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A B S T R A C T

Many coastal waters include large areas of Optically Shallow Waters (OSWs) where the sea-bottom affects above-
water observations of remote sensing reflectance (Rrs [sr−1]). If not treated, the effect of bottom reflectance will
interfere with the correct retrieval of Water Constituent Concentrations (WCCs) from hyperspectral and multi-
spectral remote sensing observations. To study this phenomenon in more detail, the existing semi-infinite
2SeaColour Radiative Transfer (RT) model was modified into a finite water layer model, bounded by a diffusely
reflecting surface at the sea-bottom. From simulations with the new model, called Water - Sea Bottom (WSB)
model, it was observed that a ratio of spectral bands in the Near-Infrared, bands 750 nm and 900 nm, is nearly
insensitive to the WCCs and increases with the shallowness of the water, and therefore can be used as a robust
index to detect OSWs. The newly established Near-Infrared Bottom Effect Index (NIBEI) was applied to a series of
satellite observations over the Wadden Sea during high and low tidal phases. Images from the MEdium
Resolution Imaging Spectrometer (MERIS) and the Ocean and Land Colour Instrument (OLCI) were processed to
retrieve WCCs of the study area. The results indicate that the sea-bottom effect in OSWs affects the accuracy of
atmospheric correction and retrievals. On the other hand, applying the NIBEI to flag OSWs improves the re-
liability and consistency of WCCs maps. The application of proposed NIBEI on satellite images requires only Top
Of Atmosphere (TOA) radiances at 750 nm and 900 nm and does not depend on atmospheric correction and
ancillary local input data (e.g., bathymetry map, bottom type, empirical coefficients, in-situ measurements). As a
result, the proposed NIBEI can readily be applied to detect OSWs on various ocean colour remote sensors in
various shallow coastal regions.

1. Introduction

By the end of 2019, the world's population is expected to reach
about 7.7 billion people and is projected to continue to increase to
nearly 11 billion by 2100 (UN Population Division, 2019). Between
30% and 70% of this population lives within 100 km of the coastline
areas (Kummu et al., 2011; UNEP, 2006; Wilson and Fischetti, 2010).
Therefore sustainable monitoring, maintenance, and protection of
coastal waters are vital for ensuring human/animals/ecosystem health,
recreation, environmental stewardship, fisheries, and continued eco-
nomic growth (Barbier, 2011; UNEP, 2006).

Continuous monitoring and conservation of biological diversity are
some of the most important factors in healthy ecosystem maintenance
of coastal regions (Millennium Ecosystem Assessment., 2005). In this
respect, a global overview was recently provided to define the frame-
work of water designated uses and current challenges that cross these
regions in all continents by the United Nations (UN), World Health
Organization (WHO), World Bank and 2018 report of Sustainable De-
velopment Goals (SDGs) (Lawford et al., 2013; IOCCG, 2012; Marmot
and Bell, 2018). These frameworks describe the requirements and needs
from which a significant part of them can be addressed with remote
sensing of water quality in terms of measuring the core water quality
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indicators of Chlorophyll-a (Chla), Suspended Particulate Matter (SPM)
and Coloured Dissolved Organic Matter (CDOM) concentrations
(Brando and Dekker, 2003; Dekker, 1993; Ritchie et al., 2003; IOCCG,
2000). Monitoring spatio-temporal variation of these three Water
Constituent Concentrations (WCCs) in terms of generating reliable WCC
maps form satellite images, overcomes the limitations of temporal
coverage and geographic extent of traditional sampling and ap-
proaches. Coupled with field-based observations, satellite remote sen-
sing of water quality provides comprehensive and cost-effective in-
formation over highly dynamic coastal waters and is a big step of
change from a station-oriented to a system-oriented monitoring ap-
proach (Ammenberg et al., 2002; Dekker, 1993; Kutser et al., 1998;
Vrieling, 2006; Lepper, 2005).

In this respect, the Copernicus program (the European Union's Earth
observation program coordinated and managed by the European
Commission in partnership with the European Space Agency (ESA))
(https://www.copernicus.eu/en) launched satellites practically de-
signed for water quality monitoring like the MEdium Resolution
Imaging Spectrometer (MERIS) and the Ocean and Land Colour Imager
(OLCI) on ENVISAT and Sentinel-3 platforms, respectively (Gons et al.,
2002; Han et al., 2016; Mishra and Mishra, 2012; Toming et al., 2017).
Having free access to these satellites' products have encouraged gov-
ernmental organizations, water quality managers, private sectors, sta-
keholders and the scientific community to invest in satellite water
quality monitoring in order to link anthropogenic stressors to water
environmental responses that may impact designated uses (Doerffer
et al., 1999; Kutser et al., 2006; Pitarch et al., 2019, 2016; Schroeder
et al., 2007). However, satellite remote sensing of water quality in
shallow coastal waters is found to be among the most challenging
studies for optical remote sensing (Cannizzaro and Carder, 2006;
Dekker, 1993; Kutser, 1997; Liu et al., 2003; Ritchie et al., 2003).

Recent studies have reported three main problems of i) atmospheric
correction, ii) water retrieval algorithms and iii) the sea-bottom effect
on optical remote sensing of shallow coastal areas (Ammenberg et al.,
2002; Carpintero et al., 2015; Lee et al., 1999; Lee et al., 1994;
Maritoren et al., 1994; Moore et al., 1999; Salama et al., 2012a, 2012b;
Salama and Su, 2010; Volpe et al., 2011; Wang, 2005; Wang and Shi,
2007). Although many studies have addressed the problems of atmo-
spheric correction methods and water retrieval algorithms (Hu et al.,
2000; Pan et al., 2017; Salama et al., 2012a, 2012b; Salama and Shen,
2010; Siegel et al., 2000; van der Woerd and Pasterkamp, 2008; Wang,
2007), the accuracy of optical remote sensing products is still proble-
matic due to the critical issue of the sea-bottom effect on satellite ob-
servations (Li et al., 2017, 2003; Zhao et al., 2013). Indeed, most of the
water retrieval algorithms, implemented in various ocean colour re-
mote sensors assume the upwelling water-leaving radiance is only the
result of water column constituents and ignore the sea-bottom con-
tribution into their retrievals (Gordon and Wang, 1994; Zhan et al.,
2003). Consequently, the reliability of generated Chla, SPM, and CDOM
concentration maps from satellite images over shallow areas will re-
main questionable (Ackleson, 2003; Albert and Gege, 2006; Li et al.,
2003). This has a negative impact on further environmental plans and
programs by decision-makers for maintenance, protection, and mon-
itoring of many vital coastal waters (Green et al., 1996; Mumby et al.,
1999). Therefore the hydro-optical algorithms should include the sea-
bottom effect in order to accurately retrieve WCCs from atmo-
spherically corrected water-leaving reflectance (Gitelson et al., 2008;
Lee and Carder, 2002). The sea-bottom has a substantial influence on
water leaving remote sensing reflectances (Rrs) recorded at the water
surface level and accordingly on Top Of Atmosphere (TOA) radiances at
the satellite level (Albert and Mobley, 2003; Garcia et al., 2018; Lee
et al., 1998; Liu et al., 2003). Rrs values will be modified by light re-
flected from the sea-bottom, depending on local water depth, water
transparency and the nature of the bottom surface in Optically Shallow
Waters (OSWs) (Cannizzaro and Carder, 2006; Maritoren et al., 1994)
while metrically shallow depth waters can still be classified as

“optically deep” or “ optically shallow” waters. Regions with either low
turbidity or shallow depth, or both, are typically characterized as
OSWs, where regular water quality retrieval algorithms cannot detect
WCCs accurately. The term “optically shallow” is also dependent on the
wavelength of the incident light, since the effects of water column at-
tenuation vary substantially with the total absorption coefficient, which
is strongly spectrally dependent (Conger et al., 2006). This can interfere
with the correct retrieval of WCCs from Rrs values or TOA radiances
while using water retrieval algorithms (Durand, 2000; Volpe et al.,
2011; Voss et al., 2003).

So far, most studies that address the application of optical remote
sensing techniques to complex OSWs (Phinn et al., 2008), have focused
on habitat classification or bathymetry mapping. This was commonly
done by establishing statistical relationships between image-pixel va-
lues and field-measured water depths (Dierssen et al., 2003; Eugenio
et al., 2015; Gao, 2009). For example, Brando and Dekker (2003) ap-
plied an integrated physics-based mapping approach to retrieve
bathymetry, substratum type and WCCs using airborne hyperspectral
observations at the Moreton Bay, Australia (Brando and Dekker, 2003).
Their investigations suggested that the quantitative identification and
screening of Optically Deep Waters (ODWs) and quasi-ODWs lead to
improved precision in the depth retrievals. Hu (2009) and Hu et al.
(2010) suggested the index of Floating Algae Index (FAI) to discover
macro-algae and cyanobacteria in the Yellow Sea and the lake Taihu
located in China from Moderate Resolution Imaging Spectroradiometer
(MODIS) images (Hu, 2009; Hu et al., 2010). Their investigations
showed that the FAI is sensitive to turbid waters and shallow depths.
Although these studies finally helped to improve water depth and
bottom type estimates from remote sensing observations, there are only
a few reports to develop water retrieval algorithms in order to accurate
retrieve WCCs over OSWs (Cannizzaro and Carder, 2006; Lee et al.,
1999; Volpe et al., 2011). However, these algorithms require many
input data, such as hyperspectral measurements, bathymetry maps,
empirical coefficients, in-situ measurements, and intensive calibration/
validation. As a result, these algorithms are typically site-specific and
are not transferable to other locations.

