
Towards Automated Identification and Assessment
of Security Weaknesses in Smart Buildings

Herson Tobias Esquivel Vargas





TOWARDS AUTOMATED IDENTIFICATION AND
ASSESSMENT OF SECURITY WEAKNESSES IN

SMART BUILDINGS

Herson Tobias Esquivel Vargas





TOWARDS AUTOMATED IDENTIFICATION AND
ASSESSMENT OF SECURITY WEAKNESSES IN

SMART BUILDINGS

DISSERTATION

to obtain
the degree of doctor at the University of Twente,

on the authority of the rector magnificus,
prof.dr.ir. A. Veldkamp,

on account of the decision of the Doctorate Board,
to be publicly defended

on Friday 25th of November 2022 at 16.45 hours

by

Herson Tobias Esquivel Vargas

born on the 6th of October, 1985
in Cartago, Costa Rica



This dissertation has been approved by:

Supervisors:
prof.dr. A. Peter
prof.dr. P.H. Hartel

Co-supervisor:
dr. M. Caselli

Services and CyberSecurity Group
P.O. Box 217, 7500 AE
Enschede, the Netherlands

DSI Ph.D. Thesis Serie No. 22-007
Digital Society Institute
P.O. Box 217, 7500 AE
Enschede, the Netherlands

Cover design: Antonio Salazar Chinchilla and Herson Tobias Esquivel Vargas
Printed by: Gildeprint
ISSN: 2589-7721
ISBN: 978-90-365-5449-7
DOI: 10.3990/1.9789036554497
https://doi.org/10.3990/1.9789036554497

© 2022 Herson Tobias Esquivel Vargas, Enschede, The Netherlands.
All rights reserved. No parts of this thesis may be reproduced, stored in a retrieval system or trans-
mitted in any form or by any means without permission of the author.

https://doi.org/10.3990/1.9789036554497


Graduation Committee:

Chair / secretary prof.dr. J.N. Kok Universiteit Twente

Supervisors prof.dr. A. Peter Universität Oldenburg
prof.dr. P.H. Hartel Universiteit Twente

Co-supervisor dr. M. Caselli Siemens AG

Committee Members prof.dr.ir. A. Pras Universiteit Twente
prof.dr.ir. M.R. van Steen Universiteit Twente
dr. C. Alcaraz Universidad de Málaga
dr. N.O. Tippenhauer CISPA - Helmholtz-Zentrum

für Informationssicherheit
prof. dr. S. Etalle Technische Universiteit

Eindhoven



A mamá.



Acknowledgements

I started my study-abroad adventure in the autumn of 2014. Back then I was not
even used to split time in seasons other than dry and rainy. In any case, this was the
least of all changes in my life. My plan was very simple: to start a specialization in
cybersecurity with a masters program followed by a PhD track. But life also had
plans for me.

This journey allowed me to meet many kind and smart people.
• To my supervision team: Andreas, Marco, and Pieter, you taught me to

do research, to look at problems from different angles, and to pay special
attention to the details at work. Thank you for your patience and support. I
feel extremely lucky to have had you as my mentors. Andreas, besides your
exceptional academic guidance you were always there to lend an empathetic
ear when I needed it. I learned so much from you. Thank you very much.
Marco, during your last months at the UT you introduced me to the topic of
cyber-physical systems security. Back then it was something new to me that
ended up fascinating me. Thanks a lot for staying along the way. Pieter, I
got here in the first place because you and Raymond decided to give me the
chance to enroll in the Kerckhoffs program. You triggered it all. Thank you
very much for the opportunity.

• To my fellow PhD/Postdoc students: Ali, Amina, Bence, Philipp, Riccardo,
Roeland, Thijs, Tim, Valeriu, and Yoep, it was very fun to work with all
of you, not to mention the occasional bitterballen, chess/board games, and
joyful coffee breaks. I’m gonna miss the Twente Hacking Squad meetings
and the CTF weekends. I would also like to thank Asbat, Chakshu, Chris,
Claudio, Dan, Donika, Farideh, Federico, Jerre, João, Kemilly, Lu, Meike,
Meikel, Prince, Susanne, Una, and Zsolt.

• To the management and support staff: Bertine, Jeanette, and Suse, you helped
me sort out all my administrative issues since the very beginning. I will
always be thankful with you. Geert Jan, I enjoyed and learned so much
building the testbed with you in the lab. Lorena, it was great to meet you.
Thanks a lot for all your help. There aren’t many Costa Ricans in Enschede,
let alone in the university!

i



Many more people were an important part of my life during this adventure. In
the Netherlands, Yazan and Sandip, it was great meeting you during the masters
but it is even better that we still meet every time we can! In Costa Rica, Arturo,
Aurelio, Daniel, Kattia, and Marcela, you made me feel at home while I was away.
To my sister, Francela, thank you for being always there for me. Kevin and Nereo,
you are like family to me regardless of where we are. I have no words to express
my gratitude to all of you.

Finally, I would like to thank my wonderful wife, Liseth, without whom none
of this would have been possible. Your unconditional support helped me keep on
going during difficult moments (and there were quite some). During this time we
became parents and learned so many things about us and about love. Inti and Sofía,
you unknowingly became my reason to be. There is a world of wonder ahead of
you. I wish you the happiest life. I love the three of you with all my heart.

Cartago, Costa Rica, 10/10/2022

ii



Abstract

Smart buildings are equipped with computer systems that monitor and control
diverse services such as air conditioning, indoor transportation, physical access
control, and many others. Critical infrastructures like hospitals, airports, and data
centers, leverage on such services to support their daily operations. However, the
current popularity of smart buildings is founded on a decades-long history. Smart
building systems have evolved from isolated networks using proprietary protocols
to IT-integrated systems that use standardized communication protocols. They
might even be connected to the Internet to allow remote building management.
This transition has exposed smart buildings to a whole new set of security threats.
For instance, there have been documented cases where attackers have managed
to remotely disrupt the environmental conditions and physical access control of
smart buildings. Due to the crucial role that smart buildings play in supporting
organizations and the serious threat of cyber attacks against them, there is a pressing
need to investigate how to improve their current security posture.

The transfer of mature IT security solutions to smart building systems seems a
natural approach to enhance their security, however, the fundamental differences
between both domains often require significant adaptation effort or to develop
completely new solutions. For this reason, in recent years, a growing body know-
ledge about smart buildings security has been developed. However, most of these
solutions have focused on intrusion detection and little efforts have been made
to prevent cyber attacks. An effective way to prevent cyber attacks against smart
buildings is by preemptively handling security weaknesses in customized applica-
tions and configurations that run the system. Unfortunately, this is often overlooked
by smart building administrators due to, e.g., lack of specialized tools, staff, and
training. We identify not only a research gap regarding this important task, but
also an urgent need to provide (semi-) automated tools that help overcome the
limitations faced by smart building administrators. The implementation of these
tools requires sophisticated methods that incorporate technical and business-related
insights to handle weaknesses according to the organization’s best interest.

In this thesis, we investigate how to implement the first stages of a vulnerability
management process for smart building applications and configurations. Beyond
just vulnerabilities, we consider the weaknesses that give rise to vulnerabilities. In
particular, our contributions address the identification and assessment of security
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weaknesses for later remediation. These are two key activities to preemptively
strengthen the security of smart buildings. The identification of weaknesses is the
basis of any vulnerability management process as it provides the first insights about
the current security state of a system. This is a challenging task because a deep
understanding of the system’s inner workings is often needed to obtain meaningful
findings. We propose two approaches to identify security weaknesses; one focused
on smart building applications and another on smart building configurations. In the
first case, we model the application as a graph data structure comprised of sensors,
setpoints, actuators, and control function nodes. The relationships among these
components reveal the architecture of the system, which can then be analyzed in
the search for security weaknesses. In the second case, we look for component
misconfigurations that can be observed in their behavior, i.e., the way they interact
with other components in the system. Leveraging official documentation from the
components’ manufacturers, we create a model of valid behavior for each of them,
which is then compared with their actual behavior as observed in the network traffic.
After identifying security weaknesses, we assess the sensitivity of the affected com-
ponents, which is an important factor to prioritize weaknesses for later remediation.
We propose a comprehensive approach to assess the sensitivity of smart building
components based on technical and business-related features. The proposed meth-
ods are evaluated in real smart buildings and additional experiments are performed
in testbeds and comparable simulated environments. These evaluations confirm
the feasibility and effectivity of our (semi-) automated weakness identification and
assessment approaches.
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Samenvatting

Slimme gebouwen zĳn uitgerust met computersystemen die diverse diensten,
zoals airconditioning, transport binnen het gebouw, fysieke toegangssystemen en
vele andere, monitoren en aansturen. Vitale infrastructuur zoals ziekenhuizen, lucht-
havens en datacenters gebruiken zulke diensten om hun dagelĳkse activiteiten te
ondersteunen. De huidige populariteit van slimme gebouwen heeft echter een de-
cennia lange geschiedenis. Systemen van slimme gebouwen zĳn geëvolueerd van
geïsoleerde netwerken die gebruik maken van gesloten protocollen, naar ICT-ge-
integreerde systemen met gestandaardiseerde communicatieprotocollen. De syste-
men kunnen zelfs verbonden zĳn met het internet om gebouwbeheer op afstand
mogelĳk te maken. Deze ontwikkelingen stellen slimme gebouwen bloot aan een
heel nieuwe vorm van beveiligingsbedreigingen. Zo zĳn er gevallen bekend van
aanvallers die op afstand het binnenklimaat en het fysieke toegangssysteem hebben
verstoord. Vanwege de belangrĳke rol die slimme gebouw hebben in het ondersteu-
nen van organisaties en de ernstige dreiging van digitale aanvallen tegen hen, is er
een dringende behoefte om te onderzoeken hoe de huidige beveiliging kan worden
verbeterd.

Het overbrengen van bewezen ICT-beveiligingsoplossingen naar het domein van
slimme gebouwen lĳkt een logische manier om de beveiliging te verbeteren, maar
fundamentele verschillen tussen beide domeinen vragen vaak om een aanzienlĳke
inspanning om de aanpassing te maken of om het ontwikkelen van compleet nieuwe
oplossingen. Om deze reden is in de recente jaren meer kennis opgebouwd over de
beveiliging van slimme gebouwen. De meeste van deze oplossingen richten zich
echter op het detecteren van aanvallen, terwĳl slechts enkele zich richten op het
voorkomen van digitale aanvallen. Een effectieve manier om digitale aanvallen tegen
slimme gebouwen te voorkomen is door preventief zwakheden in de beveiliging
van aangepaste applicaties en in systeemconfiguraties aan te pakken. Helaas wordt
dit vaak over het hoofd gezien door de beheerders van slimme gebouwen vanwege,
bĳvoorbeeld, een gebrek aan gespecialiseerde tools, personeel of opleiding. Wĳ
identificeren niet enkel een gebrek aan onderzoek ten aanzien van deze belangrĳke
taak, maar ook een dringende behoefte aan (semi-)geautomatiseerde tools die
helpen de beperkingen te overkomen waarmee de beheerders van slimme gebouwen
worden geconfronteerd. De implementatie van deze tools vereisen geavanceerde
methoden die technische en bedrĳfsgerelateerde inzichten bevatten om zwakheden
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op de beste manier voor de organisatie aan te pakken.
In dit proefschrift onderzoeken we hoe we de eerste stappen van een kwets-

baarheidsbeheerproces voor applicaties en configuraties van slimme gebouwen
kunnen implementeren. Naast kwetsbaarheden kĳken we naar de zwakke punten
die aanleiding geven tot kwetsbaarheden. Onze bĳdragen gaan met name in op de
identificatie en beoordeling van zwakke punten in de beveiliging om deze later aan
te kunnen pakken. Dit zĳn twee kernactiviteiten om preventief de beveiliging van
slimme gebouwen te versterken. De identificatie van zwakke punten is de basis van
elk kwetsbaarheidsbeheerproces, omdat het de eerste inzichten verschaft over de
huidige beveiligingsstatus van een systeem. Dit is een uitdagende taak omdat het
voor zinvolle bevindingen vaak nodig is om de innerlĳke werking van het systeem
te doorgronden. We stellen twee benaderingen voor om zwakke punten in de bevei-
liging te identificeren: de een gericht op applicaties en de andere op configuraties
van slimme gebouwen. In het eerste geval modelleren we de applicatie als een graaf
bestaande uit knopen voor sensoren, richtwaarden, actuatoren en regelfuncties. De
relaties tussen deze componenten onthullen de architectuur van het systeem, die
vervolgens kunnen worden geanalyseerd bĳ het zoeken naar zwakke punten in de
beveiliging. In het tweede geval zoeken we naar misconfiguraties van componen-
ten die kunnen worden waargenomen in hun gedrag, d.w.z. de manier waarop ze
omgaan met andere componenten in het systeem. Gebruikmakend van officiële
documentatie van de fabrikanten van componenten, creëren we een model van
valide gedrag voor elk van de componenten, om het vervolgens te vergelĳken met
hun werkelĳke gedrag zoals waargenomen in het netwerkverkeer. Nadat we zwakke
punten in de beveiliging hebben geïdentificeerd, beoordelen we de gevoeligheid
van de getroffen componenten, wat een belangrĳke factor is voor de prioritering van
het aanpakken van het zwakke punt. We stellen een alomvattende aanpak voor om
de gevoeligheid van componenten in slimme gebouwen te beoordelen op basis van
technische en bedrĳfsgerelateerde kenmerken. De voorgestelde methoden worden
geëvalueerd in bestaande slimme gebouwen en aanvullende experimenten worden
uitgevoerd in testopstellingen en vergelĳkbaar gesimuleerde omgevingen. Deze eva-
luaties bevestigen de haalbaarheid en effectiviteit van onze (semi-)geautomatiseerde
benaderingen voor het identificeren en beoordelen van zwakke punten.
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Chapter 1

Introduction

Studies have found that people spend up to 90% of the time indoors [52]. Behind
the scenes, building managers must ensure the right conditions for building’s occu-
pants at all times. Building management involves the control of long-established
services such as heating, ventilation, and air conditioning (HVAC) and, more re-
cently, additional services such as indoor transportation (e.g., elevators, escalators,
travelators), video surveillance, physical access control, and many more. Moreover,
building managers must ensure energy efficiency to minimize the operation costs
of buildings. Building management is a challenging task not only for the high rate
of occupancy in buildings, but also due to the ever growing list of services that
must be provided in the most efficient way.

The automated control of building services came to be the solution for building
management but it also brought new problems. On the one hand, automated control
relieves building managers from repetitive tasks; for example, turning the lights on
and off during specific time slots. On the other hand, each automated service is
isolated from the rest, causing difficulties in their coordination. In this setting, it is
not uncommon to find air conditioning systems fighting out heating systems while
both of them try to reach mismatching temperature setpoints [14]. Conflicting
parameters like these severely hinder the realization of energy efficient buildings.

The integration of diverse building services lies at the core of the smart build-
ing concept. According to [137], a smart building is “a building equipped with
integrated technology systems such as building automation, life safety, telecom-
munications, user systems, and facility management systems”. Unlike the isolated
building services approach, smart buildings exchange information between different
subsystems to provide the required services while achieving energy efficiency.

The advantages of smart buildings have boosted their popularity all over the
world. A market research report by Fortune Business Insights states that the smart
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Chapter 1. Introduction

building industry is expected to grow 21.6% in the next 6 years to become a
$265.37 USD billion industry [63]. As part of its expected business success, this
particular report highlights the demand of new building services caused by the
ongoing COVID-19 pandemic.

1.1 Motivation

The development of smart building technologies has been led by a constant market
pressure for new building services, neglecting important security aspects [136]. In
the past, the lack of security was not considered a problem because smart buildings
were implemented using isolated networks. Moreover, the use of proprietary
protocols gave some “security by obscurity” sense of security. These two aspects,
however, have drastically changed in the last 30 years with the development of
standard protocols and the integration of IT and smart building networks [15, 119].
Additionally, the convenience of remote building monitoring and control has led to
Internet connected buildings, opening up to a whole new set of threats.

Smart buildings are attractive targets for cyber attackers. Smart buildings not
only lack security services commonly available in IT environments but, typically,
also lack specialized and dedicated security staff [138]. Furthermore, the con-
sequences of cyber attacks on smart buildings extend beyond the cyber domain to
the physical world, potentially harming people, assets, and disrupting the environ-
mental conditions required by organizations [136]. Lastly, there are buildings such
as hospitals, airports, and data centers, often regarded as critical infrastructure. For
these reasons, smart building attacks might not only have a high impact but also a
high chance of success, thus, making them attractive targets for cyber attackers.

Attacks on buildings can have serious consequences. For instance, an attack on
an airport ventilation subsystem can be extremely costly since natural ventilation
(e.g., windows) is typically unavailable due to physical security reasons. After such
an attack, the resulting high level of CO2 in crowded areas and its effect on human
health, would likely lead to the shutdown of the affected space [71]. Attacks in
hospitals can also have serious consequences with the aggravating circumstance
that the effect might be suffered by ill patients; for example, tampering with services
such as ventilation and illumination in operating rooms or manipulating the lights
to trigger seizures in people suffering from photosensitive epilepsy [116].

Attacks against smart buildings are happening. A 2 019 report by Kaspersky
details that 37,8% of computers in building-based automation systems were targeted
by cyber attacks [82]. Although the number of smart building attacks is likely
under-reported, there have been documented cases. In one case from 2 016, a cyber
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1.1. Motivation

attack affected the heating subsystem in a residential building in Finland during
winter [93]. One year later, attackers remotely locked all the doors in a hotel in
Austria until a ransom was paid [22]. Still another case happened in 2 018, where
the temperature of a storage room in a dutch supermarket was maliciously modified
spoiling medicines and food [128].

Preventing attacks is, generally, cheaper than dealing with them. In the IT
domain, it is estimated that attacks could be prevented with only one fifth of the
overall cost of dealing with the attack [88]. While most security research in the
smart buildings domain focuses on attack detection [29, 43, 44, 105, 132, 144],
there is a gap with respect to attack prevention controls.

