
Deriving Use Case Diagrams from Business Process Models

Remco M. Dijkman
University of Twente, Faculty of Computer Science

P.O. Box 217, 7500 AE Enschede
The Netherlands

dijkman@cs.utwente.nl

Stef M.M. Joosten
Ordina Finance Utopics, and

Open University of the Netherlands
P.O. Box 2960, 6401 DL Heerlen

The Netherlands
joosten@anaxagoras.com

Abstract

In this paper we introduce a technique to simplify re-
quirements capture. The technique can be used to derive
functional requirements, specified in the form of UML use
case diagrams, from existing business process models. Be-
cause use case diagrams have to be constructed by perform-
ing interviews, and business process models usually are
available in a company, use case diagrams can be produced
more quickly when derived from business proces models.
The use case diagrams that result from applying the tech-
nique, specify a software system that provides automated
support for the original business processes. We also show
how the technique was successfully evaluated in practice.

1. Introduction

Capturing requirements is widely considered to be one
of the most difficult tasks in software engineering. At the
same time, errors made in this phase are among the most
difficult to detect and the most expensive to correct [1].
Therefore, much can be gained from requirements captur-
ing techniques that speed up the creation of requirements
specifications, and produce robust requirements specifica-
tions. In this paper we propose such a technique.

The technique we propose is based on the observation
that one of the forms of requirements engineering, the use
case based requirements engineering [3, 4, 12, 10], bears
much resemblance to business process modeling. The re-
semblance between use case based requirements engineer-
ing and business process modeling becomes obvious when
inspecting the following definitions of use case and business
process.

According to Jacobson [10] a UML use case: ’... spec-
ifies a sequence of actions, including variants, that the sys-
tem can perform, and that yield an observable result of value
to a particular actor.’

According to Davenport [5] a business process is: ’A
structured, measured set of activities designed to produce a
specified output for a particular customer or market.’

According to their definitions, both a business process
and a use case consist of activities (or actions). In both defi-
nitions, the activities are ordered in some way. In the defini-
tion of business process, they are structured and measured,
and in the definition of use case, they are sequential. Also,
in both definitions, the activities are aimed at delivering a
particular result.

In addition to the similarities that exist between the def-
initions, it has been noted that business processes can be
described by use case models [15, 10, 11, 16].

These observations give rise to the assumption that it is
possible to translate business process models to use case
models. The benefit of having such a technique is that,
while use cases have to be captured by performing inter-
views in an organization, business processes are often avail-
able in the form of working instructions or administrative
handbooks. A study at a large international bank, for exam-
ple, showed that about 350 of the 1000 business processes
used in the bank were well described and used for reference
in the daily conduct of business.

Because of the obvious similarities between use cases
and business processes, and the expected benefits of deriv-
ing use case diagrams from business process models, we
studied the exact relation between UML use case diagrams
and business process models. Our main goal was to spec-
ify a procedure to transform business process models into
UML use case diagrams that can serve as a basis for further
systems development.

The approach chosen is to create metamodels for use
case diagrams and for business process models, and com-
pare the two metamodels. The relations between the meta-
models give rise to a mapping that forms a basis for the
transformation procedure from business process models to
use case diagrams.

The remainder of this paper is organized as follows. Sec-



tion 2 and section 3 briefly introduce use case modeling
and business process modeling respectively. Also, these
sections give the metamodels of both modeling techniques.
Section 4 describes a mapping between the two metamod-
els. Section 5 explains a procedure for transforming busi-
ness process models into use case diagrams. This procedure
is based on the mapping from section 4. Section 6 explains
industrial experience we have with the technique. Section 7
presents the conclusions of this paper.

2. UML Use Case Modeling

This section introduces UML use case modeling. Sub-
section 2.1 gives an overview of use case modeling. Sub-
section 2.2 gives a metamodel of use case modeling.

2.1. Use Case Modeling Overview

A use case diagram describes how an entity may use the
system under development. To this end, a use case diagram
contains actors and use cases. An actor is an entity that may
interact with the system. A use case is a set of interactions
between any number of actors and the system under devel-
opment. Thus, a use case describes a part of the behavior of
the system.

An example of a use case diagram is shown in figure 1.
The ovals represent use cases, and the puppets represent ac-
tors. A line between an actor and a use case represents the
actors involvement in one or more of the interactions cov-
ered by the use case. The example models a system that
supports the processing of mortgage applications. The sys-
tem can be used to enter the mortgage data, perform a cred-
itworthiness check, draw up an offer, and process an advice.

When two use cases partly share the same behavior, this
behavior may be put into a third use case, and the origi-
nal two use cases may be defined to ’include’ the behavior
of this new use case. In the description of the original use
cases, the point at which to include the behavior described
by the third use case is specified. The goal of this con-
struction is to remove redundancy. Thereby, it allows a use
case diagram to be better understood, and avoids that func-
tionality is implemented twice. An include relationship is
represented by a dashed arrow, labeled�include�.

When one use case is a generalized form of another use
case, we can draw a generalization relationship between
them. We could, for example, draw a generalization rela-
tionship from the use case ’process complaint’ to the use
case ’process incoming mail’. Generalization relationships
can also exist between actors. The actor ’employee’, for
example, is a generalization of the actor ’administrative
worker’. A generalization relationship is represented by a
solid line with a hollow arrowhead from the specific to the
generic use case or actor.

