INTRODUCTION

Ammonia (NH₃) is produced from nitrogen (N₂) and hydrogen (H₂), both naturally and synthetically (see Eq. 4.1) [1,2]. Often, breaking the N≡N triple bond is the rate-limiting step in nitrogen fixation, due to a high dissociation energy (941 kJ/mol). Whilst the synthetic ammonia production routes have developed over the past century, some organisms in nature fix nitrogen in the form of ammonia with nitrogenase [1–4]. Other sources of fixed nitrogen are atmospheric deposition, recycling of crop residues, and animal manures such as guano [5,6]. Furthermore, ammonium sulphate was produced as a by-product of coke and town gas production from coal at the end of the 19th century [7]. However, only half of the required nitrogen fixation could be obtained from these sources around the turn of the 20th century [5].

$$3\text{H}_2 + \text{N}_2 \rightleftharpoons 2\text{NH}_3 \quad (\Delta H^\circ = -91.8 \text{ kJ/mol}) \quad (4.1)$$

This notion was addressed by Thomas R. Malthus in An Essay on the Principle of Population in 1798, in which he argued that the exponential increase in the human population would lead to starvation due to the finite resources of the earth and the exponential potential for population increase [8]. About a century later (in 1898), Sir William Crookes gave an historical speech at the British Association for the Advancement of Science in Bristol, in which he argued that the world population would starve by 1921 due to the depletion of natural nitrate fertilizer located in deposits in Chile [9]. Crookes called onto the scientists around the world to develop a synthetic process for nitrogen fixation and many heeded the call.

About half of the fixed nitrogen is nowadays produced via a synthetic method, namely the Haber–Bosch process, which is a synthetic thermochemical ammonia synthesis process [5,10]. As shown in Fig. 4.1, the world population has dramatically increased since the industrial realization of the Haber–Bosch process. Without the Haber–Bosch process, the world would be about 40% less populated [10]. Thus, the Haber–Bosch process is one of the most important discoveries of the 20th century [5,10]. The Haber–Bosch process consumes about 1%–2% of the energy, as well as 5% of the natural gas consumption worldwide, at the cost of 1.6% of the CO₂ emissions worldwide [10]. Furthermore, about half of the nitrogen in the human body has been processed via the Haber–Bosch process [10].

BIOLOGICAL NITROGEN FIXATION

Various bacteria, blue-green algae and water ferns can fix atmospheric nitrogen, either by themselves or in a symbiosis with a host plant [4], as first reported in 1888 [11,12]. For example, Rhizobium bacteria settle in the root nodules of legumes [13]. Blue-green algae are self-sufficient for nitrogen fixation by photosynthesis [4]. The enzyme nitrogenase performs the ammonia synthesis, which is due to the NIF gene (a family of proteins) present in these bacteria and algae [4,14]. However, not all organisms can synthesize ammonia and at sufficient rates. Therefore, synthetic ammonia synthesis technologies are required. Recently, bio-inspired catalysts have been researched for on-site fertilizer production on the seeds of plants [15]. Nitrogenase can serve as an inspiration for the design of these catalysts.

Three types of nitrogenases have been identified, the most commonly found being Mo-nitrogenase. The other types of nitrogenases are V-nitrogenase and Fe-only nitrogenase [1]. The protein cycles of Mo-nitrogenase are discussed in Ref. [1,3,16,17]. The enzymes of these nitrogenases stabilize transition states for ammonia synthesis, thereby allowing for ammonia synthesis at near ambient conditions (see Fig. 4.2). Dinitrogenase binds and destabilizes the N₂ molecules, whilst reductase reduces the dinitrogenase protein to form ammonia [11]. The enzyme structure in nitrogenase limits the access to electrons, thereby limiting the hydrogen evolution reaction. In the ideal case, ammonia is formed from air and water according to Eq. (4.2). In practice, one catalytic
cycle involves eight electrons, as given by Eq. (4.3). Thus, two electrons are used for the formation of hydrogen, rather than ammonia.

\[
0.5 \text{N}_2 + 1.5 \text{H}_2\text{O} \rightarrow \text{NH}_3 + 0.75 \text{O}_2 \\
(\Delta F^\circ_{298} = 20.0^{-1}\text{GJ/t}_{\text{NH}_3} \text{ and } \Delta H^\circ_{298} = 22.5 \text{ GJ/t}_{\text{NH}_3})
\]

\[
\text{N}_2 + 8 \text{H}^+ + 8 \text{e}^- \rightarrow 2 \text{NH}_3 + \text{H}_2 \tag{4.3}
\]

The competing hydrogen evolution reaction is an issue in electrocatalytic ammonia synthesis. Thus, biological nitrogen fixation can serve as inspiration for electrocatalysis. Current research focuses on the application of biological nitrogen fixation as well as the fundamental understanding of the mechanism in the nitrogenase enzyme [14].

The active site for biological nitrogen fixation is a MoFe7S9N cluster (FeMo-cofactor), which produces ammonia from solvated protons, electrons, and nitrogen under ambient conditions [18]. The nitrogen is hydrogenated via an associative mechanism (i.e. molecular di-nitrogen is hydrogenated rather than nitrogen dissociation followed by hydrogenation) [19–22]. About 16 adenosine triphosphate or 26–30 GJ/t$_{\text{NH}_3}$ are required for ammonia synthesis under ambient conditions [17]. However, a maximum overall efficiency of about 10%–15% is estimated for the enzyme nitrogenase (150–225 GJ/t$_{\text{NH}_3}$), and even lower for the bacteria as a whole [4].

HISTORY OF SYNTHETIC AMMONIA SYNTHESIS

Industrially, nitrogen has been fixed along various pathways, namely by a plasma-assisted nitrogen fixation process (the Birkeland–Eyde process), by a cyanamide process (the Frank–Caro process), and a thermochemical synthesis process (the Haber–Bosch process) [23]. The Birkeland–Eyde process and the Frank–Caro process are discussed elsewhere [1]. In the first 2 decades of the 20th century, these processes were employed in parallel [24]. From 1927 onward, the Haber–Bosch process started to win over from the Birkeland–Eyde process and Frank–Caro process, and from the 1940s onward, nitrogen has been fixed almost exclusively by the Haber–Bosch process due to its lower energy consumption per fixed nitrogen and upscaling potential [1,6].

The thermochemical ammonia synthesis process was published and patented by Haber and Le Rossignol in 1913 and 1916, which would be termed the Haber–Bosch process in the years to follow [25–27]. The feasibility of this process was demonstrated by Haber and Le Rossignol in 1908 with a tabletop system operating at...
Nernst amongst others had concluded that ammonia synthesis was not feasible during the 14th General Convention of the Bunsen Society, only 1 year before [28]. However, Nernst’ values for the thermodynamics proved erroneous and synthetic ammonia synthesis was feasible after all. Mittasch et al. developed and patented the use of a multicomponent (‘mehstoff’) iron catalyst as a more abundant alternative to osmium for ammonia synthesis in 1909–12 and 15 [29,30]. After extensive research performed by many researchers [31], the surface mechanism over the multicomponent iron catalysts was only resolved by Ertl et al. towards the end of the 1970s [32]. Subsequent engineering challenges regarding burst-proof converter material development were dealt with by Bosch et al. in the 1910s [33]. Up to this point, no industrial processes were operated at hundreds of bars [33,34]. Optimizing the metallurgy in the chemical industry remains an
active field of research [35]. Other major contributors to the understanding of the Haber–Bosch process include Aika, Boudart, Dumesic, Emmett, Liu, Nielsen, Nørskov, Ostwald, Ozaki, Somorjai, Taylor, and Topsoe, amongst many, many others.

Within a decade, the thermodynamics were established, an abundant catalyst was developed, and the engineering challenges were solved [33]. For over 100 years, ammonia has been synthesized by the Haber–Bosch process, starting from 1913 at BASF in Oppau, Ludwigshafen (see Fig. 4.3) [29]. Although research was also conducted in the United States and in other countries within Europe in the 1910s, industrial plants in these countries were only running from the 1920s, mostly based on the German technologies developed in the 1910s [24,36]. In the early days, coal and lignite gasification was the dominant technology for hydrogen production. However, the emergence of low-cost methane with lower chlorine and sulphur content than coal and lignite allowed for more efficient operation with more active catalysts [37]. Methane is reformed with steam to produce a mixture of hydrogen, nitrogen and carbon oxides (see Fig. 4.4) [38].

Alternative process designs to the Haber–Bosch synthesis loop were proposed in the 1920–50 [36]. Amongst these, the Claude process was most radically different, operating at 900–1000 bar with multiple reactors and condensers in series, thereby eliminating the requirement for a recycle in the synthesis loop [39,40]. However, such process designs are impractical for energy-efficient operation due to the heat losses during compression, as well as due to the frequent temperature swings in the Claude process.

The development of ammonia synthesis has been focused on increasing the energy efficiency over the past century (from about 100 GJ/tNH₃ in the 1920s to 27 GJ/tNH₃). Historical developments for ammonia synthesis include the transition from coal or lignite gasification (about 90–100 GJ/tNH₃) to steam methane reforming (50–55 GJ/tNH₃, 1930–50s), the introduction of centrifugal compressors to replace reciprocating compressors (40–45 GJ/tNH₃ around 1960), improved heat integration through process optimization and scale-up in single-train plants (28–40 GJ/tNH₃), as well as improved catalyst stability, selectivity and activity to allow for milder operating conditions (26–27 GJ/tNH₃) [1,7,41–45]. Further gains in energy efficiency are possible, as the theoretical minimum energy consumption for ammonia synthesis from natural gas is 20.9 GJ/tNH₃ [4]. Nowadays, gains in energy consumptions are due to scale-up and technology optimization [37]. Whilst in the 2000s the maximum plant size was about 2000 tNH₃/d, nowadays the largest plants are 3300 tNH₃/d with a potential increase to 5000–6000 tNH₃/d in the foreseeable future [37,42]. As equipment sizes such as compressors are limited, new process designs are required for single train plants, such as the Uhde process, comprising of a two-stage ammonia synthesis loop [45]. Furthermore, autothermal reforming (ATR) is more economic than tubular reforming at such large scales due to the lower energy input and steel cost. At the other hand, an oxygen purification plant is required when solely operating with an autothermal reformer. At intermediate scales, a combination of a tubular reformer and an autothermal reformer is most economic (see Fig. 4.4). Potential future developments

FIG. 4.3 Yara’s ammonia plant in Philbara, Western Australia. Courtesy of Yara International ASA.
include the development of more active catalysts, which may lower the temperature and pressure in the ammonia synthesis loop to about 30 bar (i.e. the pressure of the steam methane reforming section) [46], although this can increase the energy consumption for ammonia condensation and the refrigeration compression [7].

Synthetic ammonia is classified as brown ammonia, blue ammonia and green ammonia. Brown ammonia refers to ammonia synthesized with hydrogen production based on carbon sources, such as methane, naphtha, heavy fuel oil and coal. Fossil hydrogen produced from coal, natural gas and lignite is referred to as black, grey, and brown hydrogen, respectively [48]. Amongst these technologies, the ammonia synthesis process based on methane as a feedstock with steam methane reforming (SMR) for hydrogen synthesis is primarily used. A process scheme of a steam methane reforming-based ammonia synthesis process is shown in Fig. 4.4. Ammonia synthesis technologies emit about 2.0 t\(\text{CO}_2\)/t\(\text{NH}_3\) on average (see Table 4.1). The total CO\(\text{2}\) equivalent emissions have decreased from about 33.4 million t\(\text{CO}_2\) in 1990 to 23.9 million t\(\text{CO}_2\) in 2016 within the European Union [49]. About two-third of the CO\(\text{2}\) is produced during the reforming of hydrocarbons, whilst a third is required for the fuel combustion for the synthesis plant (about 7.2–9.0 GJ/t\(\text{NH}_3\) [50]). Brown ammonia synthesis technologies are discussed extensively in various references [4,44,51–56]. As listed in Table 4.1, the best synthetic ammonia production processes already outperform nitrogenase in nature in terms of energy efficiency (see Fig. 4.5). Although the Haber–Bosch process is an energy-intensive process, the net energy consumption is low. The synthesis pressure for the steam methane reforming section is typically 30 bar, whilst the synthesis loop operates at 100–300 bar.

