SonoTweezer: An acoustically-powered end-effector for underwater micromanipulation

Sumit Mohanty, Robbert-Jan Fidder, Pedro M. Matos, Christoff M. Heunis, Mert Kaya

Student Member, IEEE, Nathan Blanken and Sarthak Misra, Senior Member, IEEE

Abstract—Recent advances in contactless micromanipulation strategies have revolutionized prospects of robotic manipulators as next-generation tools for minimally-invasive surgeries. In particular, acoustically-powered phased arrays offer dexterous means of manipulation both in air and in water. Inspired by these phased arrays, we present SonoTweezer: a compact, low-power and lightweight array of immersible ultrasonic transducers capable of trapping and manipulation of sub-mm sized agents underwater. Based on a parametric investigation with numerical pressure field simulations, we design and create a 6-transducer configuration, which is small compared to other reported multi-transducer arrays (16-256 elements). Despite the small size of array, SonoTweezer can reach pressure magnitudes of 300 kPa at a low supply voltage of 25 V to the transducers, which is in the same order of absolute pressure as multi-transducer arrays. Subsequently, we exploit the compactness of our array as an end-effector tool for a robotic manipulator to demonstrate long-range actuation of sub-millimeter agents over a hundred times the agent’s body length. Furthermore, a phase-modulation over its individual transducers allows our array to locally maneuver its target agents at sub-mm steps. The ability to manipulate agents underwater makes SonoTweezer suitable for clinical applications considering water’s similarity to biological media e.g., vitreous humor, blood plasma. Finally, we show trapping and manipulation of micro-agents under medical ultrasound imaging modality. This application of our actuation strategy combines usage of ultrasound waves for both imaging and micromanipulation.

Index Terms—Acoustic levitation, haptics, phased arrays, medical robotics, microrobots, robotic manipulator, ultrasonics, ultrasound imaging, waterborne.

I. INTRODUCTION

In recent years, diverse clinical applications have advanced owing to the dexterity and precision of contactless micro-

Fig. 1. The schematic depicts a robotic manipulator carrying SonoTweezer as an end-effector for manipulation of agents immersed in a water-filled container. (a) Shows a close-up of SonoTweezer with the transducer heads labelled with color schemes (red for 0° and blue for 180°) that describe the phase of the emitted wave, and (b) shows a 2 mm Polystyrene agent trapped at SonoTweezer’s focal point.

manipulation methods that encompass robotics and microsystem technology [1]. Further, the clinical compatibility with magnetic resonance (MR) and ultrasound (US) imaging have favored the outreach of magnetic and acoustic methods for remote manipulation [2], [3]. With the ability to manipulate agents across different length scales, acoustically-powered devices facilitate the most diverse applications, from lab-on-a-chip diagnostics, to minimally-invasive surgeries [4]. These devices, commonly known as acoustic tweezers, consist of multiple piezoelectric transducers that generate pressure fields to trap and manipulate agents [5]. The ability to generate and steer such pressure fields enables these tweezers to perform sophisticated interventions such as medical expulsive therapy, in a minimally-invasive manner [6].

Among acoustic tweezers, many ultrasonic phased arrays have been reported for mid-air levitation of millimeter-sized agents [7]–[11]. These arrays exist in various morphologies of transducers and phase distribution across transducers, which enables spatio-temporal modulation of pressure fields around them [9]. Moreover, the inexpensive, modular and accessible hardware components in such arrays have paved the way

This work is supported by funds from the Netherlands Organization for Scientific Research (Innovational Research Incentives Scheme – VIDI: SAMURAI project # 14855).

Sumit Mohanty, R. Fidder, P.M. Matos, C.M. Heunis, M. Kaya and S. Misra are with the Surgical Robotics Laboratory, Department of Biomechanical Engineering, University of Twente, 7500 AE Enschede, The Netherlands. (e-mail: {s.mohanty, c.m.heunis, m.kaya, s.misra}@utwente.nl, r.fidder, p.mendesantunesdematos@student.utwente.nl).

N. Blanken is with the Physics of Fluids Group, Faculty of Science and Technology University of Twente, 7500 AE Enschede, The Netherlands. (e-mail: n.blanken@utwente.nl).

M. Kaya and S. Misra are also affiliated with the Department of Biomedical Engineering, University of Groningen, and University Medical Centre, Groningen, 9713 GZ Groningen, The Netherlands. (e-mail: s.misra@umcg.nl).
for many open-source research systems [9]–[11]. Despite the ubiquity of the phased arrays, the majority of them are airborne systems. Previously, the acoustic tweezers for waterborne applications have been either limited to 2-D microchannels [12], or enclosed volumes inside bulk resonant chambers [13]. In the case of microchannels, the tweezers are confined to surface manipulation of micro-agents [4]. Contrarily, acoustic resonant chambers operate only on bounded fluid reservoirs with limited arrangement patterns of target agents.

