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• Three PTFs were developed to calculate
bulk density of arable top- and subsoil.

• WoSIS, WorldClim, and topographic data
of the Mediterranean Basin were used.

• Model transferability of the three new
PTFs was validatedwith external dataset.

• Topsoil ANN-PTF had R2 of 0.89 in train-
ing and 0.45 in model transferability.

• ANN-PTF outperformed the commonly
employed PTF by Manrique and Jones.
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For the estimation of the soil organic carbon stocks, bulk density (BD) is a fundamental parameter but measured
data are usually not available especially when dealingwith legacy soil data. It is possible to estimate BD by apply-
ing pedotransfer function (PTF). We applied different estimation methods with the aim to define a suitable PTF
for BD of arable land for theMediterranean Basin, which has peculiar climate features that may influence the soil
carbon sequestration. To improve the existing BD estimationmethods, we used a set of public climatic and topo-
graphic data along with the soil texture and organic carbon data. The present work consisted of the following
steps: i) development of three PTFs models separately for top (0–0.4 m) and subsoil (0.4–1.2 m), ii) a 10-fold
cross-validation, iii) model transferability using an external dataset derived from published data.
The development of the new PTFswas based on the training dataset consisting ofWorld Soil Information Service
(WoSIS) soil profile data, climatic data fromWorldClim at 1 km spatial resolution and Shuttle Radar Topography
Mission (SRTM) digital elevation model at 30 m spatial resolution.
The three PTFs models were developed using: Multiple Linear Regression stepwise (MLR-S), Multiple Linear Re-
gression backward stepwise (MLR-BS), and Artificial Neural Network (ANN).
The predictions of the newly developed PTFs were compared with the BD calculated using the PTF proposed by
Manrique and Jones (MJ) and the modelled BD derived from the global SoilGrids dataset.
For the topsoil training dataset (N=129),MLR-S, MLR-BS and ANNhad a R2 0.35, 0.58 and 0.86, respectively. For
the model transferability, the three PTFs applied to the external topsoil dataset (N = 59), achieved R2 values of
0.06, 0.03 and 0.41. For the subsoil training dataset (N = 180), MLR-S, MLR-BS and ANN the R2 values were
0.36, 0.46 and 0.83, respectively. When applied to the external subsoil dataset (N = 29), the R2 values were
0.05, 0.06 and 0.41. The cross-validation for both top and subsoil dataset, resulted in an intermediate perfor-
mance compared to calibration and validation with the external dataset. The new ANN PTF outperformed
MLR-S, MLR-BS, MJ and SoilGrids approaches for estimating BD. Further improvements may be achieved by ad-
ditionally considering the time of sampling, agricultural soil management and cultivation practices in predictive
models.

© 2021 Published by Elsevier B.V.
1. Introduction

Soil bulk density (BD) is directly linked to soil functionality including
mechanical support of crop plants, circulation of soil solution, and soil
aeration (Håkansson and Lipiec, 2000). Relatively high values of BD in-
dicate soil compaction whichmay lead to reduced water infiltration es-
pecially in agricultural land, where it can hamper the growth of crop
root systems (Colombi et al., 2018). Soil BD is calculated as the dry
weight of soil divided by its volume. Volumes include soil particle vol-
ume andpore space between soil particles. Soil BD is typically expressed
in g cm−3 orMgm−3 (SI). Alongwith soil organic carbon (SOC) concen-
trations, soil BD is necessary to calculate SOC stocks (Minasny et al.,
2013) and to assess carbon sequestration (Tao et al., 2019). Many soil
physical and chemical properties are expressed on a volumetric basis
and in particular the estimation of soil biological properties depend on
BD estimates (Tejada et al., 2009). In arable lands, tillage and otherman-
agement practices cause high variation of BD during the year. Scientists
have tried to infer BD from soil properties that are routinely measured
such as textural information and organic carbon content (Acutis and
Donatelli, 2003; Alvarez-Acosta et al., 2012; Pachepsky et al., 1996;
Van Looy et al., 2017). The functions enabling the estimation of a
given soil property (e.g. BD) from other variables, routinely ob-
tained through laboratory measurement, are called pedotransfer
functions (PTF) (Bouma, 1989; Patil and Singh, 2016). PTFs have
been used at global scale to estimate the soil water retention, soil
particle size, soil BD and SOC stock (Batjes and Dijkshoorn, 1999;
Rawls, 1983; Rawls and Pachepsky, 2002; Reynolds et al., 2000;
Saxton et al., 1986). At this scale, soil BD models had limited pre-
dictive ability (Rawls, 1983; Tietje and Tapkenhinrichs, 1993). Un-
fortunately, PTFs are not able to fully replace direct measurements,
as highlighted in a recent publication which compared >50 PTFs
using high resolution geodata in at district scale (Nasta et al.,
2020; Xiangsheng et al., 2016). PTF are also frequently chosen at
district scales after a sensitivity analysis (Basile et al., 2019).

Accurate models are of high interest for land management and
policy-making especially where sparse data are available.

Today, BD estimates are used to quantify and model the SOC stocks
in top- and subsoil at regional and global scales (Valkama et al., 2020).
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For example, Sun et al. (2020) recently used PTF in a meta-analysis to
assess the effect of conservation agriculture on carbon stocks but did
not provide an assessment of the PTF function performance.

One of the first attempts to estimate BD was made by Manrique
and Jones (1991) who proposed a PTF based on SOC alone (BD =
1.660–0.318∙SOC0.5) for all soil types. Since then, other PTFs for BD
estimation have been developed based on the fine earth fractions
and SOC, which is important to BD due to its effect on the ratio be-
tween soil macro- and micropores (Martín et al., 2017; Throop
et al., 2012). Furthermore, many other functions have been proposed
to describe regional (Akpa et al., 2016; Chagas et al., 2016; Chen
et al., 2018; Makovníková et al., 2017; Montzka et al., 2017;
Ramcharan et al., 2017; Román Dobarco et al., 2019; Wösten et al.,
1999, 2013) and local conditions (Benites et al., 2007; De Vos et al.,
2005; Picciafuoco et al., 2019; Sevastas et al., 2018) and to predict
BD in different soil horizons (Hollis et al., 2012; Reidy et al., 2016;
Sequeira et al., 2014).