Security controls that help to prevent attacks are selected on the basis of a
risk management process. Traditional risk management involves the identification,
assessment, and treatment of risks [98]. Such risks originate from vulnerabilities in
assets that might be exploited by threats [73]. In this context, vulnerability man-
agement is one of the most important attack prevention controls implemented in IT
systems. Due to its relevance, different industries such as, e.g., the card payment
industry, require the implementation of a vulnerability management process [37].
Vulnerability management is comprised of three steps continuously repeated:

1. Vulnerability identification. It is crucial to locate the vulnerabilities in order to
manage them. The identification of vulnerabilities starts with an inventory of
all assets in the system along with their technical features such as the operating
system (OS), network services, applications, and configurations. These
features constitute a coarse classification of the sources of vulnerabilities.
The identification of vulnerabilities in IT environments is typically done
using tools like vulnerability scanners and input fuzzers [94, 109, 110]. More
recent approaches use artificial intelligence (AI) to identify weaknesses and
vulnerabilities [143]. The output of this subprocess is an aggregated set of
the vulnerabilities found by different means.

2. Vulnerability prioritization. Among all the vulnerabilities previously iden-
tified, it is important to know which of them must be fixed first. Although,
ideally, all vulnerabilities should be fixed, this is hardly the case in practice;
for instance, due to limited resources to fix them (e.g., time, money, staff),
technical difficulties (e.g., firmware updates), organizational risk appetite,
among others. Existing methods to prioritize vulnerabilities take into consid-
eration different criteria such as severity [47], expected exploitation time [97],
estimated risk [115], and even social media discussions [32]. Whereas some
proprietary tools home brew secret methods [109, 110, 129], more recent
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approaches look at a combination of different criteria [9]. The outcome of
this subprocess is a ranked list of vulnerabilities.

3. Vulnerability remediation. The remediation of vulnerabilities improves the
security of the analyzed system. It involves the patching or reconfiguration
needed to fix the vulnerabilities found in the first step. This stage closes the
vulnerability management cycle.

To apply the vulnerability management process on smart buildings, there are
challenges to solve in each of the three steps. First, regarding the identification
of vulnerabilities, the applicability of tools such as vulnerability scanners and
input fuzzers is limited. On the one hand, vulnerability scanners usually search
for Common Vulnerabilities and Exposures (CVEs) affecting the system under
scrutiny. The main disadvantage of this approach is that vulnerability scanners
will, at best, find vulnerabilities in generic smart building software such as the
OSs and network services pre-installed in building controllers, operators’ software,
human-machine interface (HMI) firmware, and others, but not in smart building
applications and smart building configurations that are specific for each building
and, therefore, lack CVEs. On the other hand, fuzzers submit malicious, malformed,
or simply random data as inputs to the target system to discover vulnerabilities [94].
However, it has been documented that some resource constrained devices in smart
building networks are not robust enough to deal with abnormal traffic [23]. Thus,
fuzzing might actually exploit vulnerabilities rather than just identify them as
the vulnerability management process intends to, which makes it unfit for smart
building networks. For these reasons, vulnerability scanners and input fuzzers are
insufficient and unfit to find vulnerabilities in smart buildings.

Second, existing methods to prioritize vulnerabilities are unfit for the smart
buildings domain as they do not capture the impact of cyber-physical attacks
(e.g., physical influence, environmental damage, safety threats, etc.). The National
Institute of Standards and Technology (NIST) has published a “Framework for Im-
proving Critical Infrastructure Cybersecurity” that recommends the use of business
drivers to guide cybersecurity activities such as the prioritization of vulnerabilit-
ies [21]. However, it does not state how to do it nor is there any established method
to do it in the smart buildings domain.

Third, in smart buildings we identify two types of remediations depending on
where the underlying vulnerability has been found. For one thing, vulnerabilities
in generic smart building software are typically fixed with patches provided by
the device or software manufacturer. For another, vulnerabilities in customized
applications or configurations must be fixed in-house by modifying the affected
components. However, there are problems to implement both kinds of remediations.
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Lacking in-house resources to find and fix vulnerabilities in custom applications and
configurations might cause long delays to deploy necessary remediations. Moreover,
and regardless of the source of vulnerabilities, the application of remediations
might cause building services outages that negatively affect the supported business
processes.

Just like in the general IT domain, the availability of (semi-) automated tools
is crucial to successfully develop a vulnerability management process for smart
buildings. Being a cyclic process, typically underfunded, and with scarce secur-
ity specialists, automation becomes an essential feature to keep the vulnerability
management process continuously running. It is also an enabling feature for those
organizations that have not yet implemented a vulnerability management process.

According to RFC 4949, vulnerabilities are exploitable weaknesses in a sys-
tem [124]. Therefore, vulnerabilities are a subset of a system’s security weaknesses.
In this thesis, we explore how to implement a vulnerability management process
for smart buildings. However, we widen the reach of the typical vulnerability
management process to the superset of security weaknesses. The motivation behind
this decision is to address the source of vulnerabilities before they are recognized
as such; a process that often involves risky exploitation attempts in real infrastruc-
tures [49]. Moreover, the limited built-in security services in smart buildings render
weaknesses as likely exploitable.

1.2 Scope and Aim of the Thesis

The aim of our work is to improve the current security posture of smart buildings.
To do so, we focus on the implementation of a weakness-extended vulnerability
management process for smart buildings, an attack prevention control that has been
understudied in this domain despite its importance. In particular, our research
aims to solve problems in the first two stages of the vulnerability management
process, namely, the identification and prioritization of security weaknesses, while
discussing future research directions regarding their remediation. Given that the
prioritization of security weaknesses is a multi-dimensional task, we center our
attention on one key aspect, i.e., the assessment of smart building components
potentially affected by weaknesses. A transversal objective of this thesis is to
investigate how to (semi-) automate the identification and assessment of security
weaknesses. We now elaborate on the scope defined for the weakness identification
and weakness assessment activities.
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1.2.1 Weakness Identification

We focus on the analysis of building-specific sources of vulnerabilities, namely,
smart building applications and configurations. The identification of weaknesses
in generic smart building software (e.g., OSs, network services, etc.) is out of the
scope of this work as there are already tools that cover those [30, 99]. We focus on
building-specific weaknesses to contribute filling the research gap regarding the
security of software and configurations that are unique to each building. Moreover,
and in contrast to generic software weaknesses, building-specific weaknesses might
lead to stealthier and more targeted attacks as these are closer to the physical
processes.

By weaknesses in smart building applications we refer to flaws in the software
that controls building services that adversaries could leverage to execute attacks.
This software is fully customized for each building and responds to the specific
requirements of the organization hosted in the building. A concrete example of a
smart building application is one that starts the ventilation and air conditioning of a
specific room if it has been previously booked in the facilities management system
by an authorized user. A smart building application is distributed horizontally
among building controllers (e.g., the ventilation and air conditioning controllers)
and vertically between building controllers and management devices such as, user
directories, historians, operator workstations, and HMIs. Weaknesses in smart
building applications can be inadvertently introduced by local programmers or
external staff in charge of the smart building operation. We aim to analyze system-
wide smart building applications to identify flaws in their design. Since the system
design might not be properly documented (e.g., unavailable or outdated documenta-
tion) and there are no standardized programming languages from which this design
can be extracted, the design may need to be reverse engineered from the component
interactions in the smart building. Thus, the first challenge is how to obtain a— pos-
sibly simplified yet still useful —model of the system design. The second challenge
is how to identify software weaknesses (e.g., from Mitre’s Common Weakness
Enumeration (CWE) database) in the aforementioned model of the system.

By weaknesses in the smart building configuration we refer to misconfigurations
in hardware or software components that adversaries could leverage to execute
or conceal attacks. Misconfigurations can be unwittingly caused by local staff,
outsourced companies, or device manufacturers. The configuration of smart build-
ing components determines their behavior, for example, the way in which they
interact with other components. Our goal is to analyze the behavior of individual
components such as smart building controllers, operator workstation software,
HMI’s, and others, in order to identify anomalies. To do so, we aim to automate
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the creation of a valid behavior model for all the components passively observed in
the smart building’s network traffic. The valid behavior model must be extracted
from trustworthy sources such as official documentation written by the components’
manufacturers. This task is challenging because the documentation is typically
written using non-standard layouts and published as PDF files, far from ideal for
machine readability. The scalability provided by automation is crucial to cope with
the diversity of devices observed in dynamic smart building networks.

1.2.2 Weakness Assessment

As it was discussed before, there are different methods to prioritize vulnerabilities
ranging from severity to social media discussions, expected exploitation time, and
many others. We argue that a comprehensive estimation of risk should be the path
towards the prioritization of weaknesses in smart buildings. A comprehensive risk
estimation involves up to 29 factors that influence the probability and impact of loss
events [73]. One of the crucial factors to quantify the impact is the sensitivity of
assets from the organization’s perspective. This view is in line with NIST’s advice
on using business drivers to guide cybersecurity activities [21].

Our goal is to assess the importance of smart building components according to
their contribution to the business processes. Thus, given a weakness on a specific
component, we can estimate its potential consequences for the organization hosted
in the smart building. In essence, we aim at creating a sensitivity assessment for
smart building components. Such an assessment should contemplate not only tech-
nical details (e.g., communication dependencies), but also environmental aspects
(e.g., business processes, their scheduling, and others).

1.3 Research Questions

Based on the existing problems that hinder the implementation of a weakness-
extended vulnerability management process for smart buildings, this work focuses
on the following main research question:

How to (semi-) automatically identify and assess security weaknesses in
smart building applications and their configuration?

To address this general research question, we perform a set of studies in real
smart building infrastructures complemented with experiments in testbeds and simu-
lated environments. These studies focus on two domains, namely, the identification
and assessment of weaknesses.
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To address the identification of weaknesses we propose two specific research
questions. The first question aims at identifying security weaknesses in smart
building applications, whereas the second question focuses on the identification of
security weaknesses in the configuration of smart building components:

Research Question 1. How to (semi-) automate the identification of weaknesses in
smart building applications?

Research Question 2. How to (semi-) automate the identification of weaknesses in
smart building configurations?

To address the assessment of weaknesses, we propose an additional research
question:

Research Question 3. How to (semi-) automate a sensitivity assessment for smart
building components?

The goal of Research Question 1 is to explore the creation of a (semi-) auto-
mated method to analyze smart building applications in the search for weaknesses.
We do so in two steps. First, we show how to automatically create an abstract
representation of the information flow in the system as a graph data structure; and
then, we illustrate how to search for weaknesses in this graph. These weaknesses
are taken from Mitre’s Common Weakness Enumeration (CWE) database and,
despite being originally developed for the IT domain, we show their relevance in
cyber-physical systems such as smart buildings and even Industrial Control Systems
(ICSs). Concretely, we illustrate how to encode weaknesses as node patterns to
be matched against the graph that models the system. Successful pattern matches
reveal the occurrence of weaknesses.

Research Question 2 tackles the problem of finding configuration weaknesses
in smart building components such as controllers, HMIs, operator workstation soft-
ware, among others. Configuration weaknesses might be exploited by adversaries
to execute attacks as effectively as smart building application weaknesses. We focus
on configuration weaknesses that can be observed in the network communication
between smart building components. In particular, we search for components that
exhibit (1) invalid behavior; and (2) an erroneous assumption on the behavior of
other components. To identify invalid behavior it is possible to compare each
component’s documented capabilities with their actual behavior. To create a model
of a component’s valid behavior from its documentation, we (semi-) automate the
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interpretation of technical documents in PDF format. After the model for each
component is created, it is possible to search for invalid behavior that could indicate
configuration weaknesses.

Finally, Research Question 3 deals with the creation and definition of guiding
principles to (semi-) automate a sensitivity assessment of smart building com-
ponents, deemed crucial in a risk-based weakness prioritization strategy. Such
an assessment must be based on technical and environmental aspects unique to
the organization hosted in the smart building. Among the technical aspects, we
consider the dependencies between different components to create a graph data
structure. These dependencies are important because the consequences of exploited
weaknesses might trigger a cascade effect on other components. Among the en-
vironmental aspects, we consider the business processes supported by the smart
building and their relevance for the organization. We then link the smart building
components (nodes in the graph) with their corresponding business processes and
annotate the nodes with the corresponding business processes’ relevance. The
final sensitivity assessment for each component is computed by a graph centrality
algorithm designed specifically to this end.

1.4 Thesis Overview and Contributions

We begin by presenting background information in Chapter 2, which is needed
to understand the remainder of the thesis. This background information includes
diverse aspects of smart buildings and neighboring fields such as Industrial Control
Systems (ICSs). In Chapter 3, we present a method to identify weaknesses in smart
building applications. Still in the weakness identification domain, in Chapter 4,
we present an approach to identify configuration weaknesses in smart buildings.
In Chapter 5, we introduce a weakness sensitivity assessment for smart building
components, which is an important factor to prioritize weaknesses for later re-
mediation, followed by Chapter 6, where we extend our analysis of the assessment
proposed in Chapter 5. Finally, we end the thesis in Chapter 7 by presenting our
conclusions and future research directions. Figure 1.1 shows an overview of the
thesis contributions, which we now discuss in more detail.

Chapter 3 – Weakness Identification in Smart Building Applications We
present a method to identify weaknesses in application software controlling smart
buildings. To do so, we consider the application software as a unified computer
program like those in the IT domain. Such parallelism between IT systems and
smart building systems inspired the identification of weaknesses in the latter by
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Weakness-Extended
Vulnerability Management in Smart Buildings (SBs)

𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝐼𝑑𝑒𝑛𝑡𝑖𝑓 𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑅𝑒𝑚𝑒𝑑𝑖𝑎𝑡𝑖𝑜𝑛
1 2 3

Generic SB soft-
ware [30, 99]
SB application
(Ch. 3)
SB configuration
(Ch. 4)

Attack probability [6]
Risk [92]
Components’ sens-
itivity assessment
(Ch. 5 and Ch. 6)

Figure 1.1: Overview of thesis contributions. The weakness-extended vulnerability man-
agement process is comprised of 3 steps continuously repeated: identification, prioritization,
and remediation of weaknesses. Under each step we list existing work (if any) in the smart
buildings domain. We highlight in bold font the contributions detailed in this thesis.

applying well established principles developed in the former. Moreover, we show
its applicability to the Industrial Control Systems domain. This chapter is based on
the contents of two papers published at refereed conferences [3, 5].

Chapter 4 – Weakness Identification in Smart Building Configurations We
develop an approach to identify configuration weaknesses in smart building com-
ponents by looking at their network traffic behavior and comparing it with their
documented behavior. This documentation is considered the ground truth of valid
behavior. We focus on the automated extraction of the valid behavior model. This
is done by mining from each component’s documentation (in PDF format), the
information about the component’s behavior. This chapter is based on the contents
of a paper published at a refereed workshop [2].

Chapter 5 – BACRank: A Sensitivity Assessment of Smart Building Compon-
ents We describe a sensitivity assessment method for smart building components.
These components are arranged as nodes in a graph data structure where the edges
represent functional dependencies between them. We annotate the nodes according
to their contribution to different business activities and assign weights to the edges
based on the strength of the dependencies. Finally, at the core of the proposed ap-
proach, we introduce a graph centrality measure called BACRank, which estimates
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the final sensitivity of each component. This chapter is based on the contents of a
paper published at a refereed conference [4].

Chapter 6 – An Extended Multi-Context Evaluation of BACRank We present
a smart building testbed that implements general purpose building services such
as illumination, ventilation, and temperature control. Our testbed is designed to
easily adapt these services to emulate the environmental requirements of real-world
locations (e.g., hospitals, airports, data centers, etc.). This feature allows us to
assess the sensitivity of smart building components from multiple business contexts.
Specifically, the metric used for our experiments is founded on BACRank (described
in Chapter 5). This chapter is based on the contents of a paper published at a refereed
conference [1].
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Chapter 2

Background

Cyber-Physical Systems (CPSs) refer to a variety of applications where computer
systems interact with physical aspects of the world [84]. This interaction is typically
aimed at controlling physical variables such as speed, temperature, and pressure,
which has proved crucial in many applications. There is a wide range of systems
that fall under this definition of CPSs; for instance, smart buildings, Industrial
Control Systems (ICSs), medical devices, and many more. In all these domains,
CPSs perform the control of physical variables in a reliable, flexible, and efficient
way [130].

The control that CPSs exert on the real world is possible thanks to a variety
of hardware and software components. Concretely, sensors measure physical
variables from the environment, which allows the system to identify the current
state of physical processes. The inputs from sensors are then processed by computer
systems in charge of automating the control of physical processes. These computer
systems may also vary depending on their particular application, ranging from
resource-constrained microcontrollers to robust Programmable Logic Controllers
(PLCs). Finally, these computer systems are capable of manipulating physical
processes by means of actuators. There is also a wide range of actuator devices
that are used in diverse applications; for instance, valves, pumps, alarms, lights,
and many more.

A taxonomy of CPSs proposed by [46] identifies two main types. First, in-
frastructural CPSs are those in which the goal is to control physical machinery.
Another common term used to refer to infrastructural CPSs is Operational Techno-
logy (OT), which is typically used to contrast it with traditional IT systems. Two
examples of infrastructural CPSs are smart buildings and ICSs. The second type are
personal CPSs. These refer to computer systems enriched with physical data typic-
ally related to specific users. These include smart-watches, pacemakers, oximeters,
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Cyber-Physical Systems

Infrastructural

Smart
buildings

Industrial
Control Systems . . .

Personal

. . .

Figure 2.1: CPSs taxonomy proposed in [46]. We highlight in gray color smart buildings
as the main object of study of this thesis.

and others. Figure 2.1 depicts the taxonomy previously described. The focus of this
thesis are infrastructural CPSs and particularly smart buildings. However, some of
the proposed approaches can also be applied to the closely related ICSs domain.
For this reason, in the remainder of this chapter we discuss in more detail smart
buildings in Section 2.1 and ICSs in Section 2.2.

2.1 Smart Buildings

Smart buildings are defined in literature as buildings “equipped with integrated
technology systems such as building automation, life safety, telecommunications,
user systems, and facility management systems” [137]. The integration of these
systems is a crucial aspect for a building to be considered “smart”. Among the
building automation services are heating, ventilation, and air conditioning (HVAC),
indoor transportation (e.g., elevators, escalators, travelators), illumination, and
many more.