As most in-vivo clinical applications require instrumentation that is compatible with biological media like blood plasma and vitreous humor, a new kind of waterborne tweezers have emerged as a potential solution [6], [14]–[18]. The phased arrays for airborne applications described earlier, are realized with immersible high-frequency transducers that generate steerable acoustic beams to trap and maneuver agents in an open workspace underwater. As a result, these immersible phased arrays can manipulate sub-mm to micro-scale agents in deep-seated tissues of the body thereby, making clinical operations less invasive [6], [15], [18].

However, the integration of these immersible arrays into clinical systems is limited for a couple of reasons. First, these arrays often require a large number of sophisticated transducers that are high-end commercial products such as systems developed by Verasonics Inc. [6], Imasonic SAS [15] and Phillips B.V. [17]. Further, the overall cost in such a system integration is also burdened by the expensive peripheral equipment employed for functions such as pressure amplification and data acquisition. Moreover, the large number of transducers add to the overall size and weight of such a system. Hence, it becomes difficult to interface such large transducer arrays with other automated equipment, such as robotic manipulators, that could be useful for clinical applications [19], [20]. Besides, various clinical applications require the usage of micro-agents to perform operations such as targeted therapy and drug delivery [1]. For such clinical applications, the large size of such transducer arrays makes it challenging to reliably locate sub-mm agents in their target workspace that spans a few centimeters [21].

Contactless manipulators are not only used as standalone devices, but also as auxiliary tools to minimize interventions during clinical operations [22]–[28]. Notably, robotic manipulators with magnetic end-effectors can perform clinical operations such as catheterization under ex-vivo conditions [23]. However, such robotic systems mostly utilize bulky permanent magnets or electromagnets that restrict the payload carrying capacity of the manipulator [24], [25]. Furthermore, the high magnetic fields generated by these systems (up to 200 mT) may interfere with auxiliary electronic components employed during the clinical operation [26]. Alternatively, ultrasonic phased arrays possess a lightweight and non-interfering hardware. Thus, these phased arrays can be a safer substitute for magnetic coils as an end-effector for robotic manipulation. Recently, airborne phased arrays mounted on a robotic manipulator have demonstrated pick-and-place of millimeter-sized agents over long distances [27], [28]. This provides an opportunity to redesign immersible phased arrays as end-effectors suitable for micromanipulation in biological media.

In this article, we present SonoTweezer, a compact and lightweight acoustic tweezer that addresses the limitations of the aforementioned phased arrays and is compatible with integration into robotic systems. SonoTweezer is an array of six immersible waterborne transducers in a close-packed spatial configuration which can trap milli- to micro-sized agents at their focal point (Fig. 1). With this compact design, we achieve comparable pressure magnitudes for manipulation with lower power requirements in contrast to other waterborne arrays.

We first investigate various design metrics of SonoTweezer based on numerical computations and validate the resultant pressure fields with hydrophone measurements. Secondly, we demonstrate trapping and localized manipulation of micro-agents (size∼L) with manually-controlled motion of SonoTweezer under both optical and US imaging. Lastly, we mount SonoTweezer to a robotic manipulator (UR5, Universal Robots, Odense, Denmark) and demonstrate long-distance (∼100L) manipulation of the agent under water. Thus, the compactness of SonoTweezer enables a robotic manipulator to move micro-agents in liquids across distances of up to two orders higher than their body length in a contactless manner.

II. MATERIALS AND METHODS

In this section, we discuss the design, trapping strategy, modeling and experimental validation of SonoTweezer. First, we present the theory of radiation forces followed by simulation of acoustic pressure fields generated by a hemispherical array of transducers. Next, we measure the pressure generated by our chosen immersible transducer for an estimate of its maximum pressure and its focal point. Then, we compute the acoustic fields and the resultant forces on a target micro-agent
and (ii) in (a) and (b) show the respective transducer arrays. (c) Radiation forces acting on a 0.5 mm Polystyrene agent represented as maxima shown as pressure lobes in (b). (d-e) Parametric evaluation of maximum trapping forces as a function of R, for different N_t. (e) For a fixed $N_t = 6$, evaluation of maximum $F_{\text{rad,axial}}$ and $F_{\text{rad,lat}}$ for changing (i) R, and (ii) α.

