types of DERs are
suitable for which kinds of services (e.g. primary/secondary reserves
etc.). In [15], the authors discuss the relevant literature from the per-
spective of the different coordination frameworks (e.g. uncoordinated,
distributed Optimal Power Flow, peer-to-peer trading etc.), discussing
technical implications but leaving market aspects aside. In [16,17],
the authors present and compare different architectures (peer-to-peer,
community-based, hybrid) of hierarchical prosumer-centric LEMs.

The studies above cover different aspects of DERs (e.g. engineer-
ing, policy, business, integration paradigms, scheduling and control
algorithms). A subset of studies also discusses market architectures
(e.g. peer-to-peer, community) and/or surveys market-based
approaches (e.g. time-of-use pricing, transactive control). However,
none of the above surveys discusses the different possibilities of Mar-
ket Mechanisms and their algorithmic aspects. The design of Market
Mechanisms for LEMs has attracted research stemming from different
disciplines, including Economics, Computer Science, Optimization, and
Algorithmic Game Theory.

In the LEM literature, each study makes some explicit or implicit
modeling assumptions regarding how the market considered interacts
with other markets. For example, many studies consider a set of DERs
and assume that the electricity cost of the set’s aggregated consumption
takes a quadratic form. In such approaches (e.g. [18,19] and later
studies of this research stream), the wholesale market is modeled
simply by considering a clearing price dependent on the generation
cost of the marginal generator. In a different example, [6] models a

3 The case of direct control, instead of an internal market, is represented
by aggregating entities usually called Virtual Power Plants, and will not be
analyzed further in this paper.
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community of prosumers (i.e. DER-controlling facilities) that faces two
different prices for drawing/injecting power from/to the grid. A third
example is [20] that models a request for a consumption reduction
from an “operator entity” to a set of Aggregators. Each Aggregator runs
an internal market among its portfolio of households (i.e. assets) to
draw the services it offers upstream. In [20], the existing markets are
modeled simply by assuming an already cleared order for balancing
energy down, and competing Aggregators.

In general, each study proposes Market Mechanisms for a certain
use case by adopting certain assumptions. Depending on the modeling
assumptions and the objectives adopted by each study, different Market
Mechanisms (with various properties) have been proposed towards
operating these markets. In view of such different mechanisms and
various market scopes of the relevant studies in the power systems
literature, there is a clear motivation for defining a systematic frame-
work, within which most of the literature can fit and through which the
applications and contributions of each paper are more clear. Therefore,
in this paper we aspire to establish the relevant concepts of LEM Market
Mechanisms in a clear, unified, and structured way so that the research
community is headed towards a standardized framework instead of
customized setups. We envision this paper as the first step in a three-
step process towards taking LEMs to the next level. This process is
envisioned as follows:

1. Establish a systematic framework (scope, modeling assumptions,
objectives and relevant techniques) through which a LEM design
can be classified and put into perspective with respect to other
works while, by referring to this framework, a new study can
communicate its scope and contributions more efficiently and
clearly.

2. Establish standardized testbeds, with models and metrics that
are relevant for real LEMs, where propositions can be evaluated
and compared with respect to their performance.

3. Take the prevailing mechanisms to real LEM trials.

Thus, in reference to the first step above, in this paper we make the
following contributions:

Describe a systematic framework for studies that propose market
models for LEMs by identifying and analyzing the distinct compo-
nents that define a particular market model: Market Scope (partic-
ipants, operator and products), Modeling Assumptions, Objective,
Market Mechanism.

Elaborate on the components of a Market Mechanism (Commu-
nication, Allocation rule, Payment rule), categorize the Market
Mechanisms most typically used in LEMs into four families (La-
grangian, Game Theoretic, Data-driven, Heuristic) and describe
the Communication, Allocation rule, Payment rule of each family.
Present the main known results regarding the properties of each
mechanism family, towards facilitating the understanding of what
market models and modeling assumptions pair with each mecha-
nism family.

Classify the state of the art studies within the presented frame-
work, and characterize each study based on its market model and
the Market Mechanism that it proposes.

Visualize the classification, revealing patterns, areas less
researched and research gaps.

Future studies can be systematically classified among the existing
literature by referring to this framework while communicating their
scope and contributions more efficiently and clearly.

2. Market models

In a broad sense, an electricity market is a system that facilitates
the exchange of electricity-related goods and services. By reviewing the
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Fig. 2. Attributes of a Market Model/Structure of Section 2.

literature on studies that design and propose electricity Market Mech-
anisms, a set of common features can be identified towards defining
a complete description of LEM design. Specifically, a properly defined
electricity market design study needs to specify its scope with respect
to at least four attributes:

Market scope: This includes the set of market actors (eligible
market participants and the market operator), as well as a set of
standardized products that can be exchanged in the market.
Modeling assumptions adopted by the study.

Objective of the market designer.

Definition of proposed Market Mechanism, including an allocation
rule, a payment rule and a communication model.

In Fig. 2, these attributes are graphically demonstrated in yellow poly-
gons. Modeling assumptions and Market Mechanisms are defined based
on the further sub-attributes depicted in blue oval shapes. In this
section, we elaborate on each of these components. In fact, the polygon-
attributes of Fig. 2 also represent this section’s subsections, two of
which are further divided into the sub-subsections depicted by the oval
sub-attributes. Finally, the dashed squares present some typical (but not
comprehensive) examples of attribute choices used in the literature.

2.1. Market scope

The Market Operator is the entity responsible for carrying out the
market procedures according to the designed Market Mechanism, while
the set of market participants includes the entities that can participate
in the market based on the market’s scope and rules. For this paper’s
purposes, it is useful to assign a symbol N to denote the set of a
market’s participants. The set N generally consists of electricity pro-
ducing/consuming facilities and assets, such as RES facilities, storage
facilities and flexible or inflexible loads.

As an analogy, we refer to typical balancing markets. These are
operated by the Transmission System Operator and the set of partici-
pants N consists of all registered entities capable of providing balancing
services. However, LEMs may be subject to a more designated set of
participants. For example, for a market where a DSO acquires services
towards controlling the nodes’ voltages or the lines’ congestion of its
distribution system [3], the set N consists exclusively of DERs located
in that particular distribution network. Similarly, an Aggregator can
run an internal market, designated for the DERs (or facilities) N that
are registered to this Aggregator [20].

While energy, in the form of active power over time, is usually
the main product of an electricity market, other products also exist.
Energy reserve (of different types) is a product sold to the operator in
order for the latter to have enough resources available for balancing the
system or relieving congestion in real-time. Reactive power injection is
another product [2], relevant to distribution systems, while some recent
works have formulated markets for data [21], related to the forecasting
accuracy of RES. In many electricity markets, several products are
jointly cleared in a co-optimization problem (e.g. energy and reserve),
so it is useful to define a set P of products p € P for a market.

