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Abstract. Image recognition with prototypes is considered an inter-
pretable alternative for black box deep learning models. Classification
depends on the extent to which a test image “looks like” a prototype.
However, perceptual similarity for humans can be different from the sim-
ilarity learned by the classification model. Hence, only visualising pro-
totypes can be insufficient for a user to understand what a prototype
exactly represents, and why the model considers a prototype and an
image to be similar. We address this ambiguity and argue that proto-
types should be explained. We improve interpretability by automatically
enhancing visual prototypes with quantitative information about visual
characteristics deemed important by the classification model. Specifi-
cally, our method clarifies the meaning of a prototype by quantifying the
influence of colour hue, shape, texture, contrast and saturation and can
generate both global and local explanations. Because of the generality
of our approach, it can improve the interpretability of any similarity-
based method for prototypical image recognition. In our experiments,
we apply our method to the existing Prototypical Part Network (Pro-
toPNet). Our analysis confirms that the global explanations are gener-
alisable, and often correspond to the visually perceptible properties of a
prototype. Our explanations are especially relevant for prototypes which
might have been interpreted incorrectly otherwise. By explaining such
‘misleading’ prototypes, we improve the interpretability and simulata-
bility of a prototype-based classification model. We also use our method
to check whether visually similar prototypes have similar explanations,
and are able to discover redundancy. Code is available at https://github.
com/M-Nauta/Explaining Prototypes.
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Fig. 1. 1 Prototype-based image classification (e.g. ProtoPNet [7]). 2 Our contri-
bution: Quantifying the importance of visual characteristics to explain why the classi-
fication model deemed an image patch and prototype similar. Left: Logical explanation
for the clear similarity between the patches. Right: a ‘misleading’ prototype: humans
might expect these patches to be dissimilar, but our method explains that the classifi-
cation model considers these patches alike because of similar texture.

1 Introduction

Convolutional Neural Networks (CNNs) are the de-facto standard for object
detection due to their impressive performance in numerous automated image
classification tasks. However, the black box nature of neural networks prevents a
human to assess the model’s decision making process, which is especially prob-
lematic in domains with high stakes decisions [21]. Following this demand on
understanding automated decision making, explainable Artificial Intelligence
(XAI) has been actively researched [10]. Post-hoc explanation methods learn
a second, transparent model to approximate the first black box model [10], but
these reverse-engineering approaches are not guaranteed to show the actual rea-
soning of the black box model [21]. Intrinsically interpretable models on the
other hand, are faithful by design and allow simulatability : a user should be
able to reproduce the model’s decision making process based on the input data
together with the explanations of the interpretable model and come to the same
prediction [15]. One type of such models is prototypical learning, which has a
transparent, built-in case-based decision making process. We focus on the prob-
lem of supervised image recognition where a machine learning model should
label an image. Prototypes in this context are usually ‘nearest neighbours’, i.e.,
images from the training set that look similar to the image being classified [1,4].
The similarity between a prototype and an image is often measured in latent
space, learned by the neural network, where images from the same class are
close and dissimilar images are far apart with respect to a certain distance or
similarity metric. Recently, the Prototypical Part Network (ProtoPNet) [7] and
ProtoTree [17] were introduced which use prototypical parts and identify similar
patches in an image. The classification depends on the extent to which this part
of the image “looks like” that prototypical part, measured by a similarity score.
An example of this reasoning is shown in Fig. 1.