![Fig. 3.](image)

TABLE I

<table>
<thead>
<tr>
<th>Variable</th>
<th>Ultraino</th>
<th>SonoTweezer</th>
<th>Units</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>c_0</td>
<td>343</td>
<td>1510</td>
<td>m/s</td>
<td>Speed of sound in medium (25°C)</td>
</tr>
<tr>
<td>ρ_0</td>
<td>1.18</td>
<td>997</td>
<td>kg/m3</td>
<td>Density of medium</td>
</tr>
<tr>
<td>c_p</td>
<td>900</td>
<td>2350</td>
<td>m/s</td>
<td>Speed of sound in agent (25°C)</td>
</tr>
<tr>
<td>ρ_p</td>
<td>29</td>
<td>1050</td>
<td>kg/m3</td>
<td>Density of agent</td>
</tr>
<tr>
<td>r_p</td>
<td>500</td>
<td>250</td>
<td>µm</td>
<td>Radius of spherical agent cap</td>
</tr>
<tr>
<td>N_t</td>
<td>44</td>
<td>6</td>
<td></td>
<td>Number of transducers</td>
</tr>
<tr>
<td>R</td>
<td>61</td>
<td>20</td>
<td>mm</td>
<td>Radius of hemispherical array cap</td>
</tr>
<tr>
<td>α</td>
<td>15</td>
<td>30</td>
<td></td>
<td>Transducer angle (Fig. 2c)</td>
</tr>
<tr>
<td>f</td>
<td>411</td>
<td>1000</td>
<td>kHz</td>
<td>Center frequency of transducer</td>
</tr>
<tr>
<td>n</td>
<td>4.5</td>
<td>6.5</td>
<td></td>
<td>Radius of transducer</td>
</tr>
<tr>
<td>p_0</td>
<td>0.17</td>
<td>73</td>
<td>Pa/m/V</td>
<td>Normalized Pressure constant (4)</td>
</tr>
</tbody>
</table>

with our model and evaluate various design parameters for the construction of our array. In addition, we validate our computational model by reproducing the acoustic field generated by Ultraino [29]. Finally, we experimentally characterize SonoTweezer and measure the overall pressure distribution around the array to compare the pressure magnitudes achieved with the simulations.

A. Modeling of acoustic forces

The propagation of sound waves through a liquid subjects the agents immersed in it to acoustic radiation forces [4]. For agents (size $\sim L$) that are significantly smaller than the acoustic wavelength (λ) i.e., $\lambda \gg L$, radiation forces ($F_{\text{rad}} \in \mathbb{R}^3$) acting on them can be written as gradient forces. The radiation force on a small, spherical particle of radius (r_p) can be expressed as

$$ F_{\text{rad}} = -\nabla U, \quad (1) $$

where U is known as the Gor’kov potential [30]. Assuming a low-amplitude, sinusoidal pressure variation in an inviscid medium, U can be expressed as

$$ U = 2\nu(\|P\|^2) - 2\xi \left(\left\| \frac{\partial P}{\partial x} \right\|^2 + \left\| \frac{\partial P}{\partial y} \right\|^2 + \left\| \frac{\partial P}{\partial z} \right\|^2 \right), \quad (2) $$

where P is the complex acoustic pressure amplitude at a point in the field, and the $\|$ denotes its absolute value. Also, ν and ξ are constants that describe the acoustic contrast of particle relative to the medium such that

$$ \nu = \frac{\pi r_p^3}{6\rho_0^2} K_1 = \frac{\pi r_p^3}{6} \left(\frac{1}{c_0^2\rho_0} - \frac{1}{c_p^2\rho_p} \right), \quad (3) $$

$$ \xi = \frac{\pi r_p^3}{16\pi f_0^2\rho_0} K_2 = \frac{r_p^3}{8\pi f_0^2} \left(\frac{\rho_p - \rho_0}{\rho_0(p_0 + 2\rho_p)} \right), $$

where r_p is the particle radius, f is the frequency of sound, c is the speed of sound, and p is the density (the subscripts p and 0 denote the particle and medium, respectively). Here, K_1 and K_2 describe the relative acoustic contrast [30] such that, $K_1 = 0.6$ and $K_2 = 0.03$ calculated with the properties of the medium and the particle (Table I). A derivation of (2) from the original form of Gor’kov potential is described in SI Appendix A.

Next, we approximate the acoustic pressure generated by our immersible transducers with a flat piston source model [31]. Given the number of transducers (N_t) in a hemispherical array, assigned with a normalized pressure constant (p_0), the overall pressure field can be computed based on the superposition principle [11]. Here, the normalized pressure constant, p_0, is the transducer amplitude (in Pa) normalized to the distance of measurement location from transducer (d) and the applied supply voltage (V), described later in Section II-C.1. For each i-th transducer, the pressure response at any point ($r = \{x,y,z\}^T \in \mathbb{R}^3$) with respect to the origin of the frame ($\{O\}$) depends on its propagation distance from the transducer (d_i), its angle of orientation, (θ_i), and corresponding phase delay, (φ_i). These geometrical parameters are calculated with respect to the transducer normal, ($n \in \mathbb{R}^3$) as shown in
Based on far-field approximation (i.e., $d >> a^2/\lambda^2$) and paraxial approximation (i.e., $\sin \theta \approx \theta$), the acoustic pressure at point $(r \in \mathbb{R}^3)$ as a result of superposition from (N_i) transducers can be expressed as

$$P(r) = \sum_{i=1}^{N_i} \frac{p_0 V}{d_i} \left\{ 2J_1(ka \sin \theta_i) \right\} e^{j(\varphi_i - kd_i)},$$

where J_1 is a first order Bessel function of the first kind, a is the transducer radius, $k = 2\pi/\lambda$ is the wavenumber, and λ is the wavelength [11]. Furthermore, the phase distribution of the transducers (φ) determines the manipulation strategy to trap the micro-agents. The most commonly used strategies in phased arrays are referred to as twin trap and vortex trap.