Due to the natural necessity of energy systems to be balanced
(i.e. supply has to equal demand at all times), an important property of
an electricity market product is the time of delivery. Strictly speaking,
energy in different timeslots could be conceived as different products
since it has a different value for the participants. However, in this
paper, we refer to the time of delivery explicitly by using a timeslot
index + € T. A special mention is in order for P2P market studies
where the authors consider participants who have preferences over
their trading partners, i.e., for participant n € N, buying a product
p € P from a participant i € N has different value than buying the
same product from another participant j € N (e.g. because one seller
is more reliable, more “green”, geographically closer etc.). In market
terms, we say that there is product differentiation among sellers [22].

2.2. Modeling assumptions

The outcome of the market is that each participant is allocated with
certain quantities b, ,, and s, ,, of, respectively, buy or sell of product
p at time ¢ and is also charged/credited a payment amount z,. Note
that z, depends on b,,, and s, ,,, and can be positive or negative
(depending on whether n receives payments for selling products or
makes payments for purchasing products). Let x, = {b,, ;> Sy} peprer
denote the allocation (dispatch) of participant » for all products and all
timeslots. We denote the combination of all the participants’ dispatch
as the market’s allocation A = {x,},cn. Each participant n € N is
characterized by a cost function c,(x,) which is a function of its allo-
cation for all products and all timeslots. Again, the cost function c,(x,,)
can also take on negative values, indicating a benefit/utility/valuation
from buying products. Finally, at least for LEMs, it is regarded that
a participant cares only about its own allocation, i.e., the cost/utility
function of n does not depend on the whole allocation .4 but only on

X,
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In the rest of this subsection, we present four types of assumptions,
based on which many studies in the literature can be categorized. Our
motivation for doing that is that for any Market Mechanism proposed
in the literature, it is important to consider (and state) under what
modeling assumptions the mechanism’s performance is guaranteed.

2.2.1. Assumptions on the participants’ cost/utility functions and local
operational constraints

A significant part of the literature assumes convexity of the partic-
ipants’ cost functions c,(-), which greatly facilitates the functionality
of the Market Mechanism or at least the analysis of it. A more subtle
assumption refers to whether c,(x,) is temporally coupled. While this
cost function is assumed separable over T by some studies, i.e.

CnlX,) = D € (x) eY)
teT

this is not generally the case. For example, the cost/utility of an electric
vehicle may depend on the total energy accumulated until a certain
deadline, the cost of a storage facility may depend on the total number
of charge/discharge cycles, while a generator also bears start-up costs
that couple its costs across time. All these considerations couple the
participants’ cost functions over the time horizon, which can sometimes
incommode the solution of the market clearing problem.

In addition to its cost function, each participant bears a set of local
operational constraints which define a feasible region C, C R?PITI for
n’s dispatch, such that x, € C,. For example, generators have certain
ramp constraints that couple the dispatch between consecutive times-
lots, batteries have certain constraints that describe the relationship
between their dispatch and their state of charge. Moreover, flexible
loads have a number of different constraints depending on the device
models adopted. Similarly to the cost functions assumptions, whether
assumptions on convexity and temporal-independence are adopted is of
central importance when modeling a participant’s local constraints as
well.

2.2.2. Market behavior

The objective of a market participant is usually the maximization
of its own payoff, which is comprised by the payment z,(A) that it
receives/pays from/to the market, minus the cost/valuation ¢,(x,) that
it suffers/gains for delivering/consuming the products assigned to it by
the market’s dispatch:

max {7[,1(.4) - cn(xn)} (2a)
s.t. x, €C, (2b)

The control variables of participant n, through which it can pursue
a good solution of problem (2a), are usually n’s bids, the form of
which depends on the market’s communication model, analyzed in
Section 2.4.1.

An important modeling assumption refers to the participants’ infor-
mation and market behavior. More specifically, many studies assume
a price-taking or myopic market behavior where participants cannot
unilaterally affect the market outcome due to their small size, lack of
information, and/or lack of computational capabilities. This assump-
tion is often called the “perfect competition” or simply “price-taking”
assumption, and in many cases, it can facilitate the Market Mecha-
nism’s performance. A typical example is the family of Lagrangian
decomposition methods, widely used as a Market Mechanism in LEMs
(e.g. [6,7,23-25]), that guarantee an optimal allocation but only un-
der the (sometimes implicit) assumption that no participant behaves
strategically.

A participant i can behave strategically if it is aware of the Market
Mechanism and also has some knowledge over the other participants’
cost functions ;) and constraints Cj, where j # i. Some studies
have demonstrated the effect of strategic behavior on the market
outcome [26], by using bi-level programming, where the cost functions
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and constraints of other participants as well as the Market Mechanism,
are explicitly modeled in the lower level problem of the focal strategic
player i.

In a different direction, some studies have demonstrated that even
in cases where i is not aware of the Market Mechanism and/or ¢ (s
C;. 4 itis still able to exhibit strategic behavior by having an Artificial
Intelligence (AI) algorithm learn to optimize i’s market position through
i’s bids. Such an example is [27], where Deep Reinforcement Learning
was used. Such strategic aspects become increasingly relevant since
intelligent agents, that make market participation decisions on behalf
of participants, have already been proposed in the smart grid literature,
e.g. [28,29].

In cases where the perfect competition assumption is relaxed, Game
Theory is the formal framework for conducting market analysis, while
Mechanism Design is the science of designing mechanisms for environ-
ments with strategic participants.

2.2.3. Uncertainty

Due to various operational constraints of market participants (ramps,
start-up procedures etc.) a product p, for timeslot ¢ is typically traded
not only in real-time but also in markets that take place ahead of
delivery time r (e.g. in day-ahead markets). In such markets, the
allocation is decided for a horizon T ahead. However, in reality, a
participant never really has full observability ahead of time over its
own cost function and constraints. This is well understood for RES
generation facilities and demand response availability of loads, while
it is also true for conventional generators since their operation also
depends on unknown parameters such as the quality of the fuel or
simply an unforeseen failure. Therefore, an important distinction needs
to be made in the literature with respect to whether and how a study
takes uncertainty into account.

In particular, the notion of a participant’s cost function is gen-
eralized from c¢,(x,) to a parameterized function ., ¢, (x,. B, 4)s
where f,, is an uncertain parameter (also called disturbance in the
control literature) and ¢, is the so-called state variable that captures all
relevant past information (generally, past decisions and disturbances).
The system model can be visualized as a tree graph with each level
representing a timeslot and each node representing a system possible
state. Thus, the dispatch decisions are generalized into state-dependent
variables x, ,, .. A rigid mathematical representation of such models
for uncertainty can be found in [30]. In general, the state space
grows exponentially in the number of participants, which is known
as the curse of dimensionality of multi-agent systems. However, certain
assumptions, that are usually valid in practice for power systems, can
drastically sidestep this issue. The most important simplifying assump-
tion in power systems is the one of exogenous uncertainty, i.e., the
evolution of the uncertain parameters f,, does not depend on the
dispatch decisions.