The motivations to realize smart buildings have evolved through time. Origin-
ally, the main goal was to achieve energy efficiency and comfort for the building
occupants [54]. However, nowadays smart buildings help organizations to comply
with laws and regulations regarding the environmental conditions in which they
must operate [4]. Hospitals, airports, and data centers are examples of critical
buildings for society that rely on smart building technologies to comply with the
regulations of their corresponding industries (e.g., temperature, ventilation, and
illumination requirements). Although energy efficiency and comfort are still de-
sirable features in these locations, the primary goal of these smart buildings is to
enable their organization’s daily operations.
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From a technical perspective, smart buildings are implemented using inter-
connected specialized devices. According to ISO 16484-1 (Building Automation
and Control Systems (BACS) — Part 1: Project specification and implementa-
tion), these devices should be organized in a 3-layered architecture as shown in
Figure 2.2 [66]. In this architecture the management level provides monitoring
and control functions to building administrators. The automation level is com-
prised of computerized controllers that execute the logic behind the implemented
building services. The controllers receive inputs from the environment through
sensors, execute the appropriate logic, and send outputs back to the environment
using actuators. Both sensors and actuators are the elements found at the field
level. Although the components that take part of a smart building are relatively
static, it is not uncommon to add, remove, or replace devices in all 3 layers due to
diverse reasons; for example, to update obsolete hardware/software or due to the
repurposing of buildings or building rooms.

The automation of building services using Internet of Things (IoT) devices
is also a common trend [134]. This is, however, a less structured way to imple-
ment automated building services. Although this approach has given the general
public an affordable access to automated building services, consumer-grade IoT
devices are still far from the integrated capabilities of professional-grade smart
buildings [54]. The main drawback of IoT-based building services is the use of
proprietary software, communication protocols, and cloud services, which hinders
their interoperability [40].

The communication between professional-grade smart building components
typically leverages well-known protocols in the lower layers (e.g., TCP/IP) and
smart building specific protocols in the upper layers. Among the most popular smart
building protocols are LonTalk, KNX, and BACnet. Although the approaches pro-
posed in this thesis are mostly protocol independent, our evaluations are often based
on real-world systems implemented using the BACnet protocol. For this reason,
we elaborate on the particular features of the BACnet protocol in Section 2.1.1.

Security research on smart building systems has focused on their network
communications. Researchers have explored network traffic normalizers, domain-
specific firewalls, and (mostly) intrusion detection systems [29, 60, 76, 105, 132].
The main smart building communication protocols are standardized, which makes
network communications research generalizable across a wide spectrum of devices
and manufacturers. On the other hand, smart building applications have not been
analyzed from a security perspective. The main reason for this is likely the lack of
standardized programming languages to program smart building controllers.
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Figure 2.2: Typical 3-layered architecture of smart buildings.

2.1.1 BACnet Protocol Overview

Building automation and control networks, better known as BACnet, is a vendor-
neutral communications protocol standardized by the International Organization
for Standardization (ISO 16484-5), the American National Standards Institute and
the American Society of Heating, Refrigerating and Air-Conditioning Engineers
(ANSI/ASHRAE standard 135) [15]. BACnet dictates a set of rules that govern how
the devices controlling smart buildings must communicate. Thanks to its standard-
ization, diverse BACnet devices can interoperate regardless of their manufacturer.
BACnet’s popularity is reflected in more than 1 300 registered manufacturers of
BACnet devices worldwide.1

The BACnet protocol stores information in predefined variables called BACnet
properties, which are in turn, encapsulated in predefined data structures called
BACnet objects. The BACnet standard defines 60 object types to meet the most
frequent needs in smart buildings. For each of these objects, the standard dictates
which properties are optional, required, and writable. Moreover, the standard allows
the possibility to implement proprietary (vendor specific) objects and properties
in BACnet devices. There is only one mandatory object for all BACnet devices:
the device object. This object contains several device-describing properties such
as vendor-name, model-name, and firmware-revision. Other common objects are,
e.g., analog-input, analog-output, binary-input, and binary-output. The input objects
are typically used to store information coming from sensors (e.g., temperature,
switches, etc.), whereas output objects are used to control actuators (e.g., valves,
fans, etc.). Since the applicability of standard objects vary depending on the purpose
of the device, they are not required to implement all standard objects. Additionally,
it is important to distinguish between object types and object instances. Object

1http://www.bacnet.org/VendorID/BACnet%20Vendor%20IDs.htm
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types are templates that will be filled in with data when instances are created.
BACnet devices that claim support of an object type must be able to operate on
instances of it.

The communication between BACnet devices is possible thanks to predefined
BACnet services. BACnet services refer to specific requests that devices can handle.
Read Property, Write Property, Reinitialize Device, and Atomic Write File are some
examples of BACnet services. Depending on the device’s purpose, only a subset
of them has to be implemented. Services typically involve two roles, clients that
send requests, and servers that reply. In order to clarify which services can be
sent or received by different devices, the BACnet standard defines the BACnet
interoperability building blocks (BIBBs) [101].

BIBBs are a convenient way to know whether two devices are capable of com-
municating, i.e., to identify if one of them can make a particular request and the
other one can reply to it. BIBBs are often mentioned as acronyms with 3 compon-
ents: type, task, and capability. First, the type refers to 5 broad BIBB categories:
data sharing (DS), alarm and event management (AE), scheduling (SCHED), trend-
ing (T), device management/network management (DM/NM). Second, the task
specifies the purpose of the BIBB: e.g., read property (RP), write property (WP),
notification (N). Lastly, the capability states whether the device acts as a client or
a server, denoted as “A” or “B”, respectively. For example, the BIBB DS-RP-A
stands for data sharing (type), read property (task), and client role (“A” capability).
Devices implementing DS-RP-A can send Read Property queries to other devices.
A device with the complementary BIBB, namely DS-RP-B, would be able to reply
to such a query. According to the standard, a particular BIBB demands the imple-
mentation of a subset of services (one or more). BACnet devices implement those
BIBBs required by the standard according to their device profile.

Device profiles categorize BACnet devices based on their functionality. Com-
mon examples of BACnet profiles are B-OWS (BACnet Operator Workstation),
B-BC (BACnet Building Controller), B-ASC (BACnet Application Specific Control-
ler), B-SS (BACnet Smart Sensor), and B-SA (BACnet Smart Actuator). According
to the standard, a particular device profile demands the implementation of a subset
of BIBBs. Moreover, it is worth noting that BACnet devices might undergo a
certification process intended to ensure their abidance to the standard and claimed
profile. This process is done by independent certification laboratories that perform
standardized tests [67].

From a security perspective, the BACnet protocol incorporated optional mech-
anisms to encrypt and authenticate network messages. However, few manufacturers
actually implemented this features [101, 137]. Some of the problems that caused a
lack of support to this initiative were weak symmetric keys (56-bit Data Encryption
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Standard), a broken authentication protocol, and unspecified key distribution meth-
ods [59]. More recently, in 2 019, this part of the standard was deprecated in favor
of a new approach called BACnet Secure Connect (BACnet/SC) [48]. BACnet/SC
incorporates IT security best practices in regard to key sizes and algorithms, and
has been well received by the industry.

2.2 Industrial Control Systems

Industrial Control Systems (ICSs) are a type of infrastructural CPS used in industrial
processes to achieve a common goal, such as creating a product or delivering a
service [7]. Concrete examples of ICSs include power plants, water distribution
plants, and manufacturing systems (e.g., cars, electronics, food). These systems
execute tasks often deemed as crucial for society. For this reason, they are commonly
regarded as critical infrastructures.

ICSs are typically built using a 3-layered architecture similar to the smart build-
ings architecture [57]. At the management level, ICSs make use of Supervisory
Control and Data Acquisition (SCADA) software that allows operators to monitor
the physical processes and react to alert messages. Operators can also use SCADA
software to make changes on the physical processes in real time (e.g., direct ac-
tivation of actuators, modification of operational setpoints, etc.). The automation
level is typically comprised of Programmable Logic Controllers (PLCs) and Re-
mote Terminal Units (RTUs). These computing devices are built to satisfy strict
requirements such as e.g., extended uptimes, real-time responsiveness, and harsh
environmental conditions. Finally, at the field level, there are sensors and actuators
that interact with the real world to implement the desired physical processes. The
hardware and software in these 3 layers is rarely replaced. For this reason, ICS
networks are often considered static environments [57]. These 3 layers are part of
a larger architectural model commonly used for ICSs that aims to connect IT and
OT networks, known as the Purdue Reference Model [139].

At the automation layer, PLCs are programmed using standardized languages
defined in standard IEC 61131-3 [62]. The latest version of the standard (2 013)
describes one textual and three graphical languages. The textual language is called
structured text and the graphical languages are ladder diagrams, function block
diagrams, and sequential function charts. All major PLC manufacturers have
implemented development environments that support these standardized languages.
These development environments compile the customized programs into binary
code that is later on downloaded to the PLCs.

ICSs are implemented using specific communication protocols such as Eth-
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erNet/IP, Common Industrial Protocol (CIP), and Modbus. These protocols have
similar design features as the BACnet protocol; for instance, a client-server model,
service-oriented requests, and an object-based information exchange method. Un-
like the BACnet protocol, whose main application domain are smart buildings,
these are general purpose protocols suitable for diverse industrial applications.

The security issues of ICSs have been thoroughly studied in both academia and
industry [54]. The interest on this domain increased even more after the Stuxnet
attack became publicly known [142]. Besides network-based security solutions
such as firewalls and intrusion detection systems, ICS software has also been studied
leveraging the standardized programming languages for PLCs [28]. Due to the
potential impact of ICS failures, there has been a particular interest in formally
proving the correctness of the software running this kind of systems [39].

2.3 Summary

Cyber-Physical Systems (CPSs) are computer systems (cyber) that interact with
the real world (physical) through specialized hardware. The physical-interaction
hardware are sensors and actuators that allow the computing devices to receive in-
puts from the environment and send outputs back to it, respectively. The computers
used to implement CPSs are often embedded devices such as microcontrollers,
Programmable Logic Controllers (PLCs), and building controllers. A simple tax-
onomy proposed in literature splits CPSs in two broad categories: infrastructural
and personal CPSs. Two concrete examples of infrastructural CPSs are smart build-
ings and Industrial Control Systems (ICSs). Personal CPSs include smart-watches,
medical devices, and others. The focus of this thesis are infrastructural CPSs and
smart buildings in particular. However, some of the proposed approaches are also
applicable to ICSs; thus, our emphasis on these two kinds of systems.

Smart buildings and ICSs have similarities often shared among infrastructural
CPSs. For instance:

• Architecture: both kinds of systems are typically implemented using a 3-
layered architecture comprised of management, automation, and field layers.

• Management tools: both kinds of systems use of Supervisory Control and
Data Acquisition (SCADA) software, human-machine interfaces (HMIs),
and operator work stations (OWSs) at the management level.

• Control algorithms: control algorithms traditionally used in ICSs can also
be used for smart buildings. For instance, the same basic principles to reach
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a specific temperature in an ICS reactor apply to control the temperature in a
building room.

However, there are also some differences that are worth mentioning:
• Application layer protocols: while ICSs typically use general purpose

industrial protocols such as Modbus, smart buildings are usually implemented
using specialized protocols like BACnet. These specialized protocols have
high level abstractions that ease the implementation of building services.

• Network dynamics: smart building networks change more often than the
typical ICS network. This happens because buildings are more dynamic en-
vironments than industrial facilities. Whereas ICSs often remain unchanged
after deployment, buildings are regularly modified (e.g., rooms are merged,
split, change purpose). These changes are reflected in the smart building
system, particularly in the field and automation levels, where devices must
be added, removed, or repurposed.

Regarding the security of both, ICSs and smart buildings, there are also simil-
arities and differences. Although most attack types affecting ICSs can be adapted
to the smart buildings context, only the defenses that are based on their similarities
(e.g., architecture, management, control algorithms) can be transferred as well
with reasonable effort. The ICS defenses that are based on, e.g., application layer
protocols or network dynamics, cannot be easily adapted to the smart buildings
context. In more general terms, this is also the case of IT security controls, that
can only be adapted to the ICS and smart building domains on their overlapping
features (e.g., TCP/IP firewalls, antivirus software in management workstations,
OS log analysis).
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Chapter 3

Weakness Identification in Smart
Building Applications

As discussed in Chapter 1, smart building applications, typically developed in-
house, might contain weaknesses that often remain unnoticed. This poses a serious
problem because smart building applications directly control the building services
offered to the organization hosted in the building. The direct link between smart
building applications and physical processes, enables stealthy and service-oriented
cyber-physical attacks. These attacks are much harder to detect than attacks caused
by, e.g., network flooding or leveraging well-known CVEs.

In this chapter, we address Research Question 1: How to (semi-) automate the
identification of weaknesses in smart building applications?

Our proposed approach to automatically identify weaknesses in smart building
applications focuses on a popular programming pattern known as closed control
loop (CCL) [35]. The goal of CCLs is to keep physical variables within appropriate
operational limits, by means of two steps continuously repeated: (1) computing
the difference between a setpoint and current sensor readings; and (2) trying to
reduce such a difference using the physical capabilities of an actuator. The specific
CCLs configuration is tailored by local engineers to meet specific goals. Beyond
smart buildings, this basic programming pattern is also used in other sophisticated
Cyber-Physical Systems (CPSs) such as Industrial Control Systems (ICSs), medical
devices, satellites, and many more [38, 56, 83, 126]. Since our approach is based
on a programming pattern rather than a specific system type, it can be applied to
diverse CPSs, as we will show in Section 3.4.1 with a smart building use case and
Section 3.4.2 with an ICS use case.

Our proposed approach creates a graph data structure built from the composition
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asp
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f

Figure 3.1: A CCL comprised of a setpoint (sp), a sensor (se), a control function (f), and an
actuator (a). Solid lines represent communication in the cyber domain whereas the dashed
line represents interaction in the physical realm.

of multiple CCLs that might share components such as sensors, setpoints, and
actuators. This graph provides a unified representation of the smart building
application. This graph-based model allows us to automatically identify patterns
that reveal weaknesses such as, but not limited to, global variables and multi-
purpose variables.

3.1 Preliminaries

Closed control loops (CCLs) constitute a basic programming pattern for smart
buildings and other CPSs. A CCL is comprised of four basic components, namely,
a setpoint, a sensor, a control function, and an actuator (e.g., valve, heater, light, etc.).
The CCL’s control function receives inputs from the environment through sensors,
compares them with pre-established setpoints, and reacts with a compensatory
action intended to minimize the difference. The compensatory action is executed
by an actuator in order to control the physical variable measured by the sensor
(e.g., pressure, temperature, illumination, etc.). Figure 3.1 depicts the simplest
form of a CCL.

The control function is a software component typically running in high avail-
ability embedded systems such as building controllers or Programmable Logic
Controllers (PLCs). Control functions implement the control logic; for example,
arithmetic operations, rate limiters, and other kinds of data processing functions.
From a function’s perspective, hardware devices such as sensors and actuators
are abstracted simply as variables to be read and written. It is worth noting that
in distributed control systems these variables might not necessarily reside in the
same controller. Therefore, communication to and from the control function might
require network transmissions.

Advanced CCL configurations are often needed, e.g., to cope with system dis-
turbances. One of such configurations is called cascade control, where one control
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(a) Cascade control.
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(d) Shared sensor.
Figure 3.2: Advanced CCL configurations. Color code: gray: static setpoint (ss), blue:
controlling function (f), red: actuator (a), purple: sensor (se), and yellow: calculated
setpoint (cs).

function adjusts the setpoint of another control function [135]. This dynamically
computed setpoint is called a calculated setpoint. In contraposition, we denote
user-defined setpoints as static setpoints. Although we typically make an explicit
distinction between static setpoints and calculated setpoints, in what follows, we
use the word setpoint to refer to either of them when such a distinction is irrelevant.
Graphically, an example of cascade control is shown in Figure 3.2a.

Another advanced CCL configuration is called override control. In this setting,
one control function manipulates one variable during normal operation, however, a
second control function can take over during abnormal operation to prevent some
safety, process, or equipment limit from being exceeded [135]. The variable under
control by two or more control functions is typically used to manipulate one actuator
or calculated setpoint. Figure 3.2b shows a graphical representation of the override
control configuration.

It is also common to find setpoints and sensors shared between two or more
control functions, as shown in Figure 3.2c and Figure 3.2d, respectively. Shared set-
points provide a convenient centralized configuration for multiple control functions
at once. The motivation behind shared sensors is similar to that of shared setpoints,
which in addition reflects the fact that, typically, there are limited instances of
physical sensors in the system under control. An arbitrary number of the CCL
configurations shown in Figure 3.2 can be used to control CPSs [122].

3.2 Proposed Approach to Identify Application Weak-
nesses

We now present the proposed approach to identify weaknesses in CCL graphs and
illustrate it with a motivating example.
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3.2.1 Identifying Weaknesses in CCL Graphs

Cyber-physical system (CPS) applications are modeled as graph data structures
that abstract the configuration of their CCLs. The graph abstraction of a single
CPS might consist of multiple subgraphs. Making an explicit distinction between
setpoint types, there are 5 types of nodes in our graphs that match the CCL’s
components: static setpoints, calculated setpoints, sensors, control functions, and
actuators.

Formally, a CPS is modeled as a directed graph 𝐺(𝑉 ,𝐸) where 𝑉 is a nonempty
set of vertices (or nodes) and 𝐸 is a set of edges. Every edge has exactly two vertices
in 𝑉 as endpoints. The direction of every edge 𝑒 ∈ 𝐸 models the way information
flows in the graph. There are 5 partitions 𝑆𝑆, 𝐶𝑆, 𝑆𝐸, 𝐹 , and 𝐴 in 𝑉 , that
segregate the 5 types of nodes (static setpoint, calculated setpoint, sensor, control
function, and actuator, respectively), such that 𝑆𝑆 ∪ 𝐶𝑆 ∪ 𝑆𝐸 ∪ 𝐹 ∪ 𝐴 = 𝑉 . It
is worth noting that although we assume knowledge about the type of the nodes
(e.g., sensor), we do not require further details about them (e.g., temperature sensor,
pressure sensor, etc.).