Decarbonization of heating through electric heating is a recent trend for the chemical industry [57,58]. In the case of brown ammonia synthesis, electric heating for steam methane reforming is proposed to decrease the methane consumption for heating purposes [59]. The footprint of electrified steam methane reforming is about two orders of magnitude smaller than gas-fired steam methane reforming [59]. Furthermore, the start-up of electrified steam methane reforming is only a few minutes, as compared to hours or even days for the conventional, fire-heated steam methane reformers. Electrification of ammonia synthesis plants is attractive in areas with low cost, abundant renewable electricity, as was already pointed out by Ernst in the 1920s [23].
Blue ammonia is classified as ammonia synthesized in a similar manner as brown ammonia, with a lower net carbon footprint. This reduced carbon footprint can be obtained by combining hydrogen production processes with carbon capture storage (CCS). Electrification of heating processes within steam methane reforming (eSMR) can also reduce the carbon footprint [59]. Hydrogen can also be obtained as a byproduct in other processes, resulting in a lower carbon footprint for ammonia synthesis. Ethylene crackers, chlorine plants, carbon black plants and plastic gasification plants are examples of sources for byproduct hydrogen with a reduced carbon footprint [62,63].

Green ammonia can be classified as ammonia synthesized with essentially zero carbon footprint. Green ammonia can be produced along various pathways, namely with conventional technology for the ammonia synthesis loop combined with electrolysis-based hydrogen (see Fig. 4.6) and with nonconventional technologies for ammonia synthesis. Before the availability of cheap natural gas in the 1950s and onwards, electrolysis-based ammonia synthesis with hydropower was one of the most used technologies, only second to coal gasification. Lastly, biomass-based hydrogen production with carbon capture storage can be considered as an alternative for small scale, green ammonia synthesis [64–67].

In the 1920s, the first electrolysis-based Haber–Bosch process started operation, with an energy consumption of about 46–48 GJ/tNH₃ [23,40]. Four drivers can be identified for the production of green ammonia, namely the sustainability of the reactants, a low energy consumption, modular scalability, and economic viability [23,68,69]. Green ammonia technologies based on the conventional, high-pressure ammonia synthesis loop with electrolysis-based hydrogen are discussed in Section 4.4–4.9. The theoretical minimum energy required for ammonia synthesis from water and air is 22.5 GJ/tNH₃ [44]. Nonconventional technologies are discussed in Section 4.10.

TABLE 4.1	Energy Requirement and CO₂ Footprint of Brown Ammonia, Blue Ammonia, and Green Ammonia Based on the Conventional High Pressure Ammonia Synthesis Loop. The Best Available Technology (BAT) Represents the BAT in the Year 2020, Whilst the Potential Represents the Year 2050.				
	ENERG Y REQUIREMENT (GJ/tNH₃)	CO₂ FOOTPRINT (tCO₂/tNH₃)	Relative Investment		
	BAT	Potential	BAT	Potential	
Brown ammonia					
SMR	26	26	1.6	1.6	1.0
Naphtha	35	–	2.5	–	1.1–1.2
Heavy fuel oil	38	–	3.0	–	1.5
Coal	42	–	3.6	–	1.8–2.1
Blue ammonia					
Byproduct hydrogen	–	–	1.5–1.6	0.6	–
SMR with CCS	33	27	0.4	0.2	1.5
Coal with CCS	57	–	1.0–2.0	0.5	2.5–3.0
eSMR	–	26	–	1.1	1.0
Green ammonia					
Low temperature electrolysis	33	31	0.1	0.0	1.2–1.5
High-temperature electrolysis	–	26	–	0.0	1.5–2.0
Biomass (with CCS)	–	33	1.1–1.2ᵃ	0.5ᵃ	1.2–3.0
Global average	35	27	2.0	1.4	

ᵃ The CO₂ emitted is part of a short carbon cycle, as opposed to the CO₂ emitted for natural gas, naphtha, heavy fuel oil, and coal feedstocks. Estimates based on [37,42,44,50,60–62,65,66,69–72].
ELECTROLYSIS-BASED HYDROGEN PRODUCTION

Green hydrogen can be synthesized by electrolysis. The net reaction is given by Eq. (4.4), and the heat of reaction is $\Delta H^\circ_\text{r} = 250 \text{ kJ/mol}H_2$, indicating a high energy requirement either through heating or electrical energy (or the combination of both) [73]. The thermal decomposition of water is not discussed here, as this is mainly relevant for the steam reforming of hydrocarbons.

$$2H_2O \rightarrow 2H_2 + O_2 \tag{4.4}$$

Electrolysis is performed in an electrolysis cell composed of an electrolyte (the ion conductor), active layers for the redox reactions, and a current and material collector (the electronic conductor), which enables the electricity supply, as well as the supply and collection of reactants and products [74]. Electrolysis systems also require gas cooling, purification, compression, and H_2 storage capacity [75]. Furthermore, safety and control systems are installed to condition the power from the power source [76]. Pretreatment of the feed water is performed by mechanical vapour compression,
reverse osmosis or electrodialysis, depending on the feed impurities, purity required and scale of application [77,78].

Various technologies for electrolysis are commercially available, such as alkaline electrolysis and proton exchange membrane (PEM) electrolysis (see Table 4.2). Some technologies are in the demonstration stage, such as solid oxide electrolysis. Other technologies are researched in academia, such as anion exchange membrane electrolysis [73]. The efficiency and capital cost of the system depend on the scale of the application. All commercial systems have load responses in the seconds range in hot standby [79], which is required for adequate coupling with intermittent renewable electricity sources. However, in cold standby, PEM electrolysis is the only technology capable of ramping within seconds. The schematic representation of alkaline electrolysis, PEM electrolysis and solid oxide electrolysis are shown in Fig. 4.7.

Alkaline electrolysis operates with electrodes immersed in a liquid electrolyte (20–40 wt.% KOH), separated by a diaphragm. OH⁻ ions pass through the

<table>
<thead>
<tr>
<th>TABLE 4.2 Electrolysis Technologies.</th>
<th>Alkaline</th>
<th>PEM</th>
<th>Solid Oxide</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature (°C)</td>
<td>60–90</td>
<td>50–80</td>
<td>600–1000</td>
</tr>
<tr>
<td>Pressure (bar)</td>
<td>1–30</td>
<td>10–200</td>
<td>1–25</td>
</tr>
<tr>
<td>System energy consumption (GJ/t NH₃)</td>
<td>29–46</td>
<td>31–46</td>
<td>24–27</td>
</tr>
<tr>
<td>Current density (A/cm)</td>
<td>0.2–0.45</td>
<td>0.6–2.0</td>
<td>0.3–2.0</td>
</tr>
<tr>
<td>Hydrogen purity (vol.%)</td>
<td>>99.5</td>
<td>99.99</td>
<td>99.9</td>
</tr>
<tr>
<td>Maximum installed capacity (MW)</td>
<td>165</td>
<td>20</td>
<td>0.2</td>
</tr>
<tr>
<td>Load range (%)</td>
<td>10–110</td>
<td>0–160</td>
<td>20–100</td>
</tr>
<tr>
<td>Installed capital cost (k€ tp/d NH₃)</td>
<td>2020</td>
<td>365–600</td>
<td>935–1865</td>
</tr>
<tr>
<td></td>
<td>2030</td>
<td>215–500</td>
<td>265–935</td>
</tr>
<tr>
<td></td>
<td>Long term</td>
<td>65–300</td>
<td>165–335</td>
</tr>
<tr>
<td>Electrolyte</td>
<td>20–40 wt.% KOH</td>
<td>Nafion</td>
<td>YSZ/SSZ</td>
</tr>
<tr>
<td>System size</td>
<td>Large</td>
<td>Compact</td>
<td>Compact</td>
</tr>
<tr>
<td>Stack lifetime (h x1000)</td>
<td>2020</td>
<td>60–90</td>
<td>30–90</td>
</tr>
<tr>
<td></td>
<td>2030</td>
<td>90–100</td>
<td>60–90</td>
</tr>
<tr>
<td></td>
<td>Long term</td>
<td>100–150</td>
<td>75–100</td>
</tr>
<tr>
<td>Technology readiness level (TRL)</td>
<td>9</td>
<td>8–9</td>
<td>5–6</td>
</tr>
</tbody>
</table>

Estimates based on [48,61,73,79,85–87].

diaphragm, forming hydrogen at the cathode (Ni or Ni–Mo), and oxygen and water at the anode (Ni or Ni–Co). From the 1920s up to the 1990s, alkaline electrolysers were typically used to produce hydrogen in countries with hydropower resources such as Egypt, Norway and Peru, after which steam methane reforming took over [23,24,48]. Novel approaches to enhance the performance (and energy efficiency) include the decoupling of the hydrogen evolution and oxygen evolution reactions by a two-step cycle [81], and the combination of a battery function and an electrolyser function in a single unit [82,83].

In the case of PEM electrolysis protons pass through the membrane. At the cathode (Pt or Pt–Pd), the protons are recombined to form hydrogen and at the anode (RuO2 or IrO2) protons and oxygen are produced. Because of the corrosive acidic condition of the membrane, noble metals are used for the electrodes, leading to high capital costs for PEM electrolysis [73]. Platinum replacements such as molybdenum disulphide and phosphides may lower the costs with a performance close to platinum [84]. Improving the stability of such materials is one of the key research focuses.

Solid oxide electrolysis operates with steam rather than liquid water, reducing the electrical energy demand for hydrogen production. Thus, solid oxide electrolysers can operate at a lower energy input than alkaline electrolysis and PEM electrolysis (a minimum energy input of about 250 kJ/molH2 instead of 285 kJ/molH2). At the cathode (Ni or FeCr), hydrogen is produced, whilst oxygen anions pass through the yttria-stabilized zirconia (YSZ) or scandia-stabilized zirconia (SSZ) membrane to recombine to oxygen over the perovskite-type lanthanum strontium manganese or anthranium strontium cobalt ferrite anode. A benefit of solid oxide electrolysers is the possibility of producing the hydrogen and nitrogen feed in a single unit, thereby omitting the need for a separate nitrogen production unit [61]. This is facilitated by the combustion of oxygen from air with part of the produced hydrogen. Solid oxide electrolysers are expected to be commercially available at the MW scale in 2025–30 [61,73,88]. Current research focuses on cost reduction and increasing the performance at reduced temperatures (from about 1000 to 600°C), thereby increasing the lifetime of the stack [89]. Apart from oxygen anion-conducting membranes, proton-conducting membranes are also investigated, potentially allowing for operation at lower temperatures (400–700°C) and hydrogen production without moisture content [90–92].

Combinations of electrolysis-based hydrogen and hydrogen derived from methane are also proposed. For instance, a hybrid plant with a solid oxide electrolyser and an ATR can be beneficial, as purified oxygen is required for the autothermal reformer and supplied by the solid oxide electrolyser. An autothermal reformer operates via partial combustion of methane with purified oxygen and is especially attractive for large-scale ammonia synthesis due to the expensive oxygen purification plant, which is only economically viable at large scales. In a solid oxide electrolyser, purified oxygen is produced in any case, potentially making autothermal reforming feasible at smaller scales. Such a configuration can save up to 22% in terms of natural gas consumption [88].