Although vortex traps are more commonly employed, they could result in rotational instabilities of the target agent which might eject the agent out of its trapped location [32]. Hence, we choose the twin trap strategy, which uses a convenient binary distribution, i.e., $\varphi = 0^\circ$ or 180° (Fig. 2b). Finally, we compute the acoustic pressure and the resultant radiation forces on a target agent and evaluate the design parameters of the array as described in Fig. 2c.

B. Computation of acoustic forces

Based on (1)-(4), we developed a computational model to generate 3-D acoustic pressure fields for our transducer array using MATLAB (R2021a, Mathworks Inc., USA). We simulate the pressure field and corresponding radiation forces on a target agent based on certain initial array parameters and physical properties of the agent and medium (Table I). We describe the measured value of $p_0 = 73$ Pa m/V used in the simulations as described in Section II-C.1. Here, we first choose an initial trapping position of the array $(r \in \mathbb{R}^3)$ and define a 3-D grid of 800 points each in X, Y, Z around this position. Second, we define the transducer parameters for our array $(d_i, \theta_i, \varphi_i)$ with respect to every point (r). Next, we calculate the resultant pressure field over this grid using (4). Similar to arrays like Ultraino [11], we show the pressure fields in two orthogonal 2-D slices namely, X–Y and X–Z planes, respectively centered around $z = R$ (Fig. 2c). In these planes, we compute the radiation forces on a target agent in lateral and axial directions with respect to the array, represented as $F_{rad,lat}$ and $F_{rad,axial}$, respectively. Fig. 3 summarizes the keys results of our computational study.

1) Simulation of SonoTweezer fields

First, we simulate the acoustic pressure field of Ultraino array in order to validate our simulation model. Fig. 3a represents the simulated acoustic pressure field in the X–Y and X–Z planes centered at the focal point of the array along the Z-axis ($Z = R$). These central-axial pressure maps of our array coincide with those reported in [11]. Importantly, we find a double-lobed pressure maximum in both the planes separated by a pressure minimum which is characteristic of the trapping region in a twin trap. This replication study provides us with a ground truth to validate our computational model using an existing array design with comparable pressure magnitudes. Next, we simulate our waterborne transducer array with the respective variables (Table I) to locate its trapping region (Fig. 3b). Similar to Ultraino, the pressure lobes of our array give rise to a large potential field based on (2) and thus, large radiation forces ($F_{rad} \in \mathbb{R}^3$) that converge at the trap. We decompose and quantify these forces as axial and lateral components namely, $F_{rad,axial}$ along the Z-direction, and $F_{rad,lat}$ along the X-direction (Fig. 3c). Moreover, as $F_{rad,axial}$ are the weakest, $F_{rad,lat}$ are the dominant features of a twin trap [16], we use their respective maximum values of both to evaluate various design parameters (R, α, N_i) of our array (Fig. 3b). For comparison with [11], we compute the maximum value of these forces that Ultraino exerts on an expanded polystyrene particle ($d_p = 1$ mm) as $F_{rad,axial} = 350$ nN and $F_{rad,lat} = 2$ µN. For SonoTweezer, we calculate the trapping forces on a polystyrene agent ($d_p = 0.5$ mm) as $F_{rad,axial} = 5$ nN and $F_{rad,lat} = 1$ µN. Besides the double-lobed pressure profile, we also encounter other side lobes around the trapping region (Fig. 3b). We evaluate the trapping forces at these positions to be $F_{rad,axial} = 20$ nN and $F_{rad,lat} = 0.5$ µN, respectively (SI Appendix B). The higher values of $F_{rad,axial}$ at these side lobes are due to the inclined nature of these lobes whereby a lateral pressure component also contributes to the overall force in axial direction. Nevertheless, the higher magnitude of dominant $F_{rad,lat}$ at the double-lobed trap that at the side lobes suggests a higher probability of trapping at the central pressure minima in the double-lobed profile. Last, while a few micro-agents are occasionally trapped in these side-lobes, we find that they are ejected as soon as SonoTweezer is moved. Thus, only the agents trapped between the double-lobed profile retain their position during our subsequent experiments.
2) Optimization of array parameters: We start our investigation with the minimum number of transducers \(N_t \) required to construct our array (Fig. 3d). Here, we vary the cap radius \(R \) and transducer angle \(\alpha \), in chosen combinations that the array geometry allows, to evaluate the forces \(F_{rad,axial}, F_{rad,lat} \). We find that increase in \(N_t \) leads to increase in \(F_{rad,axial} \) and \(F_{rad,lat} \) for decreasing \(R \) (and increasing \(\alpha \)). Although \(N_t = 8 \) gives the highest forces, \(N_t = 4 \) results in the smallest array size. However, the trapping forces in case of \(N_t = 4 \) are an order of magnitude lower than \(N_t = 6 \). Hence, we choose six transducers for our array since it provides us the smallest configuration without significant reduction in the forces i.e., nearly the same order of magnitude as \(N_t = 8 \).