For a typical example, consider that g,, represents the local RES
generation at n,t. Observe that participant’s actual cost at ¢ depends
not only on its dispatch, but also on g, ,. However, since RES available
generation depends only on the weather conditions and not on the
dispatch decisions, f,,,; does not depend on x,,. Due to this prop-
erty, one can avoid the need to represent all states ¢ € Q and use
only a number of representative scenarios k € K for the uncertainty
realization instead. These representative scenarios can be defined by
applying scenario reduction techniques. In this case, a scenario k
captures a certain RES generation profile (i.e. the independent trajec-
tory {,;};er), and the (expected) cost function takes the stochastic
form ¢, = Y, cr Yrek CnsXns> Pusi-4;)- SOme representative studies that
adopt this approach include [7,31], and [32]. The trivial case of |K| =1
represents the point-forecast (or deterministic) approach (e.g. [33,341),
which in practice would necessitate (sometimes costly) re-dispatch
actions close to real time. Another group of studies use robust opti-
mization techniques (e.g. [35,36]) or information gap theory [37], to
optimize the worst case scenario of the uncertainty realization.



G. Tsaousoglou et al.

Towards managing the computational complexity of stochastic pro-
grams, and especially for power system applications, relevant decom-
position techniques are thoroughly analyzed in [38]. Another, increas-
ingly adopted, approach is the so-called learn-to-optimize technique,
where the dispatch problem for each scenario is solved offline, and
the mapping from scenarios to optimal dispatch solutions is fed into
a machine learning algorithm. The idea is that the agent learns to
predict a good dispatch, online, once provided with an up-to-now
uncertainty realization. An example of this approach can be found
in [39] for a low-voltage distribution grid. In [40], the authors also use
the partial derivatives of the dispatch optimization problem to train a
sensitivity-informed neural network.

Nevertheless, the exogenous uncertainty assumption may no longer
be valid in practice in LEMs of the near future, since more types
distributed resources that do not satisfy this assumption become in-
creasingly important. A characteristic example is the one of smart
buildings that offer demand response capabilities. The thermal energy
demand of buildings is an uncertain parameter that its evolution de-
pends both on disturbances (e.g. outside temperature, user behavior,
etc.) and on dispatch decisions. Many studies avoid the computational
impasse of the general discrete-time dynamical system, described in the
beginning of this subsection, by assuming a parameterized, physics-
based thermal model for the building (e.g. [18,41]). However, this
modeling approach is considered an oversimplification by recent stud-
ies, since constructing an accurate thermal model for each building is
very challenging and also impractical [42]. Consequently, many recent
studies turn towards Markov-based uncertainty models (e.g. [43]) and
propose data-driven techniques (e.g. [44,45]).

2.2.4. System constraints

In contrast to the local constraints x, € C, discussed in Sec-
tion 2.2.1, system constraints involve more than one participant. Con-
straints that involve more than one participant are sometimes called
“global”, “complicating”, “coupling” or “resource” constraints also
depending on their nature. For the purposes of this paper, we use .S
to denote the whole set of system constraints, such that A € .5, where
S C RZNIPITI System constraints in electricity systems include the
supply—demand balance for all products (e.g. power and reserve), as
well as a set of network (or “flow”) constraints. Network constraints are
a special kind of complicating constraints that are particularly relevant
for electricity markets since actual product delivery is made through a
physical electric grid, and therefore, it is subject to physical constraints
of the grid, known as the power flow problem. Convexity is a central
issue also in these constraints, and a comprehensive line of research
is devoted towards proposing convex relaxations for the (inherently
non-convex) set S.

Given these issues, another clear distinction can be made among
studies regarding the model they adopt for incorporating the flow
constraints. Indicatively, electricity markets that take place in the low-
voltage network typically consider an AC power flow model, whereas
for markets of the transmission network, a DC power flow model is
generally deemed sufficient. Finally, another modeling choice is the so-
called Power Transfer Distribution Factors (PTDFs) model [46] or some
extension of it as in [47]. The authors in [48] provide a comprehensive
review of different formulations for the optimal power flow problem,
while authors in [49] compare different methods for its convexification
as a second-order cone formulation, and in [50], authors compare
different linear approximations for AC optimal power flow of three-
phase distribution systems. Finally, many studies assume that the grid
is over-provisioned enough, such that network constraints (e.g. voltage
limits) are never violated and need not be modeled. This is commonly
called a “copper-plate” assumption [51] which can simplify the mech-
anism. Nonetheless, such an assumption can lead to infeasible dispatch
decisions [52], which need to be corrected after the market clears. This
typically means that there will be inefficient re-dispatch actions, which
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sabotages the ostensible optimality of the Market Mechanism. In gen-
eral, it must be highlighted that model simplifications, approximations,
and assumptions inevitably mean diverging from reality. Hence, it is
imperative for the modeler and user of such models to be aware of
their accuracy/performance trade-off and limitations.

2.3. Objectives and solution concepts

In the vast majority of studies, the objective of the market designer
is to find an optimal allocation .A* which maximizes the Social Welfare
or, equivalently, minimizes the System Cost. Social Welfare is defined as
the sum of all the participants’ payoffs. In other words, the objective of
the market is to maximize economic efficiency. At the same time, local
and global constraints must be satisfied. Therefore, an abstract form of
a standard Social Welfare maximization problem can be formulated as

A* = argmax { 2 (mp(A) = ¢, (x,)) = CO(A)} (3a)
neN

st.x,€C,, VneN (3b)

AES. (Be)

where ¢, is the cost of A for the market operator. In many studies
the participants’ payments are constrained to be Y, .y 7,(A) = ¢;(A).
This is called a strictly budget-balanced market. Problem (3) maximizes
the aggregated participants’ payoffs, as those were defined in (2a).
Notice, though, that for budget-balanced markets, all payments (paid
by buyers/operator and received by sellers/operator) cancel out and,
thus, (3) reduces to the following cost minimization problem

A* = argmin { Z c,,(x,,)} (4a)

neN
st.x,eC,, VneN (4b)
AE€S. (40)

If convexity and no-uncertainty assumptions are adopted, then the
globally optimal solution of problem (4) is generally tractable. In other
cases, a Market Mechanism can be evaluated by comparing the Social
Welfare that it achieves to the Social Welfare of the theoretically
optimal allocation .A*. Note that problem (4) does not have a payment
component. Nevertheless, a major reason for introducing payments is
to incentivize participants to, directly or indirectly, reveal their private
cost functions ¢,(-) and facilitate the solution of problem (4).

In cases where strategic behavior, as defined in Section 2.2.2, is
taken into account in the system model, the problem takes a game-
theoretic form, and Equilibrium becomes the relevant solution concept.
The predominant notion of equilibrium is the Nash equilibrium, defined
as the point ANE = {xNF} . from which no participant wishes to
make a unilateral deviation, i.e., it is

x)'F € argmax, {x,(A)-c,(x,)}, VneN. (5)

Thus, problem (5) forms a different objective which can also be
identified in the literature. Also, note that multiple equilibria may exist
and that, in contrast to problem (4), equilibrium points also depend
on the design of the payment functions x,(A). In such systems, the
objective of a Market Mechanism can be to identify an equilibrium
point that minimizes the welfare loss (also known as the price of
anarchy), i.e., (5) is added as a constraint to problem (4).

