
Nonlinear screening of charges induced in graphene by metal contacts

P. A. Khomyakov,* A. A. Starikov, G. Brocks, and P. J. Kelly
Faculty of Science and Technology and MESA Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The

Netherlands
�Received 17 June 2010; published 20 September 2010�

To understand the band bending caused by metal contacts, we study the potential and charge density induced
in graphene in response to contact with a metal strip. We find that the screening is weak by comparison with
a normal metal as a consequence of the ultrarelativistic nature of the electron spectrum near the Fermi energy.
The induced potential decays with the distance from the metal contact as x−1/2 and x−1 for undoped and doped
graphene, respectively, breaking its spatial homogeneity. In the contact region, the metal contact can give rise
to the formation of a p-p�, n-n�, and p-n junction �or with additional gating or impurity doping, even a p-n-p�
junction� that contributes to the overall resistance of the graphene sample, destroying its electron-hole sym-
metry. Using the work functions of metal-covered graphene recently calculated by Khomyakov et al. �Phys.
Rev. B 79, 195425 �2009��, we predict the boundary potential and junction type for different metal contacts.
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I. INTRODUCTION

Graphene’s unique electronic properties arise from the ul-
trarelativistic character of the electron spectrum near the
Fermi energy that leads to many unusual physical effects.1–4

The high mobility and low electron density �compared to
normal metals� of this two-dimensional �2D� form of carbon
suggest various possibilities for using single and multiple
graphene sheets to make electronic devices.1–10 For example,
one can use external gates to locally change the doping of
graphene and so design p-n or p-n-p� junctions.6,11 How
charge inhomogeneities are then induced in graphene by the
gate electrodes or by charged impurities has been studied
theoretically in Refs. 12–15.

Recently, we have shown how a graphene sheet adsorbed
on a metal is charged by the metal16,17 suggesting an alter-
native way of making p-n junctions by putting weakly inter-
acting metal strips on graphene. The �out-of-plane� charge
transfer between graphene and the metal is determined by �i�
the difference between the work function of graphene and
the metal surface, and �ii� the metal-graphene chemical inter-
action that creates an interface dipole which lowers the metal
work function. Depositing a metal strip �electrode� of finite
width on the graphene sheet will additionally result in an
in-plane charge transfer from the graphene region covered by
the metal to the “free” graphene supported by a dielectric,
driven by the difference between the work functions of the
metal, WM, of metal-covered graphene, W, and of free-
standing graphene, WG.17 An electrostatic potential will then
be induced across the graphene sheet, leading to band bend-
ing and the formation of a p-p�, n-n�, or p-n junction at the
contact area as illustrated in Fig. 1.8,18

In this paper, we study how graphene screens charges
transferred from the metal-graphene contact to free graphene,
creating an electrostatic potential barrier at the contact re-
gion, see Fig. 1. This problem is of fundamental importance
since the physics of contacts can have a significant effect on
the transport properties of an electronic device, in particular,
graphene-based devices with “invasive” electrodes, as re-
cently demonstrated in Ref. 18. A widely used picture of a

metal-graphene contact often assumes a quite sharp potential
step at the contact.19 However, we find that the screening in
graphene is strongly suppressed leading to a large-scale in-
homogeneity of the electrostatic potential across the
graphene sample. The contact effects can also result in
charge inhomogeneities of different polarities �an abrupt p-n
junction� at the contact region. These abrupt p-n junctions
are qualitatively different from the gate-induced p-n junc-
tions recently reported in Refs. 6, 11, and 14.