Prototype Ambiguity. In this paper, we address the ambiguity that proto-
types can have and present a method to explain prototypes. Consider the left
part in Fig. 1, showing a prototypical patch (‘prototype’) of a white pelican.
Although the similarity between this prototype and the patch in the test image
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is not surprising, it is unclear what this prototype exactly represents. Is the
prototype looking for a white neck, an orange-coloured beak or is the shape of
the beak specifically important? The similarity score between the two patches
assigned by the model depends on its classification strategy, and hence its learned
latent space. Explanations are especially needed when similarity is not so obvi-
ous. When seeing the two patches in the right part of Fig. 1, a human might
argue that these patches are dissimilar because of the colour differences. The
classification model however assigns these patches a high similarity score, and
thus considers them alike, even though the test image is from a different class
than the prototype. This shows that a human and the CNN might have differ-
ent reasoning processes, despite using the same prototypes. The classification
strategy of a neural network, dependent on the learned latent space, determines
the reason for considering two patches as being similar or different. It has been
shown that CNNs trained on ImageNet are strongly biased towards recogniz-
ing texture [8], although other work shows that CNNs can be biased towards
shape [18] or colour [11]. Perceptual similarity for humans however is biased
towards shape [3], but also based on e.g. colour, size, semantic similarity and
complexity [13,20]. It is also questionable whether humans and CNNs will ever
follow the exact same similarity reasoning, since Rosenfeld et al. found that neu-
ral networks fall short on predicting human similarity perception [19]. Since a
user is not aware of the underlying classification strategy of the trained CNN
and might also be unaware of personal biases, only visualising prototypes is
insufficient for understanding what a prototype exactly represents, and why a
prototype and an image are considered similar. This issue may also arise with
other explainability methods that show or highlight image parts, such as atten-
tion mechanisms [6], components [22] and other part-based models e.g. [26,27].
Including our explanations can help users to increase the simulatability [15] and
general understanding of the model.

Contribution. We improve the interpretability of a prototype-based CNN by
automatically enhancing prototypes with extra quantitative information about
visual characteristics used by the model. Specifically, we present a methodology
to quantify the influence of colour hue, saturation, shape, texture, and con-
trast in a prototype. This clarifies what the model pays attention to and why
a model considers two images to be similar. Hence, we disentangle localisation
and explanation. Our method can extend any prototype-based model for image
recognition, such as ProtoPNet [7] and ProtoTree [17]. In this paper, we show
its applicability for the prototypical parts of ProtoPNet. For example, again
considering the left part of Fig. 1, our explanation shows that ProtoPNet con-
siders the prototype and patch from the test image to be similar because of
the similar colour hue and shape of the beak in the test image. Our method
is especially useful when similarity is not so obvious. It can explain potentially
misleading prototypes such as the right prototype in Fig. 1. Whereas a human
might look for something green, our explanation reveals that ProtoPNet con-
siders these two patches similar because of texture, contrast and shape. The
similarity is thus because of the dotted pattern and colour hue was not impor-
tant. This explanation seems reasonable given that the prototype is from the
class “Spotted Catbird”.
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Our method automatically modifies images to change their hue, shape, tex-
ture, contrast or saturation. We forward both the original image and the modified
image through the prototype-based network and analyse the resulting similarity
scores. Specifically, the similarity score between the prototype and the original
image is compared with the similarity score of the prototype and a modified
image. The intuition is that a visual characteristic is considered unimportant by
the classification model when the difference between these two similarity scores
is small (and will therefore get a low importance score), and is deemed important
when the similarity scores differ sufficiently. For example, a blue bird is changed
to a purple bird by changing the hue of the image. If hue would have been impor-
tant for the specific prototype, it would be expected that the model assigns a
low similarity between the prototype and the purple bird, whereas the similarity
with the blue bird was high. As shown in Fig. 1, the prototypes can subsequently
be explained by quantifying the importance of visual characteristics.

2 Prototypical Part Network

We apply the methodology presented in this paper to ProtoPNet, the Prototyp-
ical Part Network from Chen et al. [7] that follows the “this looks like that”
reasoning. Prototypical parts learned by ProtoPNet are subsequently explained
by our method. Key for presenting our explanation methodology is having a
global understanding of the workings of ProtoPNet.

The ProtoPNet architecture consists of a standard CNN (e.g. DenseNet),
followed by a prototype layer and a fully-connected layer. The prototype layer
consists of a pre-determined number of class-specific prototypes, usually 10 pro-
totypes per class [7]. The fully-connected layer learns a weight for each prototype.
During training, prototypes are vectors in latent space that should learn discrim-
inative, prototypical parts of a class. An input image is forwarded through the
CNN, after which the prototype layer compares the resulting latent embedding
with the prototype. A kernel slides over the latent image and at each location,
the distance between the latent prototype and a patch in the latent image is
calculated. This creates an activation map, containing the distance to the pro-
totype at each location in the latent image. To ensure that the prototype can
be visualised, the training procedure of ProtoPNet requires that each prototype
is identical to some latent training patch such that it can be upsampled to the
size of the original image and visualised as an image patch (Fig. 2).