In the absence of measured soil data, the availability of new topo-
graphic data such as digital elevationmodels andmorphometric indices
has also improved soil assessment (Lombardo et al. 2018, Schillaci et al.,
2017a, 2017b, 2019; Veronesi and Schillaci, 2019) and in particular to
develop PTFs (Leij et al., 2004; Romano and Chirico, 2004). Other
geodata (e.g., climate, satellite-derived, land cover) correlated with BD
have also been used to improve estimates (Aitkenhead and Coull,
2020). Various researchers have recently developed new methods to
estimate BD.

Bondi et al. (2018) estimated BD for peat soils using soil visual as-
sessment, and decision trees achieving similar performances, with
around 0.6 explained variance. Premrov et al. (2018) achieved similar
performances (R2 from 0.4 to 0.6) using optimal power-transformation
of measured physical and chemical soil parameters.

Chen et al. (2018) formalized an analytical protocol to test the PTF
prediction at regional scales in France by building a Boosted Regression
Tree (BRT) model to obtain reliable predictions (R2 0.7), and also ap-
plied the advanced deep learning modelling framework for the evalua-
tion of in situ spectral measurement of SOC with in situ vis-NIR
spectroscopy in southeastern Tibet (Chen et al., 2020) achieving (R2 =
0.92). Rodríguez-Lado et al. (2015) used a dataset consisting of 115
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topsoil observations in a catchment of approximately 100 km2 to map
soil BD and compared threemethods: Stepwise Multiple Linear Regres-
sion (MLR-S), Random Forest (RF) and Artificial Neural Networks
(ANN). In this procedure, RF and ANN appeared the most suitable ap-
proaches to predict the measured data, producing R2 of 0.90 and 0.86,
respectively. These results suggest that soil samples remain essential
to obtain good estimates, and that PTFs derived from data collected in
given locations can fail to give accurate estimates when applied else-
where (Akpa et al., 2016). PTFs modelling is a relatively new subject
and many important steps have been carried out recently (Chen et al.,
2018; Sevastas et al., 2018). To extract all the contributions on soil
BD, simple query was be used to gather publications from SCOPUS
and Web of Knowledge (Schillaci et al., 2018). Out of this search
the most used approach for the BD estimation with PTFs is multiple
linear regression (60%) followed by ANN (20%), therefore these
two approaches are investigated here.

At present, the available PTF models offer wide predictive
ranges and none are specifically developed for the Mediterranean
area. The aim of this study was to develop new regionally-specific
BD prediction models using data gathered from the literature on
soil texture, SOC, topography and climate in Mediterranean agro-
ecosystems. As well as providing a modelling framework that can
be applied in each environmental setting. In the Mediterranean
basin area, soil organic matter mineralization is boosted by high-
temperature conditions (Álvaro-Fuentes and Paustian, 2011), in
which rainfall has a peculiar pattern (availability during a short
season vs long dry period). Moreover, the agricultural systems
are conventionally plough-based (Mazzoncini et al., 2011) causing
soil compaction and reduced SOC stocks.

2. Material and methods

The studywas conceptualized during thefirst annual summer school
module “Statistical Analysis of Spatial Data in Agro-Environmental
Research”, organized in cooperation with Lake Como Advanced School
(https://sdae.lakecomoschool.org/), and held from August 26–30,
2019. As a practical teaching activity, soil legacy data and topographic
datasets were compiled to develop a PTF. The school participants were
mainly PhD students and early career researchers. The present work
was carried out after the school as a collaboration between students
and teachers.

2.1. Operational procedures

Study work streams included PTF development using training
datasets from public databases, and PTF validation using an inde-
pendent validation dataset compiled from systematic review of
the literature (Table 1 and Fig. 1). In the training step, we defined
three PTFs – two based on statistical approaches and one based
on ANN. In the validation step, we applied the three newly-
defined PTFs to an external dataset. We then compared the perfor-
mances of the three PTFs and benchmarked them against those of
the MJ PTF and SoilGrids estimates (see below). The training and
validation datasets were each split into topsoil and subsoil to
infer separate PTFs.
Table 1
Study overview and workflow to develop pedotransfer functions (PTF) to infer soil bulk densi

New PTFs to estimate BD

Study stage MLR-S: stepwise
regression

MLR-BS: backward +
stepwise regression

ANN
neur

Training Developed using WoSIS databasea + topographic + clim
Validation and Benchmarking Applied on external databaseb + topographic + climati

a WoSIS database: measured data of bulk density (BD, Mg m−3), soil organic carbon (%), san
b Newly compiled database of soil bulk density, organic carbon, sand, silt and clay measurem
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2.2. Data used in the training and validation stages

2.2.1. Soil datasets

2.2.1.1. Training dataset used for PTFs model development. TheWorld Soil
Information Service WoSIS (https://www.isric.org/explore/wosis) was
used to retrieve soil textural values, SOC content and bulk density.
WoSIS is a world scale database containing 196,000 geo-referenced,
standardized soil profile entries for soil data from multiple origins. Ap-
proximately 40 different organizations around the world provide free
access to the data via WoSIS and the Soil Profile (https://www.isric.
org/explore/wosis/wosis-contributing-institutions-and-experts). More
information on WoSIS inclusion criteria, quality assurance, and stan-
dardization procedures are available in Batjes et al. (2017). We note
that for Europe, one of the main providers ofWoSIS data is the Joint Re-
search Center of the European Community, which has made available
the entire collection of soil profiles includedwithin the Soil Profile Ana-
lytical Database (SPADE-2) (de Souza et al., 2016; Hiederer et al., 2006;
Panagos et al., 2013). Using ARCGIS, we selected all the profiles of the
WoSIS database belonging to theMediterraneanbasin (and defined sur-
rounding areas) with geographic coordinates in metric resolution as
well as attributes including sand, silt, clay, organic carbon and bulk den-
sity data in at least one soil horizon.