Next, we vary combinations of \(R \) and \(\alpha \) for \(N_t = 6 \) to estimate the variation in these forces (Fig. 3e). First, we observe that an increase in \(R \) results in a decrease in both \(F_{rad,axial} \) and \(F_{rad,lat} \). However, the measured focal distance of our transducer is in the range of 20-30 mm (Fig. 4a), we prefer \(R \) to be within this range. Second, both \(F_{rad,axial} \) and \(F_{rad,lat} \) increase with \(\alpha \). For each case in Fig. 3e-(i) and (ii), \(R \) and \(\alpha \) are varied in specific combinations that are permitted by the array geometry. Thus, for \(20 \text{ mm} \leq R \leq 30 \text{ mm} \), we have an allowed range of \(35^\circ \leq \alpha \leq 45^\circ \). Overall, based on the aforementioned findings, we choose the final array parameters to be \(R = 27 \text{ mm} \) and \(\alpha = 43^\circ \).

Besides the acoustic forces, we also compute the net force imbalance on the agent to overcome the effects of gravity and buoyancy i.e., \(F_{net} \sim 34 \text{ nN} \) (SI Appendix C). Although the theoretical computation suggests \(F_{rad,axial} < F_{net} \), we are yet to trap various micro-agents with \(N_t=6 \) transducers (discussed in Section III-B). We explain these trapping experiments in contrast to theoretical predictions with the limited validity of the Gor’kov theory. This theory suggests that (2) is valid when agent size is significantly smaller than the acoustic wavelength. In our case, owing to comparable agent size to the acoustic wavelength for a 0.5 mm agent i.e., \(\lambda \sim L \), (2) does not accurately account for the radiation forces [33]. Nevertheless, we proceed with \(N_t=6 \) as our design choice for SonoTweezer in subsequent experiments.

C. Characterization of acoustic pressure

In this section, we describe the acoustic pressure characterization of a single immersible transducer (1 MHz, Imsasonic, France), and that of the array comprising of six such transducers. We use a fiber-optic needle hydrophone (Precision-Acoustics, UK) mounted on a motorized stage to characterize the transducers based on their burst-mode operation. An elaborate description of the measurement setup and data processing can be found in SI Appendix D and E.

1) Measured pressure from a single transducer: The theoretical value of focal distance for a given transducer where it generates maximum pressure \(P_{\text{max}} \) is given as [34]

\[
R_{th} = \frac{(2 \cdot a)^2}{4 \lambda} = 28 \text{ mm.}
\] (5)

Based on Fig. 4a, \(P_{\text{max}} \) occurs in the range 22 mm \(\leq Z \leq 27 \text{ mm.} \) Hence, we choose \(d_o = R = 25 \text{ mm} \) as our desired focal point and we calculate the \(p_0 \) using Eq. 4 as

\[
p_0 = \frac{P_{\text{max}} \cdot d_o}{V_o} = 73 \text{ Pa} \cdot \text{m/V,}
\] (6)

where \(V_o = 25 \text{ V}_{pp} \) is the driving voltage of the transducer.

2) Scanned acoustic profile of SonoTweezer: In case of SonoTweezer, we first scan the pressure field in the \(X-Y \) plane of the array for a range of values along the \(Z \)-axis centered around the focal point (Fig. 4b-(II) and 4c-(II)). Second, we reconstruct the axial pressure field in the \(X-Z \) plane based on the interpolated values of pressure scans previously obtained in \(X-Y \) plane (Fig. 4b-(I) and 4c-(I)). Additional details on the pressure map interpolation is described in SI Appendix F, G and H. We initially find that the measured pressure profile in the lateral plane has unequal magnitudes of the two central lobes which could make the trapping of agents less efficient (Fig. 4b-(I)). We attribute this imbalance between the pressure lobes to the undesired phase delays between the transducers. Similar observations have been previously reported with immersible tweezers at high frequency (> 1 MHz) caused...
by fabrication errors or imprecision in positioning of the transducers [16], [35]. We account for such undesired phase delays in our simulations by providing an additional phase offset ($\Delta \varphi$) to the transducers. As described in SI Appendix G, such an offset compensates for the additional distance sound waves travel owing to the causes highlighted above.