After training, ProtoPNet classifies a test image k by calculating the simi-
larity between a prototype and image k. The distance dj,k between the nearest
patch in latent image k to the j-th prototype is converted to a similarity score:

gj,k = log
(

dj,k + 1
dj,k + ε

)
, (1)

where ε is an arbitrarily small positive quantity to prevent zero division. To
classify this image, the similarity scores of the image and each prototype are
weighted by the fully-connected layer and summed per class, resulting in a final
score for an image belonging to each class. The left part of Fig. 4 illustrates this
reasoning process.
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Fig. 2. A prototype from ProtoPNet is the nearest patch of a training image.

3 Methodology

In order to obtain importance scores for visual characteristics of prototypes,
images are automatically modified. The characteristics in focus are contrast,
colour hue and saturation, shape, and texture (cf. Sect. 3.1). Our approach for
automatically modifying these characteristics is described in Sect. 3.2. Section 3.3
presents a methodology to explain prototypes by quantifying the importance of
a visual characteristic.

3.1 Important Visual Characteristics

The perceptual and cognitive processing in the human visual system is influ-
enced by various features. To determine which image modifications we need to
effectively explain prototypes, we discuss important visual characteristics for the
human perceptual system.

The data visualisation domain has a ranking of channels to control the
appearance of so-called marks [16]. A ‘mark’ is a basic graphical element in
an image, such as a black triangle or moving red dot. Important visual channels
for marks are position, size, angle, spatial region, colour hue, colour luminance,
colour saturation, curvature, motion and shape [16]. For static 2-dimensional
natural images, motion is not applicable and we consider curvature related to
shape. Furthermore, it is not necessary to modify the size, position, angle or
spatial region of objects in images, since CNNs with pooling, possibly combined
with suitable data augmentation, are invariant to these characteristics [9,23].
Moreover, research in neuroscience shows that the human eye can recognise
objects independent of ambient light level during the day [24], whereas contrast
(spatial variation in luminance) is needed for edge detection and delineation of
objects [16]. The human visual system is thus more sensitive to contrast than
absolute luminance [24]. We therefore will not modify the absolute luminance,
but the contrast in an image. Thus, the visual characteristics from the data visu-
alisation domain that we deem important for explaining a prototype are hue,
contrast, saturation and shape.

The channels for marks mentioned in the previous paragraph are however
too simplistic, because they do not include the texture or material of an object.
Research in neuroscience also emphasises the importance of texture for classify-
ing objects in the natural world [5,14]. Related to this, Bau et al. [2] disentangled
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visual representations by layers in a CNN and found that self-supervised models,
especially in the earlier layers of the network, learn many texture detectors. We
therefore also include texture as an important visual characteristic.

3.2 Image Modifications

Original Contrast Saturation Hue Shape Texture

Fig. 3. Image modifications for corresponding visual characteristics.

For each of the visual characteristics, an image set is created. Each of these sets
contains modified images, which are designed to be harder to classify based on the
respective characteristic. For example, we generate a set of low-contrast images,
such that contrast information can not (or hardly) be used by the model. Using
these modified images, the importance of a characteristic for a specific prototype
can be determined by comparing the differences between the prototype-image
similarity of the original and modified image.

To create the modified images, we apply image transformations to reduce
the intensity of each characteristic, i.e., we create images with reduced contrast,
saturation, hue, shape and texture. Figure 3 shows an example image and its
modified versions. We opt for automated image modifications instead of manual
modifications used for experiments in psychology research (e.g. [18]), to be able
to create a large number of modified images efficiently.