It is important to highlight that the welfare-maximizing allocation
A* need not necessarily be an equilibrium. This can become problem-
atic in practice since participants may have reasons to deviate from
their dispatch instruction during delivery time. Nevertheless, in the
special case where cost functions c,(-) and feasible regions C, and S
are assumed convex while, additionally, all participants are assumed
non-strategic, the optimal solution of (4) is also an equilibrium, i.e. the
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optimal solution of (4) satisfies (5) without having to model (5) ex-
plicitly. This statement draws its theoretical foundations from duality
theory and has inspired many studies to apply a dual decomposition
method for solving problem (4) distributedly. The solution concept in
such cases is called competitive equilibrium to distinguish it from Nash
equilibrium. A more general formal framework that describes the re-
peated interaction of strategic participants in an uncertain environment
is the so-called Stochastic (or Markov) game. Very few studies have
dealt with market frameworks in such environments [53], partly due
to stochastic games being intractable in general.

In contrast to the studies that adopt one of the two main objectives
described so far (equilibrium discovery and efficiency in terms of Social
Welfare maximization), a third family of studies adopt Fairness as the
market designer’s objective. There are multiple notions of “Fairness”,
and papers of this category usually define the notion used. Examples
include max-min fairness [54], proportional fairness [55], or using the
Shapley Value as a formal fairness index [56].

Finally, there are cases where an aggregating entity represents a
portfolio of assets in a market to maximize its own profit. Various
studies model the interaction between the aggregating entity and the
assets within its portfolio as a LEM in which the aggregator acquires
(provides) services by (to) its assets (see the Aggregators in Fig. 1).
In studies where participants cannot choose a different aggregator, the
LEM is monopsonistic (monopolistic), i.e. has only one buyer (seller),
and the objective can be the maximization of the aggregator’s profit.
In such settings, usually, the aggregator is assumed to abide by some
form of regulation. For example, in [57], a demand response aggregator
is able to choose the LEM prices of different timeslots within a day,
but the average price would have to be equal to the average wholesale
price to constraint the aggregator’s market power. Similarly, in [58] a
discriminatory pricing scheme is allowed, but the average participant
price must be equal to the price faced by the aggregator.

2.4. Market Mechanisms Definition

A Market Mechanism is the set of rules through which market
participants’ interaction and exchange of products occur. The central
research problem of studies that propose Market Mechanisms, stated
in its full generality, is to design the rules such that the interaction
of participants under these rules leads to a market outcome that is
desirable in terms of the designer’s objective (as that was defined in the
previous subsection). A Market Mechanism consists of at least three dis-
tinct components: the Communication Model, the Allocation Rule, and the
Payment Rule (described in 2.4.1, 2.4.2, and 2.4.3 respectively), while
a certain mechanism is characterized by its guarantees with respect
to certain properties. The main properties of interest are described in
2.4.4.

2.4.1. Communication model

The communication model is a set of rules that fully defines how
participants exchange information. A communication model consists
of the communication graph and the communication format. The graph
defines which participant exchanges information with which. In gen-
eral, two types can be clearly distinguished: Centralized markets, where
each participant exchanges information exclusively with a coordinating
entity (namely the market operator), and decentralized/distributed
markets, where each participant exchanges information with its “neigh-
bors” (i.e., a certain subset of N) and a coordinator need not exist.
A distributed market is often adopted in the case of P2P market
frameworks, which are often combined with blockchain technologies
that support the market’s financial settlements [59]. However, when it
comes to satisfying network constraints, the distributed communication
graph is typically supplemented by a coordinating entity that solves
the power flows and communicates with all participants (e.g. [60]
calculates some pricing signals based on PTDFs and other similar
factors as elaborated in [47]). Moreover, the communication graph can
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be subject to design. For example, in [61], the authors design the graph
of a P2P market exchange based on the minimization of the electrical
distances so that network congestion is relieved. Finally, it is important
to make a distinction between distributed communication (information
is exchanged only with neighbors) and distributed energy exchange
(energy is exchanged only with neighbors). P2P electricity markets
(e.g. [22,62]) typically adopt both the above designs. Nevertheless, we
can also have distributed information exchange while energy trading is
kept in a pool-market form (see [63] for an example).

The communication format, on the other hand, defines/standardizes
the type and form of the exchanged information. A direct revelation
mechanism is one where the participants are required to communicate
their cost function ¢,(x,) and set of local constraints C, in a closed form
(as is done for example, in balancing markets). In such mechanisms, the
communication format defines what types of functions and constraints
are admissible. An example refers to the case where participants are
required to communicate their costs as a set of step-wise functions
(one for each timeslot and product) that define a number of price-
quantity pairs. The constraints that can be communicated are also
subject to predefined types, decided by the market designer. Such
constraints include operational limits, ramps and also constraints that
link several timeslots like minimum/maximum activation time through
the operational horizon.

In most of the literature, participants’ models are assumed to be
perfectly in line with the market’s communication format, i.e., cost
functions c,(x,) and local constraints (2b) are directly incorporated
in the dispatch problem (as is shown in (4)). However, in practice,
the types of cost functions and constraints allowed by the commu-
nication format are usually restricted to functions that facilitate the
dispatch problem’s solution (e.g. (4)). In contrast, the actual costs and
constraints (2b) may be strongly non-convex. Therefore, the market
clearing problem may be solved to optimality in theory, but since
the participants’ actual constraints and costs are different from those
considered, there will be inefficiencies in reality.

Two lines of research can be identified on this issue. The first is
about designing the communication format of the Market Mechanism
so that it achieves an attractive trade-off between capturing the par-
ticipants’ actual models and not compromising the tractability of an
efficient allocation .A*. The second is about how a participant with
complex models can optimize its bids/offers to the Market Mechanism,
given a restrictive communication format [64].

In contrast to direct revelation mechanisms, indirect mechanisms
consider an iterative procedure where participants send/receive a series
of queries and also communicate their query responses. A query can be
a price signal 4,, for product p in timeslot 7, based on which each par-
ticipant n is asked to respond with its preferred supply/demand x, ,,.
Examples of such an approach are the decomposition techniques pro-
posed by many studies as a way to solve a social welfare maximization
problem in a distributed fashion.

2.4.2. Allocation rule

The allocation rule describes how the final allocation A is decided.
In the special case of a direct revelation mechanism and a communi-
cation model that constitutes the problem tractable (e.g. convex), the
allocation rule is trivially defined by the objective-optimizing problem
itself (e.g. (4), (5), or maximizing fairness etc.). In cases of direct
mechanisms, different solvers are applicable depending on the mod-
eling approach (namely the model of the constraints and the cost
functions). A thorough classification of models and solvers can be found
in [4]. However, in general, the optimal solution may be intractable,
in which case the allocation rule is subject to design and evaluation
since different allocation rules yield different outcomes. This includes
cases of uncertainty, cases of intractable objectives as well as indirect
mechanisms.
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2.4.3. Payment rule

The payment rule defines the way that payments r, are decided.
In standard nodal markets with a social welfare maximization objec-
tive, the payment of participant » is defined by the quantities traded
multiplied by the price 4, ,, of the node where n is located, i.e. z, =
Yvep 2icT Xnpihnpy I iterative mechanisms, the payments are usually
defined based on the last price broadcasted before the algorithm’s
convergence, while in direct revelation mechanisms, the nodal price is
the Lagrange multiplier of the power balance constraint of each node.
Note that interpreting the Lagrange multipliers as prices is relevant only
in cases where the objective is maximizing social welfare.