BIOMASS-BASED HYDROGEN PRODUCTION

Biomass-based hydrogen production is an alternative for electrolysis-based hydrogen production for small-scale ammonia synthesis [64–67]. In industrialized countries, about 9%–13% of the total energy supply is facilitated by biomass, making it the most used renewable to date [93]. In developing countries, this figure is as high as 20%–35% [93]. By the end of the 1990s, about 40 GW biomass capacity was installed worldwide [93]. Typical biomass-based facilities are limited by the logistics (i.e. the supply of biomass), implying plant capacities are usually below 50 MW [94]. The key metric for the cost of hydrogen is the cost of biomass, which strongly depends on the type of biomass and the location.

Biomass-based hydrogen can be produced via both thermochemical processes and biochemical processes [98,101]. Various biomass-based hydrogen synthesis technologies are listed in Table 4.3. A benefit of biomass-based hydrogen production is the compatibility with the technologies used in conventional brown hydrogen production process. The products of thermochemical or biochemical processing of the biomass are the feedstock of the steam methane reforming reactor, as used in brown ammonia synthesis. A drawback of biomass-based hydrogen production is the complex processing of the biomass [48]. Furthermore, the technical potential of biomass to satisfy the demand for hydrogen is orders of magnitude smaller than that of renewable electricity resources, such as tidal, solar and wind, due to the limited availability of biomass [48]. Typical sources of biomass include bagasse, crops, straw, switchgrass, wood and wood chips [100–103]. The typical products of biomass processing are biogas, bio-oil and biochar [98]. An alternative for natural biomass feedstocks is the recycling of municipal waste [104]. An example of a waste-to-ammonia process is
the use of recycled plastic, as is in operation in Japan for selective catalytic reduction purposes [105]. In the case of thermochemical processes, the biomass is either converted into bio-oil, gas and char via pyrolysis or into a mixture of hydrogen, carbon monoxide, carbon dioxide and methane via gasification [48,99]. A benefit of thermochemical processes over biochemical processes is that no microorganisms need to be added for the conversion [98]. Furthermore, biochemical processes have slow kinetics and large reactors due to the near-ambient operation [100].

Pyrolysis is the thermal decomposition of biomass at high temperatures (350–750°C) in the absence of a reactive, oxidative environment. The major product of pyrolysis is bio-oil (45–70 wt.%), the remainder being gases (10–35 wt.%) and char (15–25 wt.%) [98]. The direct production of hydrogen from pyrolysis is insufficient for commercial applications, even in the presence of a catalyst. Therefore, the products of pyrolysis need to be processed to syngas in a steam reformer.

Biomass gasification is a direct pathway for syngas production, as all of the biomass feedstock can be converted directly to gaseous products [97,99]. Biomass gasification gained attention in the 1980s [93]. This process scheme is similar to that of coal gasification, which allows for some blending in biomass in coal feedstocks to minimize the carbon footprint. Chemical and physical reactions occurring in the biomass gasification process include drying, pyrolysis, reduction and combustion [98]. There are some demonstration plants for biomass gasification [48]. Current technological challenges include catalyst poisoning due to the formation of tars [48]. Sorbents such as CaO can be used to remove CO₂ in situ, thereby shifting the equilibrium position for the water gas shift reaction [98]. In the case of steam gasification, the thermal energy-to-hydrogen efficiencies can attain 35%–52% [98].

In the case of biochemical processes, microorganisms convert biomass into biogas via anaerobic digestion or into acids, alcohols and gases via fermentation [48,98]. Anaerobic digestion converts biomass into biogas in the absence of oxygen, whilst in the presence of microorganisms. The process operates at near-ambient conditions (20–80°C). The biogas produced from anaerobic digestion typically contains primarily methane (50–75 wt.%), as well as a substantial portion of CO₂ (25–50 wt.%). Anaerobic digestion is one of the most technologically advanced biomass conversion technologies, but only part of the biomass can be processed, such as process sewage sludge, agricultural waste, food processing waste, household waste and energy crops [48].

The fermentation of biomass is can produce various products in the presence of enzymes, such as acids, alcohols and gases. The non-edible cellulosic parts of plants can be processed in the case of fermentation [48]. A drawback of such biochemical processes is the near-ambient operation, implying slow kinetics and large reactors [100]. Lastly, vegetable oil from energy crops can be converted into glycerol via
transesterification, which can be converted into syngas [98]. The typical operation conditions for transesterification of vegetable oils are 50–80°C and ambient pressure, in the presence of a base [100].

Biogas from biomass can be combined with renewable electricity as well. An example of such a system is anaerobic digestion for biogas production combined with electrified tubular steam reforming reactors. Another example is the combination of a biogas reactor with a solid oxide electrolyser and an autothermal reformer.

NITROGEN PURIFICATION

Purified nitrogen gas is produced from the air using various technologies, namely an air separation unit (ASU, cryogenic distillation), pressure swing adsorption (PSA), membrane permeation and hydrogen combustion [106]. In steam methane reforming, the air is usually introduced in the hydrogen production section, and the oxygen is combusted with part of the hydrogen. Hydrogen combustion can be employed in a solid oxide electrolyser to generate the heat for the hydrogen production from water [61,107]. The three other technologies can be employed in combination with alkaline or PEM electrolyser, where the hydrogen and nitrogen are produced in separate units (see Table 4.4).

The preferred alternative depends on the required nitrogen purity and the scale of application [108]. For both pressure swing adsorption and membrane permeation, a deoxo system is required to remove residual oxygen content [106]. Oxygen is removed by catalytic combustion with hydrogen, after which the water is removed in a regenerative dryer [106]. Oxygen must be removed before the gas mixture enters the synthesis loop, as oxygen compounds are detrimental for the ammonia synthesis catalyst. Nitrogen purification is discussed in various references [106,108,109].

AMMONIA SYNTHESIS LOOP

Ammonia synthesis from nitrogen and hydrogen is an exothermic process favored by a decrease in temperature and an increase in pressure (see Fig. 4.8). However, due to the limited activity of industrially applied iron-based catalysts for breaking the N≡N triple bond and the desorption limitations for ammonia [111], typical operating conditions are 350–550°C and 100–450 bar [44,78,112,113]. As shown in Fig. 4.8, near-complete conversion to ammonia is not achievable under industrially relevant conditions. Thus, a significant recycle is required in the Haber–Bosch process.

A typical industrial ammonia synthesis process is shown in Fig. 4.4. After the production of hydrogen and nitrogen feed in the steam methane reforming section, the nitrogen and hydrogen feed is compressed to 100–450 bar and combined with the recycle. This stream is fed into the ammonia synthesis reactor at about 300–350°C into a multiple bed reactor and feed is converted to about 15–20 mol.% ammonia with an outlet temperature of about 450–500°C [47]. Then, ammonia is separated from the nitrogen and hydrogen gases by condensation at about 20 to 30°C. About 2–5 mol.% ammonia is fed back to the ammonia synthesis reactor with the recycle stream [44], which is due to the substantial ammonia vapour pressure at separation conditions (see Fig. 4.9). Some industrial processes

TABLE 4.4

<table>
<thead>
<tr>
<th>Nitrogen Purification Technologies.</th>
<th>ASU (Cryogenic)</th>
<th>PSA</th>
<th>Membrane</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature (°C)</td>
<td>-195 to -170</td>
<td>20–35</td>
<td>40–60</td>
</tr>
<tr>
<td>Pressure (bar)</td>
<td>1–10</td>
<td>6–10</td>
<td>6–25</td>
</tr>
<tr>
<td>Purity (wt.%)</td>
<td>99.999</td>
<td>99.8</td>
<td>99.5a</td>
</tr>
<tr>
<td>Energy consumption (kWh/kgN₂)</td>
<td>0.1</td>
<td>0.2–0.3</td>
<td>0.2–0.6</td>
</tr>
<tr>
<td>(GJ/tNH₃)</td>
<td>0.3</td>
<td>0.7–1.0</td>
<td>0.7–2.0</td>
</tr>
<tr>
<td>Capacity range (Nm³/h)</td>
<td>250–50000</td>
<td>25–3000</td>
<td>3–3000</td>
</tr>
<tr>
<td>Load range (%)</td>
<td>60–100</td>
<td>30–100</td>
<td>–</td>
</tr>
<tr>
<td>Investment cost (k€/tpdNH₃)</td>
<td><8</td>
<td>4–25</td>
<td>25–45</td>
</tr>
<tr>
<td>TRL</td>
<td>9</td>
<td>9</td>
<td>8–9</td>
</tr>
</tbody>
</table>

*In most cases membranes are used for nitrogen enrichment of air, rather than the production of highly purified nitrogen. Estimates based on [78,106,108–110].
combine the feed with the recycle before the ammonia synthesis reactor, whereas other processes combine the feed with the recycle before the condenser [44].

Catalysts

After the development of the multiple promoted iron catalyst by Mittasch et al. in 1909–12 from Gallivare magnetite (an iron ore from Sweden), the industrially most used catalyst has remained remarkably similar. Whilst the catalyst formulation in the first part of the 20th century was mostly focused on stability against chemical poisoning by sulphur and chlorine compounds, afterwards the focus has been on the catalytic activity due to a reduced fraction of catalyst poisons in the synthesis loop. Iron catalysts derived from magnetite ore (Fe₃O₄) with structural promoters for stability enhancements (Al₂O₃, CaO, MgO, SiO₂) and electronic promoters for activity enhancement (K₂O) are mostly used in industry due to the very high thermal stability and chemical stability against oxygen species. The catalyst is activated by reducing the iron oxide to metallic iron, whilst the promoters remain in their oxide phases. The reaction mechanism via dissociative nitrogen adsorption, subsequent hydrogenation, and desorption of ammonia from iron-based catalysts is well understood [31,32,47,115,116], and the reaction rates of industrial catalysts can be modeled with microkinetic models over a wide range of conditions [47,117,118]. Ultrahigh vacuum surface science with ideal Fe surfaces was successfully applied to predict

![FIG. 4.8 Ammonia equilibrium mole fraction for various temperatures and pressures. H₂:N₂ = 3:1, no inert.](image)

![FIG. 4.9 Ammonia vapour pressure as function of temperature. (Antoine parameters reproduced from Stull DR. Vapor pressure of pure substances. Organic and inorganic compounds. Ind Eng Chem. 1947;39(4):517–540.)](image)
the catalytic reaction over iron-based catalysts under industrial conditions, bridging a ‘pressure gap’ of nine orders of magnitude [117,119].

The first development in iron-based catalyst was the introduction of about 5 wt.% Co to the iron oxide. The introduction of Co to the iron oxide lowers the reduction temperature, which increases the exposure of the most active Fe(111) plane for ammonia synthesis and decreases ammonia desorption limitations [44,120]. Another development is the use of wüstite (Fe1-xO) rather than magnetite during the preparation [121], which changes the distribution of promoters in the catalyst. As compared to magnetite-based catalysts, wüstite-based catalysts are known to have a lower reduction temperature and less hydrogen inhibition at low temperatures [121]. However, the thermal stability of wüstite-based catalysts is lower than that of magnetite-based catalysts [122]. This is due to a lower stabilizing effect of Al2O3 in wüstite-based catalysts, which is replaced by MgO and CaO [121]. Recent academic contributions to industrial-based catalysts include the addition of Co to wüstite-based catalyst [123], the addition of iron nanoparticles to maximize the iron surface area [124], and the addition of rare earth metals to the iron oxide precursor [125].