Although we perform our trapping experiments with the initially observed pressure profile (Fig. 4b), we later compensate for the imbalanced pressure response of SonoTweezer based on phase adjustments of the transducers. In order to compensate for these imbalanced pressure lobes, we measure the pressure map generated by each of the opposite pairs of transducers. Based on the measurements described in SI Appendix H, we estimate an additional phase offset of ($\Delta \varphi = 144^\circ$), that compensates for the imbalanced pressure lobes observed earlier with our measurements (Fig. 4c). Nevertheless, we are able to achieve a trapping region between these lobes with pressure magnitudes of up to 250-300 kPa. In comparison to this value, previously reported waterborne tweezers reach pressure magnitudes in the range 750 kPa-1 MPa [6], [15], [16]. Hence, the close-packed distribution of transducers in SonoTweezer enables us to achieve similar order of pressure magnitudes with a low driving power i.e. 25 V$_{pp}$ as compared to other multi-transducer arrays.

D. Design and assembly of SonoTweezer

SonoTweezer comprises 6 immersible ultrasound transducers (13mm diameter, 01480XCR01, Imasonic, France) assembled in a 3-D printed frame made up of Acrylonitrile Butadiene Styrene (ABS) (Fig. 1). It is powered with a waveform generator (33510B, Keysight Inc., USA) that supplies a 1 MHz continuous sine wave which is amplified using a voltage amplifier (ESyLAB LM3325 8-channel [36]) up to 25 V$_{pp}$. Micro-agents for the experiments are synthesized by grinding polystyrene pellets (430102-1KG, Sigma-Aldrich, USA) with dry ice (-78°C) in a blender (Mia GY-701, Freihafen, Germany) for 2 minutes. Polystyrene micro-agents in the 0.5 to 2 mm size range are collected by evaporating dry ice at room temperature overnight [37]. Optical vision throughout the experiments is provided using two CMOS cameras (MC031CG-SY-UB and MQ013CG-ON, XIMEA, Germany) attached to their respective lenses (M0814-MP2 (COMPUTAR, USA) and LM121J5M2 (KOWA LENS, Japan)). All the video processing is done in MATLAB. Additionally, localized manipulation of micro-agents is performed under Ultrasound (US) imaging and acquisition system (L15 HD Scanner, Clarius Mobile Health, Canada) with an imaging frequency of 14 MHz. For experiments with hand-held operation of SonoTweezer, the array is placed in a cubical acrylic box of side 100mm. Lastly, SonoTweezer is mounted on a robot manipulator [23](UR5, Universal Robots, DK) for the long distance manipulation experiments in a storage box as workspace (570mm x 390mm x 280mm, IKEA).

III. Results and Discussion

We performed experiments in which we trap PS agents at the simulated trapping point of SonoTweezer and manipulate them across distances under manual movement of the array and when interfaced to a robotic end-effector. We first demonstrate trapping and motion of agents local to its focal point under phase-controlled manipulation (Section III-A). Second, we study the stability of the acoustic trap for varying sizes of our agents (Section III-B). Third, we demonstrate the motion of the trapped agents with handheld or manual movement of the array under both optical camera and ultrasound (US) imaging (Section III-C). Finally, we demonstrate motion of our trapped target agent under open-loop manipulation of the robotic manipulator’s end-effector (Section III-D). Full demonstrations of the aforementioned results are available in the Supplementary Movies (S1-S4).

A. Phase-modulated localized manipulation

Besides the ability of SonoTweezer to focus ultrasound waves to trap its target agent, it can be further locally steered around the trapped position. We accomplish this steering by providing an additional phase offset to the transducers of our array that exist in the twin trap configuration, i.e., $\varphi_{blue}=0^\circ$ and $\varphi_{red}=180^\circ$ (defined in (4), Fig. 1a). Specifically, φ_{blue} is kept fixed while φ_{red} is varied between 60$^\circ$-300$^\circ$ i.e., a deviation of 120$^\circ$ from its mean position. We steer the trapped agent under phase modulation in two different configurations that correspond to two different directions of motion. These direction-specific configurations are denoted by $D_1(\varphi_{red})$ and $D_2(\varphi_{red})$ based on the phases in which the transducers emit φ_{red} (Fig. 5-I). In each configuration, the simulated pressure lobes that trap the agent shift from left to right in the $X-Y$ plane as φ goes from 60$^\circ$-300$^\circ$ (Fig. 5-II). Further, the motion of the agent is captured under combined optical and US imaging (Movie S1). Fig. 5-III shows the different positions of the trapped agents as it is steered along the two directions (D_1 and D_2) for constantly changing φ_{red}. Based on both simulations (Fig. 5-II) and experimental evidence (Fig. 5-I and III), we report that the agents can be maneuvered over a distance of 1.5 mm around its trapped position with sub-mm steps. Thus, this phase-controlled manipulation gives SonoTweezer additional freedom to perform fine spatial adjustments of its trapped agent at a target site while the array can be moved with an external manipulator.

