5.7 A MEMS Coriolis Mass Flow Sensor with 300μg/h/√Hz Resolution and ±0.8mg/h Zero Stability

Arthur C. de Oliveira1, Jarno Groenesteenj2, Remco J. Wiegerink3, Kofi A. A. Makinwa1
1Delft University of Technology, Delft, The Netherlands
2Bronkhorst BV, Ruurlo, The Netherlands
3University of Twente, Enschede, The Netherlands

Precision flow sensors are widely used in the pharmaceutical, food, and semiconductor industries to measure small amounts (<1gram/hour) of liquids and gases. MEMS thermal flow sensors currently achieve state-of-the-art performance in terms of resolution, size, and power consumption [1,3]. However, they only measure volumetric flow, and so must be calibrated for use with specific liquids [1] or gases [2,3]. In contrast, Coriolis flow sensors measure mass flow and thus do not need calibration for specific fluids. Furthermore, their resonance frequency can be used as a measure of fluid density. These features enable significant size, cost, and complexity reductions in low-flow microfluidic systems. Although much progress has been made, miniature [4] and MEMS [5-7] Coriolis mass flow sensors are still outperformed by their thermal counterparts, especially in terms of resolution and long-term stability.

This paper presents a dedicated CMOS interface for a MEMS Coriolis mass flow sensor. The sensor is fabricated using bulk-micromachining-based surface-channel technology to realize silicon-rich silicon nitride flow channels (<60μm diameter) [7]. Compared to sensors with silicon flow channels [5], higher mass flow sensitivity is achieved because the channel walls are quite thin (~1.2μm), making the mass of the flowing fluid larger than that of the channels. This also allows the sensor to be operated at atmospheric pressure. Compared to the state of the art [4-6], the overall flow-sensing system achieves significantly improved performance: 13x in resolution (300μg/h/√Hz), 12x in noise and 10x in power consumption. Finally, the sensor’s sensitivity remains relatively constant for different fluids. The sensor’s long-term zero stability (ZS) is derived from the standard deviation under zero flow conditions when filled with N2 and H2O. Over a 1h interval, it achieves a ZS of ±0.8mg/h for H2O in a 3Hz bandwidth with a 300μg/h/√Hz noise floor (Fig. 5.7.4, bottom).

To maintain the MEMS sensor in its linear operating region, the drive amplitude must be regulated. Although the comb capacitors enable low-noise readout of drive motion, the resulting current (i) will be modified by the physical properties of the fluid inside the channel, causing variations in the detected drive amplitude. A more robust alternative is to use the output of the pick-up track (ε) to regulate the drive angular velocity, and thus the generated Coriolis force. In this design, two complementary control loops are implemented: a low-noise drive loop based on the comb capacitors, which drives the sensor at its resonance frequency, and an amplitude-control loop based on the pick-up coil, which regulates the drive angular velocity.

Figure 5.7.2 shows a simplified block diagram of the system. It consists of three main parts: the MEMS sensor, the drive and amplitude-control loops, and the sense path. The drive loop uses HV-biased comb capacitors to sense drive motion. The resulting capacitance changes are converted to a voltage and then delayed by 90° to ensure oscillation. Finally, the sensor is driven by a variable-gain amplifier (VGA), whose gain is controlled by the amplitude-control loop. To suppress the amplitude-control loop noise and improve the sensor’s long-term stability, the output of the pick-up coil is synchronously demodulated by mixing it with a phase-locked signal fPULSE obtained from the drive loop. The result is then compared to a reference voltage that sets the target amplitude. Finally, the loop filter, L(s), attenuates the resonance and chopping harmonics while stabilizing the amplitude control. The sense path uses an IQ demodulator to detect the Coriolis signal (sense axis). The ratio between the in-phase (I) and quadrature (Q) components, which represents the phase shift between the drive and sense signals, is used to measure the mass flow, while the PLL output frequency provides fluid density information.