Ruthenium-based catalysts are also industrially applied for ammonia synthesis. Ruthenium-based catalysts are more active than iron-based catalysts at low pressures and high conversions, due to less ammonia desorption limitations [126,127]. Ruthenium-based catalysts were developed and patented in the industry in the 1970 and 1980s [44], whilst academic research was also conducted (especially in Japan) [128–132]. A multiple promoted ruthenium catalyst supported on activated carbon was developed, which is used in the Kellogg Advanced Ammonia Process (KAAP). An energy saving of about 1.17 GJ/tNH3 was achieved as compared to iron-based processes [44]. Furthermore, the capital cost of the KAAP process is lower than conventional processes, due to the lower operating pressure and the single-stage synthesis gas compressor, albeit at a higher catalyst cost [33,54]. A drawback of ruthenium-based catalysts is the scarcity, making scale-up to all ammonia synthesis plants difficult [133]. Processes with ruthenium-based catalysts generally operate at lower pressures as well as lower H2:N2 ratios than those with iron-based catalysts, due to the hydrogen inhibition on ruthenium-based catalysts [44,112].

As opposed to bulk iron-based catalysts, ruthenium-based catalysts consist of ruthenium nanoparticles supported on an activated carbon (AC) support or oxide support [44,47,116]. Alkali (Cs, K) and alkaline earth metals (Ba) are introduced to electronically increase the activity by orders of magnitude [134,135]. The KAAP process uses a Ru/AC catalyst with Ba and K promoters. Methanation of the carbon support is an issue for Ru/AC catalysts, causing a shorter catalyst lifetime. The Ba reduces the rate of methanation of the support, stabilizes the nanoparticles and maximizes the number of active sites for ammonia synthesis [136]. Alkali promoters (Cs, K) enhance the nitrogen dissociation rate and lower the surface coverage of NHX species on the catalyst species [115,136].

Process Conditions

The choice of the catalyst has little influence on the operating efficiency of the synthesis loop [53,137]. However, the operating temperatures and pressures vary depending on the choice of catalyst (see Table 4.5). This becomes especially relevant upon scale-down and intermittent operation, as milder operating conditions lead to less heat losses upon decreasing degree of heat integration. Furthermore, green hydrogen production implies a change in heat and mass flows in the process, thereby requiring different heat integration schemes [56,138]. Various catalysts are often combined in a single reactor with different beds [139,140]. Typically, ammonia synthesis reactors are multiple-bed adiabatic reactors [45,55]. The first beds operate at high temperatures (up to 500–550°C), whilst later beds operate at milder temperatures. Thus, highly stable catalysts at high temperatures are mostly preferred for the first beds, whereas the activity at mild conditions is increasingly important for the last beds.

SCALE-DOWN AND INTERMITTENCY

Recent trends in ammonia synthesis technologies are further scale-up for minor improvements in energy consumption (mega conventional, mostly for brown and blue ammonia production), and scale-down for coupling with intermittent, renewable energy sources (small decentralized, for green ammonia) [88]. Decentralization of ammonia synthesis processes is mainly conducted along two pathways, namely by using the conventional electrolysis-based Haber-Bosch technology, and by using nonconventional technology with milder reaction and separation conditions [46]. The nonconventional technologies are discussed in section 4.10.

Up to the 1990s, electrolysis-based Haber–Bosch process was operated in various places with hydropower, such as Norway and Peru [143]. Thus, electrolysis-based Haber–Bosch processes are proven technology at large-
scale operation (300 tNH3/d with alkaline electrolysers of 135 MW capacity). Currently, only one large-scale, alkaline electrolysis-based Haber–Bosch plant with hydropower resources remains operational in Cusco, Peru (built in 1962). The current aim is to operate these electrolysis-based Haber–Bosch processes as energy efficient as possible and at the scale of single wind turbines or at the scale of solar or wind farms. Demonstration plants were recently opened in various countries, including Japan and the United Kingdom. Demonstration plants in the United States include solar-powered systems and wind-powered systems located in areas with extensive farmlands [144–148]. Commercial PEM electrolysis-based Haber–Bosch plants operating with a PSA unit and a high-pressure ammonia synthesis loop are in operation in various countries including Argentina, China and Switzerland [149,150]. A benefit of small-scale plants (<50 tNH3/d) is that these are not considered as industrial sites, implying regulatory obstacles are usually smaller [151].

Upon scale-down, heat losses increase and the energy consumption increases (see Fig. 4.10). A large-scale ammonia plant (>1000 tNH3/d) consumes about 2–7 GJ/tNH3 for pressurizing, heating, pumping and utilities [56]. At intermediate scales (3–20 tNH3/d), this energy consumption increases to typically 13–14 GJ/tNH3 [152,153]. At ammonia synthesis scales down to 5 tNH3/d, losses in high-pressure synthesis processes are primarily due to scale effects. At very small scales (<0.1 tNH3/d), heat is even required to keep the ammonia synthesis reactor at the synthesis temperature due to radial heat losses, and hydrogen and nitrogen production also becomes less efficient [147,154,155]. Thus, milder operating conditions in the synthesis loop are required for effective scale-down.

As shown in Fig. 4.10, the energy consumption is a function of the ammonia synthesis capacity. The energy consumption of electrolysis-based Haber–Bosch processes can be estimated based on Eq. (4.5), which is valid in the range 101–106 kgNH3/h capacity.

\[
E = (52.58 \times \log_{10}(\text{capacity in kg/h}))^{-0.30} \tag{4.5}
\]

Intermittent solar power and wind power cause variations in electricity supply. Therefore, the synthesis loop should either be able to ramp up and down fast, or batteries should be installed to operate the synthesis loop at constant load. The latter option is technically feasible, but expensive [69]. Ramp up and down can be achieved to some extent by varying the H2:N2 ratio within the synthesis loop [46]. Nitrogen can be used as an inert in the synthesis loop when low amounts of hydrogen are present. However, ammonia must be present in the synthesis loop to enable condensation. Upon ramping down, the energy consumption per amount of ammonia produced can drastically increase [78], although control strategies have been proposed with a minimum increase in energy consumption [156]. To put ramping up and down in perspective: the cold start-up time of large-scale plant takes one to 2 days [70]. Thus, shut-down can be considered when electricity supply is not available for a few weeks (i.e. beyond the storage time of a battery). Again, milder

<table>
<thead>
<tr>
<th>Year</th>
<th>Fe2O4</th>
<th>Fe2O4 with Co</th>
<th>Fe1-xO</th>
<th>Ru–Ba–K/AC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature (°C)</td>
<td>360–520</td>
<td>350–500</td>
<td>300–500</td>
<td>325–450</td>
</tr>
<tr>
<td>Pressure (bar)</td>
<td>120–450</td>
<td>100–300</td>
<td>100–250</td>
<td>70–100</td>
</tr>
<tr>
<td>Energy consumption (GJ/tNH3)</td>
<td>28</td>
<td>28</td>
<td>27–28</td>
<td>26–27</td>
</tr>
<tr>
<td>H2:N2 ratio</td>
<td>2–3</td>
<td>2–3</td>
<td>2–3</td>
<td>1.5–2</td>
</tr>
<tr>
<td>Catalyst lifetime (y)</td>
<td>>14</td>
<td>–</td>
<td>6–10</td>
<td>≤10</td>
</tr>
<tr>
<td>Relative activity</td>
<td>1.0</td>
<td>1.2</td>
<td>1.5</td>
<td>2–10</td>
</tr>
<tr>
<td>Thermal stability</td>
<td>High</td>
<td>Medium/Low</td>
<td>Medium</td>
<td>Low</td>
</tr>
<tr>
<td>Relative catalyst cost</td>
<td>1.0</td>
<td>1.5</td>
<td>1.1</td>
<td>150–230</td>
</tr>
</tbody>
</table>

Based on [4,44,78,112,141,142].
conditions in the synthesis loop are expected to enable intermittent operation at lower energy losses. Furthermore, the separation of ammonia in the gas phase rather than by condensation can be beneficial for intermittent operation [46].

COST OF ELECTROLYSIS-BASED HABER–BOSCH PROCESSES

The installed capital cost of an electrolysis-based Haber–Bosch plant consists of equipment for hydrogen production, nitrogen production, ammonia synthesis and ammonia storage. Various cost-scaling relations were proposed for alkaline electrolysis-based and PEM electrolysis-based Haber–Bosch processes with a PSA for nitrogen purification [108,157,158]. The installed cost of various electrolysis-based Haber–Bosch processes as well as some proposed scaling-relations is shown in Fig. 4.11.

The installed costs of various electrolysers and nitrogen purification units are listed in Tables 4.2 and 4.4. About half to two-third of the investment is required for the electrolyser, depending on the process scale [77,78]. The cost of electrolysers is expected to decrease in the next decade, as listed in Table 4.2. The cost of electrolysers scales with a factor 0.6 with an installed capacity in the range 0.1–50 MW [157]. At larger scales of 50–1000 MW, the cost-scaling increases from 0.6 to 0.85 for PEM electrolysis-based Haber–Bosch plants [65].

A cost-scaling relation based on installed costs of ammonia synthesis loops is given by Eq. (4.6), where C_{HIB} is the installed cost in € and X is the ammonia capacity in $\text{t NH}_3/\text{d}$ (1 MW $\approx 3 \text{ t NH}_3 \text{ d}^{-1}$). The cost-scaling relation is valid in the range 1–20 MW.

$$C_{\text{HIB}} = 2.0 \times 10^6 \times X^{0.6} \quad (4.6)$$

The most accurate cost-scaling relation including hydrogen production, nitrogen production, ammonia synthesis and ammonia storage was proposed by Morgan et al. [157]. The cost-scaling relation is given by Eq. (4.7), where C_{tot} is the installed cost in € and X is the ammonia capacity in $\text{t NH}_3/\text{d}$ (1 MW $\approx 3 \text{ t NH}_3 \text{ d}^{-1}$). This cost-scaling relation is valid in the range of 0.1–50 MW. For comparison, a biogas-based plant with a capacity of 22.5 $\text{t NH}_3/\text{d}$ has an investment cost of 14.4 M€ [161]. Furthermore, an SMR-based plant with a capacity of 1800 $\text{t NH}_3/\text{d}$ has an investment cost of about 199 M€ [4].

$$C_{\text{tot}} = 3.3 \times 10^6 \times X^{0.6} \quad (4.7)$$

The operating costs of an electrolysis-based Haber–Bosch process can be divided into the owner’s costs and the electricity costs. About 75%–95% of the electricity is required for hydrogen production in the electrolyser.
in a large-scale electrolysis-based Haber–Bosch process [61,137,150,162]. As shown in Fig. 4.10, the electricity consumption and cost depends on the scale and location of the plant. The owner’s costs are 120 k€/y/tpd for a 3 tNH₃/d plant [78].

Hydrogen production is the major cost contributor for ammonia synthesis. Various alternatives can be considered, depending on the location. The cost of brown hydrogen produced from steam methane reforming is 845–1585 €/t (excluding CCS, costs increase to 1305–2145 €/t with CCS) [48]. The cost of electrolysis-based, renewable hydrogen ranges from below 1440 €/t to above 3605 €/t, depending on the cumulative solar and wind load hours at a given location [48]. Electrified steam methane reforming can be considered when the electricity cost is below 15–25 €/MWh, depending on the cost of natural gas at a given location. As compared to electrolysis, a benefit of electrified steam methane reforming is the compatibility with existing steam methane reforming plants for hydrogen production, as well as the lower capital investment.

Biomass-based ammonia with thermochemical processing typically costs 380–1875 €/t, depending on the scale of application, the source of the biomass and the location [64,101–103]. The cost of ammonia produced from recycled municipal waste is as high as 2135 €/t [104].