One alternative, fast, and cost-effective approach to tackle the sea-
bottom effect problem in coastal waters is to flag OSWs when retrieving
WCCs. This can improve the reliability and consistency of satellite
products of WCCs. Therefore some efforts have been made to determine
very shallow areas from bathymetry maps in order to flag them while
generating WCC maps (Li et al., 2017; McKinna and Werdell, 2018).
However, bathymetry maps are not always available in many regions.
Moreover, the sea-bottom influences remote sensing observations over
these regions with either a low water column attenuation or a shallow
water depth or both. For example, in a highly reflective sea-bottom type
such as sand, the bottom reflectance can contribute to Rrs values in the
blue part of the spectrum even for deep and transparent waters
(Chybicki, 2017).

Furthermore, both the water depth level and turbidity are not
constant and may vary in time and space with the different tidal phases
(Eleveld et al., 2014; Ma et al., 2018). Although the effect of tides on
water depth can be modeled and corrected for as a factor in shallow
tidal waters, performing such correction requires intensive measure-
ments and modeling. Therefore the skills needed to apply a depth me-
tric in discriminating ODWs from OSWs are limited, in particular for
coastal areas.

The main goal of this paper is to increase the reliability and con-
sistency of WCC satellite products in complex shallow tidal waters
through proper flagging of OSWs. To achieve this goal, we conducted
this research in three different phases “as: i) simulate and evaluate sea-
bottom effects on above water observations using Radiative Transfer
(RT) modeling, ii) define the flagging index of the Near-Infrared Bottom
Effect Index (NIBEI) to distinguish OSWs and iii) implement the NIBEI
on MERIS and OLCI images to improve the reliability of WCC maps”.
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2. Study area

We selected the Dutch Wadden Sea as the study area of this re-
search. The Dutch part of the Wadden Sea comprises about 66% of the
whole Wadden Sea, the biggest continuous coastal and tidal area in
Europe and the world. The whole Wadden Sea extends to Germany and
Denmark with a total surface area of 2500 km2 (Beukema, 1976). The
monitoring of this region is mandatory following the European Marine
Strategy launched in 2002 and its inclusion on the UNESCO World
Heritage List since July 2009 (Hommersom, 2010). The Dutch Wadden
Sea is a home and a wintering place for up to twelve million birds each
year (Boere and Piersma, 2012). Fig. 1 illustrates the geographic loca-
tion and elevation of this area.

The channels in the Dutch Wadden Sea are typically deeper than
+10 m, while the tidal flats are typically up to +1 m NAP high (Fig. 1).
The Dutch Wadden Sea experiences a semi-diurnal tidal regime, with
the tidal range increasing from West to East. The mean tidal range at
tide gauge station Harlingen (Fig. 1(b)) is +1.94 m (Rijkswaterstaat,
2018). Thus, water depths are less than a few meters in most parts of
the Dutch Wadden Sea.

The reason to select the Dutch Wadden Sea as the study area of this
research was its limited water depth, combined with tidal variations.
The tides produce a strong mixing of the water constituents (Cadée,
1986; Postma, 1982). Accordingly, the extent of OSWs varies with the
different tidal phases, which complicates the task for remote sensing
scientists and water quality managers to generate reliable WCC maps.
This area could be considered as a good example for optical remote
sensing of water quality in complex waters. Due to the shallowness of
the water, tidal variation, variable concentration of water constituents,
and the occurrence of many rainy and cloudy days, satellite remote
sensing of water quality has remained problematic in this region
(Hommersom, 2010; Cadée and Hegeman, 2002; Garaba et al., 2014;
Giesen et al., 1990; Hommersom et al., 2010a; Hommersom et al.,
2010b; Philippart et al., 2013; Reuter et al., 2009; Salama et al., 2009;
Tillmann et al., 2000).

3. Dataset

In this study, we used satellite images of the MERIS and Ocean and
Land Colour Instrument (OLCI). These sensors are mainly designed for
water quality monitoring in open oceans and open coastal areas
(Ambarwulan et al., 2011; Ambarwulan et al., 2012; Harvey et al.,
2014) while they are likely the optimal past and present sensors for
near real-time frequent monitoring applications for spatially con-
strained inland and coastal waters (Matthews et al., 2012).

The MERIS was one of the instruments on board of the ENVISAT
mission and monitored the Earth between 30th of April 2002 and 9th of
May 2012. The high sensitivity and extensive dynamic range of the
MERIS sensor (full spatial resolution: 300 m) have been widely used for
ocean, lakes, and coastal water remote sensing studies (Majozi et al.,
2014; Odermatt et al., 2012; Pasterkamp et al., 2003). The MERIS
sensor covered the Dutch Wadden Sea at around 12:30 p.m. (Central
European Summer Time (CEST)) every three days, with 15 bands cov-
ering the spectral ranges from 400 nm to 950 nm. The MERIS sensor
stopped functioning in May 2012 and was continued by the OLCI on
board of the Sentinel-3 A and B satellites since 2016 and 2018, re-
spectively (Saulquin et al., 2016). The OLCI is an improved successor of
the MERIS sensor with higher accuracy, greater wavelength, and cov-
erage (Hieronymi et al., 2017). It has the same spectral bands as the
MERIS, plus six extra bands at 400 nm, 673.75 nm, 764.37 nm,
767.5 nm, 940 nm, and 1020 nm. The OLCI sensor (full spatial re-
solution: 300 m) has a revisit time of two-three days on average at
around 12:00 pm (CEST) over the Dutch Wadden Sea. An overview of
the MERIS and OLCI bands is presented in Table 1.

The MERIS and OLCI images of this research were provided by ESA
(https://www.esa.int/ESA) within the framework of the Integrated
Network for Product. We used the Sentinel Application Platform image
processor SNAP (version 6.0) and the image analysis software of ENVI
(version 5.5) to process MERIS and OLCI images in this research.

4. Methodologies

Fig. 2 summarizes the methodology of this research.

Fig. 1. (a): The geographic location of the Dutch Wadden Sea and lake IJsselmeer in Europe; (b): the elevation of the Dutch Wadden Sea showing the configuration of
barrier islands, inlets, channels, shoals, and tidal flats. The elevation is relative to m Normaal Amsterdam Peil (NAP) (the Dutch ordnance datum, which is about
mean sea level, and is integral to the European Vertical Reference System); elevation data are obtained from Rijkswaterstaat (2007–2012).
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4.1. The Water - Sea Bottom (WSB) model

The performance of two-stream Radiative Transfer (RT) modeling of
2SeaColour (Salama and Verhoef, 2015) in optical remote sensing of
tide-affected and turbid coastal waters has been demonstrated in pre-
vious studies (Arabi et al., 2018; Arabi et al., 2016; Salama and Verhoef,
2015; Yu et al., 2016a, 2016b). In their most recent effort, Arabi et al.
(2018) showed that the 2SeaColour model is capable of accurately re-
trieving WCC concentrations from in-situ hyperspectral measurements
collected under different conditions of dates, Solar Zenith Angles (SZAs)
and water turbidities in ODWs of the Dutch Wadden Sea. They

considered the simultaneous contribution of Chla [mg m−3], SPM
[g m−3], and CDOM absorption at 440 nm [m−1] concentrations on
simulated Rrs values by the 2SeaColour model. However, in their re-
search, the effect of the sea-bottom was not considered in simulating Rrs

values due to the moderate depth of the NIOZ jetty station (the NJS)
which is located on the Southern tip of the island of Texel (water
depth > 5 m) (Arabi et al., 2018).

In this study, we extended the 2SeaColour model by incorporating
the sea-bottom effect. The Rrs values are modeled as a function of five
independent variables, namely Chla, SPM, CDOM, bottom albedo (ba),
and water depth (wd). The improved model, called Water - Sea Bottom
(WSB), was used to evaluate the sensitivity of Rrs values to the sea-
bottom effect in different parts of the spectrum in order to define the
NIBEI as described in the following paragraphs.

The 2SeaColour model is based on a two-stream approach, first
proposed by Duntley (1942), with direct solar radiation included as a
source of incident flux. The model predicts the Directional-Hemispheric
Reflectance Factor (DHRF) of a semi-infinite water layer as:

= + −
+ +

∞r x
x μ

1 2 1
1 2 2sd

w (1a)

where x is the ratio of the backscattering to the absorption coeffi-
cient (x = bb/a), and μw is the cosine of the SZA beneath the water
surface. The reflectance factor rsd∞ can be approximated by Q × R(0−)
in sunny situations, where Q = 3.25 and R(0−) is the irradiance re-
flectance value below the water surface (Morel and Gentili, 1993). The
model also gives the reflectance for diffuse incident light, called the bi-
hemispheric reflectance factor or BHRF, which is given by

= + −
+ +

∞r x
x

1 2 1
1 2 1dd (1b)

If sunlight dominates over the diffuse incident flux from the sky,
only Eq. (1a) is applied in practice. In the extensive literature on two-
stream approximations of RT, particularly in Duntley (1942), one can
find quite different expressions for these reflectance factors, but the
ones presented above are particularly suitable for model inversion
purposes since x can be derived easily from the reflectances. Deriva-
tions of Eqs. (1a)–(1b) are given in Appendix A. For more details on the
2SeaColour model, readers are referred to Salama and Verhoef (2015).

To incorporate the sea-bottom effect in the 2SeaColour model, the
semi-infinite water layer was replaced by a finite layer of given metrical
depth d, and the number of model outputs was extended with extra
reflectance and transmittance factors that enable calculating the effect
of a sea-bottom with a given Lambertian reflectance rb on Rrs values.
The assumption here is that the sea-bottom resembles a Lambertian
surface. In Verhoef (1985), the adding equations for calculating the
reflectance of the combination of a turbid medium layer and a back-
ground surface with a reflectance rb were given by Eqs. (26a)–(b),
which were slightly adapted here for a Lambertian background:

= +
−

r ρ τ r τ
r ρ1dd dd

dd b dd

b dd (2)

= + +
−

r ρ τ τ r τ
r ρ

( )
1sd sd

ss sd b dd

b dd (3)

where the double subscripts indicate the types of flux on incidence
and exit, respectively, and s stands for direct solar flux and d for semi-
isotropic diffuse flux. Reflectances caused by volume scattering inside
the layer have the symbol ρ, and transmittances have the symbol τ. The
direct transmittance for sunlight is τss. The resulting DHRF of the
combination water - bottom is called rsd, and the Bi-Hemispherical
Reflectance Factor (BHRF) is rdd.