To create low contrast images, the original image is blended with the mean
of its grayscale version. More concretely, we first create a grayscale version of
the image and calculate its mean value. We then generate the modified image
by pixel-wise averaging each channel (RGB) of the original image with the mean
grayscale value. Similarly, the low-saturation image is created by averaging the
original image with its grayscale counterpart. To generate an image with different
colour hues, the RGB image is converted to the HSV colour space after which
the H-dimension is modified for each pixel. In order to modify shapes in an
image, we add a linear displacement by warping the image. Specifically, we shift
pixels according to a sine wave in both the horizontal and vertical direction. To
modify texture, we apply a non-local means denoising technique which removes
small quantities of noise, and can therefore be used to blur the sophisticated
texture of a bird while preserving its overall shape. Implementation details are
presented in Sect. 4.1.
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3.3 Importance Scores for Image Characteristics

We evaluate the importance of visual characteristics by calculating local and
global importance scores. The local score measures the importance of the visual
characteristics for a single image, and is therefore applied on previously unseen
images, i.e., any image in the test dataset Stest. The global score measures
the importance of visual characteristics for one prototype in general, and is
independent of a specific input image. The global score is obtained from the
training dataset Strain.

Let i ∈ {contrast, saturation,hue, shape, texture} denote the type of modifi-
cation, j ∈ {1, 2, ..., n} the prototype index and k the image. Furthermore, as
introduced in Sect. 2, let the similarity of the original image and the prototype
be denoted as g, and the similarity of the modified image and the prototype be
denoted as ĝ. Then the local importance score φi,j,k

local of characteristic i for test
image k ∈ Stest on the j-th prototype is the difference in similarity scores:

φi,j,k
local = gj,k − ĝi,j,k. (2)

For the calculation, we fix the patch location such that the part of image k
compared with prototype j is the same for both the original and modified image.

Whereas the local importance score indicates to what extent a visual char-
acteristic influences the similarity score given by the prototype-based model for
a single image, the global importance score gives a general impression of the
importance of visual characteristics in a prototype. The global score of charac-
teristic i on the jth prototype can be calculated by taking all training images
into account. A naive approach would be to average over the local scores of all
training images. However, prototype j might not be present in all images and
modifying those images will therefore not (or barely) influence the resulting sim-
ilarity score. For example, if prototype j represents a specific beak which is not
present in original image k, ProtoPNet will give a low similarity score gj,k. Since
this prototype will also be absent in the modified image, the difference between
the similarity scores, Eq. 2, is near zero. This result could indicate that a certain
characteristic is not important, although the result is actually indicating that
the prototype was simply not present. Therefore, we create a more informative
global importance score by calculating a weighted arithmetic mean by weighing
the local scores of all images in Strain by their similarity score with the prototype:

φi,j
global =

∑|Strain|
k=1 φi,j,k

local · gj,k∑|Strain|
k=1 gj,k

. (3)

Hence, if unmodified image k gets a low similarity score with prototype j, it will
get a low weight for the global importance calculation. In contrast, if prototype
j is clearly present in image k, ProtoPNet will assign a high similarity score and
hence k gets a high weight.

These importance scores can be used to create global explanations that
explain a prototype, and local explanations that explain the similarity score
between a given image and a prototype. The global explanation for the j-th
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prototype lists for each visual characteristic i its importance by showing the
importance scores φi,j

global. This explanation is thus input independent and can
be created before applying the prototype model to unseen images. The local
explanation is of use during testing and explains a single prediction.

4 Experimental Setup

For our experiments, we use the Caltech-UCSD Birds dataset [25], a dataset for
bird species identification also used by Chen et al. [7] for training their ProtoP-
Net. It contains 200 different classes with approximately 60 images per class.
The dataset provides a train-test split, leading to Strain with 5994 images and
Stest with 5794 images. To evaluate our method for explaining prototypes, we
first train a ProtoPNet [7] that results in an interpretable predictive model with
prototypical parts for fine-grained image recognition. We apply the same data
processing techniques as the original work [7]. We cropped the images accord-
ing to the bounding boxes provided with the dataset and apply data augmen-
tation on Strain as described in ProtoPNet’s supplementary material [7]. All
images are resized to 224 × 224. We opted for DenseNet-121 [12] as backbone
of ProtoPNet, as this was reported to be the best-performing network on the
Caltech-UCSD dataset [7]. The DenseNet-121 network has been pre-trained on
ImageNet.1 When forwarding the resized images through DenseNet, the input
image dimensions, Hin = Win = 224 and Din = 3, are transformed to the out-
put dimensions H = 7, W = 7 and D = 128. Depth D is a hyperparameter in
ProtoPNet determining the number of channels for the network output and the
prototypes, and is set to 128 as in ProtoPNet [7]. As in the original paper [7] we
use 10 prototypes per class, leading to 2000 prototypes in total. All other training
parameters are also replicated from the implementation by Chen et al. [7].