2.2.1.2. External dataset used to test model transferability. To assess the
model transferability, validation of the three developed PTFs was re-
quired. Accordingly, we conducted a systematic literature analysis to
collate information on soil textures, SOC, and BD from studies of field
crops cultivated on mineral soils in Mediterranean basin and close sur-
rounding areas. The search was carried out in SCOPUS and Web of Sci-
ence (WoS). The selection criterion was the same as that applied
during the extraction of the WoSIS data: required data were BD, SOC,
texture and geo-localization. It is needed to remark that systematic
queries did not result in an adequate number of suitable articles, so
that we used different approaches such as searching for soil dataset
within agronomic journals.

To compare the performances of the PTF models developed in this
study with well-known approaches, in the validation phase we applied
the MJ PTF (1991; BD = 1.660–0.318 ∙ SOC0.5) and we fitted the avail-
able SoilGrids BD values (Hengl et al., 2017) with the data of the exter-
nal validation database constructed as above. SoilGrids is a system for
digital soil mapping that uses machine learning methods to map the
spatial distribution of soil properties across the globe using WoSIS
data and environmental predictors.

For both training and validation datasets, the analysis focused on
samples that alternatively fall within the 0–0.4 m layer (i.e. topsoil) or
the 0.4–1.2 m layer (i.e. subsoil). Due to the presence of multiple hori-
zons inside the topsoil and subsoil, single observations which are part
of the training dataset were not averaged. The soil sampling depth
was considered as predictor. Furthermore, the inclusion of predictors
such as soil properties (soil particle size fractions and SOC stock) allows
to describe the soil sample at the given profile depth (e.g., SOC and clay
content tend to decrease along the soil profile).

The data points used in the training phase whichwere derived from
WoSIS were 129 and 180 for topsoil and subsoil, respectively.
ty (BD) in top- (0–0.4 m) and subsoil (0.4–1.2) of arable fields in the Mediterranean.

Reference PTF and BD data

: artificial
al network

Manrique and Jones (1991): PTF
function for estimating BD

SoilGrids: estimated BD values
derived from WoSIS data

atic data
c data Applied on external databaseb Available at 250 m grid

d.
ents of studies from the Mediterranean.

https://sdae.lakecomoschool.org/
https://www.isric.org/explore/wosis
https://www.isric.org/explore/wosis/wosis-contributing-institutions-and-experts
https://www.isric.org/explore/wosis/wosis-contributing-institutions-and-experts


Source
WoSIS open database of geo-referenced soil profiles 

sampling with soil properties:

Bulk density, Texture, SOC, Rock fragment content, sample 

depth

Source
Soil properties of studies carried out in 

the Mediterranean: 

Bulk density, Texture, SOC, Rock 

fragment content, sampling depth

Criteria for inclusion in the newly compiled reference dataset: 
-Köppen classification with a buffer of 250 km in the Mediterranean basin 

-Availability of:

• Bulk density  

• Soil organic carbon % (SOC) 

• Texture (Clay, Silt, Sand) 

-Land use: agricultural soil (CORINE database*)

-Rock fragments < 5%

-Depth < 1.2 meters

Predictors based on soil properties   
Mean depth, texture, SOC. Computation of power terms and interaction between variables:  

Clay
2
, Sand

2
, SOC

0.5
, SOC

2
, Clay x SOC, Clay x Sand, Clay

2
x SOC

2

Extraction
WoSIS shapefile with geo-referenced study locations with 

soil physical and chemical soil data 

Extraction
Manual compilation in Excel datasheet 

from original publications

Quality Checking
0.9 < Bulk Density <2

Training dataset Validation dataset

Additional data, compiled from WorldClim Bioclimatic data (Annual Mean T°C (BIO1), 

Mean Diurnal T°C Range (BIO2), Isothermality (BIO3), Temperature Seasonality (BIO4), 

Max T°C of the Warmest Month (BIO5), Min T°C of the Coldest Month (BIO6), Annual 

T°C Range (BIO7), Mean T°C of the Wettest Quarter (BIO8), Mean T°C of the Driest 

Quarter (BIO9), Mean T°C of the Warmest Quarter (BIO10), Mean T°C of the Coldest 

Quarter (BIO11), Annual Precipitation (BIO12), Precipitation of the Wettest Month 

(BIO13), Precipitation of the Driest Month (BIO14), Precipitation Seasonality (BIO15), 

Precipitation of the Wettest Quarter (BIO16), Precipitation of the Driest Quarter (BIO17), 

Precipitation of the Warmest Quarter (BIO18), Precipitation of the Coldest Quarter (BIO19)) 

Topographic data (Elevation, Slope, Northness, Profile curvature, Plan curvature) 

Extraction per location using GIS

Fig. 1. Features of the datasets used to train and validate (training andmodel transferability) three newpedotransfer functions (PTF) for arable soils in theMediterranean. For a description
of the WorldClim Bioclimatic data, please see (Fick and Hijmans, 2017).
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As SoilGrids data are provided for six soil layers at the fixed depths
(0–5, 5–15, 15–30, 30–60, 60–100, 100–200 cm), we computed a
weighted average of SoilGrids BD for the comparison with the BD
from the external dataset. For example, if BD is measured for the
10–25 layer then 5 cm belongs to the 5–15 cm SoilGrids layer and
10 cm to the 15–30 cm layer. Consequently, to obtain the sample
value, we computed a weighted mean between the SoilGrids BD values
given for the 5–15 and the 15–30 layers, using a weighting factor of 5
and 10 for the two layers, respectively. We excluded the BD values
lower than 0.9Mgm-3 because theywere not representative of mineral
soils in semiarid regions and, when present, they were likely due to till-
age operations occurred close to the sampling moment. We also
excluded BD values greater than 2 Mg m−3 because they are not repre-
sentative for agricultural land. Textural plots were prepared using the
ggtern software (Hamilton and Ferry, 2018).