To generate input spectra of the bottom reflectance, a sub-model
called Brightness-Shape-Moisture (BSM) is applied. This model is based
on the statistical Global Soil Vectors (GSVs) approach of Chongya and
Hongliang (2012) and was more recently also used by Verhoef et al.

Table 1
The MERIS and OLCI spectral band configurations.

Band number/sensor Band center (nm) Band width (nm)

MERIS OLCI MERIS OLCI

1 412.5 400 10 15
2 442.5 412.5 10 10
3 490 442.5 10 10
4 510 490 10 10
5 560 510 10 10
6 620 560 10 10
7 665 620 10 10
8 681.25 665 7.5 10
9 708.75 673.75 10 7.5
10 753.75 681.25 7.5 7.5
11 761.87 708.75 2.5 10
12 778.75 753.75 15 7.5
13 865 761.25 20 2.5
14 885 764.37 10 7.5
15 900 767.5 10 2.5
16 – 778.75 – 15
17 – 865 – 20
18 – 885 – 10
19 – 900 – 10
20 – 940 – 20
21 – 1020 – 40

Incorporate the sea-bottom effect into Rrs simulations by the 2SeaColor model

Develop WSB model

Evaluate the sea-bottom effect on Rrs values by WSB model

Implement the NIBEI on MERIS/OLCI images to detect OSWs

Define the NIBEI

Generate reliable WCC maps by flagging OSWs 

from MERIS/OLCI images

Start

End

Fig. 2. The diagram of the implemented methodology in this research.
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(2018). This also implies that vegetated sea-bottoms are not yet con-
sidered in the current approach. Unvegetated sandy and muddy bot-
toms are the most common sea-bottom types in the Dutch Wadden Sea.
Particularly on tidal flats, benthic micro-algae (e.g., diatoms) may be
present, while at limited places, macroalgae are growing (van der Wal
et al., 2010). Like vascular plants, these absorb part of the visible light,
particularly in red wavelengths, but unlike higher plants and macro-
algae, benthic diatoms do not show increased reflectance in the near-
infrared (Kromkamp et al., 2006; van der Wal et al., 2010). The BSM
model has four input variables, dry soil brightness, two spectral shape
variables, and the volumetric soil moisture percentage. In this parti-
cular application, only the dry soil brightness variable was varied to
generate spectra of constant shape. Dry soil brightness in this context is
formally defined as the square root of the sum of the three squared
weight coefficients applied to the basis spectra to fit a given dry soil
spectrum. Changing soil brightness affects the whole soil spectrum
proportionally, while the spectral shape is preserved. The so-called ir-
radiance reflectance just beneath the water surface is:

=
+
+

−
−

−R
r E r E

E E
(0 )

(0) (0)
(0) (0)

sd s dd d

s d (4)

where Es(0) and Ed−(0) are the direct solar irradiance and the diffuse
downward irradiance incident at the top of the water layer, respec-
tively. To include the effect of the water-air interface, we finally esti-
mate Rrs by Mobley (2003):

=
−

−

−R R
Q R

0.52 (0 )
1.7 (0 )rs (5)

In the turbid medium scattering model for the water layer, a simi-
larity transform (van de Hulst, 1980) is applied in such a way that all
forward scattering greater than the backscatter coefficient is ignored, so
that effectively isotropic scattering results. Accordingly, the beam ex-
tinction coefficient c in m−1 was reduced to:

= +c a b2 b (6)

where a is the absorption coefficient and bb the backscattering coeffi-
cient. This means that the forward scattering peak due to Mie scattering
by particles in the water is ignored and treated as the light that is not
scattered at all. The transformed single scattering albedo ω is given by:

= =
+

ω b c b
a b

2 / 2
2b
b

b (7)

The similarity transform, effectively resulting in an anisotropic
scattering approximation, simplifies the description of RT in the layer in
the matrix-vector form to:

⎛

⎝
⎜

⎞

⎠
⎟ = ⎛

⎝
⎜− ′ −

−

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟ =

⎛

⎝

⎜
⎜⎜

− − −

− −

⎞

⎠

⎟
⎟⎟

⎛

⎝
⎜

⎞

⎠
⎟

−

+

−

+

−

+c z

E
E
E

k
s α σ

s σ α

E
E
E

k

ωk κ ω ω

ωk ω κ ω

E
E
E

d
d

0 0
0 0

1
2

1
2 ( )

s s s

(8)

where z is the metrical depth, Es is the direct solar flux, E− is the
downward diffuse flux, E+ is the upward diffuse flux, k is the extinction
coefficient for direct sunlight, and κ is the one for diffuse light. The
extinction coefficients for diffuse and direct light are given by κ = 2,
and k = 1/μw, respectively, where μw is the cosine of the underwater
SZA. A generic solution to Eq. (8) can be formulated in matrix-vector
form by:

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

=
⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

−

+

−

+

E
E
E

τ
τ τ ρ
ρ ρ τ

E
E
E

(b)
(b)
(t)

0 0 (t)
(t)
(b)

s ss
sd dd dd

sd dd dd

s

(9)

where (b) and (t) stand for the bottom and the top of the layer, re-
spectively. The direct transmittance of the layer is given by τss = exp
(−kcd), where d is the metrical thickness of the water layer. The other

reflectance and transmittance quantities are given in Appendix A.
We conducted a series of simulations with the developed WSB

model to investigate the sea-bottom effect on the Rrs spectra at the sea
surface level. The used values of the variables in the Rrs simulations by
the WSB model are presented in Table 2. It should be mentioned that
the same Inherent Optical Properties (IOPs) model's parametrizations,
as listed in Arabi et al. (2018), were used to calculate total absorption
(a) and backscattering (bb) coefficients of WCCs, and accordingly to
simulate Rrs spectra in this study.

As can be seen in Table 2, the effect of CDOM absorption at 440 nm
[m−1] is considered negligible in this study. The reason is that CDOM
absorption at 440 nm [m−1] has only a significant effect on the blue
region of the spectrum. As a result, it can reduce the blue colour of
otherwise clear and deep waters. In other spectral regions, the effects
are quite limited compared to those of Chla [mg m−3] and SPM
[g m−3]. Therefore, the variation in CDOM absorption at 440 nm
[m−1] was ignored in the simulations.

The resulting Rrs spectra using the WSB model are presented on a
logarithmic scale in Fig. 3.

From Fig. 3, it is obvious that all parts of the Rrs spectrum can be
affected by light reflected by the sea-bottom, depending on the water
column attenuation. For absolutely pure water (i.e., pure freshwater
free from salinity), the influence of the bottom albedo (in the blue-
green parts of the spectrum) remains noticeable for water depths up to
50 m. However, in the NIR (wavelengths> 750 nm), the Rrs spectra are
unaffected by the bottom albedo for water depths> 2 m. There, the
shape of the spectrum is completely determined by the absorption of
water itself (Ruddick et al., 2006), although the magnitude of the
spectrum is still dependent on the scattering due to the Chla and SPM
concentrations together. Plotted logarithmically, this gives a series of
spectra that are shifted parallel in the vertical direction. For absolutely
pure water with a depth > 2 m, the slope of the spectrum between
750 nm and 900 nm is slightly larger than for turbid waters, but other
simulations (not shown here) revealed that for low concentrations of
Chla or SPM the spectral shape was practically the same as for high
concentrations. Thus, with the exception of pure water, spectral shapes
in this region are nearly invariant, regardless of WCCs. This phenom-
enon was termed “similarity spectrum” by Ruddick et al. (2006), and
normalization of NIR spectra by the reflectance at one wavelength (e.g.,
750 nm) gives nearly a single normalized spectrum that is independent
of WCCs.

From the investigation of the WSB model's Rrs simulations, we de-
fined the NIBEI to detect the contaminated remote sensing observations
by the sea-bottom effect using Rrs values at water surface level and TOA
radiances at satellite level as explained in Sections 4.2 and 4.3, re-
spectively.

4.2. Define the NIBEI

From the simulations presented in Fig. 3, it was found that for water
depths< 2 m, the Rrs spectral shapes start deviating from the ones for
water depths> 2 m. Therefore, by detecting deviations from the ex-
pected similarity Rrs spectrum, OSWs can be discriminated from ODWs.
The obvious candidate index for this concept is the ratio of the Rrs

values at 750 nm and 900 nm, which measures the spectral slope over

Table 2
The variables, units, and their corresponding values for simulations of Rrs

spectra using the WSB model.

Variable Unit Values

Chla concentration [mg m−3] 0 100
SPM concentration [g m−3] 0 50
CDOM absorption [m−1] 0
Bottom albedo 0.1 0.3 0.5
Water depth [m] 0 .05 .1 .2 .4 .6 .8 1 1.2 1.4 1.6 2 5 20 50
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this interval. As was found from inspection of Fig. 3, this ratio value
(Rrs[750 nm]/Rrs[900 nm]) is constant for water depths> 2 m. How-
ever, starting at water depths between 2 m and 0.4 m, the ratio value
first increases sharply reaching a maximum value at a water depth of
about 0.4 m, then finally declining again for shallower, towards its level
for a dry bottom. The sharp increase of the ratio value is caused by a
rising Rrs value due to the bottom effect beginning at 750 nm, while at
900 nm, the water layer is still optically deep due to the higher water
absorption coefficient there.