Enter Mortgage

Draw up Offer

Check Credit

Advise

<<include>>

<<include>>

Figure 1. Example use case diagram

Table 1. Example of a use case’s interactions

1. enter name and address
2. enter mortgage details
3. carry out the use case: ’check credit’
4. send initial acceptance to client
4. send rejection to client

We may describe an extension to the behavior of a use
case in terms of another use case. To do this, we define an
extension relation between the two use cases. If at a certain
point (the extension point) in the execution of the base use
case, a specified condition is met, then the extension use
case is carried out. An extend relationship is represented by
a dashed arrow, labeled�extend�.

Each use case can be described in detail, by describing
the interactions between the actors and the system, and the
order in which they occur. Many description techniques ex-
ist to detail a use case. We could, for example, use state ma-
chines [16], or activity diagrams [9]. In this paper we use
numbered lists to model a use case’s interactions and their
order. If two numbers occur twice, this models a choice be-
tween two possible interactions. The use case ’enter mort-
gage’ in figure 1 could, for example, be detailed by the num-
bered list in table 1.

2.2. Metamodel of a Use Case Diagram

The metamodel a use case diagram is shown in figure 2.
It is a simplified version of the metamodel that can be found
in the UML specification [16].

3. Business Process Modeling

This section introduces business process modeling. Sub-
section 3.1 gives an overview of business process modeling.
Subsection 3.2 gives a metamodel of business process mod-
eling.



Actor

Association

Generalisation

Use Case

Extend

Include

Interaction

Extensionpoint

actor1 generalization specialization interaction

child parent

1..*

1

addition

include
1 *

*1

extension base

extend

1 1

* *

1..*
point

*

point *

1

usecase
1*

* *

1 1*
base

precedes
succeeds

0..* 0..*

Figure 2. Use case metamodel

3.1. Business Process Modeling Overview

Many techniques for business process modeling exist. In
an earlier study [18], we studied 18 of the most referenced
techniques. From this study we were able to draw up a gen-
eralized view on business process modeling, which we will
use in this section. Although all business process modeling
techniques have means to model aspects other than behav-
ior, such as organizational structure, and data objects, we
will focus on modeling behavior. The reason for this is that
use case modeling does not have any concepts to model as-
pects other than behavior. Therefore these aspects can not
be mapped, and are thus irrelevant in this paper.

A business process model describes the tasks that have to
be carried out, and the order in which these tasks have to be
carried out. A task is the smallest unit of work that makes
sense to a user. Each task is assigned to a role. A role is a
group of entities that have the same rights and obligations
with respect to performing a task or a group of tasks. A role
may be assigned to any number of tasks, and an entity may
act in any number of roles.

In this paper, we use UML activity diagrams to model
business processes. Activity diagrams have been shown to
be useful for business process modeling in [2, 7]. An ex-
ample of an activity diagram that models a business process
for mortgage processing is shown in figure 3. The rounded
rectangles represent tasks, and the arrows represent transi-
tions between tasks. The names in the columns represent
roles, and a task in the column of a role represents that this
task is assigned to that role. The bullet, and the bulls eye,
represent the beginning and the end of the business process
respectively. The abbreviations aut., sup., and man. in the
task descriptions represent that a task is performed auto-
matically by a software system, supported by a software
system, or performed manually. The example describes the
procedure that is followed when a mortgage application is
received, until the application is processed and has resulted
in an offer.

We can use a guard to model a condition that must be
met before starting the following task. A guard could be,
for example, ’legal act received’. A guard is graphically
represented as a label between square brackets on a transi-
tion.

We can use a branch to model a choice on the task that
has to be started after the current task has finished. A branch
has decision criteria attached to it that define under which
condition, which task is started. Decision criteria could be,
for example, ’if amount ≤ 50, start task A, otherwise start
task B’. Decision criteria cannot overlap. It is for example
illegal to specify a choice with decision criteria ’if amount
≤ 50, start task A. If amount ≥ 40, start task B’. A branch
is represented by a diamond with one incoming arrow and
at least two outgoing arrows. The outgoing arrows have
guards attached to them that represent the decision criteria.

We can use a fork to model that two or more tasks are
started in parallel (i.e. are carried out in random order) af-
ter the current task has finished. When two or more tasks
are started in parallel, we may want to wait for all tasks to
be finished before going on to the next task. This can be
achieved by using a join. A join represents that all tasks
that are attached to its source have to be finished before the
task at its end can be started. Note that a join does not nec-
essarily have to join the same tasks that where initiated by
the fork. When we receive an article for a conference, for
example, we may want to start three tasks in parallel, to
forward the article to three international experts. After the
tasks for forwarding, there may be tasks for reminding the
experts of the deadline and for receiving the reviews. These
tasks are all carried out in parallel reviews. However, we
will want to wait until all three reviews are received, before
sending the comment to the person who submitted the pa-
per. A fork is represented by an arrow to a thick line, from
which arrows leave to the tasks that have to be started. A
join is represented by a set of incoming arrows to a thick
line, from which an arrow leaves to the task that has to be
started next. Without loss of generality, we chose to disre-
gard the fork and join construct in this paper to simplify the
mapping. The fork and join construct can be added to the
transformation procedure in future work.

3.2. Metamodel of a Business Process Model

The metamodel of business process modeling is shown
in figure 4. It has been constructed by generalizing the
metamodels of 18 tools studied in [18]. As in the previ-
ous section, we focus on the behavioral aspect of business
process modeling.