2.2.2. Geodata
For the terrain analysis, the Shuttle radar topography mission SRTM

30mDEM (Farr et al., 2007) was used to obtain topographic datawith a
resampling at 90m. The digital elevationmodel was downloaded in ten
tiles from the open topography website (https://opentopography.org/).
The topographic indices were obtained for the whole study area using
the geo-processing terrain analysis tool in SAGA (Conrad et al., 2015).
Data pre-processing and maps were prepared using ArcGIS. The
WorldClim climatic data (Fick and Hijmans, 2017) was used to obtain
4

climatic data (e.g., mean annual rainfall, average annual temperature).
For EU countries, CORINE land cover (Bossard et al., 2000) was used to
select agricultural land use. To assign the target land cover (Agriculture)
CLC was check for all the available periods, 2000, 2006, 2012, 2018. For
non-EU countries – except for Turkey, which was included in CORINE
land cover data – we selected soil profiles belonging to agricultural
areas by observing satellite and aerial imagery available in ArcMap
and Google Earth-Pro.

2.3. Study area

The study focused on theMediterranean Basin,which covers the ter-
ritory between 30° and 45° latitudes and, according to the Köppen cli-
mate classification system, belongs to the three main climate groups:
B (dry), C (temperate), and D (continental) (Francaviglia et al., 2020)
(see Fig. 2). The influence of the sea plays a key role in shaping the en-
vironment including relief characteristics, which determine the charac-
teristic Mediterranean climate at basin scale (Lionello et al., 2006).
Mediterranean soils are the result of a complex genesis (Lagacherie
et al., 2018). Carbonatic and limestone parent materials are the most
widespread minerals in the Mediterranean (Verheye and De La Rosa,
2005; Zdruli et al., 2011). Long-term agricultural use has altered soil
structure and degraded carbon content. Soil characteristics indicate dif-
ferent ages of soil development and depths and there is evidence of clay
particle translocation within the soil profile (Zdruli et al., 2011).

https://opentopography.org/


Fig. 2. Study area. The location of the sampling sites (WoSIS data for training and external data for model transferability).
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According to the World Reference Base for Soil Resources (IUSS
Working Group WRB, 2014), approximately a dozen soil orders can be
found in the Mediterranenan basin: histosols, anthrosols, leptosols,
vertisols, fluvisols, gleysols, andosols, kastanozems and phaeozems,
umbrisols, gypsisols, durisols, calcisols, luvisols, arenosols, cambisols,
and regosols. A brief description of these soil orders can be found in
Zdruli et al. (2011). Fig. 2 shows the locations of the sites included in
the training (WoSIS data) and validation (extracted from the literature)
datasets.

2.4. Development of PTFs to estimate BD

In this study, we evaluated three methods to estimate BD, namely
Multiple Linear Regression (MLR) models each using two-variable selec-
tion criteria, and Artificial Neural Networks (ANN). These methods were
chosen in our analyses because they are suitable when data are sparse
and no spatial structure can be defined. A 10-fold cross-validation frame
was used to assess the prediction accuracy (Veronesi and Schillaci,
2019). The three models were defined using a wide set of predictors, i.e.
independent variables (soil properties, bioclimatic and topographic indi-
cators). These predictors were derived from the soil and additional data-
base (Fig. 1).

2.4.1. Multiple linear regression (MLR)
Thefirstmethod (MLR-S) usedwas a stepwisemultiple linear regres-

sion starting from no dependent variables (a constant-only model); the
first dependent variable that will be included in themodel is the variable
that produces the maximum increase in R2; if the increase in the expli-
cated variance is significant (partial F test) at a given P(F), called inclu-
sion threshold, the variable is retained in the model (forward step).
The same procedure is done to evaluate the possibility to include a sec-
ond independent variable and so on. At each inclusion step, there is an
exclusion step too, where, among the variables included in the model,
the variable that is excluded causes the lower reduction in explicated
variance. If the decrease of explained variability is not significant at a
given P(F), called exclusion threshold and higher than the inclusion
threshold, the variable is excluded from the model. The process stops
when no more dependent variables are included or excluded (Noryani
et al., 2019). In the MLR-S, a predictor is included in the model if its re-
gression coefficient is significant at P ≤ 0.05 and excluded if the partial
F test has a P > 0.1 (Draper and Smith, 1998).

The second approach was a stepwise variable selection, which
started by including all independent variables, then excluded non-
significant variables one by one using a backward stepwise approach
(MLR-BS). Variables were excluded when their contribution did not
5

affect the model explication capability (i.e., when the partial F test
have a P > 0.1) (Ghani and Ahmad, 2010).

For both methods (MLR-S and MLR-BS), the normality test of
Kolmogorov-Smirnov and the Breush-Pagan test for the homogeneity
of variances (Breusch et al., 1979) were applied to the residuals of the
regression models.

2.4.2. Artificial neural network
An ANN is part of a computing system, which is developed to

mimic the way the human brain processes information. ANN allows
finding non-linear behavior of the system that cannot be discovered
with traditional regression-based methods. To develop a PTF, the
ANN is generally made by three layers of neurons, i.e. an input
layer, a hidden layer and an output layer (Ebrahimi et al., 2019;
Minasny and McBratney, 2002; Schaap et al., 1998). This kind of
ANN architecture is known as Multi-Layer Perceptron (MLP). ANN
imposes minimal requirements for model structure or assumptions
because the shape of the relationship is determined during the learn-
ing process (Haykin, 2008). We used an MLP implementation in the
IBM-SPSS 26.0.0.1. One hidden layer was used with three neurons
according to the default settings, using the hyperbolic tangent acti-
vation function and the identity function for the output layer. This
is an identity function because this task is a regression problem.
The weighted connections feed forward from the input layer to the
output layer. The training algorithm works by back-propagating
the prediction error, through the parameters of the neural network.
In this study, the MLP had 18 input predictors and one output vari-
able, i.e. BD. The independent variables used as predictors in the
three statistical models for the BD estimation are shown in Fig. 1.
The optimal fit was reached in cross-validation by using 1 hidden
layer, combined with three neurons. The Hyperparameters tuning
was iteratively tested by applying an ANN with one hidden layer
with 2 to 10 neurons and, alternatively, an ANN with two hidden
layers with 2 to 5 neurons in the first hidden layer combined with
2 or 3 neurons in the second hidden layer. The use of one single hid-
den layer resulted to be more effective. This result agreedwith the au-
tomatic parameterization proposed by the software: (ftp://public.dhe.
ibm.com/software/analytics/spss/documentation/statistics/27.0/en/
client/Manuals/IBM_SPSS_Statistics_Algorithms.pdf). Regarding com-
putation time, the model training phase takes few second.