We apply our method to the resulting prototypes for generating global and
local explanations. Section 4.1 presents the implementation details for our image
modifications. The design of our experiments to evaluate our explanations is
presented in Sect. 4.2.

4.1 Modification Implementation

When implementing the image modifications as described in Sect. 3.2, we aim
for a similar modification ‘strength’ for all characteristics in order to compare
importance scores. Furthermore, the image modifications should be modest, since
too extreme modifications can lead to out-of-distribution images that result in
erratic behaviour of the underlying neural network of ProtoPNet. A similar mod-
ification degree depends on how ProtoPNet perceives the images. Therefore, we
find a suitable modification degree by forwarding both the unmodified image and

1 We use the same methodology as ProtoPNet [7] in order to reproduce results,
although it is known that there is some overlap between Caltech-UCSD and Ima-
geNet.
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4.784 x 1.145 = 5.478 

4.028 x 1.173 = 4.725 

3.668 x 1.178 = 4.321

Shape 1.9613
Contrast 1.2462
Hue 0.9496
Texture 0.7774
Saturation 0. 0298

Hue 1.9574
Shape 0.8927
Contrast 0.2185
Saturation 0.1970
Texture 0. 0365

Texture 0.7038
Hue 0.6413
Shape 0.5852
Contrast 0.3011
Saturation 0.0674

Test image 
(most ac vated area)

Prototype from
training image

Similarity
score

Weight 
last layer

Points from
this prototype

Ac va on map Local Importance 
Scores

…

Total points White Pelican = 29.448

Classification Explanation

Fig. 4. Left: ProtoPNet’s reasoning with a subset of all prototypes of the White Pelican
class. To classify a test image, ProtoPNet compares the class-specific prototypes of each
class with the test image to calculate the total number of points for this class. An image
is classified as the class with the most points. Right: The activation maps produced by
ProtoPNet and our corresponding local explanations that explain which characteristics
were important for a similarity score.

the modified image through the underlying CNN and compare their L1-norm dis-
tance in latent space. We tune the modifications parameters such that the mean
distance between the unmodified latent training images and the latent modified
images is exactly 0.0002 for all characteristics. This value is experimentally cho-
sen such that it results in modifications that are clearly distinguishable for the
human eye, while still being perceived by ProtoPNet as being close to the orig-
inal images. For the colour modifications (contrast, saturation and hue), we use
PyTorch’s image transformations2. More specifically, we use the ColorJitter
function where we set the contrast value to 0.45, saturation to 0.7 and hue to
0.1 for the respective modifications. The shape modification is manually imple-
mented in Python. The texture modification is implemented with the Non-local
Means Denoising algorithm for coloured images in OpenCV3. The filter strength
of the denoising algorithm is set to 4 to get the correct mean latent distance.

4.2 Considerations for Evaluation

We would like to emphasise that we do not want to explain human perception,
but the perception of the prototype-based model. Hence, we cannot ask users
what they deem important, since we aim to explain the model’s reasoning. Also,
we cannot construct a ground-truth since we are opening up a “black-box” for

2 https://pytorch.org/docs/stable/torchvision/, accessed June 2020.
3 https://docs.opencv.org/3.4/d1/d79/group photo denoise.html#

ga03aa4189fc3e31dafd638d90de335617, accessed June 2020.

https://pytorch.org/docs/stable/torchvision/
https://docs.opencv.org/3.4/d1/d79/group__photo__denoise.html#ga03aa4189fc3e31dafd638d90de335617
https://docs.opencv.org/3.4/d1/d79/group__photo__denoise.html#ga03aa4189fc3e31dafd638d90de335617
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which no ground-truth is available. However, we can still do a quantitative anal-
ysis to evaluate the generalizability and robustness of the explanations. If gen-
eralised well, one would expect that global importance scores are similar when
computed for different image sets. We also evaluate the distribution of global
importance scores to get more insight in the general model reasoning. Addition-
ally, we qualitatively analyse a varied selection of local explanations (Sect. 5.1)
and global explanations (Sect. 5.2). In Sect. 5.3 we use our approach to analyse
potential redundancy of prototypes.