Draw up Offer (sup)

Enter Mortgage Data
(sup)

Check Credit (aut)

Check Credit (aut)

Inform Client About
Rejection (man)

Process Changes (sup)

Advise Client (man)

Enter Client Data (sup)

Administrative Worker Advisor

Approve Mortgage

[Not Approved]

[Approved]

Figure 3. Example business process model

Role Model Element

Transition BranchGuard

destinationsource 1 1

* *

0..1
guard

1

responsible
*1

Task

Figure 4. Business process metamodel

4. Mapping

In this section, we define a mapping from business pro-
cess modeling concepts and their relations, to use case mod-
eling concepts and their relations.

When we say that two concepts or relations can be
mapped, this means that the extension (as opposed to the
intension) of the source concept or relation is also a valid
extension of the target concept or relation. A mapping from
the concept Person to the concept Building would, for ex-
ample, not be possible. The reason for this is that the exten-
sion of the concept Person, which contains Mr. Jameson, is
not a valid extension of the concept Building.

The extension of a concept or a relation is defined by its
intension. The intension of a concept or relation is defined
by the definition of this concept or relation, and the addi-
tional semantic constraints in which it participates. There-
fore, we can assess the validity of a mapping, by checking
if the definitions, and additional semantic constraints of the
concepts or relations that are mapped, match.

The approach to define the mapping is to first create an
initial mapping, based on the definitions of the concepts
and relations. Thus, the initial mapping is based on the in-
tension of the concepts and relations. Second, we verify
the correctness of the initial mapping, by validating a for-
mal specification of the mapping. The formal specification
of the mapping specifies the extension of the concepts and
relations. Thus the validation of the mapping is based on
the extension of the concepts and relations. In our case the
formal specification of the mapping consists of a Z specifi-
cation of the mapping itself, and a Z specification that we
derived from the metamodels of the modeling techniques.
We validate the specification by checking if the semantic
constraints that can be derived from the original semantic
constraints and the mapping, represent desirable properties.

We used this approach to mapping modeling techniques
before in [6, 14]. A more detailed description of the ap-
proach is given in [14].

4.1. Assumptions

Because a use case diagram describes the behavior of the
system under development, we must decide what part of a
business process we are going to automate before we can
draw a use case diagram for it. For each task there are three
possibilities: automated, supported or manual. A task is
automated when the system performs it without the inter-
vention of an external entity. An example of an automated
task is the automated generation of a letter. A task is sup-
ported when an external entity performs the task with the
help of the system. An example of a supported task is the
task of deciding whether a client can have a mortgage, while
obtaining the client’s data from the company database. In



this case, the actual task is performed by an entity that is
external to the system (an employee), while this entity is
supported by the system (the company database). A task is
manual when it is fully performed by an external entity.

For now, we will assume that each task is supported. We
will show later, how we can modify the mapping to cater for
automated, and manual tasks.

Also, we will assume that a task in a business process
model corresponds to an interaction of an entity with the
system under development. This can be done safely when
assuming that tasks and interactions are described at the
same level of detail.

4.2. The initial mapping

We map a business process role to a use case actor. Ac-
cording to its definition, an actor defines a coherent set of
parts1 that users of the system can play when interacting
[16]. Every time a specific user interacts with the system,
it is playing such a part. When mapping business process
roles to actors, it must be enforced that an actor defines a
coherent set of parts that users of the system can play when
interacting. Since the UML semantics does not put any con-
straints on what exactly is considered to be a coherent set of
parts, we assume that any coherency will do. Furthermore,
because a business process role is defined as a group of enti-
ties that have the same rights and obligations with respect to
performing a task or group of tasks, we can safely assume
that a business process role defines a coherent set of parts
that users can play when performing tasks.

According to its definition, an actor can be assigned to
any number of interactions. When mapping a business pro-
cess role to an actor, and assuming that a task is equivalent
to an interaction, this is still possible. However, an interac-
tion can only be assigned to a single actor, because a task
can only be assigned to a single role. This disallows interac-
tions between two actors to be modeled. This is a limitation
of the proposed mapping, we have to accept when using the
mapping.

A use case can either specify a complete system, or
any model element that displays behavior, like a subsys-
tem, or a class in the model of a system [16]. It has even
been proposed to use use cases to model business processes
[10, 11, 16]. Therefore we can choose freely what business
process modeling concept we map to the use concept, as
long as it describes behavior. The business process meta-
model contains two concepts that describe behavior: task
and procedure. We can therefore map either of these con-
cepts to a use case.

When we map a task to a use case, each use case would
only model a single interaction, because we assumed that a

1The original term was ’role’. However, the term ’role’ may be con-
fused with a role in a business process. Therefore we use the term ’part’.

task is equal to a single interaction. However, according to
the UML semantics, a use case must describe a ’complete
sequence’. This means that the use case specifies all the
interactions that have to be carried out to bring the system
in a state in which the use case can be performed again.
Thus limiting the use case to one interaction would be too
constraining. Therefore, mapping a task to a use case is not
valid.

When mapping a procedure to a use case, the resulting
use cases would become very complex. This can be seen
from the number of actors that would then be involved in
one use case (which equals the number of roles involved
in a procedure, and in the performed case studies was 4 on
average). The number of alternative paths that have to be
defined for the use case would also be high. Therefore, this
is not a practical mapping.