The contact phenomenon studied in the present work
stems from long-range electric fields originating from charge
transferred between a graphene sheet and a metal electrode.
Recently, Barraza et al. have obtained a contact potential
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FIG. 1. �Color online� Schematic picture of a metal strip �elec-
trode� on graphene. V�x ,z� is the metal-induced electrostatic poten-
tial, where V�0,z� is fixed by the work functions WM1, WM2, WG,
and W, of the bottom and top metal layers, graphene and graphene-
covered metal; h1, h2, and H are the thicknesses of the bottom and
top metal electrodes and the insulating substrate, and L0 and L are
the lateral dimensions of the electrode and the free part of the
graphene sample. �g is the backgate voltage; �0 and �1 are the
permittivities of the dielectric media above and below the graphene
sheet. A typical experimental setup has L0�L�1 �m, H
�300 nm�L, and h1�h2�H.
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from density-functional theory �DFT� calculations of
graphene ribbons with a length of �13.6 nm contacted with
aluminum electrodes.20 To calculate the contact potential
profile, Barraza et al. apply periodic boundary conditions,
i.e., periodic arrays of metal-graphene junctions. Using such
results to describe a single metal-graphene junction, one as-
sumes that the periodic images do not interact, or, in other
words, that the contact potential profile is confined to a nar-
row region around the junction. Indeed the phenomenologi-
cal model proposed in Ref. 20 suggests an exponential-like
decay of the potential induced in graphene by a metal con-
tact. Our results show that this does not apply to a single
metal-graphene contact, where the induced potential is in
fact long range.

In Sec. II, we describe the Thomas-Fermi �TF� approach
used to study the band banding caused by metal contacts in
graphene. In Sec. III, we derive the induced potential and
charge density for undoped, doped, and gated graphene, and
make material-specific predictions of the boundary potential
and junction type for different metal contacts. Our conclu-
sions are presented in Sec. IV.

II. THOMAS-FERMI APPROACH

We model a graphene-metal contact as shown in Fig. 1.
Metal contacts are often applied as a bilayer; a �thin� layer of
metal 1 takes care of a good adhesion to graphene, and a
�thick� layer of metal 2 forms the electrode. We allow for
electrostatic doping by means of a backgate electrode, and
model chemical doping by a uniform background charge �̄.
The resulting screening potential in graphene is calculated
using DFT within the TF approximation. The latter has
proven to have a wide range of validity for describing
screening in graphene.12–15 In TF theory, the charge density
��x� induced in graphene for x	0 is given in terms of the
local chemical potential ��x� as ��x�=−eD0��x����x�� /2A,
where D0=0.09 / �eV2 unit cell�, A=5.18 Å2 is the unit cell
area of graphene and e
0 the elementary charge.16 The
electrostatic potential V�x ,z� and the local chemical potential
are related as ��x�=�F−V�x� with V�x��V�x ,H� and the
graphene sheet is located at z=H, where H is the distance
between the graphene sheet and the backgate electrode, see
Fig. 1. The chemical potential of the entire system, �F, is set
to zero for undoped graphene.

Using the Poisson equation and translational symmetry in
the y direction, �i.e., assuming an infinitely wide graphene
sample�, the TF equation for the electrostatic potential in-
duced in graphene �x	0� is

�2V�x,z� =
e���x� + �̄�

�0�
��z − H� , �1�

where ��x�=−e
��F−V�x����F−V�x�� with 
=D0 /2A. The
effects of the substrate, the lattice potential and of the filled
band electrons are taken into account via an effective dielec-
tric constant, �, and a compensating charge �̄=e
�F��F�.13,21

The boundary conditions for V�x ,z� are imposed by the po-
tential at the contact V�0,z�=VC�z� and at the gate V�x ,0�
=Vg�x�. Assuming graphene is a nearly perfect metal, i.e.,

V�x��const, which will be justified below, the boundary
conditions are given by22–24

Vg�x� = − e�g = const, �2�

VC�z� = 	�W − WG�
z

2H
− 
1 −

z

H
�e�g���H − z�

+ 	�WM − WG�
�

2�
���z − H� , �3�

where z	0 and � /2���� is the angle between the free
graphene sheet and face of the metal electrode; WM1, WM2,
WG, and W are the work functions of the bottom and top
metal layers, graphene, and graphene-covered metal, respec-
tively. �g is the backgate voltage.

Using a Green’s function approach, Eq. �1� can be formu-
lated as a nonlinear integral equation,22

V�x� = VB�x,�g� − e

0

� dx�

2�

��x�� + �̄

�0�

� ln� �x + x����x − x��2 + 4H2

�x − x����x + x��2 + 4H2� , �4�

VB�x,�g� = 

0

� dz�

�

4xHz�VC�z��
�x2 + �H − z��2��x2 + �H + z��2�

+ 

0

� dx�

�

4xHx�Vg�x��
��x − x��2 + H2���x + x��2 + H2�

.