NONCONVENTIONAL TECHNOLOGIES

Even though green ammonia synthesis is feasible with the technology existing for about a century, nonconventional technologies are widely researched to allow for scale-down, intermittent operation, and potentially higher energy efficiencies [56]. Nonconventional technologies focus on improving the catalytic ammonia synthesis reaction at milder conditions, as well as on enhancing ammonia separation using sorbents. Research varies from fundamental concepts to the use of commercial materials at the pilot plant scale. Examples of research areas include nonconventional heterogeneous catalysis, adsorbents, absorbents, non-thermal plasma technology, electrochemical synthesis, photochemical synthesis, homogeneous catalysis, as well as chemical looping approaches [69,163–167]. The nonconventional technologies typically allow for scale-down and operation in remote areas. Thus, the economic risks of the innovations are smaller as compared to conventional, large-scale plants, and a faster pace of innovation may occur.

Discoveries of new catalytic systems is nowadays a combination of experimental work in the laboratory, and computer-aided experiments [163,168,169]. Comparative assessment with calculated ammonia synthesis for heterogeneous catalysts has become reliable in recent years [170]. Cross-cutting approaches amongst enzyme catalysis, homogeneous catalysis
and heterogeneous catalysis also allow for new insights and potential pathways towards ammonia synthesis under milder conditions and at sufficiently high rates [163,171]. An example of this is the similarity between heterogeneous catalysis over ruthenium-based catalysts and enzyme catalysis in MoFe$_6$S$_9$ complexes [171]. Furthermore, progress is made for in situ and operando spectroscopy, which increases the understanding of the ammonia synthesis reaction under relevant conditions [163].

The nonconventional technologies researched are listed in Table 4.6. It should be noted that some technologies have been investigated even before the Haber–Bosch process, such as plasma technology and thermochemical looping, being commercialized as the Birkeland–Eyde process and the Frank–Caro process (see Fig. 4.5) [1,43]. Furthermore, novel approaches such as single-atom catalysis have also been proposed for various categories of catalytic ammonia synthesis [172,173].

Nonconventional Heterogeneous Catalysis

Heterogeneously catalysed ammonia synthesis has been studied for over a century. However, new discoveries are still common for the bellwether reaction in heterogeneous catalysis [178,179]. The search for new efficient heterogeneous catalysts for ammonia synthesis in the 21st century is different from that in the 20th century. Whilst thousands of catalysts were experimentally tested in lab reactors in the facilities of Mittasch in the early days [30], nowadays predictive computer-aided experiments are performed, based on scaling relations amongst transition metals and first-principle calculation [168,169,180–184]. Even though early attempts for the volcano curve in ammonia synthesis date from the 1970s [185], predictive theory provided additional evidence on the most active transition metals for ammonia synthesis from the early 2000s onwards. As follows from the volcano curve (see Fig. 4.12), the binding strength of nitrogen is a descriptor for the ammonia synthesis rate and Fe, Ru and Os are the best transition metals for ammonia synthesis [126,186,187]. Metals binding nitrogen very strongly have a low barrier for N$_2$ activation, but the activity is low due to the desorption limitations of ammonia from the surface. On the other hand, metals binding nitrogen weakly have too high activation barriers for N$_2$ dissociation. The optimum activity is found in between these extremes (i.e. the top of the volcano). Whilst the choice of the transition metal is of fundamental importance, the electronic

<table>
<thead>
<tr>
<th>ENERGY REQUIREMENT (GJ/t$_{\text{NH}_3}$)</th>
<th>Reported</th>
<th>Potential</th>
<th>Relative Cost of Ammonia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benchmark electrolysis-based Haber–Bosch process</td>
<td>33</td>
<td>26</td>
<td>1.0</td>
</tr>
<tr>
<td>Electrolysis-based Haber–Bosch processes with</td>
<td>46–50</td>
<td>30–35</td>
<td>1.0–1.5</td>
</tr>
<tr>
<td>Absorbent-enhanced synthesis loop</td>
<td>47–50</td>
<td>30–35</td>
<td>1.0–1.5</td>
</tr>
<tr>
<td>Adsorbent-enhanced synthesis loop</td>
<td>46–50</td>
<td>30–35</td>
<td>1.0–1.5</td>
</tr>
<tr>
<td>Non-thermal plasma technology</td>
<td>155</td>
<td>60–70</td>
<td>2.0–4.5</td>
</tr>
<tr>
<td>Electrochemical and photochemical synthesis</td>
<td>135</td>
<td>27–29</td>
<td>–</td>
</tr>
<tr>
<td>Electrochemical synthesis</td>
<td>135</td>
<td>27–29</td>
<td>–</td>
</tr>
<tr>
<td>Photochemical synthesis</td>
<td>–</td>
<td>200</td>
<td>–</td>
</tr>
<tr>
<td>Other technologies</td>
<td>64</td>
<td>55</td>
<td>–</td>
</tr>
<tr>
<td>Electro-thermochemical looping</td>
<td>64</td>
<td>55</td>
<td>–</td>
</tr>
<tr>
<td>Redox cycles</td>
<td>–</td>
<td>79</td>
<td>–</td>
</tr>
<tr>
<td>Homogeneous catalysis</td>
<td>900</td>
<td>159</td>
<td>–</td>
</tr>
</tbody>
</table>

*a About 199 GJ/t$_{\text{NH}_3}$ is required as direct solar energy.
*b About 35 GJ/t$_{\text{NH}_3}$ is required as direct solar energy.

Estimates based on [14,60,61,150,166,174–177].
factor influenced by the support and promoters can also alter the activity by orders of magnitude \[116,134\].

Bimetallic catalysts represent the first generation of the discoveries combined with computational activity trends. By combining two transition metals, the resulting binding energy for nitrogen is of an intermediate strength (see Fig. 4.12), giving rise to an interpolation in the periodic table \[186\]. Examples of such bimetallic catalysts with activities on par or better than industrial Fe and Ru catalysts are Co-Mo catalysts \[186,188,189\], Co-Re catalysts \[190,191\] and Fe-Co catalysts \[192,193\].

The Co-Mo catalysts are the most active of a series of nitride structures (Co\(_3\)Mo\(_3\)N, Fe\(_3\)Mo\(_3\)N, and Ni\(_3\)Mo\(_3\)N), which show higher activities than industrial iron-based catalysts, especially in the low-temperature regime (325–400°C) \[194\]. The activity enhancement in the low-temperature regime can be understood from nitrogen adsorption via a Mars-van Krevelen mechanism rather than a Langmuir–Hinshelwood mechanism \[195–197\]. A drawback of Co\(_3\)Mo\(_3\)N is the high-temperature nitrification process for the catalyst preparation, which makes the production of catalysts with high surface areas difficult \[47\]. Similar to Fe and Ru-based catalysts, the activity of bimetallic nitride catalysts is enhanced by the addition of various alkali promoters \[194\]. Bimetallic rhenium-containing catalysts such as Co-Re are primarily of scientific interest, as Re is far too expensive (even more expensive than Ru) and activities are not higher than for Fe or Ru catalysts. Similarly, studies on barium promoted Fe-Co alloys supported on carbon offer scientific insights on the reduced ammonia inhibition due to the presence of Co, whilst the observed activity is not higher than that of industrial Fe catalysts \[192\].

A major portion of recent research has focused on improving ruthenium-based catalysts \[112\]. Whilst mechanistic understanding has substantially increased over the past decades regarding the effect of nanoparticle sizes and the distribution of sizes (i.e. the structural factor) \[180,198–202\], most research now focuses on the electronic factor by altering the support and promoter formulation \[203\]. The first focus area is the development of oxide-supported ruthenium-based catalysts to replace activated carbon as a support \[44\]. Activated carbon is known to be prone to methanation in the presence of hydrogen \[44,51\]. A wide range of oxides, as well as nitrides, has been tested \[129–131\]. A general observed trend is an increased activity for ammonia synthesis with decreasing electronegativity of the oxide supports \[135\]. The catalytic activity can be enhanced further by the addition of alkali (Cs, K) and alkaline earth metals (Ba), which enhance the nitrogen dissociation rate and lower the surface coverage of NH\(_X\) species on the catalyst species \[115,136\].
Over the past decade, Co and Ru catalysts with substantially enhanced electronic properties have been developed, leading to catalysts with hydrogenation as the rate step-limiting rather than the N₂ dissociation step [204]. Examples of these catalysts are Co and Ru on 12CaO.7Al₂O₃ electride [204–208], metallic electrides [209,210] and Ba–Ca(NH₂)₂ (ammines) [211–213]. The electride supports act as electron-donating support for these ruthenium-based catalysts with ammonia synthesis rates order of magnitude higher than conventional oxide-supported catalysts [205]. Furthermore, hydrogen can be stored in the electride cages, thereby minimizing the hydrogen poisoning effect usually observed for ruthenium-based catalysts [207]. The ammine (NH₂) structure in the support and the Ba layer on the Ru particles enhance the ammonia synthesis rate, such that the hydrogenation rate is the rate-limiting step rather than N₂ dissociation [211]. Researchers in Japan aim to commercialize the Ru/Ba–Ca(NH₂)₂ catalyst for low-pressure (10 bar) ammonia synthesis in the upcoming decade [214]. Furthermore, transition metals combined with metal hydrides have been developed, which separate the N₂ dissociation and hydrogenation steps, resulting in a high catalytic activity at low temperatures (200–350°C) and pressures (1–10 bar) [69,215].

Nowadays science-based approaches are used to predict potential catalysts [168,180–183]. Computational methods can be used to search for nonconventional catalyst structures not on the scaling line of transition metals [169,183]. Ammonia synthesis catalysts based on three-dimensional structures rather than two-dimensional transition metal planes can be discovered. Furthermore, inspiration can be obtained from nitrogenase structures for the development of single metal atom catalysts. Such catalysts operate with an associative mechanism instead of a dissociative mechanism [18], which may eventually allow for ammonia synthesis under mild conditions. A few practical issues associated with such catalysts are transport limitations to such sites and the lack of high active site densities due to low loadings.

Absorbent-Enhanced Haber-Bosch and Adsorbent-Enhanced Haber-Bosch

Academic research has focused on enhancing the activity of ammonia synthesis catalysts to lower the ammonia synthesis temperature and pressure [216], as more active catalysts allow for a lower operating temperature and consequently a lower operating pressure, matching pressure of H₂ and N₂ production pressure [46]. This can save about 1 GJ/tNH₃ for the syngas compression step [33]. However, even when substantially more active catalysts are developed, the separation efficiency by condensation is limited by the ammonia vapour pressure (see Fig. 4.9). Other ammonia separation technologies are required to lower the operating pressure to 10–30 bar.

A proposed solution is an absorbent- or adsorbent-enhanced ammonia synthesis loop operating at 10–30 bar [46,56,217,218]. This technology utilizes an absorbent or adsorbent to remove ammonia more completely from the hydrogen and nitrogen than by condensation (see Table 4.7). This allows for the operation of the synthesis loop at lower pressures, less temperature swing within the synthesis loop, as well as less feed compression [46,152,154,155,219].

| TABLE 4.7 Comparison of Ammonia Separation Technologies. |
|---------------------------------|----------------|-----------------|-----------------|----------------|
| Separation temperature (°C) | 20 to 30 | 20–50 | 150–250 | 20–100 |
| Desorption temperature (°C) | – | 200 | 350–400 | 200–250 |
| Pressure (bar) | 100–450 | 20–50 | 10–30 | 10–30 |
| Energy consumption (GJ/tNH₃) | 3–5 | 15–35 | 6–11 | 8 |
| Ammonia at outlet (mol.%) | 2–5 | 0.5–2.0 | 0.1–0.3 | 0.1–0.3 |
| Ammonia capacity (wt.%) | 100 | 2–5 | 5–30 | 5–15 |
| Ammonia density (kg/m³) | 680 | 10–25 | 100–600 | 30–90 |
| Chemical stability | High | Low/Medium | High | |
| TRL | 9 | 3 | 4–5 | 4–5 |

Based on [46,225,232–234].
with an absorbent or adsorbent for separation allows for reducing the temperature swing within the process even more [46,56]. Typical ammonia synthesis conditions for the high-pressure synthesis loop and the absorbent- or adsorbent-enhanced synthesis loop are shown in Fig. 4.13. Ammonia separation with membranes was also proposed [220–222]. However, due to low selectivities at low partial pressures of ammonia, as well as poor thermal stability, membranes have not been researched widely [7].