The reason why a NIBEI is useful is that at both wavelengths 750 nm
and 900 nm, the absorption coefficient of pure water is high enough to
ensure that the optically deep stage is reached well below 5 m deep,
probably already below 2 m deep, whether the water is turbid or not.
For optically deep waters, Rrs values are determined by the ratio bb/a.
In the NIR, bb will vary little with wavelength if some turbid material is
present. Not much turbidity is needed for that since the bb of pure water
is very small in the NIR, so it will soon be overwhelmed by the bb of
sediments or other particles. Therefore, for water containing a little
turbid material, one may assume that in ODWs, Rrs, and therefore the
ratio 750 nm/900 nm is only determined by the pure water absorption.
Since this ratio is well above unity, it is clear that at 900 nm the ab-
sorption by water is substantially stronger than at 750 nm. This also
means that the sea-bottom effect will first become visible at 750 nm.
The effect will always be an increase of Rrs values since the sea bottom
will start contributing to the Rrs values by the upward transmission of
solar radiation reflected by the sea bottom. The same effect will finally
happen at 900 nm but at a shallower depth. Thus, with increasing
shallowness, the ratio will first go up then come down again since the
bottom effect has become important at both wavelengths. Sea-bottoms
usually have a nearly flat or slightly increasing reflectance spectrum in

the NIR. This holds not only for sandy and muddy bottoms but also for
sea-bottoms with benthic diatoms (and even macro-algae) since we are
looking only at NIR wavelengths.

The NIBEI ratio has a constant value of 2.67 using Rrs values for
ODWs. This follows from the approximation of Rrs[750 nm]/
Rrs[900 nm] ~ = aw[900 nm]/aw[750 nm]. Therefore this threshold
can be easily used to discriminate OSWs from ODWs for the atmo-
spherically corrected satellite images over shallow coastal waters.

4.3. Apply the NIBEI on MERIS/OLCI images to discriminate OSWs from
ODWs

An application of the NIBEI is due to its capability to detect OSWs
from image-pixel TOA radiances on satellite images. The reason is that
by defining the NIBEI based on TOA radiances, there is no need to have
information about atmospheric properties (i.e., visibility and aerosol
type) or to remove the atmospheric effect and calculate Rrs values from
TOA radiances. This not only speeds up the process of detecting OSWs
from Earth Observation (EO) data but also increases the reliability of
the approach since doing an accurate atmospheric correction method is
the most problematic step of satellite remote sensing of coastal waters.
As a result, applying inappropriate atmospheric corrections can easily
lead to having inaccurate Rrs estimates, which negatively affects the
performance of the NIBEI.

Considering the simulations of Fig. 3, in a generated NIBEI map
from satellite images (i.e., each pixel value is equal to band-center
[750 nm]/band-centre[900 nm]), OSWs will show maximum values
compared to ODWs, whether one uses images of Rrs or TOA radiances,
since atmospheric effects in the NIR are only moderate. Moreover,
OSWs will look brighter than ODWs regardless of atmospheric effects.

Fig. 3. Spectra of 10log(Rrs) generated by the WSB model for fifteen water depths (wd), three bottom albedos (ba), two concentrations of Chla [mg m−3], and two of
SPM [g m−3] including absolutely pure water. Water depth (wd) is indicated above each graph: absolutely pure water in blue, high Chla in green, high SPM in red,
both high in yellow. Line brightness modulated by bottom albedo. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
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Therefore, there will be considerable differences in the NIBEI values as
well as image-pixel colours between OSWs and ODWs in a NIBEI map.

Fig. 4 shows two examples of the NIBEI maps generated from MERIS
and OLCI images, separately, using Matlab 2016b programming (the
multi-paradigm numerical computing environment and proprietary
programming language developed by MathWorks [https://www.
mathworks.com/products/matlab.html]). The pixel-NIBEI values in
these maps were defined for MERIS and OLCI sensors, separately, as
described in Table 3:

As can be seen from the legends of Fig. 4(a) and (b), there is high
spatial variability in the NIBEI values and image colours in different
parts of each map. Following the simulations of Fig. 3, pixels with
brighter colours and higher NIBEI values are classified OSWs and pixels
with darker colours, and lower NIBEI values are ODWs. These results
are also in agreement with the bathymetry of the study (Fig. 1). In both
maps, the North Sea waters, some internal channels of the Dutch
Wadden Sea and the IJsselmeer lake show darker colours (displayed in
dark blue/green) with much lower NIBEI values (Fig. 4(a): NIBEI va-
lues< 3; Fig. 4(b): NIBEI values< 3.5) in comparison to the rest of the
region. The bathymetry of the study area (Fig. 1) is the evidence that
these regions have such high water levels (water depth > 15 m) that
the sea-bottom effect can not influence the recorded observations and
therefore are ODWs. On the other hand, there are regions, mainly

nearby the Wadden Sea coast as well as south of the barrier islands,
which show brighter colours (displayed in yellow/red) with consider-
able increases in the NIBEI values (Fig. 4(a): NIBEI values> 3;
Fig. 4(b): NIBEI values> 3.5). These regions can be detected as OSWs
by considering the bathymetry of the study area (Fig. 1) as these regions
have very low water level (water depth < 1.5 m) with a very high risk
of a sea-bottom contribution to remote sensing observations. The
mainland coast, Wadden islands, and exposed tidal flats are classified as
land in the preprocessing (black areas in Fig. 4); a small strip fringing
these areas have low NIBEI values, indicating areas with dry sea-bottom
(e.g., in Fig. 4(a)).

From this investigation, it can be concluded that OSWs can be dis-
tinguished from ODWs in MERIS and OLCI images by applying the
NIBEI to TOA radiances. However, first, a NIBEI threshold should be
determined per image, separately. The NIBEI threshold has a value for
each image. For example, in Fig. 4(a) and (b) the NIBEI thresholds are 3
and 3.5 for MERIS and OLCI images, respectively. However, as was
shown in Fig. 4, these thresholds can be easily determined by having a
quick visual image-based inspection per satellite image.

The reason for multi NIBEI thresholds is that these thresholds are
based on TOA radiances. The recorded TOA radiances at satellite
image-pixels are a function of atmospheric path radiance, the total gain
factor, the spherical albedo, and water-leaving reflectances by using Eq.
(10) (Verhoef and Bach, 2003):

= +
−

L L Gr
Sr1TOA 0 (10)

where LTOA is the TOA radiance value [W m−2 sr−1 μm−1], r is the
hemispherical water-leaving remote sensing reflectance (=πRrs). L0, G,
and S are the atmospheric parameters atmospheric path radiance, the
total gain factor, and the spherical albedo, respectively. These para-
meters can be calculated by using the MODerate resolution atmospheric
TRANsmission (MODTRAN) code (Berk et al., 2011). As explained by
Arabi et al. (2016), the atmospheric parameters of L0, G, and S are a
factor “of: (i) atmospheric properties in the form of visibility and
aerosol type; (ii) environmental variables in the form of concentrations
of ozone (O3) and carbon dioxide (CO2); and (iii) the illumination-ob-
servation geometry in the form of SZA, Viewing Zenith Angle (VZA) and
Relative Azimuth Angle (RAA)”. Therefore, it is logical that the re-
corded TOA radiances will be influenced by the above-mentioned fac-
tors and will not have the same values on the constant regions of a study
site for images captured by different sensors on different dates, water
turbidity, and atmospheric conditions. That is why, in practice, it is not
possible to propose a constant NIBEI threshold to detect OSWs using
TOA radiances. However, further investigations showed that the NIBEI
thresholds are within a constant range and slightly differ for different
sensors and images. Table 4 presents the ranges of the NIBEI thresholds
for MERIS and OLCI images. These ranges are obtained by finding
NIBEI thresholds from the full archive of cloud-free MERIS and OLCI
images provided by ESA since 2002 till present captured under different
illumination-observation geometry, water turbidity, environmental
variables and atmospheric conditions using Matlab programming
(Table 5).

As Table 4 shows, the NIBEI thresholds at the TOA level have a
constant range (2.6–4.9) for different MERIS and OLCI images captured
under different conditions.

(a) 

(b) 

Fig. 4. The generated maps of the NIBEI values over the study area from; (a) the
MERIS image captured on 25-03-2012, the NIBEI threshold = 3; (b) the OLCI
image captured on 01-07-2018 the NIBEI threshold = 3.5.

Table 3
The NIBEI formula for satellite images.

Satellite Band center at 750 nm Band center at 900 nm NIBEI for satellite imagesa

MERIS Band-10 Band-15 Radiance [band-10]/Radiance [band-15]
OLCI Band-12 Band-19 Radiance [band-12]/Radiance [band-19]

a The NIBEI formula = the ratio of TOA radiances at spectral bands of 750 nm/900 nm.

B. Arabi, et al. Remote Sensing of Environment 237 (2020) 111596

7

https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/products/matlab.html


4.4. Application of the NIBEI

4.4.1. Generating OSW and ODW maps from MERIS/OLCI images
We tested the application of the NIBEI to generate optically

shallow/deep water maps over shallow tidal waters of the Dutch
Wadden Sea, where both water depths and turbidity vary corre-
sponding to the tidal phase. To do this, we generated such maps using
two MERIS and OLCI images captured during high and low tidal phases
over the Dutch Wadden Sea, respectively. The image characteristics are
provided in Table 6.

To produce these maps, first, we generated an NIBEI map using the
NIBEI formula as was described in Section 4.3 and determined the
NIBEI threshold per each image, separately. Next, we presented opti-
cally shallow/deep waters discriminated by the NIBEI threshold in two
different colours using Matlab. The maps from these four images are
presented in Section 5.1.

4.4.2. Improving the reliability of WCC-retrievals from satellite images over
shallow tidal waters

We tested the application of the NIBEI as an intermediate approach
to flag OSWs in order to increase the reliability of satellite WCCs-maps.
To do this, we compared the performance of the coupled RT atmo-
sphere-hydro-optical model of MOD2SEA proposed by Arabi et al.
(2016) over discriminated OSWs and ODWs by NIBEI on the same
MERIS and OLCI images described in Table 6.