2.5. Analysis of models' performance

The following evaluation indices were calculated to test the model
performance in estimating BD:

ftp://public.dhe.ibm.com/software/analytics/spss/documentation/statistics/27.0/en/client/Manuals/IBM_SPSS_Statistics_Algorithms.pdf
ftp://public.dhe.ibm.com/software/analytics/spss/documentation/statistics/27.0/en/client/Manuals/IBM_SPSS_Statistics_Algorithms.pdf
ftp://public.dhe.ibm.com/software/analytics/spss/documentation/statistics/27.0/en/client/Manuals/IBM_SPSS_Statistics_Algorithms.pdf
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i) R2 coefficient of determination of the scatter plot of the predicted
against the observed values;

ii) Bias and %Bias (Addiscott andWhitmore, 1987), optimal value is
0, range is from+∞ to -∞; when the Bias% is <10% it may be con-
sidered very favorable (Moriasi et al., 2007);

iii) Root Mean Square Error (RMSE) and %RMSE (RMSE/(Observed
Mean) *100) (Fox, 1981), optimal value is 0, range is from 0 to
+∞; %RMSE value lower than 10% is considered to be favorable
(Bellocchi et al., 2002);

iv) The Pearson correlation coefficient, optimal value is 1, range is
from +1 to −1;

v) The slope of the regression of observed data to the estimated
ones, optimal value is 1, range is from +∞ to -∞ (Piñeiro et al.,
2008).

Note that Bias is always equal to 0 when the ordinary least square
(OLS) method is applied, which was the case in the two regression
training sets. Moreover, in OLS analysis the slope of observed values
against the estimated values is equal to 1. All indices were computed
using Irene-DLL (Fila et al., 2003).

3. Results

3.1. Descriptive statistics

3.1.1. Soil properties
The highest average BD value was observed in the subsoil training

dataset (1.51 ± 0.17 Mg m−3). The lowest average BD value was ob-
served in the topsoil validation dataset (1.38 ± 0.12 Mg m−3). The
SOCwas higher in the topsoil testing (1.28 ± 1%), and lower in the sub-
soil testing dataset (0.61 ± 0.35%) (Table 3). The most variable soil
property was the sand content with a coefficient of variation ranging
from 48 to 85%, while BDwas less variablewith a coefficient of variation
ranging from 9 to 14%. The references of the independent dataset for
validation are listed in Table 2. The independent external dataset for val-
idation comprised 59 observations for the topsoil and 29 for the subsoil,
Table 2
Independent dataset for validation with country, climate and reference.

Country Köppen climate classification Author

Algeria BSk Chennafi et al., 2006
Croatia Cfa Bogunovic et al., 2018
Egypt BWh Mahmoud et al., 2019

BWh Salem et al., 2015
BWh Zohry et al., 2017

France Csa Cardinael et al., 2017
Greece CSa Antonopoulos et al., 2013
Israel BSh Stavi et al., 2008
Italy Cfa Pezzuolo et al., 2017

Cfa Carozzi et al., 2013
Csa Francaviglia et al., 2015
Cfa Valboa et al., 2015
Cfa Perego et al., 2019
Cfa Ceotto et al., 2018
Cfa Diacono et al., 2018
Csa Vitale et al., 2017

Lebanon Csa Karam et al., 2007
Morocco Csa Ichir et al., 2003
Spain BSk Pareja-Sánchez et al., 2017

Cfa Bescansa et al., 2006
BSk Pardo et al., 2020
BSk Tolon-Becerra et al., 2011
Bsk-Cfa Álvaro-Fuentes et al., 2008
BWh Visconti et al., 2019
BSk Recio et al., 2018
Csa Marquez-Garcia et al., 2013

Syria Bsk Abou Zakhem et al., 2019
Tunisia Csa Jemai et al., 2013
Turkey Csb Çelik et al., 2019
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Table 3. Textural plots of the training and validation datasets are shown
in Fig. 3.

3.1.2. Environmental variables
Average precipitation reported in the training dataset was

highly variable in the study area with a minimum value of 426 and
a maximum of 1693 mm yr−1. The validation dataset showed a min-
imum annual rainfall of 189 and a maximum of 1155 mm yr−1.
Mean annual temperature, Elevation (m), Slope (%) are reported
in Table 4.

3.2. Model performance and transferability

Homogeneity of variance and normality tests for the MLR models
were conducted using the Breush-Pagan test and Kolmogorov-Smirnov
test (Table 5).

Topsoil model metrics are shown in Table 6. The RMSE of the top-
soil training dataset (Table 6a) ranged from 0.07 (ANN) to 0.17
(MLR-S), and similar performances were obtained with the MLR-
BS models. The Bias of the ANN was close to zero. The ANN model
showed the highest R2 (0.89), whereas the MLR-S model showed
the lowest R2 (0.24).

The RMSE in the topsoil validation dataset (Table 6b) range from
0.13 (SoilGrids) to 0.32 (MLR-BS). All the Bias values were ≤ 0.5. The
R2 ranged between 0.09 and 0.41, in SoilGrids and ANN, respectively.

Subsoil model metrics are shown in Table 7. The RMSE in the subsoil
training dataset (Table 7a) ranged from 0.07 (ANN) to 0.14 (MLR-S).
The Bias of the ANN was close to zero. The ANN model showed the
highest R2 of 0.84, whereas the MLR-S model showed the lowest R2 of
0.24. The RMSE in the subsoil external dataset (Table 7b) are very sim-
ilar and ranged from 0.14 to 0.39. The Bias % values ranging from −4.6
(MJ) to 2.8% (MLR-S). The R2 ranged between 0.07 (MLR-S) to 0.45
(ANN), respectively. The predicted and observed data of topsoil and
subsoil for training and testing are shown in Fig. 4.

Since the best performancewas achievedwith the ANN,weprovide a .
xlm spreadsheet file that can be used to execute the PTF developed with
the ANN using the soil data, topography andWorldClim. Furthermore, to
allow users to apply the PTF based on the ANN in different statistical
packages a Predictive Model Markup Language file (PMML), which is an
XML-based predictive model interchange format, is available in the
supplemental materials.