This technology, the absorbent- or adsorbent-enhanced Haber-Bosch process, is considered a low hanging fruit for the upcoming decades, as a large decrease in pressure can be achieved with little technological innovation [46,69]. The ammonia synthesis loop can operate at the same pressure as the hydrogen and nitrogen production units [46]. Furthermore, the catalysts are generally more active at the low ammonia concentrations in the absorbent- or adsorbent-enhanced ammonia synthesis loop than at the high ammonia concentrations in the conventional ammonia synthesis loop [126,223]. The resulting energy consumption of a small-scale absorbent- or adsorbent-enhanced Haber–Bosch process is lower than that of a small-scale, high-pressure Haber-Bosch process [46,152,154,224,225].

Interactions of absorbents and adsorbents with ammonia include electrostatic interactions, metal ammine formation and ammonium ion formation [142]. A wide range of solid and fluid materials has been proposed for ammonia separation, such as activated carbon, covalent organic frameworks, deep eutectic solvents, ionic liquids, metal-organic frameworks, metal halides, oxides, porous organic polymers and zeolites [225–232]. Ammonia capacities of up to 55 wt.% have been reported for metal halide sorbents [233]. The wide range of materials researched indicates the academic interest to improve the ammonia separation and storage method. Hereafter, activated carbon, metal halides and zeolites are discussed, as these materials are applied in industry for various processes and the material cost is typically low [232]. Furthermore, the mechanisms for ammonia separation on these sorbents are well understood and reasonable ammonia capacities have been reported. The ammonia separation characteristics of condensation, activated carbon, metal halides and zeolites under process conditions are listed in Table 4.7.

Activated carbon is widely used as a catalyst support and for separations. Various types of activated carbon have been investigated for ammonia separation [142,232]. Surface-modified activated carbon materials can reversibly store up to 5 wt.% ammonia [142,232]. The introduction of metal oxides on the surface increases the ammonia capacity due to an increase in electrostatic attractions [232]. On the other hand, the hydrogen present in the loop removes functional groups at elevated temperatures, thereby lowering the ammonia capacity irreversibly [232]. Both the reversible and irreversible ammonia adsorption increases by treating the activated carbon material with acid or metal oxides [232]. Due to the low reversible ammonia storage capacity, activated carbons are not desirable ammonia adsorbents.
Metal halides are also proposed for ammonia absorption and storage due to their high ammonia storage capacity of up to 6–8 mol of ammonia per mole of metal halide, thereby forming metal ammine complexes \[217–219,223,233,235–244\]. The incorporation of ammonia into calcium chloride proceeds according to \(CaCl_2 + 6NH_3 \rightarrow Ca(NH_3)_6Cl_2\). The cation affinity to ammonia determines the minimum partial pressure of ammonia required for absorption \[237\]. Inert supports are used to stabilize the nanoporous metal halide structures and these supports prevent agglomeration of particles \[218,233,236,242,245,246\]. Nanopores are introduced during the desorption of ammonia \[242,244,247\]. Due to the high volumetric ammonia density (see Table 4.7), metal halides can also be used to store ammonia after separation from the hydrogen and nitrogen \[46\]. The absorption in metal halides is kinetically limited, whilst the desorption is diffusion limited \[219,243\]. Metal halides have a low ammonia vapour pressure at ambient conditions, making these sorbents safe alternatives for ammonia storage as compared to liquefied ammonia storage \[248\]. The absorption and desorption cycle can be operated in both a pressure swing approach and temperature swing approach \[219,237,249\]. Pressure swing absorption may be more economically feasible than temperature swing absorption \[234\], but so far temperature swing absorption is most successfully applied \[218,233\]. The investment in an absorbent- or adsorbent-enhanced ammonia synthesis loop is similar to that of conventional ammonia synthesis loops \[56,158\]. In case a solid oxide fuel cell is used for electricity generation from ammonia in an islanded system, the heat of the solid oxide fuel cell can be utilized for the desorption of ammonia from the metal halide, thereby increasing the round-trip efficiency \[46\]. The current challenge is the stabilization of metal halides on inert supports, giving a high reversible ammonia absorption rate and capacity over multiple cycles whilst maintaining a high surface area and nanoporosity \[233\].

Zeolite materials have also been proposed for ammonia adsorption. About 5–15 wt.% ammonia can be adsorbed on zeolites, depending on the zeolite structure and ion exchange used \[227,232,250\]. Ammonia can be adsorbed at low temperatures, whilst the adsorption capacity decreases with increasing temperature, facilitating the desorption \[227\]. The ammonia adsorption and desorption from zeolites are described by the Langmuir–Freundlich isotherm \[227,251\]. Recently, technology with commercial molecular sieves was also developed and patented \[224,252\]. Both chemisorption and physisorption phenomena can occur during ammonia separation from nitrogen and hydrogen using zeolites \[253\], even in the presence of water impurities in the stream \[254\]. Ammonia adsorption can be due to ammine complex formation with an alkali metal ion, ammion ion formation with a proton, as well as electrostatic attractions with ions on the zeolite \[255\]. Various ion-exchange faujasites structures have been investigated \[255\]. The current challenge is to develop zeolite materials with a higher reversible ammonia adsorption capacity, which may be achieved by investigating various zeolite families, other than faujasites.

Non-Thermal Plasma Technology

Plasma technology is a novel solution for the activation of molecules with stable bonds such as the N≡N triple bond \[256–259\], especially in combination with a catalyst \[260\]. Whilst high temperature and pressure are conventionally used to activate catalysts and molecules on the surface, plasma can also be used to accelerate the ammonia synthesis rate in combination with a catalyst, even at low temperatures \[69,175\]. A plasma is an ionized gas with electrons, photons, activated molecules, as well as positive, negative and neutral radical species \[175\]. Thermal and non-thermal plasmas exist, where the former operates at high temperatures (>1000°C), whilst the latter has the electrons at elevated temperatures and the other species at near ambient conditions. In the case of non-thermal plasmas, vibrationally excited and electronically excited species are prominent \[256\]. Thermal plasmas not practical, as the equilibrium ammonia content is low at these conditions and catalysts are not stable at such high temperatures. Current research mostly focuses on atmospheric, non-thermal plasma-catalysis in a dielectric barrier discharge, whilst fundamental studies are also performed at low pressures in radiofrequency plasma-reactors \[261,262\]. Plasma-catalysis requires a multidisciplinary approach \[263\]. The effects of the plasma on the catalyst and vice versa are often mutual, leading to a high level of complexity \[264,265\].

In conventional heterogeneous catalysis over transition metals there are so-called scaling relations (see section 4.10.1), which put fundamental limitations on the operating conditions \[168\]. Either the nitrogen adsorption or ammonia desorption is inhibiting operation at low temperatures. This can be overcome by combining a plasma with a catalyst, as plasma can activate nitrogen via vibrational or electronic excitation \[266\], thereby changing both the kinetics and thermodynamics of the reaction \[267,268\]. Given
that the hydrogenation reactions are sufficiently fast over the catalytic surface, plasma-catalysis can be used to synthesize ammonia over late-transition metals with nitrogen adsorption limitations at near ambient conditions. Activation of nitrogen molecules causes a shift in the volcano curve for ammonia synthesis towards more noble metals, as shown in Fig. 4.14. The activation barrier for ammonia synthesis over Ru-based catalysts was found to decrease from 60 to 115 kJ/mol to 20–40 kJ/mol, which can be attributed to N2 activation in the plasma [268].

Investment cost benefits are not expected for a 180 tNH3/d plasma-based plant as compared to a benchmark Haber-Bosch plant [176]. However, small-scale applications with highly intermittent energy supply may provide a niche market for processes with non-thermal plasma technology with low operating temperatures and pressures combined with an absorbent or adsorbent for separation [269], given that the energy input for plasma-catalysis can be decreased substantially. The best-reported energy input for plasma-catalysis is about 95 GJ/tNH3 at about 0.2 mol.% ammonia [270], whilst the energy consumption must be decreased to about 18–24 GJ/tNH3 at about 1.0 mol.% ammonia for small-scale application [175,268]. From this, it follows that a catalyst would be required in any case to assist nitrogen dissociation, as the full nitrogen dissociation by the plasma would require 28 GJ/tNH3 [268]. Current strategies to produce more ammonia at a lower energy input include plasma-reactor optimization such as pulsed plasmas, a change in operating pressure, and catalyst optimization. Inspiration for catalyst design can be obtained from heterogeneous catalysts [268].

Electrochemical Synthesis

Due to the emergence of low cost, renewable electricity, electrochemical conversions have recently gained considerable interest [57,271]. For this reason, electrochemical ammonia synthesis is widely researched [15], inspired on the biological nitrogen fixation, where proton-coupled electron transfer occurs under mild conditions in the enzyme nitrogenase (see section 4.2) [272]. Electrochemical ammonia synthesis has several potential advantages over the Haber-Bosch process [273], such as the compact design due to the integration of hydrogen production from water and nitrogen reduction in a single process unit. Furthermore, the formation of gaseous hydrogen can be totally bypassed by using water oxidation as a counter reaction in an electrochemical cell, which delivers protons for the nitrogen reduction reaction (NRR).

Electrochemical ammonia synthesis involves the oxidation of hydrogen (Eq. 4.8) or water (Eq. 4.9) on the anode, transport of protons through a liquid or solid electrolyte, and transport of electrons via an external circuit to the cathode, where nitrogen is reduced to ammonia (Eq. 4.10). An example of an electrochemical cell is shown in Fig. 4.15.

\[3\text{H}_2 \rightarrow 6\text{H}^+ + 6e^- \] \hspace{1cm} (4.8)

\[3\text{H}_2 \rightarrow 6\text{H}^+ + 6e^- + 3/2\text{O}_2 \] \hspace{1cm} (4.9)

\[\text{N}_2 + 6\text{H}^+ + 6e^- \rightarrow 2\text{NH}_3 \] \hspace{1cm} (4.10)
The reaction mechanism for the electrochemical nitrogen reduction reaction is currently debated. Various alternatives reaction mechanisms for nitrogen activation on a solid surface have been proposed, as shown in Fig. 4.15. The mechanism depends on the catalyst used and the operating conditions [272,274]. In the case of the dissociative pathway, dinitrogen is dissociated to atomic nitrogen on the surface, after which hydrogenation occurs to ammonia, with subsequent desorption. This mechanism is predicted to occur at elevated temperatures due to the high activation barrier for breaking the triple $\text{N}≡\text{N}$ bond. Thus, associative pathways with the breaking of the nitrogen bond only after partial hydrogenation to N_2H_x species are more likely to occur at low temperatures. This mechanism is similar to that of nitrogenase (see Section 4.2) [272]. Hydrazine was detected for Au nanorods in an alkaline electrolyte [275]. Furthermore, surface-enhanced infrared absorption spectroscopy on Au in an alkaline electrolyte showed weak signals for N_2H_x species [276], which suggests that an associative pathway may be relevant for the nitrogen reduction reaction on Au surfaces in alkaline electrolytes. Apart from these mechanisms, a Mars-van Krevelen mechanism may occur in the case of metal nitride catalysts, in which N from the catalyst lattice is hydrogenated to ammonia, leaving an N vacancy on the surface, which can be regenerated with a nitrogen atom [277]. The Mars-van Krevelen mechanism was reported on a VN catalyst, based on quantitative $^{14}\text{N}_2/^{15}\text{N}_2$ isotope exchange experiments [278]. All in all, little experimental data is currently available to substantiate which mechanism is dominant for electrochemical ammonia synthesis, especially considering the low ammonia concentrations.