The reason we selected the coupled MOD2SEA model was that this
model is a TOA method that simulates TOA radiances in a pixel-by-pixel
approach. Therefore, implementing MOD2SEA on satellite images
provides the opportunity to validate the agreement of the simulated
TOA radiances against the observed ones over optically shallow and
deep water pixels, separately, since a dense network of in-situ mea-
surements is not available for this area. As a result, by implementing the
MOD2SEA model in this study, we were able to compare the spatial
variation in spectral residual errors of TOA radiances (i.e., the Root
Mean Square Error (RMSE) between the observed and the simulated
TOA radiance) over OSWs and ODWs, separately. The result of this
evaluation is presented in Fig. 6.

The coupled MOD2SEA model uses a Look-Up-Tables (LUTs) ap-
proach that combines the modeled Rrs LUTs by 2SeaColour (Salama and
Verhoef, 2015) with the modeled L0, G, and S LUTs by MODTRAN (Berk
et al., 2011) to simulated TOA radiances using Eq. (10) (Arabi et al.,
2016). Tables 7 and 8 present the input variables used in the MOD2SEA
model to build up the LUTs of the TOA radiances.

In this study, the MOD2SEA-TOA radiances were simulated corre-
sponding to the illumination-observation geometry and environmental

variables of each image, separately. The spectral values of simulated
TOA radiances are then found by spectrally fitting the LUTs of
MOD2SEA-simulated TOA radiances (using RMSE) to the actual image-
pixel TOA radiances recorded at the satellite image in a pixel-by-pixel
approach. For more detailed information about the MOD2SEA model,
readers are referred to Arabi et al. (2016). Next, the spectral agreement
between the simulated MOD2SEA-TOA radiances was validated against
the observed ones over detected optically shallow and deep waters by
the NIBEI for MERIS and OLCI images using statistical analysis. The
coefficient of determination (R2), RMSE, the Normalized Root Means
Square Error (i.e., NRMSE = RMSE/range), and the Relative Root
Means Square Error (i.e., RRMSE = RMSE/mean) were used for this
statistical analysis. The results of this evaluation are presented in Fig. 7,
and the related error statistics are presented in Tables 10, 11, 12, and
13.

4.4.2.1. Generating Chla, SPM and CDOM maps over the masked OSWs of
the Dutch Wadden Sea. We generated simultaneous maps of Chla
concentrations [mg m−3], SPM concentration [g m−3], and CDOM
absorption at 440 nm [m−1] from the MERIS and OLCI images listed in
Table 6, by applying the NIBEI over the masked OSWs of the Dutch
Wadden Sea. We used the MOD2SEA model to generate these WCC-
retrieval maps (Arabi et al., 2016).

The simultaneous retrieval of WCCs and atmospheric properties was
performed by spectrally fitting of the simulated TOA radiances (using
RMSE) to observed TOA radiances for all bands except for bands 11 and
13 for the MERIS and OLCI images, respectively. These bands are lo-
cated in the O2-A absorption region and could give erroneous results
due to spectral sampling errors of MERIS and OLCI sensors (Arabi et al.,
2016). Moreover, to speed up the computation and limit the combined
LUT size, for every pixel and aerosol type, only five visibilities were
selected from the atmospheric LUT. These visibilities were chosen to be
the first five less than the minimum required visibility for which the
modeled L0 was less than or equal to the measured TOA radiance in all
bands. This approach is equivalent to assuming only non-negative re-
flectances. Nonetheless, it dramatically increased the speed of compu-
tation while applying MatLabR2017B on a personal PC [Processor: Intel
(R) Core (TM) i7 - 4700 MQ, CPU: 2.40 GHz, RAM: 7.88 GB]. Overall,
the average number of pixels for each satellite image was equal to
80,000, while the land-mask would represent 39% of the whole scene.
The total number of LUT cases per pixel was equal to 15 times [5
(visibility) × 3 (aerosol types) = 15 times]. Moreover, the number of
water cases in total was equal to 1764: [21 (Chla concentration
[mg m−3]) × 21 (SPM concentration [g m−3]) × 4 (CDOM absorption
at 440 nm [m−1]) = 1764 cases]. Each image was generated in the

Table 4
The range of the NIBEI thresholds for the full archive of MERIS and OLCI images since 2002 till present.

Satellite image The NIBEI value in NIBEI map The range of NIBEI thresholds

MERIS Radiance [band-10]/Radiance [band-15] 2.6–4.6
OLCI Radiance [band-12]/Radiance [band-19] 2.7–4.9

Table 5
The atmospheric properties, environmental variables, and illumination observation-geometry for the full archive of MERIS and OLCI images since 2002 till present.

Satellite image Aerosola type Visibilityb [km] CO2
c [ppm] O3 [DU] SZAd [degree] VZA [degree] RAA [degree]

MERIS M, U, R 5–100 372–396 220–480 30–60 5–30 35–150
OLCI M, U, R 5–100 402–406 240–500 30–50 7–55 30–100

a The capital letters of M, U, and R are representatives of aerosol types of Maritime, Urban, and Rural, respectively.
b The atmospheric properties information can be found using available AERONET stations nearby the study site (Zibordi et al., 2010).
c The estimates of environmental variables can be obtained from the Global Reference Networks considering the date, time, and geographic location of the study

site.
d The values of illumination-observation geometry can be directly extracted from MERIS and OLCI images using different satellite software (e.g., SNAP, ENVI,

BEAM).
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average computation time of ten minutes. It should be mentioned that
the performance of the MOD2SEA model was already evaluated and
validated over ODWs of the Dutch Wadden Sea (Arabi et al., 2016)
while the results have shown significant improvements in both the at-
mospheric correction and MOD2SEA WCC-retrievals in comparison to
the standard MERIS Case 2 regional (C2R) processor. Therefore, vali-
dation of generated MOD2SEA-WCC maps was considered to fall out-
side the scope of the present research.

5. Results

5.1. Generating OSW and ODW maps from MERIS/OLCI images by
applying the NIBEI

Fig. 5 presents OSW and ODW maps generated by applying the
NIBEI on the same MERIS and OLCI images described in Table 6. ODWs
are shown in dark-blue, where OSWs are shown in grey. Land regions,
including exposed tidal flats (presented by L in the figures' legends), are
in black. The sensor and tidal phase at the time of the satellite overpass
are indicated above each map.

The number of pixels detected by the NIBEI varies in the different
maps. The exact number of these pixels (in percentage) are presented in
Table 9. Tides change the water level and water turbidity by releasing
water inflows from the North Sea into the Dutch Wadden Sea (Arabi
et al., 2016). Spatial variability of WCCs may also change in different

dates, SZAs, and seasons (Arabi et al., 2018). As a result, the extent of
OSWs varies in different satellite images captured under different tidal
phases and dates (Eleveld et al., 2014). Moreover, there are variations
between the exposed “dry” seabed pixels flagged as land (exposed tidal
flats) during the low tidal phase (Table 9: ~1%–3% of the images), as
the tide varies for the different images captured within the different
tidal phase. Table 9 presents the exact number of OSW-pixels and land-
pixels for each satellite image separately. The estimates are calculated
based on the number of OSW/land pixels divided by the whole scene
pixels ×100.

5.2. Improving the reliability of water retrieval algorithms by applying the
NIBEI

Fig. 6 presents the generated maps of TOA radiance spectral residual
errors (RMSE: [W m−2 sr−1 μm−1]) computed between the best fits of
the observed and simulated MOD2SEA-TOA radiances without (left
panel) and with (right panel) implementing the NIBEI.

As the left panel of Fig. 6 shows, the generated maps of error esti-
mates have a high spatial variation (RMSE [W m−2 sr−1 μm−1]:
0–100%) in different parts of the study area for the MERIS and OLCI
images captured during high and low tidal phases when the NIBEI is not
applied. The highest error estimates (RMSE ≥70%) mainly occur in the
central parts of the Dutch Wadden Sea nearby the internal islands as
well as the areas close by the shore. As a result, the retrieved WCCs
(Chla [mg m−3], SPM [g m−3], and CDOM absorption at 440 nm
[m−1]) from images will remain questionable over these regions. As the
right panel of this figure presents, applying the NIBEI has helped to flag
these high error estimate regions while the remaining areas have very
low error estimates (i.e., ODWs located mainly the external parts of the
Dutch Wadden Sea in the neighborhood of the North Sea as well as the
IJsselmeer lake: RMSE<20%). Fig. 7 shows the scatter plots of simu-
lated MOD2SEA-TOA radiances against image-pixel radiances over
discriminated OSWs and ODWs:

As Fig. 7 presents, there is a much better agreement between the
simulated TOA radiances against the observed ones for ODWs (shown in
black-circles) in comparison to OSWs (shown in red-triangles) for both
MERIS and OLCI images captured during low and high tidal phases,
respectively. The related statistical analysis of this evaluation are pre-
sented in Tables 10, 11, 12, and 13:

As these tables show, there is a strong agreement between the
modeled TOA radiances and the observed ones for all three selected
bands (i.e., 490 nm, 560 nm and 665 nm) over ODWs for both low and
high tidal phases using the MERIS and OLCI images, respectively
(R2 ≥ 0.95, RMSE<1 [W m−2 sr−1 μm−1], NRMSE ≤2.60%,
RRMSE<3%). However, the accuracy of the model to simulate TOA
decreases over OSWs for both low and high tidal phases using the
MERIS and OLCI images (R2 ≤ 0.90, RMSE [W m−2 sr−1 μm−1] > 1,
NRMSE>3%, RRMSE ≥2.5%). Consequently, the retrieved WCCs
(Chla, SPM concentrations, and CDOM absorption) will be questionable

Table 6
Image characteristics, tidal phases, and the NIBEI thresholds.