Fig. 6. Time-lapse images of a trapped 0.5 mm polystyrene agent that translates under manual movement of SonoTweezer under (a) optical camera and (b) Ultrasound (US) guidance (Please refer to accompanying Movie S3). Each image shows the trapped position of PS agent circled with red.
B. Effect of agent size on trapping stability

We investigate a range of agent sizes ($d_p=0.5-2$ mm) for their stable trapping and manipulation under slow movements (<5 mm/s) of SonoTweezer. These differently-sized PS agents are first trapped and their stability is tested under handheld motion of SonoTweezer. We observe that 0.5 mm agent remains stable at the trapping position and does not move from its position relative to the array as the array is moved. In contrast, the 1-1.5 mm sized agents are less stable as they constantly oscillate at their trapping position as the array moves (Please refer to accompanying Movie S2). However, the 2 mm agents are extremely unstable around their trapping position and eject out of their trap with a slight disturbance of the array. The unstable nature of larger agents (>1.5 mm) at their trapping position is due to the comparable size of the agent to that of the wavelength of sound i.e., $\lambda \sim d_p$ [4]. Besides, the oscillatory behavior of these agents can also be attributed to non-uniform movement of SonoTweezer (1 mm/s - 4 mm/s), and non-spherical morphology of agents. Nonetheless, we hence infer that while SonoTweezer can reliably trap and retain 0.5 mm agents, it can also trap larger agents up to 1.5 mm agents to different degrees. Last, we demonstrate manipulation of SonoTweezer over a large square-shaped trajectory of side 30 mm with a 0.5 mm agent trapped at its focal point (Movie S2).

C. Acoustic manipulation under US imaging

Next, we demonstrate trapping and manipulation of a 0.5 mm agent under both optical camera and US imaging modality (Fig. 6a-b). Here, we employ the US probe at a frequency of 14 MHz in order to adequately distinguish sub-mm agents and to minimize any possible interference with the emitted waves of SonoTweezer (1 MHz). However, it is noteworthy that the pressure lobes of SonoTweezer appear as artifacts in the imaging field despite it being orthogonal to the US probe. We verified this observation with the manipulation of SonoTweezer in front of US field that confirmed these lobes to be the known cause of artifact (Movie S3). Nevertheless, we could distinguish the agent from these artifacts based on its visibly high-intensity footprint in the imaging field. With this example, we demonstrate combined use of ultrasound waves for both imaging and actuation of sub-mm agents which can be beneficial to clinical applications that require targeted therapy under US guidance.
D. Long-range manipulation with robotic manipulator

Finally, we interface SonoTweezer at the end-effector of a robotic manipulator (UR5) to demonstrate micromanipulation over long trajectories (i.e., 100-150 times the agent size). First, we trap a 0.5mm agent at the focal point of the array while it is pointing downwards and immersed in water. Second, we move the end-effector of the robot (1 mm/s) along 1-D (straight line) and 2-D (L-shaped) trajectories with the trapped agent moving under camera guidance (Movie S4). Last, we move the trapped agents over two 3-D trajectories with the robotic manipulator under the two optical cameras that enable stereo imaging of the agent (Fig. 7b). Here, we test the stability of the trap as the end-effector moves along X, Y, Z directions and covers a total distance of 400mm till the agent ejects from the trap (Movie S4). Then, we move the end-effector along an enclosed hexagonal trajectory while the trapped agent remains trapped at the array’s focal point (Fig. 7c). This enclosed trajectory is shown under both the cameras that record the end-effector time stamps (Fig. 7a).

IV. CONCLUSIONS AND FUTURE WORK

In summary, SonoTweezer is a compact, portable, low-power and relatively inexpensive solution to state-of-the-art waterborne phased arrays that can trap and manipulate sub-mm-sized agents. Broadly, SonoTweezer serves as an example to design customized immersible tweezers with less transducers (<10) based on the simulation and measurement approaches described in this study (SI Appendix I). The small footprint and lightweight nature of SonoTweezer facilitates its utility as a robotic end-effector tool for contactless micromanipulation over a large distance (>100 times the size of target agent). Besides as robotic end-effectors, the lightweight and portable nature of SonoTweezer could be exploited as a haptic platform to perform pick-and-place operation underwater. Alternatively, the phase-modulation over its different transducers provides sub-mm steering of the trapping position around a targeted site. This phase-modulation feature can be extended to a sophisticated actuation scheme where each of the six transducers is interfaced to three synchronized power sources such as waveform generators. As a result, phase offset combinations of all three sources can enable the trapped agent to be maneuvered over a hexagonal grid spanned by three directional configurations.