5 Results and Discussion

ProtoPNet is trained for 30 epochs, reaching a test accuracy of 78.3%. Having
applied the same data and training process as the original work [7], we do not
know why our accuracy is lower than the accuracy reported in the original work
(80.2%). However, the aim of this paper is not to train the best ProtoPNet, but
to find a reasonable well-performing model in order to explain its prototypes.

Figure 4 (left) shows a selection of prototypical patches (‘prototypes’) learned
by ProtoPNet. ProtoPNet measures the similarity between a prototype and
patches in a given test image. The resulting similarity scores are multiplied with
learned weights resulting in a final score per class. An image is classified as the
class with the highest score (i.e. most points).

5.1 Analysing Our Local Explanations

Figure 4 (right) shows how our local explanations complement the prototypical
reasoning by explaining which visual characteristics were important for ProtoP-
Net’s similarity score between a prototype and a specific image. We show the
activation map as implemented by Chen et al. [7] and list the local importances
for each visual characteristic. The importances identified by our local explana-
tions for the test image shown in Fig. 4 seems reasonable given the typical white
colour of the pelican and its long neck. Furthermore, our explanations enable a
user to understand why ProtoPNet gave a high similarity score to a prototype
and a patch in the test image. Whereas the prototypes of the white pelican look
similar to the human eye, our local importance scores can differentiate between
prototypes and estimate the prototype’s purpose. The topmost prototype in
Fig. 4 mostly focuses on shape and contrast, the second prototype deems hue
important and the third prototype focuses on texture.

Our local explanations can also be useful to confirm the user’s expectations,
such as the importance of the yellow colour for the prototype in Fig. 5a. The
explanations are however especially insightful when the given similarity score
is in contrast with human perceptual similarity and an explanation is needed.
Figure 5b explains why different test images received a high similarity score by
ProtoPNet. Our local importance scores therefore serves as an extension to a
trained prototype-based model, to explain a single prediction.



Explaining Prototypes for Interpretable Image Recognition 451

Global Importance:

Hue              0.1638
Saturation   0.0397
Shape          0.0358
Contrast      0.0089
Texture       -0.0025

Local Importance:

Hue              2.1849
Saturation   0.8953
Shape          0.7201
Texture        0.6541
Contrast     -0.1759

Test Image Test Image Test Image
Similarity score 2.7421 Similarity score 2.5124 Similarity score 2.3628 

Local Importance:

Hue              1.9387
Saturation   0.6470
Shape          0.1638
Contrast      0.0956
Texture       -0.4691

Prototype

Local Importance:

Hue              2.0172
Contrast      0.6743
Saturation   0.4116
Shape          0.2912
Texture       -0.2301

(a) As expected, the yellow hue is dominant, and the local expla-
nations correspond with the global importance.

Global Importance:

Shape          0.1192
Texture        0.0133
Contrast      0.0090
Hue              0.0002
Saturation  -0.0027

Local Importance:

Shape          1.9766
Hue              0.6577
Saturation   0.3983
Contrast      0.3424
Texture       -0.0909

Test Image Test Image Test Image
Similarity score 2.7772 Similarity score 2.6599 Similarity score 2.2997 

Local Importance:

Contrast      0.8402
Hue              0.7093
Shape          0.1600
Texture        0.1248
Saturation  -0.1429

Local Importance:

Hue              0.5265
Texture        0.4193
Contrast      0.3327
Saturation  -0.0097
Shape         -0.0148

Prototype

(b) Test images can get high similarity scores for different reasons.

Fig. 5. Similarity between a class-specific prototype and test images from different
classes explained by our local importance scores.

5.2 Analysing Our Global Explanations

Local explanations are useful to explain an unexpected result, but do not give
a coherent, overall explanation of the prototype-based model. Our methodology
therefore also produces global explanations that give an average view regard-
ing the importance scores for each prototype. Specifically, the global importance
scores are computed for each prototype by taking the weighted mean of all train-
ing images, as introduced in Sect. 3.3. Hence, these explanations are independent
of test input.