There are different options to create CCL graphs. For instance, it is possible to
extract the CCL graph of CPSs from piping and instrumentation diagrams (P&IDs).
These diagrams show interconnected physical instruments and usually contain
information about the CCLs used to control CPSs. Figure 3.3 shows an example of
a P&ID in Figure 3.3a, and its corresponding CCL graph abstraction in Figure 3.3b.
The creation of a CCL graph from a P&ID could even be automated using diagram
digitization techniques such as [20]. Moreover, there are other options to create CCL
graphs, such as by analyzing the network traffic of smart buildings implemented
using the BACnet protocol [3]. This method is used in the analysis of a real BACnet
system in Section 3.4.1.

Pattern Matching

We propose to use the accumulated knowledge about software weaknesses in the
IT domain and transfer it to the CPSs domain. In particular, we leverage Mitre’s
Common Weakness Enumeration (CWE) database, which documents common
IT weaknesses. We translate CWE weaknesses into specific node patterns to be
searched for in CCL graphs. While we use additional CWE weaknesses in our
implementation, here we focus on two entries which proved particularly useful
experimentally. Our goal is to provide an intuitive comprehension of the proposed
approach without limiting its applicability to a specific subset of weaknesses. More
formally, we identify each pattern 𝑃𝑖 with an index 𝑖 = 1,… , 𝑛. Each pattern
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(a) P&ID of a chemical plant.
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Figure 3.3: Piping and instrumentation diagram (P&ID) of an ICS and its corresponding
graph abstraction.

matching query on the graph returns a subset 𝑆𝑖 ⊆ 𝑉 of matching nodes using
pattern 𝑃𝑖. It is important to highlight that those weaknesses identified by more
patterns should be prioritized in the final result set 𝑇 .

CWE-1108: Excessive Reliance on Global Variables. “The code is structured
in a way that relies too much on using or setting global variables throughout various
points in the code, instead of preserving the associated information in a narrower,
more local context.” [96].

Global variables are generally considered a bad software engineering practice.
Their main disadvantage is that malicious or benign-but-buggy changes to them
will propagate and possibly disrupt many parts of the code. Global variables can
be observed in CCL graphs mainly due to shared setpoints and/or sensors. As
explained in Section 3.1, these are typical ways to combine CCLs in CPSs (see,
e.g., Figure 3.2c and Figure 3.2d).

A suitable algorithm to identify global variables in CCL graphs is the out-degree
centrality. This algorithm assigns a score to each node in a graph by counting their
number of outgoing edges. More formally, for every node 𝑣 ∈ 𝑉 ⧵𝐹 , the out-degree
of 𝑣 is denoted as 𝑑+(𝑣). We explicitly disregard function nodes in set 𝐹 since this
particular weakness is exclusively about variables. We select as potential targets
those nodes whose value 𝑑+(𝑣) ≥ 𝜏, for a context dependent threshold 𝜏.

CWE-1109: Use of Same Variable for Multiple Purposes. “The code contains
a callable, block, or other code element in which the same variable is used to
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control more than one unique task or store more than one instance of data.” [96].
Overloading a variable with multiple responsibilities might unnecessarily in-

crease the complexity of the code around it. Such complexity becomes an indirect
security issue since it obscures the readability of the code.

In control engineering, the usage of override controllers deliberately creates
a pattern in which two or more control functions manipulate a single variable
(see Figure 3.2b). The manipulated variable is, commonly, of type actuator or
calculated setpoint. Due to the widespread implementation of override controllers
in CPSs, it is common to find this pattern in real CCL graphs.

The automated identification of override controllers in CCL graphs can be
done by means of the in-degree centrality algorithm. This algorithm assigns a
score to each node in a graph by counting their number of incoming edges. Our
implementation computes the in-degree centrality for all nodes 𝑣 ∈ 𝑉 ⧵𝐹 . As in the
previous case, we explicitly disregard function nodes in set 𝐹 since this particular
weakness is exclusively about variables. We denote the number of incoming edges
of a node as 𝑑−(𝑣). Thus, we look at nodes whose 𝑑−(𝑣) ≥ 𝜏, where typically
𝜏 = 2.

3.2.2 Motivating Example

Figure 3.3a shows the model of a chemical plant originally described in [112]. Four
chemical components referred to as A, B, C, and D, are part of the process. The
first three components are combined in the reactor to create the final product D.
The goal of the application controlling the plant is to keep a stable and high-quality
production rate while minimizing the waste of raw material. There are four control
functions that take as input the values coming from three sensors and four setpoints
(1 calculated setpoint and 3 static setpoints). The outputs of the functions aim to
control the three valves in the plant.

Figure 3.3b depicts the CCL graph of the same chemical plant, which can be
easily derived from its piping and instrumentation diagram (P&ID). This graph
shows two kinds of CCL combinations: (1) a shared sensor 𝑦5 between control
functions Loop 4 and Loop 2; and (2) a cascade control in which control function
Loop 4 sets a calculated setpoint 𝐹4𝑠𝑝 to control function Loop 1.

The proposed approach looks for weakness patterns in the chemical plant’s CCL
graph that could identify suitable sensors to target. The search for multi-purpose
variables (functions excluded) aims at nodes whose in-degree is greater or equal
than two; no results are produced in this case. The search for global variables
(functions excluded) looks for nodes whose out-degree is greater than a predefined
threshold 𝜏. All setpoints have an out-degree of one which makes them unfit to
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be labeled as global variables. However, the three sensors 𝑦4, 𝑦5, and 𝑦7 have an
out-degree of 1, 2, and 1, respectively. This small sensors sample shows an average
out-degree of 1.33 with standard deviation of 0.58. Defining 𝜏 as the sum of the
average and one standard deviation (𝜏 = 1.91) sets node 𝑦5 as a potential target
according to the proposed approach. Our result set would have sensor 𝑦5 as an
ideal candidate to target in this particular infrastructure. This result is concordant
with previous works which state that “[i]n general we found that the plant is very
resilient to attacks on 𝑦7 and 𝑦4... If the plant operator only has enough budget
to deploy advanced security mechanisms for one sensor (e.g., tamper resistance,
or TPM chips), 𝑦5 should be the priority” [26]. It is worth noting that previous
works reach to the same conclusion but leveraging a detailed simulation of the plant
and using it to perform several experiments in advance. Besides, such a detailed
simulation is typically unavailable for real CPSs. On the other hand, our approach
requires little knowledge about the system (only an abstract CCL graph) and can
be fully automated, from the creation of the graph, to the final identification of
weaknesses.

3.3 Implementation of the Proposed Weakness Identifica-
tion Approach

We implement the proposed approach on top of Neo4j version 4.1.2 [100]. Neo4j
is a noSQL database engine specialized in graph data structures. Neo4j offers a
natural way to store CCL graphs and a high level query language—called Cypher
Query Language—that allows to perform complex queries in just a few lines of
code.

This section describes the automated creation and storage of CCL graphs from
smart building systems and the queries needed to pinpoint weaknesses in these
graphs.

3.3.1 Automated CCL Graph Creation

In this section, we introduce the most important implementation details of a tool
we built to create generic BACnet object graphs [15]. We call our tool BACGRAPH
and its source code is freely available under the GNU/GPLv3 license.1 However,
here we focus on a subset of the tool’s capabilities that allow the creation of CCL
graphs. As we will show, it is possible to fully automate the creation of CCL graphs
in smart buildings that make use of the BACnet protocol.

1https://gitlab.com/bacgraph1/bacgraph.
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(a) Setpoint-reference property.

(b) Controlled-variable-reference property.

(c) Manipulated-variable-reference property.
Figure 3.4: Wireshark display of Loop object properties.

BACGRAPH takes as input network traffic samples from the infrastructure under
study. All observed BACnet objects that take part of closed control loops become
nodes of the CCL graph. Additionally, BACGRAPH looks for specific properties in
some BACnet objects, which might contain references to other object instances.
These references are used to create the edges of the graph. A deterministic finite-
state machine (FSM) is implemented within BACGRAPH to keep track of the current
object instance (source of the edge) and the referenced object instance (destination
of the edge), if any. An excerpt of the implemented FSM is shown in Figure 3.5.
Although BACGRAPH handles many different object types (and their corresponding
references) to create complete graphs of BACnet systems, Figure 3.5 shows only
those objects related to the CCL programming pattern.

A walk through the FSM starts with every network packet. If a packet has data
to be analyzed, then the FSM transitions to the (R)ead state. Once in the R state, the
software reads the packet in sequential order until it finds a BACnet object instance.
If a (L)oop object is found, then the FSM transitions to the corresponding state and
the software looks for 3 specific properties (shown in Figure 3.4):

1. a setpoint-reference (sr) that points to an object that represents a setpoint and
causes a transition to L1 (see Figure 3.4a);

2. a controlled-variable-reference (cvr) that points to an object that represents
a sensor and causes a transition to L2 (see Figure 3.4b); and

3. a manipulated-variable-reference (mvr) that points to an object that repres-
ents a actuator and causes a transition to L3 (see Figure 3.4c).
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Figure 3.5: Simplified illustration of the finite-state machine (FSM) implemented by
BACGRAPH. It contains the most important states and transitions to identify BACnet
objects and references that take part of CCLs.

In addition to the Loop object, we pay particular attention to Analog-Input,
Analog-Output, Analog-Value, Binary-Input, Binary-Output, and Binary-Value
objects, which are typically used to represent the setpoints, sensors, and actuators,
as it is also shown in Figure 3.4. Due to the similar characteristics of these 6 objects,
we treat them in the same (G)eneric way in the FSM.

For the sake of readability, Figure 3.5 omits states that look for additional
BACnet objects and returning transitions from each state to previous states.

3.3.2 Automated Weakness Identification

Our implementation includes a pre-processing stage that pre-computes information
required in the pattern matching phase. Since both weakness-related patterns
discussed in Section 3.2.1 are based on the in- and out-degree centrality algorithms,
the pre-processing stage consists of queries that assign the in- and out-degree to all
nodes in the graph that are not of type function. Both queries are shown in code
listing 3.1.

The pattern matching phase consists in finding nodes that satisfy a specific
condition in the graph’s structure. These particular conditions pinpoint weaknesses
in the application modeled by the graph. For the sake of brevity, here we discuss
two types of weaknesses, namely, global variables and multi-purpose variables.
Global variables are nodes (function nodes excluded) whose out-degree is greater
than a context dependent threshold 𝜏. In our implementation, we define 𝜏 as the
average plus one standard deviation of the out-degree of nodes segregated per type.
Code listing 3.2 shows the query for the global variable weakness pattern.

The second pattern matching query looks for multi-purpose variables. Multi-
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purpose variables are nodes (function nodes excluded) whose in-degree is greater
or equal than a context dependent threshold 𝜏, where usually 𝜏 = 2. This is, indeed,
the threshold that we have used in our implementation. Code listing 3.3 shows the
query used to find the multi-purpose variable weakness pattern.

Lastly, since sensors have been identified by previous works as ideal targets
to compromise CPSs [61, 80], we added to our implementation an optional post-
processing phase so that the final result set 𝑇 is comprised exclusively of sensors.
In essence, the post-processing phase replaces non-sensor nodes found during the
pattern matching phase, with sensor nodes that have a path to them, thus, influencing
their behavior. This ensures that the final list of weaknesses is comprised exclusively
of sensor nodes. Code listing 3.4 shows the post-processing query. This query looks
for all sensor nodes (src) that have a path to the node of interest (dest), regardless of
the length of the path. Figure 3.6 depicts the three phases implemented to identify
weaknesses in CPSs.

MATCH (n)
WHERE NOT n:FUNCTION_TYPE
SET n.indegree = size((n)<-[]-());

MATCH (n)
WHERE NOT n:FUNCTION_TYPE
SET n.outdegree = size((n)-[]->());

Listing 3.1: Pre-processing stage: setting the in- and out-degree centrality to each node.

MATCH (n:NODE_TYPE)
WITH AVG(n.outdegree) as average ,

stDev(n.outdegree) as stdev
MATCH(m:NODE_TYPE)
WHERE m.outdegree > (average+stdev)
RETURN m;

Listing 3.2: Global variable pattern matching query.

MATCH(n:NODE_TYPE)
WHERE n.indegree >= 2
RETURN n;

Listing 3.3: Multi-purpose variable pattern matching query.
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MATCH (src:Sensor), (dest {id:NODE_ID })
WHERE (src)-[*]->(dest)
RETURN src;

Listing 3.4: Query that finds the path from sensor nodes to non-sensor nodes originally
identified as weaknesses.

Pre-
processing

Pattern
matching

Post-
processingNeo4j

List of
weak-
nesses

Figure 3.6: Implementation of the proposed approach. The post-processing stage is optional
in this workflow.

3.4 Evaluation of the Proposed Weakness Identification
Approach

In this section, we apply the proposed approach on two different CPSs. The first
scenario is a real smart building application spread over 23 buildings located in the
campus of the University of Twente and its surroundings. These buildings are used
by over 10 000 students and 3 000 staff members. The services automated in these
buildings include illumination, heating, ventilation, and cooling.

The second scenario is a simulated Industrial Control System known as the
Tennessee Eastman Plant (TEP). This is a realistic chemical plant for which we
analyze two independently developed control applications. Being a realistic system
for which there are simulations readily available, the TEP has been extensively used
by previous cybersecurity research as well [26, 61, 80, 81, 120]. All simulations are
executed on the MATLAB/Simulink environment. Specifically, we use MATLAB
version R2015a running on Windows 10.

3.4.1 Smart Building Application

We start by setting up a mirroring port in one of the core network switches of the
University to collect BACnet traffic. The strategic location of this switch allows
us to observe all inter-building communication. For our analysis, we use 7 weeks
of BACnet traffic, which accounts for 60,3 GB of data. Leveraging this dataset,
we automatically created the CCL graph using the tool described in Section 3.3.1.
In total, the automatically generated graph is comprised of 4 771 nodes and 4 425
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Figure 3.7: Node discovery rate during a 7-week long analysis of real BACnet traffic.

edges. The graph contains 1 487 control function nodes (Loop objects), 1 079
sensors, 1 047 setpoints, 104 calculated setpoints, and 1 054 actuators. The graph
spreads throughout 216 BACnet devices. Figure 3.7 shows the number of CCL
components discovered over a 7 week period during a totally passive capture. It
is worth noting that the vast majority of the nodes were discovered in only 3 days.
Finally, Figure 3.8 shows the distribution of sensors, actuators, static setpoints, and
calculated setpoints that take part of two or more CCLs.

Although due to confidentiality concerns we cannot reveal specific details of
the analyzed smart buildings, we show here a summary of our findings on the
automatically generated CCL graph.

We start our analysis by identifying potential global variables in the system. We
do so computing the degree centrality in the entire graph. Looking specifically at the
out-degree for each node, we identified a sensor that is used by 8 different control
functions. Such sensor has the greatest out-degree in the infrastructure. Considering
that, on average, sensors provide their readings to 1.38 control functions, this
particular sensor stands out as a potential weakness.

While the average out-degree among the setpoints is 1,24, there is one setpoint
used by 14 different control functions. This is the setpoint with the greatest out-
degree in the BAS. The subgraph where it is located is shown in Figure 3.9a. Such
setpoint is considered a global variable that, if targeted by an attacker, is likely to
disrupt several subsystems simultaneously.
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Figure 3.8: Distribution of sensors, actuators, static setpoints, and calculated setpoints that
take part of two or more CCLs

The global variable in Figure 3.9a is a setpoint that defines the desired air
quality in one of the buildings. The air quality is measured as 𝐶𝑂2 parts per
million. The inner ring of control functions considers such setpoint and compares
it with sensor measurements from different locations inside the building. The outer
ring of control functions is in charge of the temperature control of the building.
The shared actuators in between both rings replace stale air from inside with fresh
air from the outside. Figure 3.9a shows the interplay between two optimization
objectives: air quality and temperature control. An attack on the air quality setpoint
is likely to make the building unavailable to its users given the strict regulations
on building’s air quality, and particularly, under the current COVID-19 pandemic
conditions [16, 42].

Our search for multi-purpose variables showed that there are 224 actuator
instances managed by 2 control functions, 32 actuator instances managed by 3
control functions, and 2 actuator instances managed by 4 control functions (see
Figure 3.8). One of those two actuators controlled by 4 different functions is shown
in Figure 3.9b. We did not find calculated setpoints being written by more than
one control function. Although only 258 actuator instances are commanded by 2
or more control functions, it highlights the complexity of the control strategy in
the smart buildings under study. This might signal potential attackers about the
actuators’ capacity to disrupt the system, either by a direct attack or by targeting
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other nodes in their vicinity (e.g., sensors that exert influence over these actuators).
The subgraph shown in Figure 3.9b depicts a single actuator that takes air from

the outside and distributes it to 4 different ventilation zones in the building. The
fact that all ventilation zones rely on a single air intake device makes it an ideal
target to compromise the availability of the building—as in the previous case—due
to the potential degradation of the air quality.

Although we found nodes in the smart buildings’ graph that match our defini-
tions of weaknesses, it is difficult to assess their actual criticality (from a security
perspective) unless experimental attacks are executed. Since the analyzed environ-
ment is a real smart buildings network, it was not possible to execute attacks against
it. Nevertheless, we show the feasibility of our approach in finding potentially
serious weaknesses in real smart buildings. To be able to execute attacks against
the weaknesses found by our approach, which we hypothesize are better offensive
targets than other components, we turn to simulated environments.

3.4.2 Tennessee Eastman Plant

The seminal 1 993 paper by Downs and Vogel describes an Industrial Control
System known as the Tennessee Eastman Plant (TEP) [41]. This is a realistic
chemical plant that performs two gas–liquid exothermic reactions. Their description
includes, among other details, the expected input and output of the plant, each step
of the process from start to end, and the hardware available to control the process.
The control hardware includes 41 sensors and 12 actuators, depicted in Figure 3.10.
Their paper describes 20 disturbances commonly found in real chemical plants.
For instance, sticky valves, changes in chemical reaction kinetics, and random
variations in the composition of input streams, each of them with a unique numeric
identifier in the range [1–20]. Finally, there are process operating constraints
(e.g., maximum reactor temperature, maximum reactor pressure, etc.) that must
be satisfied at all times or the plant shuts down. Downs and Vogel present the
challenge of implementing a control application for the TEP. To ease engagement in
the challenge, the authors provide software to simulate the core components of the
TEP such as the sensors, actuators, disturbances, and process operating constraints,
leaving space for the missing control application.