The design of the payment rule is particularly important for systems
where the perfect competition assumption is relaxed. In such models,
many studies have used techniques from Mechanism Design theory
to propose payment rules that align the objective of each market
participant (e.g. (2a)) with the market designer’s objective (e.g. (4)).
For example, towards maximizing social welfare, the Clarke pivot rule
was proposed in [3,65] as a payment rule that incentivizes participants
to reveal their cost functions to the market operator truthfully. In
another example, the authors in [66] design a payment rule based on
compensation-and-penalty mechanisms such that truthful declaration
also holds for the case where the objective is to optimize the max-min
fairness index.

2.4.4. Properties of Market Mechanisms

A Market Mechanism can be evaluated with respect to a number of
metrics or property requirements. We describe here the most important
of those:

« Efficiency and constraint satisfaction: This metric quantifies the
mechanism’s performance with respect to the objective sought.
For example, a mechanism that also considers uncertainty can be
evaluated based on its outcome against the optimal-in-hindsight
solution and also on the probability that a constraint is violated.
Incentive Compatibility: If a mechanism has this property, it means
that the participants’ objectives are consistent with the market’s
objective. In other words, it is to the participants’ best interest to
help the mechanism maximize efficiency (e.g. by revealing their
true costs to the market operator). This property is particularly
important for settings with strategic players (Section 2.2.2). In
fact, a mechanism can be optimal under the perfect-competition
assumption (e.g. Lagrangian methods), but if strategic behavior
is present and the mechanism is not incentive compatible, then
its efficiency is also compromised. Especially in the LEM context,
where the reach of market monitoring and auditing procedures
is naturally limited, intelligent agents with computational capa-
bilities, acting on behalf of DERs, can find an inviting place to
exploit.
Tractability: This refers to the property of a Market Mechanism to
achieve the optimal outcome within the relevant time-frame and
scale. Note that a mechanism can be theoretically optimal and
incentive compatible, but the optimal outcome may, however, be
impossible to reach. For example, in a direct revelation mecha-
nism, the allocation rule may be strongly non-convex, or, in an
indirect mechanism calculating the optimal response to a query
may be impossible for a participant.
Individual Rationality: A mechanism is individually rational if
every participant’s payoff (z,(A) — ¢,(x,)) is non-negative. In-
tuitively, each participant always prefers to participate in the
market rather than not participate. An extension of this prop-
erty is called “Group Rationality”, where a mechanism is group
rational if no subset of users would be better-off if they jointly
withdrew their participation from the market.
» Budget Balance: We say that a mechanism is strictly budget-
balanced when the market operator does not need to inject money
to (or make money from) the system, i.e. ) .y 7,(A) = ¢;(A).
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A weaker form of this property is sometimes sought, where it
is required that the market operator does not need to inject
money, but can, however, make money from the mechanism,
i.e. Y,en T, (A) = co(A). This latter property is also called “rev-
enue adequacy”.

Privacy Preservation: A mechanism that requires the participants
to share their whole set of local models can compromise the
participant’s privacy, especially in the case of participants offer-
ing demand response services by utilizing the flexibility of their
residential electricity resources. A mechanism’s communication
model can account for privacy preservation or be configured with
a privacy protecting protocol (e.g. differential privacy). Different
levels of privacy protection exist. However, for this paper’s scope,
we only distinguish between studies that do not account for
privacy and studies that propose privacy-aware mechanisms.
Explainability: In real electricity markets, it is vitally important
that the dispatch and payments resulting from the mechanism are
intuitively understood, so that the market operator can provide
relevant explanations to participants or authorities if need be.
For example, if the dispatch is obtained by a machine learn-
ing algorithm, it might be challenging to rationalize the results
and convince participants or authorities about the mechanism’s
trustworthiness and reliability.

3. Market Mechanisms Methods

The described new challenges of electricity systems have triggered
a significant amount of research towards designing Market Mechanisms
to accommodate these challenges. The proposed techniques stem from
different disciplines. Optimization and Operations Research techniques
have been mightily present, while Game Theoretic techniques also have
had a high share. Algorithmic Game Theory and Mechanism Design
are particularly relevant disciplines, combining concepts from Com-
puter Science, Mathematics and Economics. Finally, the computational
and uncertainty-related challenges have motivated the use of heuristic
techniques and data-driven techniques, especially methods from Al and
Multi-Agent Systems. In the four subsections below, we identify and
analyze four distinct families of methods leveraged by the literature
towards designing Market Mechanisms for LEMs.

3.1. Lagrangian methods

Lagrangian decomposition methods are the most commonly used
mechanisms in LEMs. Their development is inspired by duality theory
and the fact that a convex optimization problem features an equivalent
dual problem. In particular, by interpreting the optimal dual variables
of the power balance constraints as prices, the problem of finding the
optimal allocation to problem (4) is equivalent to finding the optimal
set of prices. This, in turn, motivates the development of iterative
algorithms (resembling of auctions) where the operator communicates
price signals 4,,, to the market participants and they respond by
choosing their own allocation x, for those prices by solving problem
(2a), where the payment function is 7(x,) = ¥ ,cp X et AnpiXnps- The
operator receives the responses and updates the prices based on a price
update rule. The choice of the price update rule greatly interferes with
the algorithm’s convergence properties, and thus, has been subject to
research. Under certain conditions, such algorithms have been shown
to converge to an equilibrium where the prices and the participants’
responses no longer change. Furthermore, due to strong duality, this
competitive equilibrium point also optimizes Social Welfare. Finally, it is
worth noting that in such models, Lagrangian mechanisms can be very
fast to converge, even for large problems, since the problem of finding
the optimal dispatch is effectively decomposed into local problems (one
for each participant) that can be solved in parallel.

Based on these observations, it follows that Lagrangian methods
are suitable for settings with convex formulations and non-strategic



G. Tsaousoglou et al.

participants, the objective being Social Welfare maximization. More-
over, they are the predominant mechanism towards managing network
constraints, by conceptualizing a price signal (multiplier) that implic-
itly communicates the coupling constraint’s status to the participants
involved. Naturally, there is a price (dual variable) for each node
(corresponding power balance constraint). For this reason this mech-
anism is also called Locational Marginal Pricing. In the copper-plate
case, on the other hand, there is only one coupling constraint (the
overall power balance) and hence the market clears with a single
price, i.e., the market-clearing price. This simplification can enhance
the mechanism’s computational time and explainability, but can also
sabotage the mechanism’s efficiency as discussed in Section 2.2.4. Un-
certainty can be accounted for by considering a stochastic programming
formulation using a number of scenarios for the realization of uncertain
parameters [7]. However, in cases of non-convex cost functions c,(-),
Lagrangian techniques cannot sustain their guarantees towards conver-
gence and efficiency, although some works have shown that they can
perform well in practice [6,67,68].