�5�

Using Eqs. �2� and �3�, the boundary potential term can be
written as

VB�x,�g� =
2

�
�VB1 + VB2 + e�g� arctan
2H

x
� − e�g

−
e�g + 2VB1

2�H
x ln
1 +

4H2

x2 � , �6�

where the boundary potential constants VB1 and VB2 are

VB1 =
1

4
�W − WG�, VB2 =

�

4�
�WM − WG� , �7�

and W and WG are the work functions of the graphene-
covered metal �M1� surface as calculated in Ref. 17 using the
DFT within the local-density approximation, and that of free-
standing graphene, respectively. The influence of the elec-
trode depends upon the geometry and the electrode work
function WM=WM1 for h2=0 and WM=WM2 for h2�h1. The
parameter � of the contact geometry is � /2 for x�h=h1
+h2 and � for x�h. At a distance x�h, the two solutions of
Eq. �4� obtained with these two values of � serve as lower
and upper bounds for the screening potential V�x�.

In terms of the sine Fourier transform f�k�
=�2 /��0

�dx f�x� sin�kx�, Eqs. �4� and �6� reduce to

V�k� = VB�k,�g� − e
�1 − e−2kH�

2k

��k� + �̄�k�
�0�

, �8�
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VB�k,�g� =� 2

�k2	VB1 + VB2 + �VB1 − VB2�e−2kH

− �e�g + 2VB1�
1 − e−2kH

2kH
� , �9�

where ��k�=�2 /��0
�dx ��x� sin�kx� and �̄�k�= �2 /�k2�1/2�̄.

III. RESULTS

We have been unable to solve Eq. �4� analytically but we
have obtained a numerical solution, as well as accurate but
approximate, analytical solutions. We start by studying the
solution at a large distance from the metal contact assuming
that V�x�→V�=const for x→�. The classical limit of a per-
fect metal, i.e., V�x�=V� for all x, implies V�k�
= �2 /�k2�1/2V� in Eq. �8�, allowing the asymptotic charge
density to be written as

e���x� + �̄�
�0�

=
4

�x

VB2 + VB1

�x/H
e�x/H − 1

− V�� −
e�g

H
,

�10�

which is derived from Eqs. �8� and �9� with the use of the
inverse sine Fourier transformation. This result is valid for
any two-dimensional metallic system, including multiple lay-
ers of graphene.24 However, to obtain the screening potential
V�x� from the charge density ��x� one has to use the appro-
priate density of states. For instance, for undoped graphene,
�F=0 �implying �̄=0� and the asymptotic potential is V�

=sign�−e�g���0���g� /e
H�1/2. For a single layer of
graphene, the screening potential can be expressed in terms
of the charge density in the general form

V�x� = �F + sign�������x��
e


, �11�

where the charge density is given by Eq. �10� for given
boundary potential constants �VB1 ,VB2�, gate voltage ��g�,
substrate thickness �H�, and doping level ��F�.

In the ungated limit �H→��, the screening potential
given by Eqs. �10� and �11� becomes

V�x� = �F + sign�����VB�VB�
x/ls

− �F��F�� , �12�

where ls=�� /���VB� is a scaling length, VB=VB1+VB2, ��
= ��k / �k�= ��
�−1/2=6.05 eV Å,16 and �=e2 /4��0���
=2.38 /� the “fine-structure” constant in graphene.

A. Undoped graphene

For undoped graphene ��F=0�, the induced potential de-
cays asymptotically as V�x��x−1/2, i.e., the screening is
strongly suppressed as compared to a normal 2D metal,
where V�x��x−1. The charge density ��x��V2�x��x−1 be-
haves, however, as in a 2D metal.24

Numerical solution of Eq. �4� shows that Eq. �12� is quite
accurate for x� ls. A simple interpolation expression for the
screening potential of undoped graphene ��F=0� can be ob-
tained by replacing x / ls with 1+x / ls in Eq. �12�. The screen-

ing potential then satisfies the correct boundary conditions
both at x=0 and at x=�, and is close to the exact solution
also for intermediate x, see Fig. 2.25 The best variational
solution we found is

V�x� �
VB

��x/ls + �2
2 + �1 − �2�1/2�x/ls + �1

−2�1/4
�13�

with �1=0.915 and �2=0.128. The difference between the
numerical and variational solutions is �1.4% for x�0.1ls
and �0.2% for x�0.1ls.