Quantitative Evaluation. To quantitatively evaluate our global explanations,
we compute global importance scores not only for Strain, but for evaluation pur-
poses also for Stest. We confirmed with a Shapiro-Wilk test that the impor-
tance scores for each characteristic are normally distributed, such that we could
apply the Welch t-test to confirm that there is no significant difference between
the global importance scores of all prototypes calculated from Strain and from
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Fig. 6. Box plot of global importance scores across the training set.

Stest for each characteristic (p-values < 3.5−11). This verifies that our global
importance scores are generalisable and robust, since the explanations do not
significantly change when computed from a different image set.

To get more insight as to how characteristics are used, Fig. 6 plots the dis-
tributions of global importance scores of all prototypes across the training set.
It shows that the global scores are predominantly positive, which confirms our
intuition that decreasing any of the visual characteristics usually leads to a
lower similarity score. It also shows that the mean and variability of importance
scores is small for saturation and contrast, meaning that those characteristics
only have a moderate influence on prototype similarity. The high variability for
shape, texture and especially hue means that these characteristics can be sub-
stantially important for some prototypes. This corresponds with the fact that
hue and shape are considered more important and effective for humans in the
data visualisation domain than saturation or contrast [16].

Qualitative Evaluation. Figure 7 shows a varied selection of prototypes with
their global explanation. For the upper two rows, the importance of character-
istics corresponds to the visually identifiable properties of the prototypes and
hence, the explanations seem reasonable. However, the explanations in the bot-
tom row might come as a surprise. A human might think that shape is important
for the bottom left prototype and that the prototype resembles fin-footed birds.
Our global explanation indicates that shape is of little importance and that
colour hue is the dominant characteristic. Since a ground-truth is not available,
we verify the correctness of the global explanation by analysing test images that
had a high similarity with the prototype. Although a prototype is trained to
be class-specific, Fig. 8a shows that images from a different class can still get
assigned a high similarity score. These images confirm that the prototype deems
hue important and therefore resembles red feet, instead of webbed feet. The
reverse is true for the bottom right prototype of Fig. 7. Humans could think that
the prototype resembles a red eye, and would be surprised by a high similarity
score with a black-eyed bird, and hence might lower their trust in the model.
Our global importance scores indicate that the importance for hue is rather low,
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Texture        0.1013
Hue              0.0751
Shape          0.0626
Contrast      0.0460
Saturation   0.0083

Hue              0.2154
Texture        0.0388
Shape          0.0356
Contrast      0.0245
Saturation   0.0175

Shape          0.1200
Contrast      0.0156
Saturation   0.0082
Hue              0.0037
Texture      -0.0014

Hue              0.1940
Texture        0.1484
Shape          0.1282
Contrast      0.0695
Saturation   0.0116

Hue              0.2105
Shape          0.1221
Texture        0.0906
Contrast      0.0724
Saturation   0.0425

Shape          0.0894
Texture        0.0468
Contrast      0.0376
Hue              0.0115
Saturation   0.0048

Hue              0.1343
Shape          0.0745
Texture        0.0325
Contrast      0.0192
Saturation   0.0101

Hue              0.2566
Shape          0.0743
Contrast      0.0378
Saturation   0.0312
Texture        0.0306

Hue              0.0778
Shape          0.0740
Contrast      0.0404
Texture        0.0266
Saturation   0.0028

Fig. 7. Selection of prototypes explained with their global importance scores. Top row:
Prototypes with predominantly a single important characteristic. Center row: Proto-
types with intuitive explanations. Bottom row: ambiguous and potentially misleading
prototypes.

and hue and shape are of similar importance. When analysing birds that get
assigned a high similarity with this prototype as shown in Fig. 8b, it is easily
verified that the prototype does indeed not represent a red eye. These examples
show that our global explanations can clarify visual prototypes. Without our
explanations, a user would not be aware of the meaning of a given prototype
and correct simulatability [15] would not be guaranteed.