Since no mapping can be made from a business process
modeling concept to the use case concept, we introduce the
concept of step [13], and map a step to a use case. A step
is a sequence of tasks that can be performed without inter-
ruption by the same role. ’Send offer’, for example can be
a step. ’Send offer and process reply’ cannot be a step, be-
cause time passes between sending the offer and receiving a
reply. Because a step is a sequence of tasks that can be per-
formed without interruption by the same role, it is a logical
unit of work to the users, and therefore is experienced by the
users as a complete sequence. Also, the complexity of the
use case is limited, because the number of actors attached to
it is by definition one, and the number of alternative paths
is limited.

The introduction of the step concept, requires that the
step concept is also is introduced in the meta model of busi-
ness process modeling. We will take this into account in the
next section.

We map the association between a step and a role to an
association between the corresponding actor and use case.
Because all the tasks in a step can be performed by exactly
one role, the association between step and role is equivalent
to the association between one of the tasks in a step and a
role.

We map transitions between tasks in steps to ordering
between interactions in use cases. We map a guard on a
transition to the description of a constraint on an interaction.

Use cases have a basic path, which is the most common
path, and exceptions to this path that define different behav-
ior [10]. The same holds for business processes. We use the
differentiation between a basic path, and alternative paths,
to define a mapping for branches. We map the basic path of
a branch in a procedure to (a part of) the basic path in a use
case, and we map each alternative path of a branch in a pro-
cedure to an alternative path in a use case. Alternatively, we
may choose to map the alternative paths of the branch to an
extending use case. To be able to do this however, the basic



Table 2. Mapping from business process to
use case concepts

Business Process Concept Use Case Concept

Role Actor

Step Use Case

Association between Association between
Role and Step Actor and Use Case

Task Interaction

Task in a Step Interaction in a Use Case

Transition between Tasks Ordering between Interactions
in the same Step in the same Use Case

Guard on Transition Constraint on Interaction

Alternative Path Alternative Path Description
through a Branch of a Use Case,

or Extending Use Case

path of the branch may not contain tasks. The reason for
this is that an extending use case only describes an exten-
sion to the original behavior of its base use case. It does not
describe a limitation of the original behavior of its base use
case. However, when an alternative path is chosen in a step,
then the behavior of the basic path, from the moment this
alternative path is chosen to the moment we return from the
alternative path, must not be carried out. This describes a
limitation of the behavior of a step that can not be expressed
by an extend relation in the use case diagram.

A summary of the mapping from business process mod-
eling concepts and use case modeling concepts is shown in
Table 2.

The mapping described above is based on the assumption
that each task is supported, and not automated or manual.

When a task is manual, it will be described as such in
the use case of which it has become a part. However, when
this results in a use case that is entirely manual, the use
case no longer models interactions between the system and
its users, and therefore, by definition, is no longer a use
case. In this situation, the modeler may consider making
the use case part of the use case that precedes or succeeds
it in the business process model, or discarding the use case
altogether.

When a task is automated, it will be described as such
in the use case of which it has become a part. When this
results in a use case that is entirely automated, again, the
use case is, by definition, no longer a use case. Thus the
options that apply to a situation in which a use case has
become completely manual also apply in this case.

A more difficult situation arises when a use case is only
fully automated or manual when certain decision criteria
hold. In this case, the path of the use case that handles
the situation that is not fully automated or manual can be
described in the use case. The options that apply to the sit-
uation in which an entire use case has become automated
or manual, apply again to the path that handles the situation
that is fully automated or manual.

4.3. Validation of the Initial Mapping

We give a Z specification of the metamodels and the
mapping below. The Z specification is derived from the
metamodels by postulating a set for each class in the meta-
model, and postulating a relation between two sets for each
association between two classes in the metamodel. The
semantic constraints are specified in the predicate part of
the schemas that represent the metamodels. Since cardinal-
ity constraints are often recurring semantic constraints, we
specified shorthands for them in a generic schema.

[X, Y]
tot : (X ↔ Y)
fun : (X ↔ Y)
sur : (X ↔ Y)
inj : (X ↔ Y)

tot(r) ⇔ ∀ x : X • ∃ y : Y • x 7→ y ∈ r
fun(r) ⇔ ∀ x : X; y1, y2 : Y •

x 7→ y1 ∈ r ∧ x 7→ y2 ∈ r ⇒ y1 = y2

sur(r) ⇔ ∀ y : Y • ∃ x : X • x 7→ y ∈ r
inj(r) ⇔ ∀ x1, x2 : X; y : Y •

x1 7→ y ∈ r ∧ x2 7→ y ∈ r ⇒ x1 = x2



[Object]

Task, Branch, Step : P Object
Role, Transition : P Object

BusinessProcess
member : Step ↔ Task ∪ Branch
responsible : Task ∪ Step ∪ Branch ↔ Role
source : Transition ↔ Task ∪ Step ∪ Branch
destination : Transition ↔ Task ∪ Step ∪ Branch

tot(responsible) ∧ fun(responsible)
tot(source) ∧ fun(source)
tot(destination) ∧ fun(destination)
tot(member) ∧ sur(member)
∀ t : Task ∪ Branch; r : Role • ∃ s : Step •

s 7→ t ∈ member ∧ s 7→ r ∈ responsible ⇔
t 7→ r ∈ responsible

∀ t : Transition • ∃ s : Step • t 7→ s ∈ source ⇒
(¬ ∃ ta : Task • t 7→ ta ∈ destination) ∧
(¬ ∃ b : Branch • t 7→ b ∈ destination)

∀ t : Transition • ∃ s : Step •
t 7→ s ∈ destination ⇒
(¬ ∃ ta : Task • t 7→ ta ∈ source) ∧
(¬ ∃ b : Branch • t 7→ b ∈ source)