From the general criterion for validity of the semiclassical
approximation, �d
�x� /dx� /2��1, where 
�x� is the de Bro-
glie wavelength,26 one can derive a condition defining the
range of validity of the potential obtained from the TF
model: �dV�x� /dx��V2�x� /��. The latter condition also im-
plies that the in-plane electric field is small compared to the
field perpendicular to the graphene sheet, Ex�Ez �as Ez
���V2�, which completes the proof that graphene behaves
as a nearly perfect metal within the TF approximation. Using
Eq. �13�, and taking a typical boundary potential VB
�0.5 eV �Table I� and effective dielectric constant ����0
+�1� /2�2.5 for graphene on a SiO2 substrate,21 we find that
the TF theory is valid for x�a with a the lattice parameter of
graphene. Using high-� substrates will weaken this condi-
tion, making the TF results valid up to the immediate prox-
imity of the metal contact.

Recently we described how depositing graphene on a
metal surface leads to charge transfer between the metal and
graphene.16,17 The graphene device shown in Fig. 1 consists
of two regions, metal-covered graphene �x�0� and free
graphene �x
0�. The sign and level of doping of metal-
covered graphene is fixed by the first metal layer �M1�,
�EF=W−WG.16,17 The doping of graphene near the contact,
a�x�H /�, is determined by the boundary potential VB, see
Eq. �13�, which depends on the work function of the
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FIG. 2. The screening potential for undoped graphene: numeri-
cally exact solution �solid line�, variational solution Eq. �13� �bold
dots�, V�x�=VB�x / ls�−1/2 �dotted line� and V�x�=VB�1+x / ls�−1/2

�dashed line�. Inset: the charge density ��x�=e
V�x��V�x��, Eq.
�10�, for the Ti/Au electrode for �g=−15 V �dashed line�, 0 V
�solid line�, and 15 V �dotted line�; VB=0.19 eV, �=2.5, 
=8.69
�10−3 �eV Å�−2, H=300 nm, and ls�1 nm.
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graphene-covered metal �M1� and the top metal layer �M2�,
see Eq. �7�. If sign�VB��sign��EF�, an abrupt p-n junction
should form close to the contact at x�a, see inset in Fig. 2.27

VB and �EF having the same sign but a different size results
in p-p� or n-n� junctions. Such junctions break the electron-
hole symmetry in graphene, giving rise to an asymmetric
resistance as a function of the gate voltage.18,28,29

At a distance x�H /�, the induced charge is determined
by the top metal layer �Metal 2�, VB2�WM2−WG whereas far
from the contact, x�max�L0 ,h�, graphene is unaffected by
the metal electrode. Using the work functions calculated in
Ref. 17, the boundary potential and junction type expected
for different metal contacts are listed in Table I, assuming the
metal surfaces are clean. Because of the sensitivity of work
functions to surface contamination, the contact potentials
may be different for experiments that are not performed un-
der ultrahigh vacuum conditions.30

B. Doped graphene

Real graphene samples are often doped with some form of
charged impurities. Equation �12� shows that the screening
potential is relatively unchanged by doping for a graphene

region where �V�x��� ��F�, and asymptotically behaves as
VB�VB�ls /2��F�x for �V�x��� ��F�, see Fig. 3, i.e., the screen-
ing is enhanced by doping.

Equation �12� reveals an interesting effect related to the
sign of doping. The screening potential is different for
graphene doped with electrons and holes due to a p-n junc-
tion formation at xpn= ls��F /VB�−2 for �F /VB
0 as shown in
Fig. 3. The formation of the p-n junction for �F /VB
0 is
caused by the competition between the charges of opposite
sign induced by the metal contact and the charged impurities,
respectively. The screening charge and potential for x
�xpn �x
xpn� are constrained by the metal contact �the
charged impurities�. The screening at x�xpn is then sup-
pressed, which gives rise to increase in the screening poten-
tial at the p-n junction as compared to the case of �F /VB
�0.31 For �F /VB�0, the charges induced in graphene by
the metal contact and the charged impurities are of the same
sign so the overall effect leads to enhancement of the screen-
ing, reducing the induced potential. The asymmetry reaches
its maximum at a critical doping level ��F��0.1�VB� and van-
ishes upon increasing �decreasing� �F, i.e., for ��F�
�0.1�VB����F��0.1�VB��. This effect should be observable in
transport measurements where the impurity doping is gradu-
ally changed from n to p type.28