A simplified circuit diagram of the flow sensor’s readout interface is shown in Fig. 5.7.3. The front-end of the drive loop consists of a capacitive transimpedance amplifier (C-TIA) based on an integrator-differentiator topology. The C-TIA has a gain of 148dB and 120fA/V input-referred current noise. A wide-range VGA is realized by using linearized MOSFETs as voltage-dependent resistors. At start-up, βdemod may be quite large (~10mA), and so the VGA has a Class-AB output stage to drive the sensor efficiently. The amplitude-control loop consists of a chopped capacitively-coupled 1st stage with a gain of 40dB that up-modulates and boosts the induced ε signal. Its output is then synchronously demodulated by the 2nd stage, with a gain of 26dB, effectively demodulating the fPulse and fc to fPulse and fc, respectively. The result is then compared to a chopped off-chip reference voltage (Vref), demodulated, and then filtered to attenuate fc and fc, harmonics. To minimize the phase and noise contribution of the biasing networks, the time constants C1, R1 and C2, R2 must be well below fc and fc, respectively. This is achieved by implementing the large feedback resistances (>5GΩ) as switched resistors. Finally, the fc, fc, and fc, signals are synthesized from the drive phase with the help of a charge-pump PLL (CP-PLL) with an integer-N divider (N=128), which is locked to the zero crossings of Vref.

The proposed readout IC was realized in a 0.18μm CMOS process and occupies a 1.2mm2 active area, while the MEMS sensor occupies 10.4mm2 (Fig. 5.7.7). The readout IC draws 8.1mA from a 1.8V supply. The sensor is characterized by mounting it over a custom fluidic connector. Figure 5.7.4 (top) shows its measured output response from liquids (H2O, IPA, H2O+IPA) to gases (N2, Ar, CO2, He) for mass flows up to 5g/h at room temperature and stable input pressure (6bar for gases, and 2bar for liquids). The ratio between phase shift and resonance frequency of all fluids is normalized by its maximum value for H2O, and the sensitivity of N2 is calibrated to match that of H2O at 2g/h. The resulting calibration coefficient is then used for all fluids. As shown in Fig. 5.7.4 (top right), the sensor’s sensitivity remains relatively constant for different fluids. The sensor’s long-term zero stability (ZS) is derived from the standard deviation under zero flow conditions when filled with N2 and H2O. Over a 1h interval, it achieves a ZS of ±0.8mg/h for H2O in a 3Hz bandwidth with a 300μg/h/√Hz noise floor (Fig. 5.7.4, bottom).

The sensor’s change in resonance frequency seen from the PLL output is shown in Fig. 5.7.5 (top), which corresponds to a sensitivity of -160Hz/(kg/m3) from He to H2O. The long-term stability of the density output signal is shown in Fig. 5.7.5 (bottom). The chopper-stabilized amplitude-control loop reduces the Allan deviation by almost 2x, showing the effectiveness of the flicker-noise suppression scheme. Figure 5.7.6 summarizes the performance of the proposed MEMS Coriolis mass flow sensor and compares it with state-of-the-art flow sensors. Compared to previous Coriolis mass flow sensing systems, it achieves >13x higher resolution, >12x lower zero stability, and >27x less power consumption. It also achieves similar performance to state-of-the-art MEMS thermal flow sensors while consuming comparable power. This makes the proposed MEMS Coriolis system a promising candidate to replace MEMS thermal sensors in applications where both wide mass flow range and high resolution are required.

Acknowledgement:
The authors would like to thank the Dutch technology foundation STW, Bronkhorst BV, and KROHNE Nederland BV for financial support. We would also like to thank L. Pakula, Z. Chang, and P. Puffelen for their help with the design of the measurement setup.

References:
Figure 5.7.1: MEMS Coriolis mass flow sensor operating principle (top); readout capacitors, drive and induced pick-up metal tracks (bottom).

Figure 5.7.2: Simplified system block diagram.

Figure 5.7.3: Circuit diagram of the proposed readout circuit.

Figure 5.7.4: Measured sensor output response to mass flow (top left); and the normalized output calibrated at H₂O and N₂; zero stability (ZS) and noise floor from raw ADC data (bottom).

Figure 5.7.5: Measured change in resonance frequency for different fluids (top); density stability and Allan deviation when sensor is filled with N₂ (bottom).

Figure 5.7.6: Performance summary and comparison with previous works.
Figure 5.7.7: Micrograph of the CMOS die (left); MEMS micrograph and SEM image (right).