Several authors have proposed control applications for the TEP, based on the
CCL programming pattern [83, 89, 90, 113]. The main differences between control
applications are the robustness against external disturbances, the optimization
objectives, and the mechanisms to set the production rate. It is worth noting that
the TEP challenge is considered an open-ended problem without a unique correct
solution [89].
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Figure 3.9: Two subgraphs automatically extracted from a real and operational BACnet
system.
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Figure 3.10: Tennessee Eastman Plant diagram taken from the original publication [41].

In this evaluation, we consider two CCL-based control applications for the
TEP to investigate whether the weaknesses identified by our approach are, indeed,
better offensive targets than other components of the system. The first application,
proposed by Larsson et al. [83], is available in the MATLAB/Simulink environ-
ment [114]2. The second application, proposed by Luyben et al., is available in
the Fortran programming language [89]. We translated it to the MATLAB/Sim-
ulink environment and published it to the research community.3 For both control
applications we proceed as follows:

1. We create the CCL graph and store it in a Neo4j database.
2. We use the proposed approach to identify weaknesses including the pre- and

post-processing phases described in Section 3.3.2.
3. We perform data integrity attacks against all sensors used in the plant, one at

a time, to obtain a ground-truth about each sensor’s capacity to cause a plant
shutdown. We refer to the time elapsed since the beginning of the attack and
until the simulation stops as the shutdown time (SDT).

4. We rank all sensor attacks by their SDT.
2Simulation and results available at https://gitlab.com/eastman_tennessee/larsson.
3Simulation and results available at https://gitlab.com/eastman_tennessee/luyben.
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3.4. Evaluation of the Proposed Weakness Identification Approach

5. Finally, we compare the SDT of the automatically identified weaknesses with
the SDT of the rest.

In what follows, we refer to an experiment as a set of simulated attacks using the
same environmental conditions and attack strategy. The simulations are configured
to run for 72 hours under attack. If a simulation finishes at 72 hours, then we
assume that the attack does not cause a shutdown. If the attack causes a violation of
the plant’s operating constraints, then the simulations stops before the 72 hours. By
environmental conditions we refer to the disturbances enabled during the simulation.
The disturbances considered are those in the range [1–13] and are executed one
at a time. According to the original TEP paper, disturbances in the range [14–20]
should be used in conjunction with other disturbances [41]. The combinatorial
explosion of such constraint deters us from executing simulations with disturbances
in the range [14–20]. The attack strategy is the way in which the attacker chooses
the value used to compromise the integrity of sensors. We use three different attack
strategies. First, assuming that the attacker does not have any knowledge about
the targeted sensor, we choose the constant 127. This number is small enough
to fit in 1 byte (signed int) which ensures that most industrial and smart building
protocols will deliver the malicious value in a single packet, thus, executing a
stealthy attack. For the second and third attack strategies, we assume that the
attacker knows historic sensor readings, in which case we choose the minimum
and maximum values observed per sensor, respectively. Although this additional
knowledge is not required by our approach, we adopt it as it is a common attack
strategy used in previous works.

Control Application #1

The control application by Larsson et al. [83], uses only 9 actuators and 16 sensors
out of the 12 actuators and 41 sensors available in the TEP. Additionally, there are
20 control functions, 9 static setpoints, and 12 calculated setpoints. The CCL graph
of this control application is comprised of 66 nodes divided in 3 subgraphs. An
illustration of the graph is shown in Figure 3.11.

During the weakness identification phase, we run the pattern matching queries
that aim at finding global variables and multi-purpose variables. The first query
identifies the calculated setpoint number 12 (located in the middle of the largest
subgraph) as a global variable. Finally, the post-processing phase finds only one
sensor that has a path to the global variable: sensor 17. Such a path can be visually
confirmed following the direction of the edges in Figure 3.11. The second query
does not identify multi-purpose variables in this control application. Thus, the
final target set 𝑇 = {17} contains only one sensor.
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We hypothesize that sensor 17 is a weakness in this application. To test our
hypothesis we execute 28 experiments comprised of 448 individual simulations
that account for 11 047,465 simulated hours (∼1,26 years).

For the first two experiments we use the constant value attack strategy. In one
of the experiments we set ideal environmental conditions (no disturbance) and in
the other experiment we enable disturbance #8. We choose disturbance #8 because
previous works have used exclusively this disturbance for their experiments. The
results of the first two experiments are shown in Table 3.1. Regardless of the
environmental conditions, the results are consistent in the top half of the table
with greater variations in the bottom half. We do confirm that the automatically
identified weakness (sensor 17) is the third best target in the infrastructure, with a
SDT of 0,19 hours in both experiments (≈ 11 minutes) and a difference of about 5
minutes behind the fastest target (sensor 9 with SDT of 0,10 hours).

For the remaining 26 experiments, we use the minimum and maximum value
attack strategies employed by previous works. However, unlike previous works that
have used only one environmental condition to execute their experiments, we run
simulations under 13 different environmental conditions to gain more confidence
in our results. Disturbance #6 is excluded because it is not supported by this
particular control application, which means that a shutdown happens even without
any attack [83]. Due to space constraints, we summarize our results per attack
strategy, which shows the average SDT and standard deviation for each sensor
among all the experiments. The results, detailed in Table 3.2 and Table 3.3, show
that sensor 17 is the second best target with an average SDT of 1,21 hours and 1,07
hours, respectively. Our results confirm that sensor 17 is a suitable weakness to
target not only during specific plant conditions, but in many different situations.

Control Application #2

The second control application, proposed by Luyben et al. [89], uses 10 sensors and
10 actuators from those available in the plant. Additionally, this control application
requires 13 static setpoints, 13 control functions, and 1 calculated setpoint. In total,
the CCL graph is comprised of 47 nodes. The overall CCL graph of this application,
depicted in Figure 3.12, is comprised of 6 subgraphs.

As for the previous control application, we use the queries detailed in Section 4.3
to identify weaknesses, starting with the computation of the in- and out-degree
centrality for all the sensors, setpoints, and actuators. The query regarding global
variables identifies sensors 8, 12, and 15. The query regarding multi-purpose
variables identifies actuators 1, 2, 7, and 11. The post-processing phase looks for
sensor nodes that have a path to these actuators and identifies sensors 8, 12, 15, and
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Figure 3.11: CCL graph of control strategy #1. The color of each node represents its type,
as described in Figure 3.2. The name of each node corresponds to the variable name in the
original MATLAB code.
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Table 3.1: Experiments using the constant value attack strategy under two different envir-
onmental conditions. The automatically identified sensor 17 is highlighted.

No disturbance Disturbance 8
Sensor SDT (h) ▴ Sensor SDT (h) ▴

9 0,10 9 0,10
14 0,18 14 0,18
17 0,19 17 0,19
11 0,43 11 0,43
8 0,43 8 0,43
4 0,53 4 0,53
31 0,56 31 0,56
12 0,57 12 0,57
3 1,60 3 1,61
2 1,76 2 1,61
15 2,13 15 2,05
1 7,34 5 5,64
5 7,61 7 6,97
10 8,18 10 7,25
7 8,30 1 9,69
40 72 (no shutdown) 40 72 (no shutdown)

Table 3.2: Summary of experiments considering the minimum value attack strategy under
13 different environmental conditions. The automatically identified sensor 17 is highlighted.

Sensor Avg. SDT (h) ▴ Std. Deviation
4 0,79 0,67
17 1,21 0,76
9 2,06 0,73
8 2,66 0,41
3 4,11 0,35
2 4,55 0,75
7 7,70 2,19
12 7,97 2,25
14 8,94 2,39
15 11,18 3,96
5 14,53 17,49
31 55,15 27,74
11 66,64 19,31
40 66,69 19,14
10 66,73 19,02
1 66,78 18,82
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Table 3.3: Summary of experiments considering the maximum value attack strategy under
13 different environmental conditions. The automatically identified sensor 17 is highlighted.

Sensor Avg. SDT (h) ▴ Std. Deviation
9 0,57 0,19
17 1,07 0,14
4 1,27 0,21
3 2,60 0,42
8 2,83 0,46
2 3,32 0,66
12 5,44 1,36
14 8,79 2,45
15 11,10 4,36
5 12,64 17,91
31 56,78 27,62
11 66,59 19,50
10 66,64 19,34
40 66,70 19,10
7 66,73 19,00
1 72 (no shutdown) 0,00

29. As described in Section 3.2.1, the final targets subset 𝑇 contains those sensors
linked to more weakness-related patterns. In this particular case, 𝑇 = {8, 12, 15}
because these sensors occur in both result sets (global and multi-purpose variable).

We hypothesize that sensors 8, 12, and 15 are suitable weaknesses to target
against control application #2. To test our hypotheses we execute 30 experiments
comprised of 300 individual simulations that account for 11 079,163 simulated
hours (∼1,26 years).

As in the previous control application, we begin with two experiments using
the constant value attack strategy under two different environmental conditions.
The first experiment without any disturbance and the second experiment under
disturbance #8. The results of the first two experiments, detailed in Table 3.4, show
no significant differences between both plant conditions. We do confirm that the
three automatically chosen weaknesses are in the top half of the table (i.e., fastest
targets to cause a shutdown). Particularly, two of them are ranked as the second
and third fastest targets to halt the plant. The SDT caused by sensors 15 and 12 is
about 1 and 10 minutes behind the fastest target to cause a shutdown (0,14 hours ≈
8,6 minutes), respectively. Although our third selected weakness—sensor 8—takes
1.03 hours to cause a shutdown, it is more than twice faster than the next target in
the ranking (sensor 11).
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Table 3.4: Experiments using the constant value attack strategy under two different envir-
onmental conditions. The 3 sensors automatically identified are highlighted.

No disturbance Disturbance 8
Sensor SDT (h) ▴ Sensor SDT (h) ▴

7 0,14 7 0,14
15 0,16 15 0,16
12 0,31 12 0,31
9 0,44 9 0,44
8 1,03 8 1,03
11 2,49 11 2,65
23 6,55 23 5,84
18 72 (no shutdown) 18 72 (no shutdown)
29 72 (no shutdown) 29 72 (no shutdown)
30 72 (no shutdown) 30 72 (no shutdown)

For the remaining 28 experiments, we use the minimum and maximum value
attack strategies. This time we use all disturbances in the range [1–13] because this
control strategy is able to handle all of them. Moreover, we execute experiments
without any disturbances, which adds up to 14 different environmental conditions.
Again, due to space constraints, we summarize our results per attack strategy.
Tables 3.5 and 3.6 show the average SDT and standard deviation for each sensor
attack throughout all the experiments. For the minimum value attack, our approach
finds the fastest target to halt the plant (sensor 15) with a SDT of only 0,65 hours (≈
39 minutes). However, the remaining two picks (sensors 12 and 8) take considerably
more time. Nevertheless, they are more than 7 times faster than the next sensor in
the ranking. For the maximum value attack, our approach finds the top 2 fastest
targets (sensors 12 and 15), but this time sensor 8 is ranked fourth with a SDT more
than 11 times faster than the next sensor in the ranking.

3.5 Related Work

Basic principles to protect computer systems have been laid out since the 1 970s [117].
The evolution of such work has identified both, secure software development prac-
tices and software weaknesses that must be avoided. Large weakness databases
have been compiled to systematize such knowledge [96]. This has influenced the
proliferation of automated tools that help software developers to spot security weak-
nesses in their code [31, 106]. Most of these efforts, however, are limited to the
IT software domain. Just like their IT counterparts, smart building and other CPS
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Figure 3.12: CCL graph of control strategy #2. The color of each node represents its type,
as described in Figure 3.2. The name of each node corresponds to the variable name in the
original Fortran code.
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Table 3.5: Summary of experiments considering the minimum value attack strategy under
14 different environmental conditions. The 3 sensors automatically identified are high-
lighted.

Sensor Id. Avg. SDT (h) ▴ Std. Deviation
15 0,65 0,20
9 1,28 0,51
7 1,72 0,79

12 4,25 1,72
8 8,29 1,98

23 63,03 22,83
30 66,01 16,82
29 72 (no shutdown) 0,00
11 72 (no shutdown) 0,00
18 72 (no shutdown) 0,00

Table 3.6: Summary of experiments considering the maximum value attack strategy
under 14 different environmental conditions. The 3 sensors automatically identified are
highlighted.

Sensor Id. Avg SDT (h) ▴ Std. Deviation
12 0,69 0,16
15 0,70 0,07
9 1,09 0,40
8 4,48 0,55

23 52,01 29,46
7 55,30 27,60

29 67,46 16,97
30 72 (no shutdown) 0,00
11 72 (no shutdown) 0,00
18 72 (no shutdown) 0,00
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applications are not exempt from software flaws.
While there are tools that help to formally prove the correctness of CPSs

application code (i.e., that it does what it is supposed to do) [39], little attention has
been paid to the identification of software weaknesses that could be exploited in
presence of a malicious actor. One of the studies closest to our work is presented
in [28]. The problem they address is how to find attack paths to perform indirect
attacks on a fixed target. For instance, through variables that eventually flow
towards the target. Our work, however, focuses primarily on the identification of
weaknesses that might become the targets.

Most research on CPSs security argues, or simply assumes, that detailed know-
ledge about the system is a requirement to identify its weaknesses [26, 55, 80].
Typically, the aim to find such weaknesses comes from an offensive motivation.
One of such works has identified the data sources required by an attacker to prepare
a successful attack against ICSs [55]. For instance, PLC configuration, HMI/Work-
station configuration, historian configuration, network traffic, system/component
constraints, and piping and instrumentation diagrams. The main argument being
that only through the combination of multiple data sources, an attacker is able to
reach the level of “process comprehension” required to find a suitable target and
launch an attack against it.

In this context, several researchers have analyzed the Tennessee Eastman Plant
(TEP) from the cybersecurity perspective. For instance, in [80], the goal was to get
insights on the resilience of the physical process under attack. They focused on
compromising sensors and identifying those in best capacity to cause a shutdown
on the targeted infrastructure. In this particular case, the targeted infrastructure
was Larsson’s implementation of the TEP, described in our evaluation as control
application #1. Aligned with our results, they found out that sensors 4, 9, and 17 are
the best targets under the minimum and maximum value attack strategies. However,
they reached that conclusion by using a fully-fledged simulation of the targeted
infrastructure. For an attacker to be able to build an accurate simulation of the
targeted infrastructure, he would need access to at least, full PLC(s) configuration,
P&IDs, and documentation about the system’s constraints. On the contrary, we use
the simulation only for evaluation purposes, not to find the weaknesses to target.

In another work, the goal was to find out the right time to launch an attack on
individual sensor signals to cause a shutdown of the targeted infrastructure [81].
In this case, again, the target was Larsson’s implementation of the TEP. The
authors focused on DoS attacks on sensor signals, which forces control functions
to use a stale value from the sensor. Under the assumption that launching sensor
attacks at minimum or maximum peaks is the fastest way to cause a shutdown
of the plant, the goal was to identify such peaks in real time. They approached
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Table 3.7: Comparing required attacker knowledge in previous works. Data sources are
based on the process knowledge data source taxonomy [55]. P&ID: Piping and Instrument-
ation Diagram, PLC: Programmable Logic Controller, HMI: Human-Machine Interface,
WS: Workstation.

Data source Work

[8] [11] [26] [33] [34] [61] [80] [81] [86] [120] Our

PLC config. ✓ ✓

HMI/WS config. ✓ ✓ ✓ ✓

Historian config. ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Network traffic ✓ ✓

P&ID ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

this challenge using the best choice problem methodological framework. Using
different learning windows, they identified sensors 4, 9, and 17 as the best candidate
targets (i.e., fastest shutdown time). To execute this approach a potential attacker
might need at least network traffic access, a notion about the physical process and
its potential disturbances (e.g., from P&IDs), and ideally, some historic data.

The works in [26] and [61], analyze diverse attacks against a simplified version
of the TEP. Both works incorporate detailed knowledge from the process dynamics
to execute the fastest attacks to halt the plant. An attacker leveraging the techniques
proposed in these two works would require at least access to the PLCs configuration,
historic data, and documentation about the system’s constraints. We deem the
simplified version of the TEP so small that we use it only as our motivating example
(Section 3.2.2). However, as we show in the example, our approach is also applicable
to this plant and our results match theirs.

No previous security works have used the TEP implementation by Luyben et
al. [89], possibly because the code was only available in Fortran. We hope that
our contribution in translating the code to MATLAB eases the challenging task of
evaluating CPSs security research for future works.

Beyond the TEP, we have analyzed the information requirements of works
aiming to identify weaknesses in other infrastructures for posterior exploitation.
Table 3.7 summarizes our findings. Previous approaches combine many data
sources and often require manual labor to interpret it. In contrast to previous works,
our approach uses limited information to derive the CCL graph (e.g., piping and
instrumentation diagram). Our graph-based model of the application is advantage-
ous as it allows to automate the weakness identification process; one of the main
goals of this thesis.
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3.6 Discussion

We now deepen our discussion on the implementation of additional CWE weak-
nesses, the TEP results, the implications, and limitations of our approach.

Additional CWE Weaknesses. To describe the proposed approach, we elabor-
ate on two weaknesses from Mitre’s CWE database, specifically, global variables
(CWE-1108) and multi-purpose variables (CWE-1109) [96]. We emphasize these
two because they proved particularly useful to find weaknesses in both TEP imple-
mentations analyzed in our evaluation. Although it is not our goal to provide an
exhaustive list of software weaknesses that can be mapped to control systems, here
we discuss additional weaknesses that could be observed in CCL graphs.

• Circular dependencies (CWE-1047) happen when “[t]he software contains
modules in which one module has references that cycle back to itself.” [96]. In
smart buildings, ICSs, and other control systems, circular dependencies can
occur, for example, through functions that write their output to a calculated
setpoint node that, in turn, is the input of another control function node and
so on, until at some point the sequence of references return to the initial node.

• Deep nesting (CWE-1124) manifests in software that “contains a callable
or other code grouping in which the nesting / branching is too deep.” [96].
The control application of CPSs might contain a deep nesting weakness
whenever a long sequence of closed control loops are chained together. For
example, several cascade controllers concatenated. In this setting, the precise
definition of ‘long sequence’ should be determined by a context dependent
threshold.