∀ b : Branch • ∃ t : Transition •
t 7→ b ∈ destination

∀ b : Branch • #(source B {b}) ≥ 2
∀ s1, s2 : Step; t : Transition •

t 7→ s1 ∈ source ∧ t 7→ s2 ∈ destination ⇔
(∃ ta1, ta2 : Task ∪ Branch; t′ : Transition •
t′ 7→ ta1 ∈ source ∧ t′ 7→ ta2 ∈ destination
∧
s1 7→ ta1 ∈ member ∧ s2 7→ ta2 ∈ member)

The predicate part of the BusinessProcess schema ex-
presses, apart from the cardinality constraints, the following
properties successively:

1. if a task or branch is a member of a step, and this
step has a certain responsible role, then the task or
branch also has this responsible role. This property
also applies vice versa;

2. if a transition originates from a step, then this transi-
tion cannot point to a task or branch;

3. if a transition points to a step, then this transition can-
not originate from a task or branch;

4. a branch must have an incoming transition;

5. a branch must have at least two outgoing transitions;

6. if two steps are connected by a transition, then an-
other transition must exist. This transition must have
a branch or task in the fist step as its source, and a
branch or task in second step as its destination. This
property also applies vice versa.

Interaction, UseCase, Actor : P Object
Association, Extend, Point : P Object

UseCase
actor : Association ↔ Actor
usecase : Association ↔ UseCase
interaction : UseCase ↔ Interaction
succeeds : Interaction ↔ Interaction
extension : Extend ↔ UseCase
base : Extend ↔ UseCase
pointEE : Extend ↔ Point
pointUE : UseCase ↔ Point

tot(actor) ∧ fun(actor)
tot(usecase) ∧ fun(usecase)
tot(extension) ∧ fun(extension)
tot(base) ∧ fun(base)
tot(pointEE)
tot(interaction) ∧ sur(interaction)
inj(interaction)
∀ u : UseCase; p : Point • ∃ e : Extend •

e 7→ u ∈ base ∧ e 7→ p ∈ pointEE ⇔
p 7→ u ∈ pointUE

∀ i1, i2 : Interaction • ∃ u : UseCase •
u 7→ i1 ∈ interaction ∧ u 7→ i2 ∈ interaction
⇒
i1 7→ i2 ∈ succeeds∗ ∨ i2 7→ i1 ∈ succeeds∗

The predicate part of the UseCase schema expresses,
apart from the cardinality constraints, the following prop-
erties successively:

1. A use case that acts as the base of an extension rela-
tion, must refer to the extension point of this exten-
sion relation. Also, if a use case refers to an extension
point, then it must act as the base of the extension re-
lation that refers to this extension point;

2. if two interactions are in the same use case, then one
must succeed the other, either directly or indirectly.



Mapping
BusinessProcess
UseCaseDiagram

s 7→ r ∈ responsible ⇔
∃ a : Association •
a 7→ r ∈ actor ∧ a 7→ s ∈ usecase

∀ u1, u2 : UseCase • (∃ e : Extend •
e 7→ u1 ∈ base ∧ e 7→ u2 ∈ extension)⇒
(∃ t : Transition; ta1, ta2 : Task ∪ Branch •
u1 7→ ta1 ∈ member ∧ u2 7→ ta2 ∈ member
∧
t 7→ ta1 ∈ source ∧ t 7→ ta2 ∈ destination)

∀ u1, u2 : UseCase • (∃ i : Include •
i 7→ u1 ∈ base ∧ i 7→ u2 ∈ addition)⇒
(∃ t : Transition; ta1, ta2 : Task ∪ Branch •
u1 7→ ta1 ∈ member ∧ u2 7→ ta2 ∈ member
∧
t 7→ ta1 ∈ source ∧ t 7→ ta2 ∈ destination)

∀ i1, i2 : Interaction • i1 7→ i2 ∈ succeeds ⇒
(∃ t : Transition •
t 7→ i1 ∈ source ∧ t 7→ i2 ∈ destination)
∨
i1 7→ i2 ∈
(source∼ o

9 ((destination B Branch)o
9

(Branch C source∼)) o
9 destination)

u 7→ i ∈ interaction ⇔ u 7→ i ∈ member
t 7→ t1 ∈ source ∧ t 7→ t2 ∈ destination ∧

s 7→ t1 ∈ member ∧ s 7→ t2 ∈ member ⇒
t2 7→ t1 ∈ succeeds

The predicate part of the Mapping schema expresses the
following properties successively:

1. if a relation exists between a step and a role, then an
association exits between the corresponding use case
and actor. This property also applies vice versa;

2. if two use cases are connected by an extension rela-
tion, then a transition must exist in the business pro-
cess model. This transition must have a task or branch
as its source that represents an interaction in the base
use case. Also, this transition must have a task or
branch as its destination that represents an interaction
in the extension use case;

3. if two use cases are connected by an include relation,
then a transition must exist in the business process
model. This transition must have a task or branch as
its source that represents an interaction in the base use
case. Also, this transition must have a task or branch
as its destination that represents an interaction in the
included use case;

4. if an interaction succeeds another interaction, then

the corresponding tasks must either be connected di-
rectly by a transition, or indirectly via a number of
branches;

5. if an interaction belongs to a use case, then the task
corresponding to the interaction must belong to the
step corresponding to the use case. This property also
applies vice versa;

6. if there is a transition from a task to a task in the
same step, then the interaction that corresponds to the
second task must succeed the interaction that corre-
sponds to the fist task.