Summarizing the discussion on Lagrangian methods, and putting
it into perspective with respect to the desirable mechanism properties
described in Section 2.4.4, Lagrangian mechanisms are

Efficient under the assumptions of convexity and non-strategic
behavior

Not incentive compatible

Tractable and parallelizable under the convexity assumption
Individually rational, under the assumption that if a participant
opt for x =0, Vp,t, it bears zero costs (i.e. no shut-down costs).

n,p.t
Revenue adequate. In nodal markets, the price of an unbalanced
node (which has more demand than supply) can increase due to
line congestion. This can lead to higher payments for that node,
which is not counterbalanced by lower payments for any other
node.

Privacy-aware, in the sense that the participants are not required
to share their whole set of local models with a central entity.
Instead, they only respond to price signals, which can be com-
bined with a privacy-preserving protocol that can ensure that the
necessary information to construct a participant’s cost function is
not stored in one place.

Last but not least, it should be noted that Lagrangian methods are
not necessarily suitable for alternative objectives, such as fairness or
profit maximization as well as equilibrium discovery for non-convex or
strategic settings.

3.2. Game-theoretic methods

Game Theory is the formal framework that describes the dynamics
of participants’ interaction in Games (i.e. settings with given payoff
functions), while Mechanism Design deals with the design of the pay-
off functions themselves, and for this reason, it is sometimes called
“Reverse Game Theory”. The main goal of Mechanism Design is to iden-
tify positive or negative results towards designing Efficient, Incentive
Compatible, and Tractable mechanisms for different settings. The most
well-known positive result for Social Welfare maximization settings
is the so called Vickrey—Clarke-Groves (VCG) mechanism which can
achieve all three properties, provided that the welfare maximization
problem is tractable. Note that “tractable” is more general than “con-
vex”, which is particularly important for LEMs since Mixed Integer
Linear Problems often constitute the relevant problem formulation.
However, the VCG mechanism comes with two major cons: first, it is
notoriously not budget-balanced, and in fact, it can sometimes result
in counter-intuitive payments, and second, it is a direct revelation
mechanism and therefore suffers from scalability issues and privacy
concerns. The scalability issue is due to the fact that the mechanism, by
design, needs to solve the dispatch problem N times (one for deciding
the dispatch and another N — 1 to decide the payments). However, the
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good news is that the payments calculation can also be made ex-post,
i.e. offline.

The AGV (Arrow, d’Aspremont and Gerard-Varet) mechanism has
been proposed (e.g. in [69]) as an alternative that can restore bud-
get balance, although by sacrificing the strongest form of incentive
compatibility. Moreover, the AGV mechanism only aggravates the (al-
ready major) explainability problem of the VCG. Towards addressing
the scalability and explainability issues, the literature on Mechanism
Design has offered many indirect mechanisms usually in the form of
iterative auctions. For LEMs, a clock-proxy iterative auction was pro-
posed in [70], while a scoring rule that partly draws also on Lagrangian
methods was proposed in [71], although part of the strong guarantees
offered by VCG were weakened. In [63], a LEM was modeled, and
an iterative auction addressed the scalability and privacy-preservation
issues while the VCG efficiency and incentive compatibility properties
were maintained. For NP-hard allocation problems, however, the VCG
mechanism fails to maintain incentive compatibility, i.e., the VCG
mechanism cannot, in general, be configured with an approximately
optimal allocation rule and maintain incentive compatibility. Thus, for
non-convex dispatch problems, [41] proposes a combinatorial auction
that maintains strategy resistance (a weaker form of incentive com-
patibility). Finally, under the assumption of a large population of
participants, evolutionary game-theoretic models can provide conver-
gent algorithms, e.g. [72,73]. A subtle observation is that while indirect
mechanisms generally exhibit shorter computational times (by paral-
lelizing computations), they necessitate, however, an online calculation
of the payments’ since those are used as coordination signals.

With respect to alternative objectives, profit maximizing mecha-
nisms are also widely explored in the theory [74], although less widely
applied to LEMs. Finally, studies for Fairness-maximizing objectives in
electricity markets include core-selecting mechanisms [75], Shapley-
Value approximations [56], while an incentive compatible mechanism
for max-min fairness is proposed in [66].

In general, with respect to the desirable properties we have set,
different Mechanism Design methods fulfill different properties, but
generally, most methods account for Efficiency and Incentive Compati-
bility. Depending on the modeling assumptions (e.g. uncertainty, types
of cost functions etc.) different notions of incentive compatibility are
relevant. Although we do not go into theoretical details, most Mech-
anism Design techniques account for some version of this property.
Tractability is usually dependent on the particular mechanism and the
problem formulation, although some notions (e.g. the Shapley Value)
are inherently non-tractable. Overall, the indirect mechanisms men-
tioned usually improve scalability, privacy-preservation and explain-
ability, at the expense of weaker guarantees on incentive compatibility
and efficiency.

3.3. Heuristic methods

Although heuristics generally do not provide guarantees on effi-
ciency and incentive compatibility, they can, however, be effective in
cases where formal methods fail to perform due to intractability or
scalability problems. Examples include setting with non-convex models
or highly uncertain settings.

Sometimes, heuristics are used as a complementary part together
with formal or data-driven methods. For example, in [76] two heuristic
methods are proposed towards facilitating faster convergence of a P2P
Market Mechanism, while in [77,78], the authors propose data-driven
methods for Aggregators towards deciding the aggregated profile of a
set of DERs where the dispatch of each particular DER is decided via
a heuristic (e.g. a priority charging scheme for EVs). In this case, the
heuristic provides a fast solution to the LEM dispatch problem, which
is necessary to support the computational burden of the data-driven
method for deciding the aggregated profile. Such simple heuristics
can enhance the mechanism’s explainability while the mechanism de-
signer is offered the flexibility to design a communication model and a
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payment rule that are privacy-preserving and budget balanced respec-
tively. Finally, heuristics can be suitable for dealing with alternative
objectives, especially when those objectives are intractable to optimize.
For example, in [56], after the formal framework of the (inherently
intractable) Shapley value was analyzed, the authors introduced a
fairness index and proposed a heuristic that achieved a good per-
formance without compromising user privacy (by not gathering the
user information that the formal solution requires). However, this
design flexibility allows for customized heuristics based on different
LEM models. These customized heuristics are naturally case-specific
and not necessarily replicable. Therefore, standardization of relevant
LEM models and relevant heuristic solutions is necessary for further
development. An effort in this direction (if only for P2P LEMs) is
presented in [76].

Beyond customized heuristics, the second subcategory of this family
is the meta-heuristics. For the profit maximization objective, [57] uses
a neural network towards learning to predict the DERS’ response to
different LEM price vectors, which is then incorporated into a meta-
heuristic algorithm that searches the profit-maximizing prices. In a
different case, the simulated annealing meta-heuristic was used in [79]
to search the exponentially large space of LEM prices that maximize
the aggregator’s profit. The authors in [80], used simulated annealing
after performing a formal game-theoretic analysis for a certain class
of payment rules to tune a certain parameter of the payment rule
specifically. A genetic algorithm was used in [81] to solve a non-convex
social welfare maximization problem for DER facilities (smart homes).

Finally, it should be noted that heuristics generally lack guarantees
on the feasibility of the dispatch. In critical systems, this deems them
suitable only for providing a good warm-start point for formal methods.