• Functions with large “fan-out” (CWE-1048) refer to “invokable control
element with large number of outward calls”. According to Mitre, this
weakness happens when the code “contains callable control elements that
contain an excessively large number of references to other application objects
external to the context of the callable.” [96]. A CPS interpretation for this IT
software weakness could be a control function that influences a large number
of actuators and/or calculated setpoints. As before, the concrete definition of
‘large number’ is determined by a context dependent threshold.

TEP Results. The simulated attacks show that the automatically identified weak-
nesses are consistently among the targets in best capacity to halt the plant. Moreover,
our results are in line with the results of previous research that leverage many more
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data sources and are difficult to automate (see Related Work in Section 3.5). Al-
though it is possible to argue that additional sources of information should be used
to identify weaknesses more accurately, there is a trade-off between the amount (and
complexity) of data sources and the feasibility to automatically process that data to
find weaknesses. In the proposed approach, we use only CCL graphs, which allows
us to identify weaknesses in control applications using well-known algorithms
(e.g., graph centrality, loop detection, and path finding algorithms).

Implications. The goal of the approach presented in this chapter is to identify
weaknesses to trigger other activities in a vulnerability management process (i.e., pri-
oritization and remediation). Despite our defensive goal, this approach could also
be used with offensive intentions. The information required to create CCL graphs
(e.g., P&IDs), could be obtained through a variety of illegal means (e.g., phishing,
social engineering, bribes) or simply downloaded from public repositories [79]. As
it was shown, just by leveraging CCL graphs, a potential adversary could quickly
jump from the reconnaissance phase to the identification of weaknesses to target.
Thus, we acknowledge the double-edged use of our approach, as it happens with
any weakness/vulnerability scanning tool.

Another implication of our approach is its applicability to multiple Cyber-
Physical Systems. Since the CCL programming pattern is used in diverse applica-
tions (e.g., medical devices, autonomous vehicles, IoT-based systems, etc.), it is
possible to search for weaknesses in their CCL graphs using this method given that
the CCL graphs can be extracted. Without loss of generality, in this chapter we
show its application for smart buildings and Industrial Control Systems.

Limitations. Although CCLs are a popular programming pattern for CPSs, there
are other alternatives too. Programming patterns like model predictive control and
intelligent control, are based on a single “black box” that receives inputs from all
sensors and sends outputs to all actuators. These 3-layered programming patterns
(multiple inputs + single processing unit + multiple outputs) are not suitable to
perform the proposed analysis since it would simply identify the “black box” as
a weakness due to, e.g., the large fan-out weakness (CWE-1048). Even with
knowledge about the inner workings of the control component, it might be difficult
to identify weaknesses inside it; for example, in case the “black box” is a neural
network. Moreover, a graph abstraction might not be a natural representation for
fuzzy control and other CPS programming patterns. The mismatch between the
system model and the application programming pattern is an important limitation
to apply the proposed approach.
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3.7 Conclusion

Complex control systems, such as smart buildings and ICSs, are specifically tailored
to meet local requirements. Their design is implemented locally and, despite any
security guarantees provided by the manufacturers of individual components, the
control application that aggregates them could introduce weaknesses. Therefore,
the security of the aggregated system is a responsibility of local administrators.

In this chapter, we addressed Research Question 1: How to (semi-) automate
the identification of weaknesses in smart building applications? To do so, our
proposed approach transfers the accumulated knowledge about software weaknesses
in the IT domain to the control systems field. We proposed a method to detect
weaknesses in graphs comprised of interrelated closed control loops (CCLs). Such
a graph is the base data structure to analyze and look for weaknesses including, but
not limited to, global variables (CWE-1108) and multi-purpose variables (CWE-
1109). Given the widespread use of the CCL programming pattern in diverse
Cyber-Physical Systems (CPSs), the proposed method can be applied to other
systems besides smart buildings.

Our approach is capable to find system-wide weaknesses. We tested it on a
real smart building network comprised of 23 buildings and found several instances
of global and multi-purpose variable weaknesses. We identified the root cause of
such weaknesses as common practices in CPS control applications: on the one
hand, the convenience of shared sensors and setpoints; and on the other hand,
advanced control strategies such as cascade control and override control. Due
to the consequences of tampering with real buildings, we were not authorized to
deepen our analysis of the identified weaknesses through actual attacks against
them. This would have been useful to provide further insights about their criticality.
To overcome this problem, we looked at simulated CPS control applications where
experimental attacks are safe to conduct.

The second evaluation was executed on two independently developed control
applications of the Tennessee Eastman Plant (TEP), one of which was never ana-
lyzed from a security standpoint (Luyben et al.). A thorough and systematic effort
led to the most extensive security analysis of the TEP to date: 1 392 individual
attack simulations against all sensors used in the plant, considering 13 plant dis-
turbances. Our results showed a correlation between the weaknesses identified by
our approach and the most availability-critical targets according to the simulations.
Our results on the TEP are in line with the results of previous research but using
limited information and an automated approach.

49





Chapter 4

Weakness Identification in Smart
Building Configurations

In Chapter 3, we started the discussion on the identification of weaknesses in smart
building applications. We elaborated on why well-known IT weaknesses happen
as well in OT systems that use different programming patterns. Moreover, we
showed how to automatically identify weaknesses such as, but not limited to, global
variables (CWE-1108) and multi-purpose variables (CWE-1109).

In this chapter, we address Research Question 2: How to (semi-) automate the
identification of weaknesses in smart building configurations?

We continue our discussion on the automated identification of weaknesses,
but now looking at the configuration of smart building components. Just like
smart building application weaknesses, configuration weaknesses can be exploited
by adversaries to attack smart buildings or to disguise malicious behavior. In
particular, we look for configuration weaknesses that cause an invalid behavior of
smart building components. By smart building components, we broadly refer to
diverse software and hardware tools that are used to implement smart buildings.
These include, operator workstation software, building controllers, human-machine
interfaces (HMIs), and many more.

Our proposed approach is demonstrated in the context of smart buildings imple-
mented using the BACnet protocol (ISO 16484-5) [15]. We identify weaknesses in
smart building configurations leveraging on publicly available technical document-
ation about BACnet components. However, our approach could be applied to other
industrial protocols, such as EtherNet/IP, that use similar documentation for their
devices. The main challenge is to correctly interpret these technical documents,
typically published in PDF and using non-standard layouts. After the automatic
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interpretation of these documents, the goal is to extract a model of valid behavior
for each component. The behavior model for each component is comprised of a
set of rules that specify their capabilities as they are documented. After the valid
behavior rules have been extracted, the weakness identification stage begins.

To find configuration weaknesses in smart buildings, we load the valid behavior
rules into a network monitoring system, which passively observes network traffic
and logs any rule violations. We analyze the components’ outgoing network traffic
to look for invalid behavior. Similarly, we analyze the components’ incoming traffic
to identify mistaken assumptions from other components on the behavior of the
receiving component, i.e., whenever components are requested to behave in a way
that contradicts their documented capabilities. In the context of Mitre’s CWE
taxonomy, here we look for expected behavior violation (CWE-440) and inclusion
of undocumented features or chicken bits (CWE-1242) types of weaknesses [96].

4.1 Preliminaries

BACnet networks are comprised of components that fulfill different roles; for ex-
ample, operator workstation software, building controllers, and human-machine
interfaces (HMIs). During the smart building design phase, it is important to ensure
compatibility among these diverse components. To ease this task, the manufacturers
of certified BACnet components must provide, for each of them, a technical docu-
ment called Protocol Implementation Conformance Statement (PICS) [15]. PICS
specify which BACnet objects, properties, and BACnet interoperability building
blocks (BIBBs) are implemented by BACnet components. Using the information
provided in PICSs, it is possible to determine whether diverse components can
interact and how. Thus, PICSs are both, an authoritative and a reliable source of
information about the valid behavior of BACnet components. From the protocol’s
perspective, all components are BACnet devices, although they might not neces-
sarily be specialized hardware. This means that even the operator workstation
software, often running in a regular PC, is considered a BACnet device. For this
reason, in what follows, we use “BACnet components” or “BACnet devices” as
equivalent.

The BACnet standard is strict about the contents that PICSs must have, but lax
in the document layout that PICSs may use [15]. For instance, object listings from
different PICSs are shown in Figure 4.1. All of them describe the same kind of
information using distinct table layouts. BACnet properties and BIBBs are also
described in PICSs, however, more complex table layouts are used because they
have additional features (e.g., writable properties, BIBBs that must be implemented
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(a) (b) (c)

Figure 4.1: Excerpts from different PICSs stating which object types are implemented.
PICS (a) lists only the implemented object types, whereas PICSs (b) and (c) use specific
and different Unicode characters to denote which of them are implemented.

given the component’s claimed profile, etc.).

4.2 Proposed Approach to Identify Configuration Weak-
nesses

We start the description of our approach with a high level overview in Section 4.2.1.
We then zoom-in on the most important parts to explain how to automatically
extract component’s valid behavior rules from PICSs in Section 4.2.2. Finally,
Section 4.2.3 describes the rule-based weakness identification process.

4.2.1 Overview

Our goal is to develop an automated approach to detect configuration weaknesses
in smart building devices. To do so, we extract rules that specify the valid behavior
of these devices. Such a set of rules is extracted from the PICSs available for each
certified BACnet device. Automation of the PICS interpretation process is crucial
because BACnet networks can be comprised of thousands of devices, each of them
potentially described by its own PICS. Moreover, smart building devices are often
added, removed, and replaced in the network, which requires updates on the set of
valid behavior rules.

Our approach starts by collecting network traffic and PICSs of the components
used in the smart building. The traffic collection is passive (e.g., from a mirroring
port in a network switch) in order to avoid any accidental disruption of the system.
The PICSs are collected from the public official repository [64]. Then, the PICSs
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Analysis Engine Rules

BACnet TrafficTraining BACnet Traffic

Network

Monitoring

PICSs

Figure 4.2: Overall workflow of the proposed approach.

are automatically interpreted by a software that we call the Analysis Engine. The
Analysis Engine pays particular attention to the tables that specify the component’s
valid capabilities. Aided by the training traffic, the Analysis Engine identifies
different table layouts used in PICSs and, consequently, correctly interprets the
tables. A correct interpretation of tables leads to correct behavior rules for each
component in the smart building. Once the rules have been extracted, they are
loaded into a network monitoring system. Finally, the network monitoring system
logs rule violations observed in the smart building’s BACnet traffic. Figure 4.2
shows the overall workflow of our proposed approach.

4.2.2 Behavior Rules Extraction

In our approach, the Analysis Engine is in charge of extracting behavior rules from
PICSs. A more detailed view of the Analysis Engine is shown in Figure 4.3. Its
main tasks are: device fingerprinting, PICS matching, PICS interpretation, and
rules creation. We now explain in more detail each of these tasks.

1

2

3

Device Fingerprinting PICS Matching PICS Interpretation Rules Creation

Figure 4.3: Analysis Engine tasks.
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Device Fingerprinting. The input of the fingerprinting routine is the training
BACnet traffic and the output is a list of tuples [device_id, brand, model].
While the device_id is unique throughout the BACnet network, many devices
can share the same brand and model.

Our approach fingerprints BACnet devices applying two techniques described
originally in [27]. The first technique is “Device Object Analysis”, which focuses on
network packets that contain properties of the device object. The second technique
is “BACnet Address Linking”. In this case, we link one packet containing the
device_id and the BACnet address (both of which are unique in the network),
with another packet that has the BACnet address but not the device_id. If the
second packet contains the brand and/or model of the device, then we can link it
to a specific device_id found in the first packet. The conditional presence of the
device_id and the BACnet address in network packets is due to the peculiarities
of the BACnet routing protocol.

It is worth noting that our system cannot extract valid behavior rules for devices
not fully fingerprinted (i.e., incomplete tuples). No rules for a subset of devices
imply that the network monitoring system will not be able to identify their config-
uration weaknesses. The example in Figure 4.3 shows five devices successfully
fingerprinted, depicted as geometric figures.
PICS Matching. The inputs of the PICS matching routine are the list of fingerprin-
ted devices and the set of PICS that describe them. Using the brand and model
of the fingerprinted devices as keywords, this routine identifies each component’s
corresponding PICS. The output is a list of extended tuples [device_id, brand,
model, PICS_file]. Continuing with the example in Figure 4.3, the devices
represented by squares were matched with PICS 1, the devices represented by
circles were matched with PICS 2, and so on.
PICS Interpretation. The inputs of the PICS interpretation process are the list of
extended tuples and the training BACnet traffic. For every PICS file there are four
outputs:

1. the set of implemented object types;
2. the set of implemented properties for each object type;
3. the set of writable properties for each object type; and
4. the set of implemented BIBBs.
The interpretation routine is the core of our rules extraction approach. In what

follows, we will broadly refer to BACnet objects, properties, writable properties,
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... ... ......
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Figure 4.4: Table layouts commonly used in PICSs. Dark circles represent BACnet objects
or BIBBs, whereas light circles represent BACnet properties. Empty cells might contain
arbitrary text.

and BIBBs, simply as BACnet elements. Thus, we will explain, in a generic way,
the interpretation routine for the different types of BACnet elements.

The first step is to classify the training traffic by device type. All the traffic sent
by devices of the same brand and model is grouped. Looking for confirmations in
the traffic (e.g., read service acknowledgments), the interpretation routine identifies
the BACnet elements that are implemented for that group of devices. Similarly,
looking for errors in the traffic, the interpretation routine identifies which elements
are absent (i.e., not implemented) in that group of devices. We refer to the sets of
present and absent elements as 𝒫 and 𝒜 , respectively. The training traffic, from
which 𝒫 and 𝒜 are populated, is collected during a limited time span. Hence, it is
expected to get incomplete sets of implemented and non-implemented elements.

Since the list of standard BACnet elements is known in advance from the
protocol specification, it is possible to automatically pinpoint these elements in
each PICS. Figure 4.4 shows four examples of typical table layouts that describe
BACnet elements in PICS. Once the elements’ location has been identified, this
routine groups them using different criteria. Figures 4.4a, 4.4c, and 4.4d suggest
a column-wise grouping. Similarly, Figure 4.4b suggest a row-based grouping.
Elements within the same cell (e.g., Figure 4.4b) are also grouped together. Finally,
for any of the layouts, we create groups of elements with similar nearby text. For
example, elements next to a symbol (e.g., ✓□), word (e.g., “Implemented”) or phrase
(e.g., “Supported Object Types”). In what follows we will refer to the groups
extracted from the PICS as reference sets. Several reference sets are extracted for
each PICS, but only one of them will contain the set of all implemented elements.

𝐽𝑎𝑐𝑐𝑎𝑟𝑑(𝒫 , 𝑅𝑖) =
|𝒫 ∩ 𝑅𝑖|

|𝒫 ∪ 𝑅𝑖|
(4.1)

Our way to find out which of the reference sets has all the implemented elements,
is by comparing them with our observations 𝒫 and 𝒜 . The Jaccard coefficient is
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a simple yet effective scoring mechanism to quantify the similarity between two
sets [70]. Equation (4.1) defines the Jaccard similarity with arguments 𝒫 and 𝑅𝑖,
where 𝑅𝑖 represents the 𝑖𝑡ℎ reference set extracted from a PICS. Using the Jaccard
coefficient it is possible to rank the reference sets according to their similarity to 𝒫 .
A reference set similar enough to 𝒫 is expected to be the set of all the implemented
elements. However, this might not always be the case, specially when 𝒫 has few
elements. To solve this problem we also use the set of absent elements 𝒜 .

𝐽𝑎𝑐𝑐𝑎𝑟𝑑′(𝒜 ,𝒫 , 𝑅𝑖) =
|𝒫 ∩ 𝑅𝑖|

|𝒫 ∪ 𝑅𝑖| ⋅ (|𝒫 ⧵ 𝑅𝑖| + |𝒜 ∩ 𝑅𝑖| + 1)
(4.2)

Equation (4.2) shows our modified version of the Jaccard similarity, which
we call 𝐽𝑎𝑐𝑐𝑎𝑟𝑑′. 𝐽𝑎𝑐𝑐𝑎𝑟𝑑′ adds new terms to the 𝐽𝑎𝑐𝑐𝑎𝑟𝑑 similarity with the
following effect:

1. If 𝑅𝑖 is a suitable reference set, it should contain most (ideally all) of the
objects in 𝒫 , which means that |𝒫 ⧵ 𝑅𝑖| must be equal or close to zero.

2. If 𝑅𝑖 is a suitable reference set, it should contain few (ideally none) of the
elements in 𝒜 , which means that |𝒜 ∩ 𝑅𝑖| must be equal or close to zero.

3. In case both previous terms are equal to 0, we add 1 as a safeguard to avoid
dividing by 0. We note that in this particular case 𝐽𝑎𝑐𝑐𝑎𝑟𝑑′ = 𝐽𝑎𝑐𝑐𝑎𝑟𝑑, as
the denominator is left unchanged (i.e., multiplied by 1). On the other hand,
deviations from the ideal cases will increase the penalization (denominator)
and cause a decrease in the overall scoring for 𝑅𝑖.

After interpreting each PICS, Figure 4.3 represents with four lines the four sets of
rules extracted.
Rules Creation. The inputs for this routine are the sets of valid BACnet elements
extracted from PICSs and the extended tuples (i.e., [device_id, brand, model,
PICS_file]) . The output are rules of the form [device_id, valid_elements].
Since all fingerprinted devices have already been matched with their corresponding
PICS, it is straightforward to match each device with their valid elements. The
rules creation routine is depicted in Figure 4.3 as a link between the rules extracted
in the previous step with the devices fingerprinted in the first step, represented by
geometric figures.
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4.2.3 Weakness Identification

As it was shown in Figure 4.2, the rules generated by the Analysis Engine are loaded
into a network monitoring system. The network monitoring system verifies that
audited devices are concordant with their PICS in terms of valid objects, properties,
writable properties, and BIBBs. Deviations from the components’ valid behavior
are flagged as configuration weaknesses. In this regard, it is worth noting that such
weaknesses do not imply any violation of the BACnet communication protocol. In
fact, all the weaknesses that our approach can find manifest as syntactically correct
BACnet behavior, yet invalid for a particular device.

Verification of BACnet objects and properties is unambiguous because PICSs
explicitly mention which of them are implemented or not. BIBBs verification is
harder because the network communication is based on BACnet services that can
be part of many BIBBs. For this reason, the network monitoring system verifies
that the observed service is part of at least one of the supported BIBBs; a weakness
is reported otherwise.