3.3. Variable importance

Table 8 shows the absolute standardized regression coefficient for
each MLR model, considering 100% the highest beta value, to obtain a
comparable result to the ANNmodel. In the topsoil, SOC contributed ap-
proximately 25% of BD in the MLR-BS PTF, but it was not present in the
MLR-S models. Similarly, Clay2 was not present in the MLR-S models,
slope and SOC2 were the most important predictors in the subsoil
using MLR-BS. Bioclimatic predictors such as BIO1 (Annual Mean Tem-
perature), BIO2 (Mean Diurnal) and BIO7 (Annual T°C Range) were
the most influential predictors in both topsoil and subsoil using MLR
Table 3
Soil properties of the trainingand testing data for topsoil (0–0.4m) and subsoil (0.4–1.2m):
Bulk Density (BD), Soil Organic Carbon (SOC), Fine earth fractions,

BD (Mg m−3) SOC (%) Sand (%) Silt (%) Clay (%)

Topsoil Training
(N = 129)

mean 1.44 1.26 24.4 36.5 39.1
Stdv 0.20 0.64 17.1 14.1 18.1

Topsoil Testing
(N = 59)

mean 1.41 1.28 31.39 40.68 28.21
Stdv 0.11 1.0 13.82 9.09 14.25

Subsoil Training
(N = 180)

mean 1.51 1.15 20.1 38.2 41.7
Stdv 0.17 0.67 17.0 15.7 17.4

Subsoil Testing
(N = 29)

mean 1.48 0.61 29.04 39.49 31.56
Stdv 0.16 0.35 19.38 12.58 18.4



Fig. 3. Textural plots, a) topsoil validation dataset, b) subsoil validation dataset, c) topsoil test dataset d) subsoil test dataset.
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models. In topsoils, predictors included BIO7 (Annual T°C Range) and
BIO14 (Precipitation of the Driest Month), heavily contributed to BD es-
timates within the MLR-BS and MLR-S of BD. The BIO7 index (Annual
T°C Range) was more important than BIO14 (Precipitation of the Driest
Month) in any model. Among the topographic predictors, the elevation
was important in subsoil MLR-S models (contributing 24%), whereas it
was not important in the topsoil or subsoil MLR-BS models. In subsoils,
BIO3 (Isothermality) contributed 8% and 6% of subsoil BD in MLR-S and
MLR-BS.

Table 9 shows the importance of the predictors included in the
ANN models, based on sensitivity analyses using the default option
in the MLP tool in IBM SPSS (independent variable importance
analysis). The models included all the predictors except interac-
tions between soil properties which were calculated within the
Table 4
Descriptive statistics of the selected environmental variables.

Annual Average
Precipitation
(mm yr−1)

Mean annual
temperature
(° C)

Elevation
(m)

Slope
(%)

Training
(N= 77 sites)

mean 774.4 10.5 321 4.3
stdv 294.4 1.5 332 5.4

Testing
(N= 36 sites)

mean 495.7 16 318 4
stdv 300 3.1 379 4.9
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ANN procedure but hidden to the user. Among the main physical
and chemical properties, Sand was the most important in topsoil
(5.6) and SOC in subsoil (5.5).

Within the ANN, the most important predictors were BIO7
(Annual T°C Range) and Profile Curvature for topsoil and subsoil, re-
spectively. Other important predictors were MeanDepth and the
BIO12 (Annual Rainfall) in topsoil. SOC, BIO1 (Annual Mean Tem-
perature) and BIO16 (Precipitation of the Wettest Quarter) were
important in topsoil and subsoil. Soil properties predicted the BD
of subsoil. Clay predicted BD in subsoil (3.2) and topsoil (2.8).
Among the topographic predictors, Profile and plan curvature
played a stronger role predicting the BD of the topsoil (5.3) com-
pared to the subsoil (5.6).
Table 5
Homogeneity of variance and normality tests for Multiple Linear Regression (MLR)
models.

MLR-S MLR-BS

Topsoil Subsoil Topsoil Subsoil

Homogenity of variance of residualsa 0.056 0.051 0.065 0.051
Normality of residualsb >0.2 >0.2 >0.2 >0.2

a Breush-Pagan test.
b Kolmogorow-Smirnov test.



Table 6
Performance of the newly developed pedotransfer function (PTF) as developed with the
topsoil training and cross validation (a) and testedwith the independent external datasets
for model transferability (b). Indices values reported in brackets refer to the cross-valida-
tion results.

a) MLR-S - MLR-S CV MLR-BS - MLR-BS CV ANN - ANN CV

RMSE 0.17 (0.16) 0.14 (0.15) 0.07 (0.16)
rRMSE % 11.91 (11.53) 9.68 (10.81) 4.56 (11.4)
Bias (0.0007) (0.0047) 0.00 (0.01)
Bias % (0.144) (0.37) 0.10 (1.11)
r 0.51 (0.49) 0.72 (0.57) 0.94 (0.67)
R2 0.26 (0.33) 0.51 (0.37) 0.89 (0.48)
Slope b (0.84) (0.71) 1.00 (0.78)
Estimated Max 1.61 (1.6) 1.80 (1.67) 1.90 7 (1.75)
Estimated Min 1.16 (1.22) 1.02 (1.14) 0.88 (1.13)
N 129

b) MLR-S MLR-BS ANN MJ SoilGrids

RMSE 0.14 0.32 0.16 0.17 0.13
rRMSE % 9.28 22.26 11.53 11.93 9.12
Bias 0.06 0.13 0.07 −0.11 0.008
Bias % 1.1 11.2 1.4 −6.657 0.04
r 0.34 0.05 0.64 0.24 0.09
R2 0.12 0.00 0.41 0.06 0.01
Slope b 0.29 −0.12 1.11 0.23 0.05
Estimated Max 1.7 2.75 1.94 1.44 1.53
Estimated Min 1.24 1.03 0.92 0.76 1.28
N 59
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4. Discussion

Collaborative work among researchers from different branches of
geosciences facilitated a systematic literature review and compilation
of an up-to-date, regionally-relevant geo-dataset; and this permitted
the development and validation of new pedotransfer functions (PTF)
to predict the BD of top- and subsoil in the Mediterranean.