Various approaches to electrochemical ammonia synthesis can be distinguished based on the temperature of operation, namely high-temperature solid-state electrolyte reactors ($400–750°C$, high-temperature electrochemical ammonia synthesis), molten salt reactors and composite membrane reactors ($100–500°C$, intermediate temperature electrochemical ammonia synthesis), and liquid electrolyte reactors and low-temperature solid-state electrolyte reactors ($20–100°C$, low-temperature electrochemical ammonia synthesis) [279,280]. Solid-state electrolytes are probably most promising, as these separate the hydrogen feed from the ammonia production [279,281].

Solid-state ammonia synthesis is usually investigated at high temperatures ($>500°C$) to ensure high proton conductivity within the solid oxide electrolytes. A dense electrolyte is placed in between two porous electrodes and ions are transported through the solid oxide electrolytes (usually H^+ or O_2^- ions), as shown in Fig. 4.15. Perovskite materials are generally used as electrolytes, but fluoride- or pyrochlore-type structures have also been reported [279,282]. The high temperature aids the nitrogen activation and enhances the reaction kinetics, but it has a negative influence on the thermodynamic equilibrium, thereby limiting the attainable conversion to ammonia [271,283,284].

Furthermore, high operating temperatures can cause issues due to material degradation [13]. The reported ammonia formation rate is in the order of magnitude of 10^{-9} mol/s/cm and the Faradaic efficiency of the process is usually below 50%, based on the amount of electrochemically supplied hydrogen [13,271]. The highest reported Faradaic efficiency is around 80% [285,286]. When water is used as the proton source, the Faradaic efficiency drops to below 1% [271,284,287]. Research efforts focus on the development of more stable electrolytes, with a higher conductivity at milder operating conditions.

To overcome problems with ammonia decomposition at higher temperatures, as well as material stability issues, intermediate temperature electrochemical ammonia synthesis is studied, which operates at 100–500°C. Molten salts and composite membranes with the addition of a eutectic mixture of alkali metal salts are usually used as electrolytes [279,288–292]. It should be noted that composite membranes have been operated at temperatures of up to 650°C [293], which is considered high-temperature electrochemical ammonia synthesis. The mixture of eutectic solvents ensures a good ionic conductivity at lower temperatures. A common approach is to reduce dinitrogen to N_3^- on the cathode, which often migrates towards the anode, where it reacts with hydrogen to form ammonia [294]. However, the addition of a Li$_3$N precursor (i.e. a nitrogen source) to the electrolyte in most of the studies makes it difficult to estimate the real efficiency of the process [290,295]. Ammonia formation rates in the range 10^{-11}–10^{-8} mol/s/cm with Faradaic efficiencies mostly below 10% have been reported [271]. The highest reported Faradaic efficiency of 80% was found to be unstable, and dropped to 10% after some time [296], which may indicate a nitrogen-containing precursor being present in the system rather than a catalytic effect. A disadvantage of molten salt electrolytes is their corrosiveness, leading to a low stability of the electrode materials [297].

Low-temperature electrochemical ammonia synthesis (20–100°C) recently gained interest [298,299], with about 100 academic publications per year. For low-temperature systems, ammonia decomposition is not an issue. Polymer electrolytes with high H^+ conductivity have been used, such as Naion [300,301] or sulphonated polysulphone [302]. The reported ammonia formation rate is in the range 10^{-10}–10^{-8} mol/s/cm at 80°C, but Faradaic efficiencies below 1% are generally reported [271,303]. Studies at room temperatures are performed with liquid electrolytes, which are usually aqueous-based electrolytes [273,304,305], whilst organic solvents [306,307] and ionic liquids [308] have also been used. An advantage of aqueous-based electrolytes is that water can be used directly as the proton source [271]. Acidic electrolytes are suitable for reduction reactions, as protons are abundantly available, whilst an alkaline environment can suppress the hydrogen evolution reaction, which competes with the nitrogen reduction reaction to ammonia [309].

A wide variety of catalysts was tested, starting from noble metals such as Ag, Ag, Pd, Pt, Rh and Ru [275,300,310–316], after which metal oxides based on Ce, Co, Fe, Mo, Mn, Nb, Ta, Ti and V [317–328], metal sulphides based on Co, Fe and Mo [329–332], and metal carbides based on Mo [333] were also studied experimentally. Another group of catalysts consists of transition metal nitride materials such as CrON, Mo$_2$N and VN [334–336], for which the possibility of a Mars-Van Krevelen mechanism is considered [277]. The activity of organometallic complexes based on Al and Ti [337,338], and metal-free catalysts such as B, BN, P and polymeric carbon nitride [339–342] were also evaluated. Limited reports are available about single-atom catalysts for the nitrogen reduction reaction, such as Au, Fe, and Ru [343–346]. Various reviews provide a more detailed description of low-temperature electrochemical ammonia synthesis [13,273,304,309,347–349].

Despite many recent academic publications, low ammonia production rates of 10^{-12}–10^{-9} mol/s/cm with Faradaic efficiencies below 10% are generally reported at room temperature. Various publications reported higher Faradaic efficiencies [323,343,350–352], even up to 67.8% [353]. However, the presented Faradaic efficiencies are usually measured at low current densities (sometimes below -0.1 mA/cm²) and at low ammonia concentrations (usually <1 ppm). Thus, any ammonia contamination in the system causes a large error in the apparent ammonia synthesis rate and Faradaic efficiency [354].

Ammonia is a common impurity in the air [355], it can easily dissolve in water and adsorb at a wide variety of surfaces [356], which makes it very easy to find it as contamination. It means that researchers working on the nitrogen reduction reaction should pay extra attention to those contaminations. Ammonia can be found in gas tubes, glassware, gloves, nitrogen streams and even human breath. Trace contaminations can appear at certain stages of the experiment, such as membrane pre-treatment, improper reactor cleaning, sample post-treatment, storage and ammonia detection [354]. Moreover, nitrogen-containing compounds present as contaminations in nitrogen streams, such as nitrates,
nitrates, amines and nitrogen oxides, can be converted electrochemically to ammonia [354,357]. Special attention should be paid for catalyst and electrode preparation. Various catalysts precursors consist of nitrate salts, contain additives necessary to form a certain morphology (like polyvinylpyrrolidone), or HNO3 is used for pH adjustments. Lastly, ammonia is sometimes used during catalyst preparation. All of those situations should be avoided as much as possible. For all those reasons, special attention should be paid for proper control experiments, including quantitative 15N2 experiments to prove the origin of detected ammonia during an electrochemical experiment [354,358–361].

There are several reasons why electrochemical ammonia synthesis is so difficult. First of all, the inert nature of dinitrogen with a high dissociation energy of 941 kJ/mol makes activation difficult, especially in ambient conditions and at sufficient rates. Moreover, there is a high energy gap between the highest occupied molecular orbital and the lowest unoccupied molecular orbital in the dinitrogen molecule of 10.82 eV, which is not favourable for electron transfer [273]. Another issue is the low nitrogen solubility in water, which results in limited availability of nitrogen near the electrode surface. To deal with this issue, electrode and reactor engineering can play a role. Moreover, the reaction kinetics are slow at low temperature, whilst ammonia decomposition and material degradation are issues at elevated temperatures. When water is used as a proton source, the competing hydrogen evolution reaction is usually dominant over the nitrogen reduction reaction [362], which is due to the similar equilibrium potential (Eqs. 4.11 and 4.12) [273]. Furthermore, in the case of aqueous electrolytes, the water availability near the electrode surface is higher than the nitrogen solubility. The hydrogen evolution reaction only requires two electrons (Eq. 4.12), whilst the nitrogen reduction reaction requires six electrons (Eq. 4.11) [18,84].

\[
\begin{align*}
N_2 + 6H_2O + 6e^- & \rightarrow 2NH_3 + 6OH^- \quad (E^0 = -0.736 \text{ V vs. SHE at pH 14}) \quad (4.11) \\
2H_2O + 2e^- & \rightarrow H_2 + 2OH^- \quad (E^0 = -0.828 \text{ V vs. SHE at pH 14}) \quad (4.12)
\end{align*}
\]

A thermodynamic analysis of the nitrogen reduction reaction shows certain limitations due to multiple proton–electron transfer steps involving several intermediates (see Fig. 4.15). Strongly adsorbed, stable intermediates make nitrogen hydrogenation and difficult [272]. The adsorption energies of reaction intermediates are correlated with one another via so-called scaling relations [363]. When there is an unfavourable scaling relation between two intermediates, it is difficult to find a catalyst that can ensure all steps to be thermodynamically downhill in the reaction pathway [273]. In the case of the nitrogen reduction reaction, the scaling relation between the N2H and NH2 intermediates is not favourable. Therefore, a minimum overpotential of 0.4 V is required for the reaction to proceed [272]. So far, there is no catalyst to overcome this issue and significant overpotentials have to be applied, which makes the hydrogen evolution reaction much more favourable on most transition metals (see Fig. 4.16) [362].

Various groups have reported Density functional theory (DFT) calculations to assess the trends in the nitrogen reduction reaction along the dissociative and associative reaction mechanisms over stepped surfaces and flat surfaces of transition metals (see Fig. 4.16). Ru, Mo, Fe, Rh and Re are the most active surfaces for the nitrogen reduction reaction [18], although the hydrogen evolution reaction is also favourable over these metals [177,362]. Thus, these surfaces will be covered with H-adatoms in case of aqueous electrolytes, which blocks the active site for the nitrogen adsorption, increasing the selectivity towards the hydrogen evolution reaction [177]. On the other hand, surfaces of Ti, Zr, Sc and Y were found to bind N-adatoms more strongly than H-adatoms, which implies ammonia can be produced if sufficiently bias is applied (between −1 V and −1.5 V vs. SHE) [18]. Other types of catalysts were also considered in DFT calculations, such as metal oxides [364], nitrides [365], sulphides [366] and single-atom catalysts [367–370].

Despite substantial theoretical and experimental research on electrochemical nitrogen reduction, no breakthrough has been achieved in finding a suitable catalyst to date [371]. Further research should focus on the development of new materials and strategies to reduce nitrogen at lower overpotentials, causing less problems with the hydrogen evolution reaction. Bimetallic surfaces should be considered to help optimize the binding strength of intermediates at different catalyst sites, thereby decreasing the overpotential for rate-determining step. Single-atom catalysts can play an important role when trying to mimic nature. They can bind molecules more precisely, but their manufacturing is still a challenge. Simultaneously, the possibility of suppressing the hydrogen evolution reaction should be evaluated to improve the selectivity towards ammonia. This can be achieved by decreasing the amount of H+ near the electrode surface, such that the nitrogen coverage can be increased. A strategy for this is the use of non-aqueous electrolytes [372,373]. Furthermore, more insight into the relevant
reaction mechanism is required for catalyst development.

A lot of complex strategies are required for electrochemical ammonia synthesis to become feasible for practical application, which is an interesting scientific challenge. To make electrochemical ammonia synthesis economically feasible, a current density of 300 mA/cm² with a Faradaic efficiency of 90% is desired, which gives an ammonia production rate of approximately 10^{-6} mol/s/cm² [13]. For now, electrochemical ammonia synthesis should not be considered as a potential replacement of the Haber–Bosch process for large-scale ammonia production, but rather as a technology for small-scale, intermittent ammonia production. When aqueous electrolytes are used, this would allow for localized, on-demand ammonia production for fertilizer application.