4.3 Implementation of the Proposed Weakness Identifica-
tion Approach

We implement our prototype using third-party software tools and custom scripts.
Our scripts are freely available under the GNU/GPLv3 license.1

Device fingerprinting is implemented using Zeek [108]. Its output are log
files in plain text that are stored in an SQL database to ensure easy access from
other modules. We use MySQL as our database management system. Nonetheless,
the database scripts are written using standard SQL statements that can be handled
by other database management systems as well.

The PICS matching process is done by Apache Solr [50]. This tool consists
of a web application that ranks documents given a particular set of keywords. The
behavior of Apache Solr is similar to Internet search engines but on a predefined set
of documents. In our specific setting, the documents are PICSs and the keywords
are the brand and model of all fingerprinted devices. The application programming
interface provided by Solr allows us to automate the queries. In this way, we can
quickly match all the devices with their corresponding PICS.

Prior to the PICS interpretation routine, we use Zeek to identify implemented
and non-implemented BACnet elements in the training traffic. Since all the devices
of the same brand and model are described by the same PICS, we aggregate our

1https://github.com/SBIDS-BACnet/SBIDS-BACnet.
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observations in the database. Aggregated information per device type allows us
to create the sets 𝒫 and 𝒜 , required to use our 𝐽𝑎𝑐𝑐𝑎𝑟𝑑′ metric as defined in
Equation (4.2).

The reference sets are extracted from PICSs only available in Portable Document
Format (PDF). We circumvent the problem of directly reading PDF files by creating
XML versions of the PICS using Adobe Acrobat Pro. Nonetheless, the process is
error prone and the format and contents of the original file might be distorted in
the output file. Moreover, there are typos and abbreviations in PICSs, that difficult
to pinpoint BACnet objects and properties in the document.

We implemented a typo correction function based on the Levenshtein dis-
tance [85]. This approach measures how many deletions, additions, or substitutions
are required to convert one string into another. Since we know in advance the list
of standard BACnet elements, we compute the Levenshtein distance between each
word in the PICS with all the elements in the list. If the Levenshtein distance is
less than a predefined threshold, then we fix the string read from the PICS; else it is
left unchanged. Our empirical studies show that one-fourth of the string length is a
suitable fixing threshold for BACnet property names. For BACnet object names
we use a fixed threshold set at 3.

Finally, a Python script reads from the database the network traffic observations
(𝒫 and 𝒜 ) and computes the 𝐽𝑎𝑐𝑐𝑎𝑟𝑑′ metric with all the reference sets extracted
from a PICS. The reference set scoring the highest 𝐽𝑎𝑐𝑐𝑎𝑟𝑑′ value is considered
the set of implemented elements. From this set, we create the rules that are going
to be loaded into the network monitoring system.

The rules creation routine is also implemented by a Python script that queries
the database to retrieve all devices of a particular brand and model, and links them
with the automatically extracted rules. The monitoring rules are generated in Zeek’s
scripting language to easily load them into Zeek and quickly start the weakness
identification phase. Nonetheless, our implementation can be adapted to support
the input format of other monitoring systems too.

4.4 Evaluation of the Proposed Weakness Identification
Approach

In this section, we present an evaluation of the implemented prototype. We start
the evaluation by describing the intermediate results gotten during the training
traffic analysis (Section 4.4.1). Then, we evaluate the precision and recall of the
automatically extracted BACnet elements in Section 4.4.2. Finally, in Section 4.4.3,
we analyze real BACnet traffic using our automatically extracted rules.
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We complement our evaluation by presenting 3 concrete attacks that leverage
configuration weaknesses (Section 4.4.4). Despite the preventive nature of our
weakness identification approach, these scenarios showcase its attack detection
capabilities too. These attacks are executed in a testbed.

4.4.1 Training Traffic Analysis

For the training phase, we use 4 days (4,5 GB) of BACnet traffic from the smart
buildings network of the University of Twente. The training traffic is passively
collected from one of the core switches of the University. The analysis of our
training traffic fingerprints 646 BACnet devices. A breakdown of our findings is
shown in Table 4.1.

Figure 4.5a shows that the discovery rate of BACnet objects in our network
becomes stable after 3 × 106 BACnet packets, i.e., six hours or 300 MB of traffic.
Since device fingerprinting is done using two techniques based on the analysis of
BACnet objects (see Section 4.2.2), this means that all fingerprinted devices were
identified within this time frame.

Our analysis of the overall infrastructure shows 9 804 object instances that we
can confirm are present because the devices acknowledged them (e.g., after a read
request); and 6 512 absent objects that triggered an error after being requested
by some other device. This two aspects are shown in Figure 4.5a. Similarly, we
discovered 40 467 present properties, whereas 1 237 were absent (see Figure 4.5b).
Finally, we found 16 713 present services and 8 169 absent services (see Figure 4.5c).
These present and absent BACnet elements are used later on to populate the 𝒫 and
𝒜 sets, required to compute our 𝐽𝑎𝑐𝑐𝑎𝑟𝑑′ metric

4.4.2 PICSs Interpretation

For all the PICSs shown in Table 4.1, we execute our algorithm to extract valid
objects, properties, writable properties, and BIBBs. There are 2 missing PICSs
that describe 6 devices in our infrastructure (shown at the bottom of Table 4.1).
Thus, we focus our PICS interpretation evaluation on the remaining 10 PICSs.
We present our results in terms of precision and recall. Precision refers to the
fraction of extracted BACnet elements that are concordant with a PICS. Recall is
the fraction of BACnet elements that were extracted from a PICS, considering the
total amount of elements that can be extracted.

Table 4.2 shows the valid element specifications extracted from our PICSs
set. We identify a total of 136 valid BACnet objects, 283 valid BIBBs, and 57
valid writable properties. All valid writable properties are extracted from only one
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Table 4.1: Fingerprinted BACnet devices grouped by PICS file.

PICS file Device manufacturer Device model Number of devices

PICS-1 DEOS COSMOS Open 1
PICS-2 Delta Controls eBCON 3
PICS-3 Kieback&Peter DDC4400 5
PICS-4 Mitsubishi BM ADAPTER 1

PICS-5

Priva Compri HX 3 25
Priva Compri HX 7
Priva Compri HX 8E 87
Priva Compri HX 4 36
Priva Compri HX 6E 13
Priva Comforte CX 403

PICS-6 Priva HX 80E 16
PICS-7 Priva Blue ID S10 31
PICS-8 Priva Blue ID C4 5

PICS-9
Siemens PXC00-U 1
Siemens PXC128-U 3
Siemens PXC64-U 1

PICS-10 Siemens PXG80-N 2
Not available LOYTEC LVIS-3ME15-G2 3
Not available Siemens PXR11 3
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Figure 4.5: Discovery rate for BACnet objects (a), properties (b), and services (c) during
the training phase.
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PICS in our repository. This is because, although we observe write requests on
different devices, all of them are described by a single PICS (PICS-5). Since we
can only interpret PICSs for which we have observations 𝒫 and 𝒜 , the proposed
approach cannot extract writable properties from the remaining 9 PICSs. Despite
this problem, which our approach is not designed to handle, we achieved 100%
precision and recall for those three types of specifications.
Table 4.2: Specification extraction performance of implemented objects, BIBBs, and
writable properties.

PICS File Valid Objects Valid BIBBs Valid WProps. Precision & Recall

PICS-1 17 38 - 100%
PICS-2 19 43 - 100%
PICS-3 22 49 - 100%
PICS-4 9 10 - 100%
PICS-5 16 27 57 100%
PICS-6 2 12 - 100%
PICS-7 16 31 - 100%
PICS-8 16 31 - 100%
PICS-9 18 34 - 100%
PICS-10 1 8 - 100%
TOTAL 136 283 57 100%

Our evaluation about the extraction of valid BACnet properties is summarized
in Table 4.3. Overall, our algorithm finds 2 064 valid properties with a precision
of 99,85%. The reason for precision loss is the misinterpretation of surrounding
text strings as BACnet properties. Moreover, the overall recall is 99,57% due to
abbreviations in property names that the typo correction routine is not able to fix.
It is worth noting that some PICSs show only optional properties instead of all the
implemented properties. Since our evaluation is based on the contents of the PICSs,
implicit properties are not taken into account for our evaluation.

4.4.3 Smart Buildings Network

Following the workflow described in Section 4.2.1, the automatically extracted
capabilities are then used to create behavioral rules for BACnet devices. Specifically,
we created rules for the 240 BACnet devices whose PICSs are available.

We analyze BACnet traffic in our smart buildings network for two months,
which in our setting consists of roughly 80GB of data. The network monitoring
system (Zeek) logs all rule violations observed in the outgoing network traffic for
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Table 4.3: Specification extraction performance of implemented properties.

PICS File Property Specs. Precision Recall

PICS-1 244 100% 100%
PICS-2 224 99,11% 96,10%
PICS-3 520 100% 100%
PICS-4 46 100% 100%
PICS-5 237 100% 100%
PICS-6 41 100% 100%
PICS-7 242 99,59% 100%
PICS-8 244 100% 100%
PICS-9 259 100% 100%
PICS-10 7 100% 100%
TOTAL 2 064 99,85% 99,57%

each device. We summarize our findings in Table 4.4. There are 25 undocumented
BACnet objects in 4 different device models. Since they are not documented objects,
their occurrence is considered a weakness as they are not part of the expected
behavior of these devices. Two of the undocumented objects are standard objects,
namely, analog-output and command. The remaining 23 objects are proprietary.
Similarly, we discovered 103 undocumented BACnet properties in 9 device models.
Seven properties are standard (time-of-device-restart, last-notify-record, feedback-
value, and four times the profile-name property) and 96 are proprietary.

Zeek also logs rule violations in the incoming network traffic of BACnet devices.
These violations occur when devices are being queried about capabilities that they
are not supposed to have according to their PICSs. In our setting such queries occur
in less than 1,5% of the traffic mainly due to: (1) operator workstation software
that tries to read a predefined set of objects and properties from BACnet devices;
and (2) logging servers that regularly poll, via read requests, a predefined set of
BACnet elements. In both cases, attempts to read not implemented objects and
properties cause all the rule violations logged by Zeek. We omit further details of
our incoming traffic rule violations because these findings are fully dependent on
the specific configuration of our network.

The monitoring system did not trigger any alerts regarding writable properties
nor BIBB specifications.
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Table 4.4: Undocumented BACnet objects and properties. Our findings are highlighted in
bold font.

Device Model Object Property
COSMOS Open 8 (device) 203 (time-of-device-restart)

eBCON

0 (analog-input) 1033, 1039, 1076
2 (analog-value) 1067
5 (binary-value) 1033

9 (event-enrollment) 1033, 1037, 1038, 1045, 1192, 1198,
1199, 1213, 1216

15 (notification-
class)

1033, 1034, 1040, 1074

16 (program) 1033
20 (trend-log) 173 (last-notify-record), 1135

8 (device)

1033, 1040, 1074, 1077, 1078, 1079,
1089, 1090, 1100, 1101, 1102, 1115,
1116, 1117, 1118, 1119, 1120, 1121,
1122, 1123, 1125, 1137, 1138, 1139,
1140, 1141, 1142, 1144, 1145, 1146,
1147, 1148, 1151, 1156, 1158, 1160,
1162, 1163, 1164, 1165, 1166, 1167,
1168, 1169, 1204, 1205, 1206, 1207,
1209, 1210, 1212, 1213, 1214, 1215,
1216, 1219

142, 149, 152, 176,
177, 178, 181, 183,
270, 272, 278, 284,
297, 298, 311

Compri HX 8E 17 (schedule) 168 (profile-name)
20 (trend-log) 168 (profile-name)

Comforte CX 1 (analog-output)
Blue ID S10 17 (schedule) 168 (profile-name)
Blue ID C4 17 (schedule) 168 (profile-name)

PXC00-U
8 (device) 3028, 3034
200, 201, 202, 204,
207, 208, 214, 215

PXC128-U 1 (analog-output) 40 (feedback-value)
continues on next page...

65



Chapter 4. Weakness Identification in Smart Building Configurations

Table 4.4 – ...continued from previous page
Device Model Object Property

4 (binary-output) 3067
5 (binary-value) 3067
7 (command)

8 (device) 3019, 3028, 3034, 3061, 3062, 3063,
3064

20 (trend-log) 3019

PXC64-U
4 (binary-output) 3067
8 (device) 3028, 3034, 3061, 3062, 3063, 3064
20 (trend-log) 3019

4.4.4 Experimental Attacks

In addition to the real BACnet network, we complement our evaluation using a
simple testbed depicted in Figure 4.6. This testbed is used to illustrate poten-
tial attacks that leverage on invalid behavior weaknesses, such as those discussed
throughout this chapter. Our testbed consists of two BACnet/IP devices intercon-
nected by a switch. The diagram, in Figure 4.6, also shows a laptop that represents
the attacker’s position in the network. Both BACnet devices are implemented using
Raspberry Pi computers running Raspbian OS. The BACnet software running on
top of the OS is BACnet Stack 0.8.4 [74]. In order to reuse the specifications previ-
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Figure 4.6: Diagram of our experimental BACnet testbed. The two Raspberry Pi computers
at the top simulate the Priva Blue ID S10 and the Mitsubishi BM ADAPTER, respectively.
The computer at the bottom represents the attacker’s access to the system.
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ously generated, we configured the BACnet Stack demo server with similar features
(i.e., objects, properties, and services) as the Priva Blue ID S10 and the Mitsubishi
BM ADAPTER that we have in our real network. The attacker’s computer runs
Kali Linux 2017.1. The network switch is an HP ProCurve 2610-24, in which we
configured a mirroring port to collect the traffic exchanged during the experiments.

We present three concrete BACnet attacks and discuss how our weakness
identification approach might also be able to detect such attacks. First, we show
how a backdoor in a smart building device can be disguised as a BACnet object.
The second attack is an active device fingerprinting executed by the popular nmap
scanner [91]. The third and last attack discussed is a denial of service (DoS) in
which the attacker attempts to remotely reboot a BACnet device.
Backdoor. Our first attack consists of a BACnet device whose firmware has
been tampered with by a malicious actor. We added a backdoor in our BACnet
device simulating the Priva controller. The backdoor is located in a standard
BACnet object (CharacterString Value) that implements all the mandatory proper-
ties (e.g., object-identifier, present-value, status-flags, etc.) and common optional
properties (e.g., description, out-of-service, event-state, etc.). The backdoor func-
tionality is implemented by means of a writable property that receives commands
from the attacker, and a readable property which holds the output of the attacker’s
command. Specifically, the writable property is present-value and the readable
property is description. In this way, the attacker is able to send OS commands
(e.g., ls, cat, rm, etc.) and to read the output of those commands, all using syntactic-
ally valid BACnet objects, properties and services. Since the CharacterString Value
object is not part of the device’s PICS, our specifications spotted the violation even
though we sent only one packet consisting of a write request to the present-value
property. The same functionality could have been implemented in proprietary
BACnet objects as we found many in our real BACnet network (see Section 4.4.3).
In this case, our proposed approach is able to identify the backdoor by looking at
the incoming traffic and the outgoing traffic of the compromised device. The first
rule violation happens when the compromised device receives a request to write
a property in an invalid object. The second rule violation is triggered when the
compromised device complies with requests to read the invalid object.
Active Device Fingerprinting. The second attack consists in executing recon-
naissance tools such as nmap against our two BACnet devices [91]. Nmap is a
popular port scanner that can be extended via scripts. There is a script specifically
created to scan BACnet networks, which tries to fingerprint devices executing quer-
ies on multiple properties of the device object [58]. The requested properties are
vendor-identifier, vendor-name, object-identifier, firmware-revision, application-
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software-version, object-name, model-name, description and location. From the
attacker’s laptop, as shown in Figure 4.6, we execute the nmap script against the two
emulated BACnet devices in our testbed. The Priva device does not report any rule
violations because all 9 properties requested by nmap are valid according to its PICS.
On the other hand, the rules of the Mitsubishi device trigger two violations because
the description and location properties are not implemented in that specific model
according to its PICS. This example shows the main drawback of our approach:
attacks that leverage on documented behavior of devices cannot be detected by our
rules. At the same time, we show that we can detect stealthy attacks comprised of
as few as a single network packet, as long as it represents a violation to the device’s
PICS.
Denial of Service. A third attack is launched against the simulated Mitsubishi
device. We use the emulated Priva device as a pivot to reach the target. Taking
advantage of the backdoor in the simulated Priva device, we downloaded a malicious
binary file that sends reinitialize requests to the target. The binary file is based on
the demo bacrd command in BACnet-Stack [74].

Besides the rule violations generated because of the backdoor, two additional
violations are logged. The first of them is due to the fact that the pivot device
is not supposed to send Reinitialize Device requests. This violation is detected
by analyzing the outgoing traffic of the pivot device. The second violation is
triggered because the target device is not supposed to receive such a request. This
violation is detected by analyzing the incoming traffic of the target device. Both
reported violations demonstrate the usefulness of our BIBBs rules in a realistic
attack scenario.

4.5 Related Work

Open communication protocols are usually described in documents such as RFCs
and IEEE or ISO standards. Several researchers have used these descriptions to
manually extract expected communication behavior rules [72, 104, 121]. Their
approaches, however, are focused on detecting communication protocol violations,
such as syntactically incorrect messages caused by devices with buggy protocol
implementations. To mitigate this kind of problems in smart buildings, Kaur et
al. developed a traffic normalizer that either drops or fixes (whenever possible)
malformed BACnet packets [76]. This traffic normalizer does not deal with specific
details of every device. Instead, it considers general aspects of the protocol like
header fields length or valid status flags. On the other hand, our approach is not
focused on the BACnet communication protocol itself, but on the devices’ invalid
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behavior that can be observed in well-formed BACnet messages. For this reason,
rather than using the BACnet standard specification, our valid behavior rules are
extracted from the devices’ PICSs [64].