3.4. Data-driven methods

Data-driven methods encompass a large variety of methods, in-
cluding statistical/machine learning, reinforcement learning and other
techniques. For the most part, such methods have been adopted to-
wards optimizing the participation of DER clusters (e.g. buildings,
electric vehicle charging stations etc.) in a given market, e.g. [29,42].
However, in this survey, we are interested in cases where such methods
are used as a part of the Market Mechanism itself. A general motivation
for data-driven Market Mechanisms is that many DERs that need to be
integrated adhere to certain transition dynamics, i.e. their flexibility ca-
pabilities in a certain timeslot depend on the dispatch they received in
previous timeslots. This creates problems for the traditional approaches
that typically consider a temporally-decoupled optimization problem or
a loosely coupled one (e.g. through ramp constraints).

Data-driven approaches usually use a learning algorithm to learn
to optimize dispatch decisions directly. In [82], a deep reinforcement
learning algorithm is proposed for making online dispatch decisions
for EV charging stations. In [83], price-based control is realized via
reinforcement learning, while a Neural Network is used as a function
that maps prices to the DERs’ response.

An important drawback of the above methods is that they can-
not handle constraints explicitly, i.e., constraints are satisfied only
in expectation. In [84], a penalty term is designed to teach a Neu-
ral Network to respect the local constraints of the DERs. As ana-
lyzed in [85], the design of such a penalty term comes with various
trade-offs (e.g., efficiency is sacrificed in order to guarantee constraint
satisfaction).

A hybrid case between Lagrangian and data-driven approaches
includes [32,43], and [86]. In [32,86], the authors apply a standard
Lagrangian decomposition to the OPF problem but the DERs in these
studies calculate their response not by solving the typical decomposed
optimization problem, but by solving a local dynamic program that
also accounts for their internal uncertainties. In this approach, the
DSO treats the DER responses as if they were deterministic, and all
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uncertainty management is virtually delegated to the DERs. In con-
trast, [43] proposes a neural network trained to return the optimal
dual variables of the aggregator’s economic dispatch problem using
simulations. During operation, the system’s state is fed into the neural
network, which predicts the optimal dual variables. By treating these
dual variables as prices, each DER can self-schedule, which guarantees
satisfying its constraints. An important advantage of such methods is
that the computationally intensive task of training can be executed of-
fline, while at online operation, the computational burden for providing
a decision is very small.

We especially mention the model-free paradigm supported by cer-
tain methods, namely (multi-agent, deep) reinforcement learning. The
model-free approach enhances the mechanism’s replicability, since a
well-designed model-free mechanism can, in principle, be applied to
different cases in a plug-and-play fashion. Moreover, it can accommo-
date virtually any, if arbitrary, objective while a trained model can
provide fast, online decisions under uncertainty and/or partial infor-
mation. The downside is the absence of guarantees on performance,
feasibility, budget-balance, and individual rationality, while remedying
the inherent explainability problem of such methods is an open and
challenging issue.

Overall, a summary of our observations concerning the four families
of Market Mechanisms discussed, is provided in Table 1.

4. Market Mechanisms for Local Electricity Markets: State of the
art

In this section we summarize the components of a market model
and present representative literature studies for each particular market
model choice. The cited papers were selected based on the following
methodology: An initial pool of papers was put together by drawing
on the authors’ personal repositories of LEM literature, by drawing on
the studies cited in related literature review papers, and by further
searching in Google Scholar, for papers published after 2010, using
specific keywords, namely “Local Electricity Markets”, “Power Flexi-
bility”, “Demand Response”, “Demand Side Management”, ‘“Demand
Aggregator”, “Smart Grid”, “Power Distribution Network”, “Trans-
active Energy”, ‘“Peer-to-Peer Energy Market”, “Distributed Energy
Resources”. The papers were then filtered based on the authors’ judg-
ment regarding relevance, quality of publishing venue, and novelty.
The ultimate selection criterion was whether a study actually proposes
a complete Market Mechanism, in the sense defined in Section 2.4.
That is, a study should include all three components that make up a
mechanism (communication model, allocation rule, payment rule). For
instance, many studies are oriented towards optimizing the behavior
of a particular entity that participates in a given Market Mechanism.
Examples include optimizing the bids of a storage facility, or a utility
company in a given market, as well as optimizing the profile of a
prosumer or home energy management system under a given pricing
rule [52,148]. Moreover, a vibrant research line is devoted to designing
market architectures that coordinate the interaction between differ-
ent markets. The prevailing thread of such research is the so called
“TSO-DSO” coordination topic [149-151]. Such studies do not propose
market mechanisms per se (e.g. they do not design payment rules) and
thus they are not included in this review. In Table 2 each study is
characterized with respect to the modeling assumptions, objective and
solution approach that it adopts, based on the definitions of Sections 3,
2.2 and 2.3 respectively.

To visualize the categorization, Fig. 3 presents a four area Venn
diagram, where each area represents a particular modeling assumption,
i.e., whether accounting for uncertainty, strategic participant behavior,
network constraints, and non-convexity of participant models. Each
study is placed in the relevant intersection. Moreover, each study is en-
closed in a box of different color, depending on the Market Mechanism
family that it belongs to. Fig. 3 facilitates the observation of certain
patterns:
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Table 1

Summary of advantages and limitations for LEM Market Mechanisms.

Mechanism Family Advantages Limitations

Lagrangian Optimal for social welfare maximization, Not incentive compatible.

under price-taking participants

and convex cost functions.

Revenue adequate, individually rational.
Conducive to a distributed, privacy-
preserving implementation.

Not budget-balanced.

Convergence and optimality are not
guaranteed for non-convex settings.
Not suitable for alternative objectives.

Game-theoretic Optimal for social welfare maximization,
even under strategic behavior.
Bounded efficiency loss
for some alternative objectives.

Not budget-balanced in general.

Payments can be non-intuitive

and/or non-explainable.

Not suitable for participants with bounded rationality.

Heuristics Scalable and practical.
Can achieve privacy, budget-balance,
and convergence by design.
Suitable for alternative objectives.

Sub-optimal.

No guarantees on dispatch feasibility.
Non-standardized, and in need of
model-specific design and evaluation.

Data-driven Potentially model-free.
Suitable for alternative objectives.
Can be effective for making fast
online decisions under uncertainty.
Most computation is held offline.

Sub-optimal.

Non-explainable payments and dispatch.
No guarantees on budget-balance,
individual rationality, feasibility.
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Fig. 3. Venn diagram, positioning the reviewed literature with respect to the modeling assumptions.

Strategic participant behavior is handled almost exclusively by
game-theoretic methods, although with a few exceptions.

While there are numerous Data-Driven methods in the smart grid
literature, they mostly focus on optimizing market participation
from the perspective of one participant. Not many studies use
Data-Driven techniques towards designing the Market Mechanism
per se, and those that do, consider convex user models.

Studies that account for network constraint satisfaction via Mar-
ket Mechanisms, do not rely on Heuristics or Data-Driven meth-
ods.