Photochemical Synthesis

Photocatalysis provides an interesting approach for the conversion of molecular nitrogen to ammonia, which has attracted widespread attention in recent years [374]. Similar to the electrochemical ammonia synthesis, the main advantage of this approach is the possibility to use water as a reducing agent for nitrogen fixation in ambient conditions. Instead of an electrocatalyst, a semiconductor is used. There are three main steps in the photochemical reaction. First, light is absorbed by a semiconductor, which produces charge carriers. For this step to occur, the energy of absorbed photons needs to be equal or higher than the energy gap of the semiconductor. Then, the electrons are promoted from the valence band to the conduction band of the semiconductor, which results in photo-generated electrons and holes in the valence band. Afterwards, the electrons and holes migrate to the surface of semiconductor, where redox reactions can take place. Water can be oxidized to O_2 and H^+ by surface holes when the valence band is more positive than 1.23 V versus NHE (normal hydrogen electrode), whilst N_2 can be reduced by electrons from the conduction band and hydrogenated by water-liberated H^+ [375,376]. The mechanism of the nitrogen reduction reaction on semiconductors is not fully understood, but it is suggested that it follows an associative pathway rather than a dissociative pathway, similar to nitrogenase and electrochemical ammonia synthesis (see Fig. 4.15) [272,304].

Two types of solar-driven nitrogen fixation approaches can be distinguished [298]. In the photochemical process, semiconductor nanoparticles are suspended in an aqueous solution and both redox half-reactions happen on the different sites of the same particles (see Fig. 4.17). The downside of this
reactor type is the possibility of re-oxidation of the produced ammonia by photo-generated holes on the semiconductor. Another possibility of this approach is the combination of a photocatalyst with an electrochemical cell (see Fig. 4.17). The photoelectrode (i.e. the photocathode or photoanode) creates holes as well as electrons after light absorption, and then the charge is separated between two electrodes with an external bias applied. That causes both redox half-reactions to occur at two different electrodes, which hinders the recombination of holes and electrons, thereby increasing the solar conversion efficiency [298, 377].

Early attempts of photo-nitrogen fixation utilized TiO₂ semiconductors as the photocatalyst with various different doping variations [378–381]. Other oxides based on Fe, V and W as well as sulphides were also investigated [382–386]. A major group of test materials was based on Bi-oxyhalides, as well as graphitic carbon nitride materials [387–391]. Research is mainly focusing on the modification of known catalysts by varying oxygen-, nitrogen-, sulphur vacancies, as well as on co-catalysts, morphology and heterojunction engineering [377]. Despite a significant number of studies, no efficient photochemical system for ammonia synthesis was developed. All tested systems have a low production rate and usually there is no quantum efficiency reported. Moreover, the information is presented in varying units, using different conditions, as well as different light sources, which makes the performance difficult to compare. Therefore, standards and benchmarks were proposed to report data in a consistent manner [392].

The issues with solar-driven nitrogen fixation are similar to the ones in the case of electrochemical synthesis, which originates from inertness of the nitrogen molecule and the unfavourable electron transfer kinetics to nitrogen at in ambient conditions (see section 4.10.4). Similarly, an aqueous environment causes issues with the competing hydrogen evolution reaction, as well as transport of nitrogen to the active sites of the catalyst due to its low solubility in commonly used electrolytes. When no external bias is applied, the produced ammonia can be oxidized by photo-generated holes on the semiconductor as well, as both electrons and holes can recombine before the redox reaction occurs. Thus, the overall efficiency is decreased along various pathways. Another issue is the poor stability of the photocatalyst and the low utilization of the light, which leads to a low solar-to-ammonia conversion [304, 374, 375]. Finally, due to low conversion values, special attention should be paid to proper control experiments to avoid false results, as described for electrochemical ammonia synthesis (see section 4.10.4) [354].

For now, there is no reason to think about photo fixation of nitrogen as a future industrial process. The focus should be on fundamental research, both theoretical and experimental, such as potential reaction mechanisms, finding catalysts which can bind and activate nitrogen in ambient conditions and materials that capture solar energy more efficiently [375, 392]. There is limited data available about photoelectrochemical systems, which can aid for efficient charge separation after photoexcitation, implying more research is required.
It is estimated that an energy efficiency of 0.1% for solar-to-ammonia is required to evaluate the process as a potential alternative for ammonia synthesis [392], which has only been reported in a few cases [393].

Homogeneous Catalysis

Volpin et al. [394,395] reported the first homogeneous nitrogen reduction reactions in the 1960s. Various homogeneous nitrogen fixation reactions, catalytic and non-catalytic, were reported in the decades to follow [12,14]. Some of the most significant contributions include single atom transition metal Mo complexes, which reduce N₂ to ammonia at ambient conditions [396–398], at the same energy input as biological N₂ fixation. Other studied systems include Fe complexes [399–401] and Zr complexes [402]. The nature of the reaction intermediates has been studied with a mechanistic comparison to biological nitrogen fixation [3,403,404], and various ligands have been investigated for the Mo complex [405]. A strategy for a high ammonia selectivity (i.e. similar to nitrogenase) is the use of a solvent with a low solubility for the reactants, thereby limiting the rate of the hydrogen evolution reaction [396].

So far, homogeneous catalysis has not found practical application due to low yields (up to 8–12 equivalents of ammonia per equivalent of the catalyst [396,397]), fast catalyst deactivation, and expensive catalyst compounds [3,14]. Furthermore, the reactions are complex, and selective formation of ammonia is difficult without the use of excessive amounts of solvent [14]. Thus, homogeneous catalysts for ammonia synthesis are currently most useful for understanding nitrogenase [406]. Synthetic nitrogenase-like complexes may find applications for on-site fertilizer production on the seeds of plants [163].

Chemical Looping Approaches

Ammonia can also be synthesized by chemical looping approaches. The main advantage of this kind of approach is the possibility of independent control of nitrogen activation and ammonia formation (i.e. the nitrogen reduction can be performed in the absence of reactive protons [407]). Chemical looping approaches involve separate thermodynamically stable reaction intermediates. This allows for optimizing the operating conditions of each step separately. Three main approaches for chemical looping have been proposed for ammonia synthesis, namely hydrogen chemical looping, water chemical looping, and alkali or alkaline earth metal hydride chemical looping, as well as their combination with electrocatalysis (see Fig. 4.18) [15,299,408]. A general benefit of chemical looping approaches is that mild pressures down to atmospheric pressures can be applied.

The water chemical looping approach is based on the nitridation, oxidation, and reduction of a metal in a cycle. The metal nitride is hydrolysed with steam into ammonia and a metal oxide. The metal oxide is subsequently reduced and nitridated for the next cycle [15,299,409]. An example of a hydrogen chemical looping cycle is the reduction and subsequent nitridation of Al₂O₃ to AlN in the presence of nitrogen and hydrogen.

FIG. 4.18 Schematic representation of chemical looping approaches for ammonia synthesis: (A) water chemical looping cycles, (B) hydrogen chemical looping cycles, and (C) alkali or alkaline earth metal hydride cycles. (Reprinted from Gao W, Guo J, Wang P, Wang Q, Chang F, Pei Q, et al. Production of ammonia via a chemical looping process based on metal imides as nitrogen carriers. Nat Energy. 2018;3(12):1067–1075 with permission of Springer Nature Limited.)
methane, with subsequent hydrolysation to Al_2O_3 whilst forming ammonia [410]. Other systems were also studied [411,412], such as MoO_2-based and MgO-based systems [408,413]. An advantage of water chemical looping systems is the direct hydrogenation of nitrogen with water, which implies a separate hydrogen production step is not required. A disadvantage of water chemical looping systems is the high temperature required for reduction of the metal oxides (usually $>1000^\circ\text{C}$), as well as the use of sacrificial agents like CO and CH_4.

The hydrogen chemical looping approach is very similar to the water chemical looping approach. It also involves a metal nitride as a nitrogen source for ammonia synthesis. In the hydrogen chemical looping cycle, a metal undergoes nitridation in a nitrogen stream, after which it is reduced back to the metallic state in presence of hydrogen, whilst forming ammonia. Several metal nitrides were studied, such as Mo_2N, Ca_3N_2, Sr_2N_3, and Mn_xN_y [414–417]. However, a reduction from the metal nitride to the metal only occurs at high temperatures ($>500^\circ\text{C}$).

In the case of alkali or alkaline earth metal hydride cycles, nitrogen is reduced by a metal hydride rather than a pure metal. In this process, a metal imide is formed, which is subsequently reduced back to the metal hydride in the presence of hydrogen whilst forming ammonia and closing the loop [409,418]. Ammonia can be formed at temperatures as low as 100$^\circ\text{C}$ and at atmospheric pressure over a $\text{Ni–BaH}_2/\text{Al}_2\text{O}_3$ system [409].

An example of an electrochemically assisted chemical cycle is lithium-mediated ammonia synthesis [419,420]. As discussed in Section 4.10.4, hydrogen evolution is a competing reaction for electrochemical ammonia synthesis. A cyclic, lithium mediated ammonia synthesis approach separates the nitrogen activation from the hydrogenation step, thereby eliminating the issue of the competing hydrogen evolution reaction. The first step is the electrochemical reduction of Li$^+$ to metallic Li, which deposits on the electrode. Then, the electrode with the Li layer is exposed to a nitrogen atmosphere at room temperature and atmospheric pressure. Since Li has very strong reducing properties, it reacts with nitrogen to form Li$_3\text{N}$. Subsequently, Li$_3\text{N}$ is treated with water or another proton source, which produced ammonia and Li$^+$ salt, thereby closing the loop (see Fig. 4.19) [174,299]. Electrochemically assisted, lithium-mediated ammonia synthesis has also been operated in a molten salt electrolyte at 450$^\circ\text{C}$, attaining energy requirements as low as 64 GJ/t_NH_3 [407]. However, the theoretical minimum energy consumption is 55 GJ/t_NH_3, leaving little space for improvements [407]. Other variations were also studied, including a continuous process, in which nitrogen is bubbled through a tetrahydrofuran electrolyte with ethanol and Li [292,421]. This allows for ammonia synthesis at ambient conditions due to the difference in reaction rates between Li-nitridation and ethanol reduction on Li [422,423].

Current research focuses on systems with different metals to reduce energy consumption.

SUMMARY

As presented in this chapter, the Haber-Bosch process is one of the most impactful inventions in human history. The Haber-Bosch process has prevented mass starvation in the past century, and it potentially has a substantial role to play in the hydrogen economy. This technology for large-scale, high-pressure ammonia synthesis has been optimized from an energy consumption of about 100 GJ/t_NH_3 in the 1930s down to about 26 GJ/t_NH_3 nowadays. Currently, most ammonia is produced from fossil fuels, although green ammonia synthesis via the electrolysis-based Haber-Bosch process is also mature technology with a century of operational experience. The current challenge is to match green ammonia synthesis with intermittent renewables, such as solar and wind energy. Academic research focuses on ammonia synthesis under mild conditions, potentially allowing for intermittent and decentralized green ammonia production. The areas of research are diverse, but most academic research focuses on the electrochemical reduction of atmospheric nitrogen to ammonia, allowing for producing ammonia directly from air and water. However, so far this remains an unsolved technologic challenge.
REFERENCES

[98] Dou B, Zhang H, Song Y, Zhao L, Jiang B, He M. Sustainable Energy & Fuels Hydrogen production from the

CHAPTER 4 Ammonia Production Technologies

Shipman MA, Symes MD. Recent progress towards the electrochemical reduction of coal and fossil fuels as ammonia from sustainable resources. Catal Today 2017;286:57–68.

[301] Xu G, Liu R, Wang J. Electrochemical synthesis of ammonia using a cell with a Nafion membrane and SmFe0.7Cu0.3-x Ni x O3 (x = 0–0.3) cathode at atmospheric pressure and lower temperature. Sci China, Ser B Chem. 2009;52(8):1171–5.

[367] Zhao J, Chen Z. Single Mo atom supported on defective boron nitride monolayer as an efficient electrocatalyst