Satellite sensor date and time SZA Den Helder
water level, m NAPa

Harlingen
water level, m NAP

Delfzijl
water level, m NAP

NIBEI thresholdb

MERIS
(high tide)

23-04-2010,
10h51 UTC

41° +0.60 m incoming,
at 11h50 MET

+0.12 m incoming,
at 11 h50 MET

+1.19 m incoming,
at 11 h50 MET

>2.8

MERIS
(low tide)

25-04-2011, 10h42 UTC 40° +0.48 m incoming,
at 11h40 MET

−0.76 m incoming,
at 11 h40 MET

−1.40 m low water,
at 11 h40 MET

>2.9

OLCI
(high tide)

06-06-2018,
09h51 UTC

41° +0.60 m outgoing,
at 10h50 MET

+0.34 m incoming,
at 10 h50 MET

−0.95 m incoming,
at 10 h50 MET

>3.3

OLCI
(low tide)

06-08-2018,
10h06 UTC

39° +0.32 m incoming,
at 11h10 MET

−1.05 m incoming,
at 11h10 MET

−1.46 m outgoing,
at 11h10 MET

>3.2

a Water level data obtained from Rijkswaterstaat (https://waterinfo.rws.nl), see station locations in Fig. 1. See the explanation of NAP in caption Fig. 1.
b The NIBEI threshold is estimated using the NIBEI values at the band-centrer[750 nm]/band-centre[900 nm].

Table 7
The used ranges and units of WCCs in the Rrs LUTs by the 2SeaColour model.

Variable Unit Valuesa Stepb

Chla concentration [mg m−3] 0–100 5
SPM concentration [g m−3] 0–100 5
CDOM absorption [m−1] 0–2 0.5

a The range of WCC concentrations was determined based on previous stu-
dies (Hommersom, 2010).

b The CDOM absorption at 440 nm [m−1] values of [0], [0.5], [1], [1.5], and
[2] were used in Rrs LUTs.

Table 8
The used visibility range [km] and aerosol types in atmospheric properties LUTs
by MODTRAN.

Atmospheric property Unit Values/typea

Visibility km 4–100
Aerosol-type – R, M, U

a We applied the method of Inverse Visibility (IV) to get approximately equal
steps in Aerosol Optical Thickness (AOT). In this method, IV values were set
equal to 100 divided by the actual visibilities (100 / Visibility). We set the IV
values as 1, 2, 3, …, 25, corresponding to actual visibilities of 100, 50, 33.3, …,
4 km. Then we calculated the atmospheric parameters of L0, G, and S by run-
ning MODTRAN for the values of the actual visibilities.
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over these OSWs due to very high spectral residual errors while the
NIBEI is not implemented on the images. Additionally, implementing
the NIBEI significantly helps to increase the accuracy of the mode's TOA
simulations for both ODWs and OSWs, and accordingly, reliability of
retrieved WCC maps from the images to be used in further processing as
desired.

Since the regions masked by the NIBEI are classified as OSWs, it can
be said that the effect of the sea-bottom on the satellite observations is
one of the main causes of high error estimates over these areas.
Although a heterogeneous atmosphere (e.g., the existence of local haze
variation) could be another factor influencing the spatial accuracy of
the model's simulations (Arabi et al., 2016; Shen and Verhoef, 2010),
further investigations showed that mostly similar combinations of vis-
ibility and aerosol type were present over OSWs and ODWs at time of
satellite overpass in the study area. The maps of aerosol type (Fig. 8)
and visibility (Fig. 9) are generated by using the MOD2SEA model, and
readers are referred to Arabi et al. (2016) for more information on the
implemented approach to generate these maps.

Comparing the left and right panels of Figs. 8 and 9, it can be ob-
served that the high spectral residual errors of the model's simulations
over OSWs, detected by the NIBEI, are independent of variations in

atmospheric type and visibility. For example, the atmospheric type
shows similar combinations of maritime and urban over both OSWs and
ODWs in Fig. 8(a) and (b). The story is the same for visibility, which is
homogenous over discriminated OSWs and ODWs in Fig. 9(a) and (b).
As a result, it can be said that the effect of the sea-bottom can be
considered as the main reason for the model's failure to simulate
MOD2SEA-TOA radiances accurately over OSWs of the study area
(Arabi et al., 2018; Yu et al., 2016a, 2016b). Therefore, it can be con-
cluded that applying the NIBEI on MERIS and OLCI images improve the
reliability and consistency of generated WCC maps. The OSW pixels
that are contaminated with the sea-bottom effect were properly flagged
by NIBEI. However, it will remain a challenge to differentiate the
combined effects of sea-bottom, water constituents, and atmosphere
using TOA spectra alone. This conclusion does not necessarily mean
that applying the NIBEI leads to an increase in the accuracy of the WCC
retrievals in ODWs. The accuracy of the WCC retrievals by using a water
retrieval algorithm is dependent on other factors such as the suitability
of the applied water retrieval algorithm, a model's IOPs parametriza-
tions, sensor characteristics, etc., and is independent of the NIBEI per-
formance. For example, an increase in spatial and spectral resolutions
leads to having more spectral information and accordingly leads to
improved accuracy of WCC-retrievals (Lee and Carder, 2002). However,
this task falls outside the scope of the present study.

5.2.1. Generating reliable WCC maps over ODWs from satellite images
Figs. 10–12 present the generated maps of Chla concentration

[mg m−3], SPM concentration [g m−3], and CDOM absorption at
440 nm [m−1] using the MOD2SEA model from the MERIS and OLCI
images, respectively.

As Fig. 10 shows, the retrieved Chla concentrations [mg m−3]
mainly show high estimates (~100 [mg m−3]), nearby the coasts,
surrounding islands of the Dutch Wadden Sea (Fig. 10(b), (c), (d)),

(a) (b)

(c () d) 

Fig. 5. The generated maps of OSWs and ODWs over the study area from; (a) the MERIS image captured during the high tidal phase; (b) the MERIS image captured
during the low tidal phase; (c) the OLCI image captured during the high tidal phase; (d) the OLCI image captured during the low tidal phase.

Table 9
The number of OSW-pixels and land-pixels in percentage for each satellite
image.

Satellite sensor Tidal phase OSW-pixels (%) Land-mask pixels (%)

MERIS High tide 21% 42%
MERIS Low tide 23% 40%
OLCI High tide 23% 39%
OLCI Low tide 29% 38%
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(c () d) 

(e () f) 

(g () h) 

Fig. 6. The generated maps of RMSE(%) [W m−2 sr−1 μm−1] estimates between the best fits of observed TOA radiances at satellite image-pixels and simulated TOA
radiances by the MOD2SEA model over the study area from; row 1: (a) the MERIS image captured during the high tidal phase (a) without and (b) with applying the
NIBEI; row 2: the MERIS image captured during the low tidal phase (c) without and (d) with applying the NIBEI; row 3: the OLCI captured during the high tidal phase
(e) without and (f) with applying the NIBEI; row 4: the OLCI image captured during the low tidal phase (g) without and (h) with applying the NIBEI.
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Fig. 7. Comparison between the MOD2SEA model's best-fit spectra and observed TOA radiances [W m−2 sr−1 μm−1] over the study area for the band centers of
column 1: 490 nm; column 2: 560 nm; and column 3: 665 nm, and from row 1: the MERIS image captured during high tidal phase; row 2: the MERIS image
captured during low tidal phase; row 3: the OLCI captured during high tidal phase; row 4: the OLCI image captured during low tidal phase.
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while a maximum values of Chla estimates (≥100 [mg m−3]) can be
observed in the IJsselmeer lake (Fig. 10(a)). These values decrease
(~60 [mg m−3]) while moving from the shores to the internal parts of
the Dutch Wadden Sea and reach their lowest amounts (< 20
[mg m−3]) in the external parts of the Dutch Wadden Sea in the vicinity
of the North Sea for all maps. However, fairly high spatial and temporal
variability of Chla concentrations [mg m−3] can be observed on various
dates. For example, a wider extent of the IJsselmeer lake shows high
values of Chla estimates (~100 [mg m−3]) in Fig. 10(b) and (d) in
comparison to Fig. 10(a) and (c).

Fig. 11 presents the generated maps of retrieved SPM concentrations
[g m−3] over the study area using the same MERIS and OLCI images:

As Fig. 11 shows, the maps of retrieved SPM concentrations [g m−3]
show the same variation range (0–80 [g m−3]) and similar spatial
variability for all dates. The SPM concentrations show lower values in
the proximity of the North Sea and the IJsselmeer lake (0–20 [g m−3])
and higher values nearby the islands.

Fig. 12 presents the generated CDOM absorption at 440 nm [m−1]
from the same MERIS and OLCI images.

As it was explained in Section 4.4.2.1, to speed up the process, only
five steps of CDOM absorption at 440 nm [m−1] (i.e., [0], [0.5], [1],
[1.5] and [2]) were considered into the MOD2SEA WCC-retrievals.
Therefore, the spatial variability of CDOM absorption at 440 nm [m−1]
is limited to these five values, as are presented in five colours in the
legend of the figure.

As Fig. 12 presents, the CDOM absorption at 440 nm [m−1] shows a
spatial variability with higher values (≥0.5 [m−1]) nearby the coasts
and lower values in the North Sea waters (< 0.5 [m−1]). Furthermore,
the retrieved CDOM absorption at 440 nm [m−1] has similar spatial
variability with retrieved Chla concentrations [m−3] (Fig. 10) during
different tidal phases for all dates. Overall, with respect to complexity
of CDOM analytical-retrieval from satellite images in shallow waters,
the generated CDOM absorption at 440 nm [m−1] maps in this research
can be regarded as satisfactory enough (Beltrán-Abaunza et al., 2014;
Brezonik et al., 2015; Campbell et al., 2011; Kutser et al., 2005a, 2005b;
Yu et al., 2016a, 2016b).