Moving towards the center of the Venn diagram, i.e. incorporating
more requirements, there is a dramatic decrease in the number of
studies. Moreover, we have identified a gap in the intersection of
all four areas. This is not surprising since there are hardly any
positive theoretical results for tractable mechanisms that simul-
taneously address uncertainty, strategic behavior, non-convexity
and satisfaction of complicating constraints.
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Finally, we present a classification of studies with respect to their
adopted objective (Section 2.3) and adopted methodology (Section 3).
Table 3 presents this classification, suggesting certain areas that are less
researched than others. In particular, not many studies have researched
the application of game-theoretic techniques in the context of designing
a LEM that maximizes the profit of the LEM operator (e.g. Aggregator),
despite the rich theory on revenue-maximizing auction designs [74].
Also, the Table reveals that there is more room for researching the pos-
sible applications of Data-Driven market design techniques, particularly
in the context of fairness-maximizing objectives.

5. Conclusions and remarks

Motivated by the rich literature in the general context of LEMs, in
this paper we presented a systematic framework towards identifying
the essential components of a market model for electricity. Based on
our analysis, a LEM-related research proposition needs to define its
Market Scope, Modeling Assumptions, Market Objective, and Market
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Table 2

Classification of literature studies with respect to the modeling assumptions adopted and the technique used.
Studies Participant Participant Uncertainty System Objective Mechanism

Models Behavior Constraints

[18,62,87,88] convex non-strategic deterministic none social welfare lagrangian
[73] convex non-strategic deterministic none social welfare game-theoretic
[79] convex non-strategic deterministic none profit heuristic
[89] convex non-strategic deterministic none fairness heuristic
[90] convex non-strategic n/a none fairness heuristic
[33,91-93] convex non-strategic deterministic resource social welfare lagrangian
[77,78] convex non-strategic deterministic resource social welfare heuristic
[94] convex non-strategic deterministic resource social welfare auction
[20,95] convex non-strategic deterministic resource profit lagrangian
[96] convex non-strategic deterministic resource profit auction
[6,97,98]
[23,99] convex non-strategic deterministic DC-OPF social welfare lagrangian
[22,47] convex non-strategic deterministic PTDF social welfare lagrangian
[100-102],
[24,60,103] convex non-strategic deterministic AC-OPF social welfare lagrangian
[104] convex non-strategic deterministic AC-OPF social welfare auction
[105] convex non-strategic deterministic AC-OPF fairness lagrangian
[34] convex non-strategic deterministic AC-OPF profit lagrangian
[7] convex non-strategic stochastic none social welfare lagrangian
[106] convex non-strategic stochastic none social welfare auction
[43,44,107] convex non-strategic stochastic none social welfare data-driven
[108] convex non-strategic stochastic none social welfare heuristic
[25] convex non-strategic stochastic none fairness lagrangian
[57,109,110] convex non-strategic stochastic none profit data-driven
[31] convex non-strategic stochastic resource social welfare lagrangian
[32,86,111] convex non-strategic stochastic AC-OPF social welfare lagrangian
[112] convex non-strategic online none social welfare lagrangian
[35] convex non-strategic robust none social welfare data-driven
[113] convex non-strategic robust none social welfare lagrangian
[36] convex non-strategic robust AC-OPF social welfare lagrangian
[65,114,115], convex strategic deterministic none social welfare game-theoretic
[55,56,116] convex strategic deterministic none fairness game-theoretic
[117] convex strategic deterministic none fairness data-driven
[118] convex strategic deterministic none profit heuristic
[69,119-121],
[80,122-124] convex strategic deterministic resource social welfare game-theoretic
[125] convex strategic deterministic resource fairness heuristic
[126] convex strategic deterministic DC-OPF social welfare game-theoretic
[3,75] convex strategic deterministic AC-OPF social welfare game-theoretic
[66] convex strategic deterministic AC-OPF fairness game-theoretic
[127] convex strategic stochastic DC-OPF social welfare game-theoretic
[128,129] convex strategic stochastic none social welfare game-theoretic
[130] convex strategic stochastic resource social welfare game-theoretic
[131] non-convex non-strategic deterministic none social welfare lagrangian
[76,81,132,133] non-convex non-strategic deterministic none social welfare heuristic
[58] non-convex non-strategic deterministic none social welfare auction
[134] non-convex non-strategic deterministic none profit lagrangian
[135] non-convex non-strategic deterministic none profit heuristic
[68,72,136] non-convex non-strategic deterministic resource social welfare lagrangian
[137] non-convex non-strategic deterministic resource social welfare heuristic
[138,139] non-convex non-strategic deterministic resource social welfare auction
[140,141] non-convex non-strategic deterministic resource profit heuristic
[67] non-convex non-strategic deterministic AC-OPF social welfare lagrangian
[142] non-convex non-strategic stochastic none social welfare lagrangian
[143] non-convex non-strategic stochastic resource social welfare heuristic
[63,70,71] non-convex strategic deterministic none social welfare game-theoretic
[41,144,145] non-convex strategic deterministic resource social welfare game-theoretic
[146] non-convex strategic stochastic none profit game-theoretic
[147] non-convex strategic online resource fairness game-theoretic

Mechanism, in order to identify its contributions with respect to the
existing LEM literature. We discussed these attributes thoroughly and
presented explanatory examples of various approaches found in the
literature. Moreover, a market mechanism proposition needs to define
itself with respect to at least three components, i.e. the proposed
Communication Model, Allocation rule, and Payment rule, while eval-
uating the mechanism with respect to the main market mechanism
properties (i.e. market efficiency, incentive compatibility, tractability of
the market mechanism, individual rationality, budget balance, privacy

preservation, and explainability).
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Four main families of mechanisms (Lagrangian, Game Theoretic,
Data-driven, Heuristic) were identified and presented within the pro-
posed framework. We discussed algorithmic aspects and implications of
each family with respect to what modeling assumptions each technique
necessitates. Finally, we classified the relevant literature based on the
market model that it adopts and the proposed Market Mechanism and
visualized the results, deriving insights towards what areas are less
researched. From a research perspective, the way forward is to design
market mechanisms that simultaneously account for non-convex par-
ticipant models, strategic behavior, uncertainty, and physical network
constraints for each of the identified market objectives (Social Welfare
maximization, profit maximization, fairness). Towards evaluating such
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Table 3
Classification of literature studies with respect to the objective adopted and the
technique used.

Lagrangian Game-Theoretic Heuristic Data-Driven
Social [18,33,62,87,88], [65,114,115], [77,78,108], [43,44],
Welfare [23,93,100-102], [123,124,126], [81,132,133], [35,107]

[7,24,31,99,111], [127-129], [76,137,143]

[36,68,112,113,131], [3,80,130]

[47,67,72,91,142] [22,75,122]

[32,86,92,103,136] [73]
Profit [20,95] [146] [79,118,135], [57,109],
Maximization [34,134] [140,141] [110]
Fairness [25,105] [55,56,66,116] [89,90,125] [117]

propositions, there is an emerging need for standardized and realistic
testbeds for Market Mechanisms, since various mechanisms in the
literature have been custom-designed for specific modeling choices and
are therefore incomparable to each other. The final challenge is to apply
and test several elaborate Market Mechanisms into real case studies.
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