Besides the extensive phase-modulation scheme, various other considerations must be addressed in order to assess feasibility of SonoTweezer towards potential clinical applications. In particular, pressure fields of high magnitudes (~700 kPa ± 1 MPa) would be necessary steer the trapped agents through in-vivo tissues. Currently, as SonoTweezer is operated at pressures <300 kPa (i.e., mechanical index <0.3 [6], [18]), there is no undesirable heating or cavitation effects observed for an operation time of ~50 min. However, exposure to pressure magnitudes of up to ~1 MPa can damage the surrounding biological tissues. Thus, with the safety concerns, pulsed actuation schemes could be adopted as transducers of SonoTweezer are driven at high powers [15]. Furthermore, materials relevant to clinical applications such as cells, drugs and microbes could be investigated for trapping in their native biological environments. Lastly, a complete ‘Sono-clinical’ suite may combine closed-loop control of SonoTweezer as a robotic end-effector to trap these biological agents under ex-vivo conditions, and to manipulate them under US guidance.

ACKNOWLEDGMENTS

We would like to thank Dr. Arthur Berkhoff for the theoretical and experimental discussions throughout the preparation of the manuscript. We also thank Dr. Olivier LeBaron (Inamasonic SAS, France) for his scientific advice in finding the appropriate ultrasonic transducers for SonoTweezer. We are very grateful to Dr. Asier Marzo, Dr. Diego Baresh and Dr. Milo Prisbrey for sharing their technical knowledge and experience with waterborne tweezers in course of this study.

REFERENCES

Sumit Mohanty obtained a Bachelor’s Degree in Instrumentation Engineering at IIT Kharagpur, India in 2014. He received a Master’s Degree in Nanotechnology at KTH Royal Institute of Technology, Sweden in 2017. He is currently working towards his Doctoral Degree in the Surgical Robotics Laboratory, Department of Biomechanical Engineering at University of Twente, The Netherlands. His doctoral research is focused on design, fabrication and actuation of microrobots.

Robbert-Jan Fidder received the Bachelor’s Degree in Mechanical Engineering at Windesheim University of Applied Sciences, Zwolle, The Netherlands in 2018. He received the Master’s Degree in Mechanical Engineering at University of Twente, Enschede, The Netherlands in 2021.

Pedro M. Matos is currently working towards his Integrated Master’s Degree in Bioengineering at the Faculdade de Engenharia da Universidade do Porto, Portugal.

Christoff M. Heunis (S’17) received the M.Sc. Degree in Mechatronic Engineering from the University of Stellenbosch, Stellenbosch, South Africa, in 2016 and the Doctoral Degree in surgical robotics from the University of Twente, Enschede, The Netherlands, in 2021. He is currently a post-doctoral fellow with the Surgical Robotics Laboratory, University of Twente. His work focuses on adapting and integrating embedded sub-systems for health care applications, with a specific focus on surgical robotics, magnetic actuation systems, and medical image processing. His research interests include the design of clinical equipment for the treatment of endovascular, cardiovascular, and oncological disorders.

Mert Kaya (S’17) received a Bachelor’s Degree in Electrical and Electronics Engineering from Bahaesir University, Turkey, and a Master’s Degree in Electrical and Electronics Engineering from Ozyegin University, Turkey, in 2015. He is currently working towards his Doctoral Degree in the Biomechanical Engineering Department, University of Twente, the Netherlands. He is also visiting researcher in Biomedical Engineering Department, University Medical Centre Groningen, The Netherlands. His research interest includes surgical robotics and micro-biomechanics.

Nathan Blanken obtained a Bachelor’s Degree in Applied Physics from the University of Twente in 2016. He received a Master’s Degree in Physics from the University of Cambridge in 2017. After his graduation, he was a Visiting Student at Xi’an Jiaotong University, where he studied the impact of compound drops. He is currently working towards a Doctoral Degree in the Physics of Fluids group at the University of Twente, where he investigates deep learning approaches for super-resolved ultrasound imaging.

Sarthak Misra (S’05, M’10, SM’20) received the Master’s Degree in Mechanical Engineering from McGill University, Canada, and the Doctoral Degree in Mechanical Engineering from The Johns Hopkins University, USA. He is currently a Full Professor in the Department of Biomechanical Engineering, University of Twente, The Netherlands. He is also affiliated with the Department of Biomedical Engineering, University of Groningen, and University Medical Center Groningen, The Netherlands. Prior to commencing his Doctoral studies, he was a Dynamics and Controls Analyst in the International Space Station Program. His research interests include surgical robotics and medical micro-robots. Prof. Misra was the recipient of the European Research Council Starting, Proof-of-Concept, and Consolidator Grants, as well as the European Research Council Advanced, Scientific Research VENI and VIDI Awards. He is a Co-Chair of the Robotics and Automation Society Technical Committee on Surgical Robotics and a Co-Chair of the International Federation of Automatic Control Technical Committee on Biological and Medical Systems.