6. Discussion

In many coastal areas, the sea-bottom effect contributes to the ob-
served Rrs values, both at the water surface and the satellite level (Lee
and Carder, 2002). This can interfere with the correct retrieval of WCCs
from hyperspectral or multi-spectral satellite sensors depending on
local water depth and transparency of the water (Lee et al., 1999;
Martinez-carranza and Calway, 2012). Although bathymetry maps can
be used to determine the water depth in remote sensing studies of

coastal areas (Pattanaik et al., 2015), these maps are not always
available for all regions (Giardino et al., 2012). On the other hand, the
sea-bottom effect varies depending on water column attenuation,
bottom albedo, substrate type, and water depth variation in tidal areas
(Giardino et al., 2014; Maritoren et al., 1994; Mgengel and Spitzer,
1991). Therefore, using bathymetry maps cannot always improve the
accuracy of WCC products over shallow tidal areas. However, the WCC
products may be able to improve the accuracy of satellite-derived
bathymetry maps.

In this paper, we extended the 2SeaColour model by incorporating
the sea-bottom effect for modeling of the above water leaving remote
sensing reflectance [sr−1] as a function of water constituents' con-
centrations (i.e., Chla, SPM, CDOM), bottom albedo and water depth.
The modified model, called Water - Sea Bottom (WSB), was used to
better understand the effect of bottom albedo on field and satellite
observations of ocean colour. We found that all parts of Rrs spectra are
affected by water depth in various ways. However, in the NIR, the Rrs

spectral shapes are nearly insensitive to WCCs, and spectra only in-
crease in magnitude with water turbidity and bottom albedo (Fig. 3). As
the main outcome of this investigation, we defined the novel index, the
NIBEI, as the ratio of Rrs values/TOA radiances at 750 nm/900 nm to
discriminate OSWs contaminated by sea-bottom effects. The NIBEI
threshold value for OSWs was NIBEI> 2.67 using Rrs values (Section
4.2) and 2.67 ≤ NIBEI ≤4.9 using TOA radiances (Section 4.3).

6.1. The NIBEI applications in satellite remote sensing of water quality

In this paper, we tested the application of the NIBEI “for: i) gen-
erating shallow vs. optically deep water maps and ii) generating more
reliable WCCs maps from satellite images.”

In Section 5.1., we showed that implementing the proposed NIBEI
makes it possible to generate OSW/ODW maps from MERIS and OLCI
images over the Dutch Wadden Sea (Fig. 5). Generated OSW/ODW
maps over highly varied shallow tidal waters are vital for water quality
monitoring and management (Eleveld et al., 2014). As shown in Fig. 3,
the sea-bottom effect can have an influence on the blue-green part of Rrs

spectrum for water depths even up to 50 m if the water is clear enough.
This interferes with accurate retrieval of WCCs over OSWs if not treated
properly. Therefore, it is essential to accurately determine the location
of ODWs from satellite images before establishing autonomous in-situ
stations or doing fieldwork measurements.

In Section 5.2., we showed that applying the proposed NIBEI im-
proves the accuracy of the MOD2SEA model's performance to simulate
TOA radiances by excluding OSWs from the consideration of the
model's simulations. It is also worth mentioning that there were regions
with low spectral residual errors detected as OSWs masked from the

Table 10
Evaluation of the MOD2SEA model's best-fit spectra against observed TOA radiances over the study area from the MERIS image captured during the high tidal phase.

Statistical analysis R2 RMSE [W m−2 sr−1 μm−1] NRMSE (%) RRMSE (%)

Band center/water status ODWs OSWs ODWs OSWs ODWs OSWs ODWs OSWs

490 nm 0.97 0.85 0.52 1.45 2.60 5.10 1.20 2.86
560 nm 0.98 0.83 0.80 1.60 2.33 5.70 2.65 4.10
665 nm 0.99 0.89 0.41 1.08 1.72 3.36 2.51 3.49

Table 11
Evaluation of the MOD2SEA model's best-fit spectra against observed TOA radiances over the study area from the MERIS image captured during the low tidal phase.

Statistical analysis R2 RMSE [W m−2 sr−1 μm−1] NRMSE (%) RRMSE (%)

Band center/water status ODWs OSWs ODWs OSWs ODWs OSWs ODWs OSWs

490 nm 0.99 0.79 0.38 1.43 1.83 5.38 0.81 2.56
560 nm 0.99 0.84 0.51 1.47 2.08 5.73 1.54 3.39
650 nm 0.99 0.90 0.23 1.06 1.10 3.10 1.20 2.49
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images by applying the NIBEI (Fig. 6). Indeed in these areas, the pixel
TOA spectra match well with at least one of the generated TOA ra-
diances LUTs by the MOD2SEA model. We know from the NIBEI that
the water is optically shallow in these areas. Therefore, for these re-
gions, applying the NIBEI is even more useful since it can flag for OSWs
even if estimated residual spectral errors are small. Caution is advised
as the retrieved WCCs in these areas are probably incorrect due to the
sea-bottom effect.

In Section 5.2.1, we generated reliable WCC maps (i.e., Chla con-
centration [mg m−3], SPM concentration [g m−3], and CDOM ab-
sorption at 440 nm [m−1]) over distinct ODWs by the NIBEI where
there was a strong agreement between simulated MOD2SEA-TOA ra-
diances against the observed ones. Generating consistently reliable
water quality products (Figs. 10, 11, and 12) creates an excellent op-
portunity for the long-term spatio-temporal monitoring of the Wadden
Sea with respect to the availability of MERIS (2002−2012) and OLCI
(2018–present) images. Such information is vital for the maintenance
and conservation of this World Heritage site following the recent report
of SDGs (i.e., Goal-14: Conserve and sustainably use the oceans, seas,
and marine resources) (Marmot and Bell, 2018), the European Water
Framework Directive (WFD) and the European Marine Strategy Fra-
mework Directive (MSFD) (Doerffer and Fischer, 1994; Eleveld et al.,
2007; Enemark, 2005; Kabat et al., 2012). It is also worth mentioning
that generating consistently reliable water quality maps has a sig-
nificant contribution in monitoring, protection, and maintenance of
coral reef habitats in many coastal regions. For example, studies have
shown that the coral habitat has declined under the stress of poor water
quality in the Florida Keys over the past 30 years (Boyer and Jones,
2002; Gardner et al., 2003). Systematic monitoring using reliable WCC
maps is a big step forward in supporting their monitoring program
which has been implemented over the large extent of the Florida Keys
National Marine Sanctuary (Dustan, 1999; Klein and Orlando, 1994;
Murdoch and Aronson, 1999; Ogden et al., 1994).

6.2. Advantages/similarities to other bottom-effect indexes

The newly proposed NIBEI in this study is used to readily distinguish
OSWs from ODWs prior to the implementation of water retrieval al-
gorithms on satellite imagery in shallow coastal waters. This concept is
similar to the Bottom Effect Index (BEI: the band ratio of Rrs[690 nm]/
Rrs[555 nm]) proposed by Li et al. (2017) to quickly identify waters in
the Saginaw Bay within Lake Huron for which the sea-bottom re-
flectance is significant (Li et al., 2017). Indeed the BEI is a metric index
that proposes a threshold to classify OSWs (depth ≤ 1.5 m or
BEI ≥ 0.2) from ODWs (depth > 1.5 m or BEI < 0.2). However,
implementing the BEI requires some ancillary input data such as water

depths and Rrs estimations. In order to apply the BEI on satellite ima-
gery, one needs to apply an appropriate atmospheric correction to
calculate Rrs values. Applying an atmospheric correction is the most
challenging part of satellite remote sensing of coastal waters and can
easily interfere with the accuracy of retrieved Rrs values from TOA
radiances. Additionally, implementing the BEI requires the accurate
estimation of water depth in the form of bathymetric charts, which may
not be easily nor freely available for many coastal areas.

Mckinna and Werdell (2018) developed an approach to flag OSWs
using MODIS imagery of the Great Barrier Reef, Australia. However,
implementing their approach also requires ancillary input, namely
bathymetric data, water clarity, and seafloor albedo, which are not
always available for all regions. Thus, it can be said that the big ad-
vantage of the NIBEI in comparison to other existing indexes is its in-
dependency from various site-specific ancillary data mentioned earlier.
In other words, the NIBEI can be directly applied to the satellite image
by only having TOA radiances and selecting the proper band centers of
750 nm and 900 nm from any multispectral sensor to detect OSWs.

Another advantage of the NIBEI is its applicability to multi-spectral
satellite imagery, while most water retrieval algorithms developed for
shallow water require hyperspectral observations. For example, a Semi-
Analytical (SA) model was developed by Lee et al. (1998) for simulta-
neous retrieval of bottom albedo, water depth, total absorption, and
total backscattering coefficients from hyperspectral measurements over
shallow coastal waters. However, to implement the SA model on multi-
spectral satellite imagery, hyperspectral images are required. This, in
turn, needs a much larger data storage and longer data processing.
Moreover, if the main objective for coastal and oceanic observations is
to estimate WCCs, bottom depth, and bottom type, an ideal sensor does
not necessarily need hyperspectral bands (Lee and Carder, 2002). In-
deed, it might be more suitable and cost-effective to have an adequate
number of bands, spatial resolution, and high signal-to-noise ratios (Lee
and Carder, 2002). Besides, implementing the SA model on satellite
images requires local inputs of empirical coefficients, in-situ measure-
ments of bottom albedo, and water depths to calibrate/validate the
model when applied to a new environment. Note that the requirement
of the above-mentioned input data and intensive calibration and vali-
dation implies that the SA model is very site-specific. In contrast, the
NIBEI can easily be applied to other locations, although the threshold
values of the NIBEI to differentiate between OSW and ODW are image-
specific.

All in all, with respect to the simplicity, rapid data processing,
transferability to other regions and no-ancillary data requirement
(other than TOA radiances), the proposed NIBEI in this study is able to
overcome all the above-mentioned deficits and can make a significant
improvement to increasing the reliability of water quality products for

Table 12
Evaluation of the MOD2SEA model's best-fit spectra against observed TOA radiances over the study area from the OLCI captured during the high tidal phase.