5.3 Redundant Prototypes

An interesting question is whether prototypes that are slightly different, deem the
same visual characteristics important. Prototypes with different global impor-
tance scores complement each other, whereas similar explanations indicate pro-
totype redundancy. We consider prototypes to be visually similar when they
are close to each other in the latent space learned by ProtoPNet. We mea-
sure the Euclidean distance between the latent representation of two prototypes
of the same class (a ‘pair’). This gives

(
10
2

)
= 45 unique pairs per class, and

45 · 200 = 9000 pairs in total. Let P be the set of unique pairs of two prototypes
from the same class, such that |P | = 9000, and V ⊂ P the set of pairs with two
visually similar prototypes. We consider a pair of two prototypes i and j iden-
tical when the Euclidean distance in latent space di,j = 0 and visually similar
but not identical when di,j < τ and di,j > 0, where τ = 0.15 is found to be a
suitable threshold for perceptual similarity. This gives 63 pairs of identical pro-
totypes and |V | = 93 unique pairs of 164 visually similar prototypes. To evaluate
whether these visually similar prototypes also have similar global explanations,
we consider the global importance scores of a prototype as a vector of length
5 and calculate the Euclidean distance between the global explanations of two
prototypes. The orange plot in Fig. 9 shows that most pairs with visually similar



454 M. Nauta et al.

similarity: 2.829similarity: 3.682

similarity: 3.539
similarity: 3.211

similarity: 3.033

Global Importance:

Hue 0.2566
Shape 0.0743
Contrast 0.0378
Saturation 0.0312
Texture 0.0306

Prototype

similarity: 2.778

similarity: 2.611

(a) The prototype indeed deems hue more
important than shape.

similarity: 3.381

similarity: 2.733 similarity: 3.211

similarity: 2.871

Global Importance:

Hue 0.0778
Shape 0.0740
Contrast 0.0404
Texture 0.0266
Saturation 0.0028

Prototype

similarity: 2.701

similarity: 3.326

(b) The global score explains that the red
hue from the eye is not that important,
which is validated by near test images.

Fig. 8. Test images from a different class than the prototype-class which have the
highest similarity scores with the prototype.

Fig. 9. Histogram with the distribution of Euclidean distances between the global
explanations of two prototypes of the same class (a ‘pair’).

prototypes have a small distance between their global importance scores, which
is not the case in general (blue). Therefore, these prototypes might be redun-
dant and unnecessarily increase explanation size. Additionally, a few pairs in the
orange plot have dissimilar explanations (distance of roughly 0.7) and therefore
complement each other.

6 Conclusion and Future Work

A prototype-based image recognition model learns visual prototypes and localises
a patch in a test image that looks alike a prototype to assign it a similarity
score. We argue that these prototypes should be explained with respect to the
model’s reasoning and extend localisation with explanation. We presented an
automated approach to explain visual prototypes learned by any prototypical
image recognition model. Our method automatically modifies the hue, texture,
shape, contrast or saturation of an image, to identify which visual character-
istics of a prototype the model deems important. We applied our method to
the prototypes learned by ProtoPNet [7]. The importance of visual characteris-
tics identified by our explanations often corresponded to the visually perceptible
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properties of the prototypes, showing that our explanations are reasonable. We
also showed that perceptual similarity for humans can be different from the
similarity learned by the model, indicating the need for explaining the model’s
reasoning. Such ‘misleading’ prototypes will hinder correct simulatability and
only visualising prototypes can be insufficient for understanding why the model
considered a prototype and an image highly similar. To the best of our knowl-
edge, we are the first to address such ambiguity of visual prototypes and the
elegant simplicity of our approach makes it a suitable stand-alone solution. We
think the extra computational complexity required is justifiable given the extra
insights our method provides. Furthermore, because of the stand-alone nature
of our method, it can be applied to any prototypical image recognition method,
including ProtoPNet [7] and ProtoTree [17]. Our approach can also easily be
extended with more visual characteristics or other image modifications a user is
interested in.

Future work concerns the potential interactions between characteristics. Our
importance scores assume that characteristics from image modifications are
mutually exclusive. However, denoising the image to lower its texture could
also slightly influence shape. We implemented the image modifications in such a
way to limit interactions between characteristics as much as possible, but future
analysis could determine to what extent visual characteristics are correlated.
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