We specified the mapping, by only mapping the associ-
ations in the metamodels. We can do this when we only
consider associations, and set elements that participate in
an association. For example, we only consider the actor
’administrative worker’, if it has an association to one of
the use cases.

We evaluate the mapping by deriving additional seman-
tic constraints from the semantic constraints specified in the
schemas above. If one of the derived semantic constraints
represents an undesirable property of the mapping, the map-
ping has to be reconsidered.

The first derived semantic constraint is derived as fol-
lows:

s1 7→ t ∈ member ∧ s2 7→ t ∈ member

⇒ [rule of Mapping]

s1 7→ t ∈ interaction ∧ s2 7→ t ∈ interaction

⇒ [inj(interaction)]

s1 = s2

This constraint specifies that a task cannot occur in more
than one step.

The second derived semantic constraint is derived as fol-
lows:

u1 7→ p ∈ pointUE

⇒ [rule of UseCase]

∃ e : Extend •

e 7→ u1 ∈ base ∧ e 7→ p ∈ pointEE

⇒ [rule of ∧]

∃ e : Extend • e 7→ u1 ∈ base

⇒ [tot(extension)]

∃ e : Extend; u2 : UseCase •

e 7→ u1 ∈ base ∧ e 7→ u2 ∈ extension

⇒ [rule of Mapping]

∃ t : Transition; u2 : UseCase •

∃ ta1, ta2 : Task ∪ Branch •



u1 7→ ta1 ∈ member ∧ u2 7→ ta2 ∈ member ∧

t 7→ ta1 ∈ source ∧ t 7→ ta2 ∈ destination

This constraint specifies that, if we choose to transform a
Branch into an Extend relation, then a transition must ex-
ist. This transition must have a Task as its source that is a
member of the Step that represents the base Use Case. It
must have a Task as its destination that is a member of the
Step that represents the extension Use Case. In other words:
there is no point in specifying a Use Case as an extension to
another Use Case, if this Use Case is never executed.

The third derived semantic constraint is derived as fol-
lows:

∃ a1, a2 : Association •

a1 7→ ac1 ∈ actor ∧ a1 7→ u ∈ usecase ∧

a2 7→ ac2 ∈ actor ∧ a2 7→ u ∈ usecase

⇒ [rule of Mapping]

u 7→ ac1 ∈ responsible ∧ u 7→ ac2 ∈ responsible

⇒ [fun(responsible)]

ac1 = ac2

This constraint specifies that a Use Case can be associated
with at most one Actor.

The fourth derived semantic constraint is derived as fol-
lows:

u1 7→ i1 ∈ interaction ∧ u2 7→ i2 ∈ interaction ∧

u1 6= u2

⇒ [rule of Mapping]

u1 7→ i1 ∈ member ∧ u2 7→ i2 ∈ member ∧ u1 6= u2

This constraint specifies that if Interactions are members of
two different Use Cases, then the Tasks that represent the
Interactions were in two different Steps. A trivial constraint,
but it turned out to be the largest source of mistakes in the
case studies. Therefore we thought it was useful to specify
this constraint here.

5. The Transformation Procedure

From the mapping defined in the previous section, we de-
rived a procedure for transforming a business process model
into a use case diagram.

First, we create an actor for each role in the business
process model.

Second, if this is not done already, we create steps
around the tasks in the business process model. To create
steps, we take the first task in the procedure model, and de-
termine the tasks that: (1) can be reached from this task by
transitions, (2) are assigned to the same role, and (3) do not
have time passing between them. These tasks together form

the first step. For each task that is directly connected by
a transition to a task in the first step, we repeat the proce-
dure. The procedure to create steps from tasks was studied
in [17]. Two steps are connected by a transition, if and only
if a transition exists from a task or branch in the first step, to
a task or branch in the second step. The guards that exist on
the transition that connects these tasks or branches are also
guards of the transition that connects the steps.

Third, we create a use case for each step that we identi-
fied. We create an association between an actor and a use
case when there is a relation between the role that corre-
sponds to the actor, and a task that is in the step that corre-
sponds to the use case.

Fourth, we describe the identified use cases in detail, by
describing their interactions. To do this, we first determine
the most common path of tasks and transitions through a
step. We describe this path as the most common path of the
corresponding use case. Next, we determine the alternative
paths in a step. We describe these as alternative paths in
the corresponding use case, or optionally as extension use
cases.

Fifth, we restructure the use case diagram that results
from applying the procedure. This can be done according
to normal restructuring rules, like, for example, the ones
described in [10]. However, when using the procedure that
is described in this section, some constructs need special
attention. Therefore, we will point out some restructuring
actions that are normally necessary when creating use case
diagrams from business process models.

From case studies, we found out that tasks are often de-
scribed multiple times. The reason for this is that business
process modeling techniques do not cater for reuse of tasks.
However, in use case diagrams reuse is possible. There-
fore, we search the resulting use cases for interactions that
are defined more than once. We put these interactions in a
separate use case, and we draw an include relation from the
original use cases to this separate use case.

We also found situations in which tasks in a step are
only carried out under certain conditions. This may cause
use cases to start halfway their common path, or be aborted
halfway their common path. To cater for this situation we
can use one of the following three solutions depending on
the concrete situation. We can either:

1. include the optional tasks in an alternative path de-
scription of the use case;

2. include the optional tasks in an additional use case
and use this use case as an extension of the original
use case;

3. include the optional tasks in an additional use case,
and ignore the control information altogether.