Statistical analysis R2 RMSE [W m−2 sr−1 μm−1] NRMSE (%) RRMSE (%)

Band center/water status ODWs OSWs ODWs OSWs ODWs OSWs ODWs OSWs

490 nm 0.95 0.89 0.86 2.03 1.96 3.08 1.83 3.05
560 nm 0.96 0.88 0.98 2.14 2.45 4.22 2.32 4.73
665 nm 0.98 0.89 0.53 2.38 1.68 5.43 2.99 7.87

Table 13
Evaluation of the MOD2SEA model's best-fit spectra against observed TOA radiances over the study area from the OLCI image captured during the low tidal phase.

Statistical analysis R2 RMSE [W m−2 sr−1 μm−1] NRMSE (%) RRMSE (%)

Band center/water status ODWs OSWs ODWs OSWs ODWs OSWs ODWs OSWs

490 nm 0.99 0.86 0.35 2.70 1.58 6.00 1.29 5.53
560 nm 0.99 0.87 0.27 2.64 1.32 6.34 1.35 6.51
665 nm 0.99 0.86 0.30 2.39 2.11 6.21 1.86 6.58
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Fig. 8. The generated aerosol type (R: Rural, M: Maritime, U: Urban) maps using the MOD2SEA model over the study area from (a) the MERIS image captured during
the high tidal phase; (b) the MERIS image captured during the low tidal phase; (c) the OLCI captured during the high tidal phase; (d) the OLCI image captured during
the low tidal phase. The OSWs detected by the NIBEI are shown in grey, and the land regions (L) are shown in black colour, respectively.
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Fig. 9. The generated visibility [km] maps using the MOD2SEA model over study area from (a) the MERIS image captured during the high tidal phase; (b) the MERIS
image captured during the low tidal phase; (c) the OLCI captured during the high tidal phase; (d) the OLCI image captured during the low tidal phase.
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challenging shallow coastal regions.

6.3. Recommendation and suggestions

The NIBEI can be easily applied to satellite images captured in
different water turbidity, bottom types, observed-illumination geo-
metry, and atmospheric condition to detect OSWs. However, to apply
the NIBEI, a proper NIBEI threshold should be determined (Fig. 4).
Although determining the appropriate NIBEI threshold per image could
be done quickly and easily using visual image-based inspection, these
values are not constant for different satellite images and vary slightly
considering the date and atmospheric condition of each image (Section
4.3). In the future, it might even be possible to derive the best atmo-
spheric correction from the requirement that NIR spectra for deep
waters must have a fixed shape, regardless of WCCs. In that way, it
would be possible to apply a fixed value for NIBEI (after atmospheric
correction) for all images. However, it will remain a much bigger
challenge to differentiate the combination of effects of the sea-bottom,
WCCs, and atmospheric properties from radiance spectra alone to re-
trieve WCCs from OSWs accurately from satellite images (Wang, 2005;
Zibordi et al., 2009). Therefore, in this study, we implemented an in-
termediate approach by flagging OSWs as objects that are too complex
for further spectral analysis and to estimate WCCs only from pixels that
have been identified as ODWs. This is because, at the TOA level, the
NIBEI will be slightly influenced by the atmospheric gain and path
radiances. Obviously, after atmospheric correction, one can probably
establish fixed thresholds. This is a topic for further investigation.

The proposed NIBEI can be easily applied to Earth Observation data,
provided information at band centers 750 nm and 900 nm are available
with sufficient spectral resolution, although the required band width

should be considered. Therefore we suggest evaluating the performance
of this index to detect OSWs using data from other ocean colour remote
sensors like the MODIS, Geostationary Ocean Colour Imager (GOCI), or
future Environmental Mapping and Analysis Program (Enmap) pro-
ducts.

As explained in previous sections, the only requirement to apply the
NIBEI is TOA radiances recorded at satellite image pixels as the NIBEI is
free from local factors such as IOPs parametrizations, empirical coef-
ficients, atmospheric conditions or other ancillary data. The proposed
NIBEI is not site-specific and can be easily applied to other locations.
We welcome testing the applicability of the proposed NIBEI in other
coastal areas to see how broadly applicable this index might be and to
what extent our findings could be generalized.

We suggest evaluating the application of the NIBEI in improving the
optical remote sensing of bathymetry and benthic habitats in complex
non-turbid shallow waters with known high bottom reflectance con-
tributions like the Bahamas and the Florida Keys, USA. Recently there
has been a great interest to implement different methods of empirical
algorithms, RT modeling, and Artificial Neural Networks to classify
bottom types and estimate bathymetry using satellite images in these
regions. The results of these studies show that all the tested algorithms
perform much better with higher accuracy in OSWs in comparison to
ODWs. The reason is that water transparency, bottom reflectance, and
atmospheric transmittance combine to give the strongest bottom re-
flected signal in OSWs (Sandidge and Holyer, 1998) while in ODWs, the
absorption and scattering of water column and the reflectance of the
sea-bottom limit significant bottom reflected radiance (Casey, 2007;
Louchard et al., 2003; Mumby et al., 2004; Palandro et al., 2008;
Sandidge and Holyer, 1998; Stumpf et al., 2006). As a result, all tested
algorithms have failed to accurately estimate water depth and bottom

(a () b) 

(c () d) 

Fig. 10. The generated maps of retrieved Chla concentration [mg m−3] using the MOD2SEA model over the study area from (a) the MERIS image captured during the
high tidal phase; (b) the MERIS image captured during the low tidal phase; (c) the OLCI captured during the high tidal phase; (d) the OLCI image captured during the
low tidal phase.
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type in ODWs (Louchard et al., 2003; Palandro et al., 2008; Sandidge
and Holyer, 1998). Therefore, for these studies, the NIBEI can be used
in the opposite way to exclude ODWs from water retrievals' con-
sideration before further processing of satellite images. Flagging ODWs
in these complex regions not only increases the reliability of the applied
models' retrievals by only focusing on OSWs of the study site but also
saves time and money by proper determination of OSWs to collect in-
situ measurements for the sake of the selected models' calibration and
validation.

Eventually, we would like to promote the proposed NIBEI index to
be incorporated into image processing software programs (e.g.,
SeaDAS, ERDAS, SNAP, ENVI) to be used for multi-spectral satellite
image processing (e.g., OLCI, Multispectral Instrument (MSI), MERIS,
GOCI) over complex shallow areas. This can be feasible by applying an
appropriate atmospheric correction method on satellite images and
then implementing the NIBEI on estimated Rrs images from TOA ra-
diance images to detect OSWs using the fixed threshold of 2.67. This
will not only help the rapid detection of OSWs from satellite images but
will also benefit the application of other tools such as BOMBER (Bio-
Optical Model-Based tool for Estimating water quality and bottom
properties from Remote sensing images) (Giardino et al., 2012).
BOMBER, promoted on the ENVI, is the only available tool for si-
multaneous retrieval of water depth, bottom type, and WCCs from sa-
tellite images over shallow waters at the moment. BOMBER requires the
accurate location of OSWs and ODWs as one of its main input data. By
incorporating the NIBEI into image processing software, the resulting
discriminated OSW/ODW pixels can then be directly inputted into the
BOMBER tool, increasing the accuracy of the final products. These
products could later help improve habitat classification, satellite-de-
rived bathymetry, and bottom sediment classification at the low tidal
phase.

7. Conclusion

We developed a new model called WSB to incorporate the sea-
bottom effect into Rrs simulations using RT modeling. From the per-
formed analysis and investigations of this research, we conclude that:

1) The addition of the bottom layer to the 2SeaColour model enables
simulation of the sea-bottom effect on the observed Rrs values and
facilitates the development of the NIBEI.

2) The NIBEI discriminates OSWs from ODWs on MERIS and OLCI
images.

3) The exclusion of OSWs from MERIS/OLCI images increases the re-
liability of the generated WCCs maps over complex shallow waters.
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Appendix A. Water layer optical properties in the WSB model

In the WSB model, a numerically safe solution of radiative transfer is applied that has been adapted from the 4SAIL vegetation canopy reflectance
model (Verhoef et al., 2007). The numerical safety refers to the treatment of the possible singularity occurring when k = m, where m is the
eigenvalue or the diffusion exponent of the two-stream system. Since the extinction coefficient k depends only on the solar zenith angle, and m
depends on the spectral absorption properties of the medium, in many cases, the possibility exists that a combination of solar zenith angle and
wavelength occurs under which this singularity can accidentally come to expression in the form of numerical instability.

Radiative transfer in water can be described with a similarity transformation that forces quasi-isotropic scattering, which means that only two
scattering coefficients are needed, namely σ and s, the hemispheric (back)scattering coefficients for incident diffuse hemispheric light and direct
sunlight, respectively. In this case, the diffusion exponent is found from:

= − = −m κ κ ω ω( 2 ) 2 1 . (A1)

The infinite reflectance is given by

=
− +

=
− + −∞r

ω
κ ω m

ω
ω ω2 2 1

.
(A2)

In terms of x = bb/a, one can write

(c) (d) 

(a () b) 

Fig. 12. The generated maps of CDOM absorption at 440 nm [m−1] using the MOD2SEA model over the study area from (a) the MERIS image captured during the
high tidal phase; (b) the MERIS image captured during the low tidal phase; (c) the OLCI captured during the high tidal phase; (d) the OLCI image captured during the
low tidal phase.
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From this we also find
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To distinguish both infinite reflectances, we write rdd∞ = r∞. For the infinite DHRF we find
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The other important quantities of the model are given without derivation:
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The function J1 was designed to intercept the (near) singularity occurring when k approaches m. From Eq. (A6) one can see that not only the case
of the exact singularity is handled, but also a narrow region around it, where | k –m | < 10−3. This guarantees a completely smooth behavior of this
function, without any sign of numerical instability.
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