C. Gated graphene

One can also create p-n junctions by applying a gate volt-
age �Fig. 1�.11,14,15 Equation �10� shows that the first effect of
gating graphene is to cause a constant shift of the induced
charge density. Second, the charge depletion width can be
varied by changing the gate voltage since V����g�1/2. This
accounts for the electric field effect on the work function of
graphene.32 Third, a gate voltage applied to graphene creates
qualitatively different junctions �n-n�, p-p�, p-n, or n-p� at
the contact region depending on the sign of the voltage. This
will then lead to an asymmetry in the transport characteris-
tics of the graphene device rather similar to the contact-
induced abrupt junctions discussed in the last two paragraphs
of Sec. III A.

The point xpn that separates p- and n-doped regions of
graphene, is given by ��xpn�=0. Equation �10� yields
�xpn /4H��VB−V�� /e�g. The screening potential near the
transition point can be calculated using TF theory. The semi-
classical description, however, breaks down exactly at xpn
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FIG. 3. �Color online� The screening potential for doped
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Inset: the charge density for doped graphene.

TABLE I. VB, Eq. �7�, is the boundary potential for double-layer electrodes with h1�h2, and for two contact geometries with �=� /2 and
�. WM, WG=4.48 eV, and W are the work functions calculated for close-packed surfaces of the clean metals, for free-standing and adsorbed
graphene, respectively, see Ref. 17. The doping sign of adsorbed and free graphene corresponds, respectively, to the sign of W−WG and
VB=VB1+VB2.

Ti Ni Co Pd Al Ag Cu Au Pt Ti/Pd Ti/Au Ti/Al

�WM−WG��VB2, �eV� 0.08 0.99 0.96 1.19 −0.26 0.44 0.74 1.06 1.65 1.19 1.06 −0.26

�W−WG��VB1, �eV� −0.31 −0.82 −0.70 −0.45 −0.44 −0.24 −0.08 0.26 0.39 −0.31 −0.31 −0.31

VB �eV�, �=� /2 −0.04 0.29 0.31 0.48 −0.24 0.16 0.35 0.60 0.92 0.52 0.45 −0.21

VB �eV�, �=� −0.06 0.04 0.07 0.19 −0.18 0.05 0.17 0.33 0.51 0.22 0.19 −0.14

Junction type n-n� n-p n-p n-p n-n� n-p n-p p-p� p-p� n-p n-p n-n�
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since there are no screening charges at this point. The quan-
tum corrections to the TF theory are, nevertheless, relatively
small in graphene.12,14,15

According to our analysis, gating graphene �or doping it
with impurities� can create an n-p-n� junction for some metal
electrodes �Ni, Co, Pd, Ag, Cu, Ti/Pd, and Ti/Au�, see Table
I and Fig. 2. This is possible because the sign of the graphene
doping beneath the electrode, near the contact and far from
the contact is independently fixed by the bottom metal layer,
the contact potential and the gate voltage �impurity doping�,
respectively.

IV. CONCLUSIONS

We have studied the electrostatic barrier formed in
graphene in response to a metal strip in contact with the
graphene sheet. By comparison with conventional metals, the
screening in graphene is strongly suppressed: the induced
electrostatic potential decays weakly with the distance from

the metal contact as V�x��x−1/2 and �x−1 for undoped and
doped graphene, respectively. This leads to a substantial
space charge region in graphene, breaking its spatial homo-
geneity. The latter has been recently observed by scanning
photocurrent microscopy,8 and might also be seen for
graphene in the quantum Hall regime.24,33 The contact effects
also result in the formation of a p-p�, n-n�, or p-n junction in
the area near the contact that breaks the electron-hole sym-
metry and contributes to the contact resistance.18,28,29,32,33 We
predict that n-p-n� junctions can be realized by gating
graphene or by doping it with impurities in combination with
specific metal electrodes.
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