According to its definition a use case delivers a result of
value to its user. However, in the case studies we found
situations in which users experienced that a use case only
delivered a result of value when it was combined with an-
other use case. This situation can be solved by verifying if
each use case delivers a result of value to its users, and, if
not, by combining use cases.

It may be so that one of the use cases that are combined,
is only carried out under a certain condition. A use case
is only carried out under a certain condition, when the step
that corresponds to it, is only the destination of a transition
that has a guard on it. If this is the case for one of the use
cases that we combined, then we can choose to treat the
steps as two different use cases after all. Optionally, we can
relate the use cases with an extension relation.

As an example of the execution of the procedure, con-
sider the use case diagram shown in figure 1. We derived
this diagram from the business process model shown in fig-
ure 3, by applying the procedure. The roles in the activ-
ity model were mapped to actors in the use case diagram.
Steps were created around the tasks ’enter client data’, ’en-
ter mortgage data’, and ’check credit’, around the task ’in-
form client about rejection’, around the tasks ’advise client’,
and ’process changes’, and around the tasks ’check credit’,
and ’draw up offer’. These steps were mapped to use cases
in the use case diagram. The associations between the roles
and the steps were mapped to associations between the cor-
responding actors, and use cases. While restructuring, the
’check credit’ interaction was put in a separate use case, be-
cause it was defined twice. We drew an include relation to
the ’check credit’ use case from the use cases of which the
’check credit’ interaction originally was a part. Also, the
use case consisting of the interaction ’inform client about
rejection’, was eliminated, because it was completely man-
ual.

6. Case Studies

To evaluate the procedure, we applied it in two case stud-
ies. The studies took place in the mortgage processing de-
partments of two internationally operating banks. We will
discuss the two case studies in the following subsections.

6.1. Case Study: Evaluation of Correctness

In the first case study, we focused on the evaluation of
the correctness of the technique. In this case study, we ap-
plied the technique in practice, and evaluated the quality of
the resulting use cases as compared to use cases that were
constructed by performing interviews. From the results we
derived some recommendations for the technique.

In this case study, we investigated a total of 6 business
processes. From these business processes we derived 42 use

cases. For all use cases together, 10 alternative paths were
found. When evaluating the use case diagrams, a number of
improper use case constructions were identified.

Of 2 use cases some of the interactions were defined
more than once. 3 use cases were completely redundant.
This type of construct results from the lack of reusability
of steps and tasks in business process models. Therefore,
when a task or step is carried out twice in a business pro-
cess, it has to be defined twice. Hence, when applying the
procedure it results in use cases being defined twice.

6 use cases had the option to be performed only in part.
2 of these use cases could be stopped halfway the use case
description, and 4 could be started halfway the use case de-
scription. This situation arises when part of the work only
has to be performed under a certain condition, and thus a
step is left or started halfway the common path of tasks.

according to the users of the system, 12 use cases only
delivered a result of value in combination with another use
case. This situation usually occurs when the processing
of an application can only continue until certain informa-
tion is known that has to be obtained from an external en-
tity. When, for example, assessing the creditworthiness of
a client, information is requested from various institutions.
Although the user has to wait for the response of one in-
stitution, before continuing with the next, he experiences
checking the creditworthiness of a client as a single task.

The choice to describe use cases belonging to the same
business process in one use case diagram suggests that each
system is built for only one business process. Also, it sug-
gests that only one system is built for each business process.
However, this is rarely the case. A client database, for ex-
ample, is usually used by all primary business processes.
Therefore, once a use case diagram is drawn, there must be
evaluated which use cases will be implemented by which
system. This decision will be based on what systems al-
ready exist to support other business processes. When we
decide that a use case is partly going to be implemented by
one system, and partly by another system, we may decide to
split the use case. Eriksson and Penker describe a procedure
for doing this in [8].

From this case study we concluded that the procedure
produces use cases that can be used as a specification for
software to support business processes. To cater for the
constructions defined above, we integrated them into the re-
structuring step of the procedure.

6.2. Case Study: Evaluation of Benefits

In the second case study, we focused on the evaluation of
the benefits of the technique. In this case study, we applied
the technique in practice, and evaluated the time it took to
create use case diagrams with the proposed procedure, as
compared to the time it took to create use case diagrams



without the procedure. From the application of the tech-
nique in this case study, we came up with some figures to
support the assumption that the technique speeds up the pro-
cess of constructing use cases.

In this case study, we observed a project. In this project
two teams worked separately on the development of busi-
ness process models, and the development of use case dia-
grams respectively. The estimated development time for the
business processes was 4800 hours, and the estimated de-
velopment time for the use case diagrams was 8800 hours.
After inspecting some of the resulting models, we noticed
that the use case diagrams did not contain any information
that was not in the business process models. Therefore, it
was not necessary to have a separate team working on the
development of use case diagrams.

7. Conclusion

In this paper, we introduced a procedure to transform
business process models into UML use case diagrams. First,
we created a mapping between the metamodels of use case
diagrams and business process models. Then we created a
procedure that complies to this mapping. We have shown
in a case study that the application of the procedure results
in use case diagrams that can serve as a basis for further
system development. In another case study we have shown
that the procedure significantly speeds up the specification
of use case diagrams.