4.1. Performance of pedotransfer functions

In this study, the performances of three new PTFs to estimate BD
(MLR-S, MLR-BS and ANN)were defined usedWoSIS soil data in combi-
nation with environmental data. The model transferability of the new
PTFs was carried out using external dataset from Mediterranean
Table 7
Performance of the newly developed pedotransfer function (PTF) as developed with the
subsoil training and cross validation (a) and testedwith the independent external datasets
for model transferability (b). Indices values reported in brackets refer to the cross-valida-
tion results.

a) MLR-S MLR-BS ANN

RMSE 0.14 (0.13) 0.12 (0.13) 0.07 (0.11)
rRMSE % 9.04 (9.24) 8.04 (8.67) 4.53 (7.79)
Bias (−0.0003) (−0.0004) 0.00 (0.003)
Bias % (0.0056) (0.0008) −0.16 (0.21)
r 0.49 (0.47) 0.70 (0.58) 0.92 (0.67)
R2 0.24 (0.21) 0.48 (0.38) 0.84 (0.48)
Slope b (0.90) (0.90) 0.98 (0.84)
Estimated Max 1.77 (1.68) 1.79 (1.71) 1.93 (1.76)
Estimated Min 1.12 (1.32) 1.35 (1.28) 1.10 (1.26)
N 180 180 180

b) MLR-S MLR-BS ANN MJ SoilGrids

RMSE 0.17 0.39 0.21 0.14 0.17
rRMSE % 11.78 26.26 13.93 9.54 11.39
Bias 0.09 −0.04 0.15 −0.07 0.07
Bias % 2.8 −2.347 1.7 −4.66 0.708
r 0.38 0.35 0.67 0.26 −0.42
R2 0.15 0.13 0.45 0.07 0.18
Slope b 0.37 1.06 0.94 0.001 −0.11
Estimated Max 1.99 1.95 1.88 1.53 1.64
Estimated Min 1.38 1.01 1.29 1.20 1.47
N 30
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locations derived from literature. Results were also benchmarked
against the widely used MJ-PTF, which uses only soil organic carbon to
predict BD, and the global SoilGrids data which are based on topo-
graphic and remote-sensed estimates of BD. Among the MLR ap-
proaches, MLR-BS performed slightly better than MLR-S. The ANN
model outperformed the MLR models.

Our PTF development strategy, which implies the use of topo-
graphic and climatic variables along with soil properties, agreed
with the approach of Wang et al. (2014) and Akpa et al. (2016).
However, we also validated our new PTFs by estimating the BD in
top- and subsoil using an external and independent dataset. This
resulted in less accurate predictions than those made by the training
datasets as already remarked by (Khaledian and Miller, 2020; Morin
and Davis, 2017; Thompson, 2006). Nevertheless, these authors sug-
gested that the use of external dataset rather than internal validation
methods provides direct evidence about whether study results will
replicate (Thompson, 2006).

Here we initially used MLR because it is a hands-on tool that pro-
vides direct quantitative and easily interpretable results. By contrast,
the ANN has provided an alternative machine learning approach used
in relatively recent analyses (Alvarez-Acosta et al., 2012; Ballabio
et al., 2016; Chen et al., 2018; Ghehi et al., 2012; Nussbaum et al.,
2018). In this study, the MJ PTF was used as a simple comparator be-
cause it is independent of other physical soil parameters except SOC
and is the most widely used PTF. In our MLR-BS topsoil, MLR-S subsoil,
and MLR-BS subsoil models, we considered inclusion of the key deter-
minant used (i.e., SOC square root), but it was not included in the final
model because it did not significantly improve the predictions. Our
MLR-S and MLR-BS performed better than the MJ because our dataset
included additional factors that directly determine BD over the long-
term (such as those related to the climate or topography), thus raising
the prediction capability. The SoilGrids database yielded a lower predic-
tion ability in comparison to the othermodels. SoilGrids is considered as
an interesting solution because it is a griddedmultiple depthdataset at a
250 m spatial resolution and it is available worldwide. However, the
present results suggest that SoilGrids BD estimations may not ade-
quately match the observed BD values (i.e., external dataset) which
were measured in specific sites located in the Mediterranean area.

4.2. Data groupings and reliability of PTFs

The fit of theMLR subsoilmodelswasmore satisfactory than for sub-
soil linearmodel MLR-Swith an R2 0.12. Subsoil models were alsomore
satisfactory for the ANN (R2= 0.45). This is in contrast to previous pub-
lications in which grouping input data by soil depths did not improve
the prediction of BD in tropical soils (De Vos et al., 2005), which might
have been attributable to different level of disturbance of the soil in
the study areas (Hollis et al., 2012), or differences in the additional fac-
tors analyzed.

Arable soils undergo significant changes over time due to tillage and
cultivation. Therefore, physical soil properties such as BD are more sta-
ble in the subsoil than in the topsoil. Statistics for soil texture and SOC
agreed with data reported for other Mediterranean countries (Çelik
et al., 2019; Evrendilek et al., 2004). The MJ and SoilGrids models
yielded a similar result (Tables 6 and 7). Notably, MLR-BS showed an
R2 close to zero for the validation datasets. This hampers discussion of
model variability comparing the training and validation datasets. Gen-
erally, negative Bias is observed in the subsoil external dataset. As for
the external dataset, slightly positive Bias indicates that MLR-S, ANN,
SoilGrids overestimate the average BD of 2.8%, 1.7% and 0.7%, respec-
tively; MJ and MLR-BS underestimate the BD of −4.6% and − 2.3%
which is not preferable especially for the subsoil, an exception has
been encountered with the topsoil MLR-BS that has predicted in few
cases values very far from the true BD. Mediterranean soils are diverse,
their hydraulic properties reflect pedogenetic factors as well as recent
changes in management and climate (Yaalon, 1997).