The study described in this paper is related to the fields of
requirements, and method engineering. Much work is done
in both fields to study how models of different types can
be generated from each other. In the areas of requirements,
and method engineering, research is done to how business
processes can be described using use case diagrams [15, 10,
11, 16]. We, however, do the opposite, and use business
processes to derive use cases. Eriksson and Penker describe
a procedure to derive use cases from business processes that
is similar to ours in [8]. However, this procedure is less
detailed.

The use case diagrams that result from the application of
the procedure have limitations.

First, the use case diagrams specify a typical informa-
tion system, in the sense that they do not specify control
information that is above step level. For example, the use
case diagram from figure 1 does not specify whether client
data must be entered before mortgage data or not. When
we want to specify this type of control information, a ser-
vice has to be built on top of the information system that is
specified by the use case diagrams. In further research we
will investigate the relation between the information system
and tools that enforce control information, like, for exam-
ple, workflow engines.

Second, the use case diagrams are as detailed as the busi-
ness processes from which they have been derived. A use
case may, for example, contain the interaction ’enter client
data’, or the interactions ’search client based on name and
date of birth’, if the client was not found ’create a new
client’, and ’enter name, address, and date of birth of the
client’. The second set of interactions provides a more pre-
cise specification than the first set of interactions. There-
fore, depending on the amount of detail specified in the
business processes, it may be necessary to perform further
interviews with system users to detail the use case diagrams
further. The extend to which this is a problem can not be as-
sessed from two case studies, because statistical data must
be gathered to assess this.

The approach we used also has as a limitation: it does
not provide absolute proof that the procedure is correct. The
reason for this is that the formal specification of the proce-
dure that we use as proof merely allows us to validate the
procedure. It cannot provide a formal proof of the correct-
ness of the procedure. To assess the correctness of the pro-
cedure further, we must apply it in more case studies, and
gather statistical data from its application.

Acknowledgements

We would like to thank Luı́s Ferreira Pires, and Gian-
carlo Guizzardi for their valuable comment on a previous
version of this paper.

References

[1] B. Boehm. Software Engineering Economics. Prentice Hall,
Englewood Cliffs, 1981.

[2] G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Mod-
eling Language User Guide. Addison-Wesley, Reading,
MA, 1999.

[3] A. Cockburn. Structuring use cases with goals. Journal of
Object Oriented Programming, 10(7):35–40, 1997.

[4] A. Cockburn. Structuring use cases with goals. Journal of
Object Oriented Programming, 10(8):56–62, 1997.

[5] T. Davenport. Process Innovation. Harvard Business School
Press, Boston, MA, 1993.

[6] R. Dijkman, L. Ferreira Pires, and S. Joosten. Calculating
with concepts: a technique for the development of business
process support. In A. Evans, R. France, A. Moreira, and
B. Rumpe, editors, Proceedings of the UML 2001 Workshop
on Practical UML Based Rigorous Development Methods:
Countering or Integrating the eXstremists, volume Proceed-
ings 7 of Lecture Notes in Informatics, pages 87–98, Bonn,
2001. Gesellschaft für Informatik.

[7] M. Dumas and A. ter Hofstede. UML activity diagrams as a
workflow specification language. In M. Gogolla and C. Ko-
bryn, editors, Proceedings of the UML 2001 Conference on
Modeling Languages, Concepts and Tools, volume 2185 of



Lecture Notes in Computer Science, pages 76–90, Berlin,
2001. Springer.

[8] H.-E. Eriksson and M. Penker. Business Modeling with
UML: Business Patterns at Work. Wiley, New York, 2000.

[9] M. Fowler and K. Scott. UML Distilled: Applying the Stan-
dard Object Modeling Language. Addison-Wesley, Read-
ing, MA, 1997.

[10] I. Jacobson, G. Booch, and J. Rumbaugh. The Unified Soft-
ware Development Process. Addison-Wesley, Reading, MA,
1999.

[11] I. Jacobson, M. Ericsson, and A. Jakobson. The Object Ad-
vantage: Business Process Reengineering with Object Ori-
ented Technology. Addison-Wesley, Reading, MA, 1994.

[12] I. Jakobson, M. Christerson, P. Jonsson, and G. Övergaard.
Object Oriented Software Engineering: A Use Case Driven
Approach. Addison-Wesley, Workingham, 1992.

[13] S. Joosten, G. Aussems, M. Duitshof, R. Huffmeijer, and
E. Mulder. An Emperical Study about the Practice of Work-
flow Management. University of Twente, Enschede, 1994.

[14] S. Joosten and S. Purao. A rigorous approach for mapping
workflows to object oriented is models. To appear in: Jour-
nal of Database Management.

[15] S. Nurcan, G. Grosz, and C. Souveyet. Describing business
processes with a guided use case approach. In Proceedings
of the 1998 Conference on Advanced Information Systems
Engineering, volume 1413 of Lecture Notes in Computer
Science, pages 339–362, Berlin, 1998. Springer.

[16] Object Management Group. OMG unified mod-
eling language specification version 1.4. Internet:
http://www.omg.org, 2001.

[17] J. van Beek. Generation workflow: How staffware work-
flow models can be generated from protos business models.
Master’s thesis, University of Twente, 2000.

[18] W. van Dommelen, S. Joosten, and M. de Mol. Com-
parative study to aids for managing business processes (in
dutch: Vergelijkend warenonderzoek hulpmiddelen beheers-
ing bedrijfsprocessen. Technical report, Department of Fi-
nance, The Hague, 1999.