Fig. 4. Predicted vs observed data (training topsoil and subsoil A and B, validation topsoil and subsoil C andD), MLR-Smodel,MLR-BSmodel, ANN neural networkmodel, MJ PTF SoilGrids.
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4.3. Importance of predictor variables

Previous attempts to estimate soil BD by PTF (Çelik et al., 2019;
Gozubuyuk et al., 2014; Tranter et al., 2007) did not include climate pa-
rameters because they were often not readily available or not immedi-
ately obvious as a determinant of BD. Many factors related to climate,
such as bioclimatic indices, affect BD (e.g., rainfall intensity or pattern,
high soil temperature in summer) (Basile et al., 2019; Chen et al.,
2018). Bioclimatic indices and topographic predictors contributed
greatly to the performance of the MLR and comprised 100% of the
variables in the MLR-S for the topsoil, and about the 33% in the
MLR-BS. The regression models (MLR-S and MLR-BS) included soil
textural data (MLR-S topsoil) or SOC related (MLR-S subsoil and
MLR-BS topsoil and subsoil). Our results showed that important pre-
dictors of BD in the MLR models were slope, clay, SOC2, and biocli-
matic variables such as BIO1 (Annual Mean Temperature), BIO2
(Mean Diurnal Range) and BIO7 (Annual T°C Range). This is consis-
tent with previous reports (Akpa et al., 2016). In fact, part of the
BD variability is due to the diverse bioclimatic zones within the
Mediterranean Basin (Beck et al., 2018).
9

In our study, the inclusion of the climatic and topographic data in-
creased the model reliability. Indeed, models without topographic and
climatic predictors had very low performance at the training stage
(data not shown). However, the lack of field management information,
which strongly affects arable soils (e.g., crop type, tillage methods, irri-
gation, input of organic matter), hampers the ability to infer a relation-
ship with factors of soil formation and processes (Wadoux et al., 2019)
whichwould potentially improve themodel prediction. In the Mediter-
ranean Basin, significant effects of cropping systems and field manage-
ments on BD have been demonstrated in field studies (Álvaro-Fuentes
et al., 2008; Bogunovic et al., 2020; Çelik et al., 2019; Perego et al.,
2019; Pezzuolo et al., 2017).

5. Conclusions

Arable soils are widely distributed and the estimation of their fertil-
ity and carbon sequestration ability is a prerequisite for their manage-
ment at wide scale. Reliable PTF to estimate BD are thus a needed
instrument for arable soils management at the regional or higher levels.
In the present study, we developed a robust PTF for BD estimation by



Table 8
Normalized variable importance in theMLR-S andMLR-BS (standardized regression coef-
ficient in %). Conditional formatting is applied, Red color marks theminimum, green color
the maximum and the yellow marks the middle values.

MLR-S 

TOP

MLR-BS 

TOP

MLR-S 

SUB

MLR-BS

SUB

Clay 4.62

Sand 5.83

Silt 2.97 14.67

SOC 19.15 4.69

MeanDepth 11.73

Elevation 2.34 4.53

Slope 24.97 4.35

Profile Curvature 13.91

BIO1 5.70

BIO2 11.23 5.91

BIO3 8.73 6.01

BIO4 36.46

BIO5 4.59 5.20

BIO7 46.88 7.56 14.75 4.90

BIO12 6.09

BIO13 5.26

BIO14 16.67 1.21 5.02

BIO15 1.90

BIO17 5.08

BIO18 4.85

BIO19 4.74

Clay2 3.17 4.57

Sand2 2.14

SOC2 6.10 19.96 4.81

SOC2*Clay2 3.98 4.76

SOC^0.5 14.22 4.15

Clay*SOC 4.87 4.78

Table 9
Normalized variable* importance for predicting the bulk density of the top- and subsoil by
means of the pedotransfer function developed by the Artificial Neural Network optimiza-
tion approach. *variable description is available in Fig. 1, Conditional formatting is applied,
Red color marks the minimum, green color the maximum and the yellowmarks the mid-
dle values.

Topsoil Subsoil

Clay 3.2 2.8

Sand 5.6 1.2

Silt 3.4 3.7

SOC 3.8 5.5

MeanDepth
1.4 1.5

Elevation 3.8 2.7

Slope
2.6 5.3

SIN Aspect
3.3 1.7

Profile 

Curvature 5.3 4.5

Plan 

Curvature 3.8 5.6

BIO1 2.5 2.8

BIO2 5.3 5.0

BIO3 2.0 2.7

BIO4 3.7 4.4

BIO5 4.7 1.6

BIO6 3.4 1.8

BIO7 3.9 5.4

BIO8 3.5 4.0

BIO9 3.8 2.9

BIO10 1.6 2.6

BIO11 2.9 1.8

BIO12 1.4 2.6

BIO13 3.0 2.3

BIO14 3.2 3.2

BIO15 5.6 2.3

BIO16 3.3 1.8

BIO17 3.9 3.5

BIO18 4.4 3.3

BIO19
1.7 2.7
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exploiting the WoSIS resource, and it was the first time that such a
broad set of data are valorized for PTF development. Moreover, we
considered relevant predictors such as climatic and topographic param-
eters, which are fully and freely available and responsible for remark-
ably improving the predictive capability of the PTF models.

One of the three developed PTF (i.e., ANN) showed a better capabil-
ity of estimating BD data than the well-known functionManrique Jones
and the SoilGrids estimation approach; this outcome proved that the
work hypothesis was correct and then developing the PTF with
climate-specific set of data and adding topographic and climate predic-
tors leads to a better predictive capability.

A relevant result of the presentwork is a ready to be used PTFmodel
(i.e., ANN) for to separate soil layers (i.e., topsoil and subsoil) for the ar-
able soils in the Mediterranean basin. The potential users of this result
are public authorities interested in estimating soil carbon stock by
exploiting legacy soil data in which bulk density is an often-missing pa-
rameter in the large monitoring campaigns. Researchers can be also in-
terested in a more robust method of BD estimation when elaborating
sets of soil data, especially when the aim is to estimate spatial and tem-
poral variation.

The robustness of the ANN PTF is ensured by the use of an indepen-
dent external dataset compiled from the literature for the validation of
the PTF models transferability.

Results from the presentwork provide a reproducible and externally
tested tool that can be applied to obtain a BD estimation at a regional
level more reliable than the presently used PTF or gridded benchmarks.
Thus, the present results are an option for policy making and manage-
ment at a regional level.
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