Most security research in the smart buildings domain addresses the problem
of intrusion detection. Tonejc et al. [132] evaluate four different machine learn-
ing algorithms to perform anomaly-based intrusion detection in smart buildings
implemented using the BACnet protocol. A different approach presented in [29]
uses network flows to detect attacks in BACnet systems. The closest work to ours
was done by Caselli et al. [27]. The authors developed an approach to extract
specifications from BACnet PICSs written with a predetermined format. Their
goal was to perform specification-based intrusion detection in BACnet systems.
Their approach suffers from two major limitations: (1) the parsing process does not
yield results from documents using a different format; and (2) even for documents
following the dictated format, the combination of device capabilities (text strings)
and auxiliary information (arbitrary symbols or text) cannot be disambiguated.
Rather than developing a rigid extraction mechanism for each PICS format found in
the official repository, our approach generalizes the way to interpret different PICS
layouts using network traffic to solve the incompleteness and ambiguity problems
in [27]. Our experimental results, based on our new approach, show a significant
improvement over the state of the art. Given the fundamental differences between
their design and ours, the implementations also differ in many aspects. The gain
in flexibility offered by our approach requires additional processing (e.g., network
traffic analysis) and infrastructure (e.g., databases). Finally, the experiments presen-
ted in [27] demonstrate how rule violations help to discover anomalous behavior
that resembles BACnet attacks. Our research not only validates and measures their
findings but also presents realistic attack scenarios implemented and executed on an
isolated testbed. Unlike the work in [27], the core of our research lies on automatic
specification extraction, for this reason, we also evaluate the performance of our
algorithm in terms of precision and recall.

The identification of weaknesses has been largely unexplored in the smart build-
ings domain. There are, however, vulnerability scanners that focus on generic smart
buildings software such as the operating systems pre-installed in building control-
lers, operator workstation software, human-machine interface (HMI) firmware, and
others [30, 129]. In contrast, we focus on the identification of weaknesses caused
by component misconfigurations. These misconfigurations are often specific to a
location and, therefore, tools that search for CVEs cannot find them.
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4.6 Discussion

In this section, we discuss three core stages of our approach. In their execution
order, we address the training phase, the creation of rules, and the identification of
weaknesses.
Training Phase. Our PICS interpretation algorithm requires the availability of
training BACnet traffic. We passively collect training traffic from a real network
during 4 days. Nonetheless, we learn the vast majority of features during the first
6 hours. However, this might differ in other smart buildings depending on their
network activity and the monitoring point where the traffic is collected. The BACnet
traffic required for training purposes must reveal as many objects, properties, and
services as possible. More important than the amount of traffic is the diversity of
information in it. Our own experiments suffer from monotonic traffic regarding
write requests. Even though we observe several write requests in our training traffic,
all of them are directed to devices described by the same PICS. Therefore, later
on we are only able to extract writable properties from one PICS. One way to
overcome this problem is by collecting traffic for a longer period, which would
increase the chance to observe relatively rare events (e.g., monthly write events).
Additionally, in smart buildings where passive traffic collection is not a strong
requirement, actively probing devices can reveal the required features in short time.
Rules Creation. PICS constitute the source of our valid behavior rules. Although
all certified BACnet devices are required to have a PICS, not all BACnet devices are
certified and, therefore, the availability of PICS is not guaranteed. In our network,
there are 6 non-certified devices that should be described by 2 PICS, however, the
documents are not available in the official PICS repository. Thus, we recommend
to use only certified devices for two reasons. First, it guarantees compliance with
the BACnet standard. Second, this ensures that PICS are publicly available in the
BACnet International website [64]. The same recommendation has been backed by
local regulatory organizations such as AMEV in Germany [45].
Weakness Identification. In our experiments, most identified weaknesses are
requests to non-implemented properties. According to Mitre’s CWE taxonomy,
this is an expected behavior violation weakness (CWE-440). After exploring why
this is the case, we find out that operator workstations’ software often requests a
predefined set of properties (particularly on the device object), some of which are
not mandatory. Thus, device manufacturers often decide not to implement these
optional features and, whenever they are requested, a rule violation is triggered.
The fact that legitimate management tools are not properly configured to make only
valid requests is problematic because their behavior becomes indistinguishable
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from the behavior of reconnaissance tools like nmap, as we show in Section 4.4.4.
Since every invalid request generates an error from the recipient, the presence of
errors in the traffic is common. Such common errors, however, might desensitize
operators who will not pay attention when the same errors happen due to malicious
activities.

The second cause of alerts are undocumented elements in BACnet devices.
This is commonly referred to as an inclusion of undocumented features or chicken
bits according to Mitre’s CWE taxonomy (CWE-1242). This is a weakness that, as
we show in Section 4.4.4, can be misused to conceal backdoors or other malicious
behavior. It is possible to argue that the same behavior could have been implemented
in a documented object and, therefore, remain undetected by our approach. This is,
indeed, the case because we consider all documented behavior as valid. However,
it is worth noting that we found 128 undocumented elements in our real BACnet
network. Although in cooperation with the local smart building administrators
we discarded any attacks in the analyzed network, undocumented elements are
potential hide outs for malicious activities. Thus, they are weaknesses that must be
managed accordingly (e.g., replacing devices, disabling features such as proprietary
objects, stricter monitoring). The evidence obtained by analyzing real and synthetic
traffic supports the importance of our weakness identification approach.

4.7 Conclusion

In Chapter 3, we discussed the identification of security weaknesses in smart
building applications and this chapter complements it with an approach to identify
configuration weaknesses. Just like application weaknesses, configuration weak-
nesses pose a serious threat for smart building infrastructures. Adversaries can
leverage configuration weaknesses to execute direct attacks or to disguise other
malicious activities against smart buildings.

In this chapter, we addressed Research Question 2: How to (semi-) automate
the identification of weaknesses in smart building configurations? To answer this
question, we presented an automated approach to create valid device behavior
rules that are monitored at network level. These rules are able to identify expected
behavior violation (CWE-440) and inclusion of undocumented features or chicken
bits (CWE-1242) types of weaknesses, often happening due to misconfigurations.
We implemented our prototype for smart buildings using the BACnet protocol; more
precisely, leveraging Protocol Implementation Conformance Statements (PICSs)
of certified BACnet devices. Despite the specific application for smart buildings
implemented using the BACnet protocol, the proposed approach could be used on
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other industrial protocols, such as EtherNet/IP, with similar protocol syntax and
documentation. IoT-based systems could also be subject to the proposed analysis.
However, their unregulated documentation requirements would likely represent a
serious limitation. Our behavior rules are individually tailored for each device in
the network, in such a way that they (1) identify undocumented behavior in devices’
PICSs; and (2) identify requested behavior that devices are not supposed to have
according to their PICSs.

The high precision and recall achieved during the PICS interpretation process
translate into a reliable identification of weaknesses. Particularly on CWE-1242,
we showed a widespread practice of BACnet manufacturers to incorporate undocu-
mented features in their device implementations. Whereas in some device models
such a behavior can be configured (i.e., enabled or disabled), this is the default and
immutable behavior for other devices. On the other hand, about CWE-440, we
showed that building administrators may configure components assuming a specific
yet incorrect behavior on other components. This mismatch between the expec-
ted and actual behavior of devices triggers network protocol errors that become
“normal” in the smart building’s daily operation; thus, desensitizing administrators
to potentially malicious activity that might cause the same type of errors. Our
evaluations using both, real and synthetic traffic, proved that PICS derived rules are
also useful to identify behavior that closely resembles cyber attacks (e.g., backdoor,
active device fingerprinting, and denial of service).

This chapter concludes our contributions on the identification of security weak-
nesses. The next chapter discusses the assessment of security weaknesses in smart
buildings. This assessment is part of the second step of the vulnerability manage-
ment process, namely, the prioritization of security weaknesses.
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Chapter 5

BACRank: A Sensitivity
Assessment of Smart Building
Components

In Chapter 3 and Chapter 4, we presented two methods to identify security weak-
nesses in smart building applications and configurations, respectively. The identific-
ation of security weaknesses is a crucial first step in any vulnerability management
process because it sets the ground for the remaining activities of the process, namely,
their prioritization and remediation.

The prioritization of security weaknesses aims at finding the right order to
remediate them. This is a difficult task because of the diverse aspects that can
be considered to create such a ranking. Previous works have explored social
media discussions, severity, expected exploitation time, and others [32, 47, 97].
Proprietary tools have even home brewed their own secret methods to do it [109,
110, 129]. However, existing prioritization methods are unfit for the smart buildings
domain because they fail to capture the potential impact of cyber-physical attacks
and their consequences for the targeted organization. We argue that a comprehensive
estimation of risk that considers the particular context of the affected organization
should be the way to rank security weaknesses for remediation. Although literature
typically defines risk as a seemingly straightforward multiplication of impact and
probability of loss events, each of these two aspects is comprised of several other
factors that must be estimated first [73]. Particularly on the impact aspect, one of
the key factors is the sensitivity of assets, i.e., the harm that a loss event might cause
in terms of, e.g., legal/regulatory consequences, fines, and others [73]. Taking into
account that building services in many public and private buildings are subject to
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national and/or international regulations, we consider the assets’ sensitivity as an
important feature to prioritize the security weaknesses that affect them.

In this chapter, we address Research Question 3: How to (semi-) automate a
sensitivity assessment for smart building components?

We propose to combine technical features of the smart building and business
features of the organization hosted in it, to determine the sensitivity of smart building
components. On the business side, we identify the business processes that take
place and their sensitivity for the organization. Among the technical aspects, we
consider smart building components and their dependencies. Using this information,
we match the smart building components with the business processes that they
support. This match allows us to assign an initial sensitivity score to smart building
components based on the sensitivity of their corresponding business processes.
However, these scores are adjusted based on the components’ dependencies and
the role they play in the overall infrastructure.

More concretely, we create a graph data structure where the nodes represent
smart building components and the edges represent their functional dependencies.
The smart building components can be established at diverse granularity levels,
ranging from fine grained data points (e.g., individual sensors, setpoints, and
actuators) to coarse grained devices (e.g., building controllers and PLCs). To
illustrate our approach and without loss of generality, in this chapter we opted for
using software modules as components (nodes of our graph) at an intermediate
level of granularity. We then set an initial score to each software module based on
the business processes that they support. Lastly, the final sensitivity quantification
is assigned by a novel graph centrality metric specifically designed for this purpose.
We call the proposed graph centrality metric BACRank, in reference to the Building
Automation and Control (BAC) systems that are used to implement smart buildings.

5.1 Preliminaries

Critical infrastructures like hospitals, airports, and data centers are typically deman-
ded to implement business continuity management systems (BCMSs) to improve
the resilience of their core operations [36, 140]. Therefore, such organizations
follow guidelines like those proposed in ISO standards 22 301 and 27 031, on this
matter [68, 69]. The first step in the implementation of a BCMS is to execute a
business impact analysis (BIA).

The main purpose of the BIA is to score the sensitivity of business processes.
According to ISACA, a business process is “[a]n inter-related set of cross-functional
activities or events that result in the delivery of a specific product or service to a
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customer” [65]. A BIA is typically based on questionnaires answered by the stake-
holders of each business processes. These questionnaires ask questions about the
consequences of business processes halted during different time ranges (e.g., 0–2
hours, 2–8 hours, etc.), considering the legal, reputational, and financial reper-
cussions for the organization. In this questionnaires, the stakeholders assign a
sensitivity level to each hypothetical scenario for the processes that they are in-
volved in. Lastly, the overall sensitivity level of each business process is typically
computed as the average of the answers gotten from the questionnaires. A BIA con-
tains additional information about business processes such a calendar that specifies
their execution period, which is a useful time reference to prepare for potential loss
events. For further details on the business impact analysis, we refer the reader to
the ISO standards 22 301 and 27 031 [68, 69].

5.2 Proposed Sensitivity Assessment Approach

We now present our proposed approach to estimate the sensitivity of smart building
assets. We begin with a summary of the information required to implement our
approach in Section 5.2.1. In Section 5.2.2 we present an overview of our approach
and introduce the notation that we will use to describe it. In Section 5.2.3 we
explain how to set an initial score for each asset and Section 5.2.4 details the
requirements that a graph centrality algorithm, according to the proposed approach,
must satisfy to adjust the initial scores and obtain a final sensitivity score. Finally,
in Section 5.2.5 we present an instance of a graph centrality algorithm that satisfies
the requirements stated in the previous section.

5.2.1 Information Requirements

To implement a comprehensive sensitivity assessment for smart building com-
ponents, technical and business aspects must be taken into consideration. In our
proposed approach, it is required to make explicit the relation between smart build-
ing services and business processes. We propose to do so by considering their
physical overlap in the building. Two views of the building layout are needed: one
segregated by business processes and the other segregated by the area of influence
of the building services. We combine the two views of the building layout to unveil
the mapping between building services and business processes. Moreover, we
need to quantify the support of building services on the related business processes.
This quantification can be expressed as a percentage where 100% means that the
service in question is fully required, whereas lower values characterize weaker
dependencies on building services.
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On the business side, it is important to identify sensitive business processes for
the organization, so that we can map such sensitivity to the corresponding building
services. It is also important to know when business processes are executed to adjust
the sensitivity of their supporting smart building services accordingly. Business
processes’ sensitivity and execution time can both be found in the BIA that is
typically available in organizations that implement a BCMS.

On the technical side, it is important to know when the building services are
actually needed since they might not be relevant out of their duty periods (e.g., the
heating service during summer). Furthermore, it is crucial to understand how
building services are implemented to take into account possible chain reactions. To
obtain this information, we assume access to the smart building’s design document-
ation to identify (1) all building services; (2) their duty cycles; (3) their underlying
components; and (4) the functional dependencies among components. Since some
dependencies might be stronger than others, a quantification is needed in this re-
gard. We propose to use a percentage value as a simple mechanism to denote the
dependence strength, where 100% means that the consumer module cannot operate
without the provider module, and lower values represent, proportionally, weaker
dependencies.

Table 5.1 summarizes the information requirements of our proposed approach.
While most of the information is typically already available in mature and critical
organizations, we emphasize three components where an expert’s judgment is re-
quired: (1) the building services’ support on business processes; (2) the components’
dependency strength; and (3) the building services calendar.

We argue that the previously mentioned list of business and technical inform-
ation constitutes a basic subset that allows us to link the smart building with its
business purpose. We do not discard, however, that other business or technical
aspects could be included to complement or replace some elements in the proposed
list.

5.2.2 Overview

We abstract the smart building as a directed graph data structure where its compon-
ents are represented by vertices and their functional dependencies are represented
by edges. The edge direction denotes the way information flows and its weight
represents the dependency strength. Formally, the smart building is defined as a
graph 𝐺(𝑉 ,𝐸) where 𝑉 is a nonempty set of vertices (or nodes) and 𝐸 is a set of
edges. Each edge links two vertices in 𝑉 . An edge 𝑒 ∈ 𝐸 is represented as 𝑒𝑢,𝑣
where 𝑢 and 𝑣 denote the source and the destination of the edge, respectively. Edge
weights are represented as a function 𝜔∶ 𝐸 → [0, 1] that assigns each edge 𝑒 ∈ 𝐸
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Table 5.1: Information requirements summary. Expert-based information is shown in italic
font.

Business Information BACS Technical Information
Business continuity plan Engineering design

↳ BIA ↳ Building services list
↳ Business process list ↳ Calendar

↳ Score ↳ Components
↳ Calendar ↳ Dependencies

↳ Strength
Building layout Building layout

↳ Segregated by business processes ↳ Segregated by building services
↳ Building services support on the overlapping business processes ↲

a weight 𝜔(𝑒). The set of edges with destination 𝑚 ∈ 𝑉 is defined as Γ−(𝑚) and
the set of vertex origins in Γ−(𝑚) is 𝑁−(𝑚). Analogously, the set of edges with
origin 𝑚 is defined as Γ+(𝑚) and the set of vertex destinations in Γ+(𝑚) is 𝑁+(𝑚).

In graph theory and network analysis, the identification of important vertices
in a graph is done by means of graph centrality algorithms. Since our goal is to
identify important components in smart buildings represented as graphs, we model
our approach as a graph centrality metric where the notion of important is based
on their sensitivity. The proposed metric is comprised of two parts. First, a set
up procedure that assigns vertices an initial score based on the BIA score of the
related business processes and the components’ support to them. Second, a graph
centrality metric that estimates the chain reactions of unavailable components and
allows us to rank the smart building components based on their sensitivity scores.
The next two sections detail both parts.

5.2.3 Initial Score

Notation. The set of business processes running in the building is defined as 𝑃 =
{𝑝1, ..., 𝑝𝑛}. The set of building services offered is defined as 𝑆 = {𝑠1, ..., 𝑠𝑚}. The
BIA score assigned to each business process is defined as a function 𝛽 ∶ 𝑃 → [0, 1],
where 𝛽(𝑝𝑖) for any 𝑝𝑖 ∈ 𝑃 is proportional to 𝑝𝑖’s sensitivity for the organization.
Given an arbitrary 𝑠𝑖 ∈ 𝑆 and 𝑝𝑗 ∈ 𝑃 , the estimated support 𝑠𝑖 provides to 𝑝𝑗
is defined as a function 𝛾 ∶ 𝑆 × 𝑃 → [0, 1], where higher values denote stronger
support. Since building services are comprised of one or more smart building
components, we can formally state that 𝑠𝑗 ⊆ 𝑉 for any 𝑠𝑗 ∈ 𝑆. For an arbitrary
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component 𝑚 ∈ 𝑉 that is part of service 𝑠𝑗 ∈ 𝑆, the support 𝑚 provides to an
arbitrary 𝑝𝑘 ∈ 𝑃 is given by 𝛾(𝑠𝑗 , 𝑝𝑘). Finally, we define a time function that takes
two inputs: 1) the object whose calendar is going to be inspected (either a business
process or a smart building component); and 2) a time point t. The output is binary
and indicates whether the object given as first input is running/needed or not at
time t, denoted by a 1 or a 0, respectively.

The initial score given to each component in the graph is a numerical value that
summarizes three important aspects: 1) the relevance of the supported business
process represented by function 𝛽; 2) the components’ support to each business
process represented by function 𝛾; and 3) the time in which both, the business
process is running and the component’s building service is needed.

To determine the initial sensitivity score that component 𝑚 ∈ 𝑉 has over a
business process, we multiply 𝛽(𝑝𝑖) ⋅ 𝛾(𝑠𝑗 , 𝑝𝑖) for all 𝑝𝑖 ∈ 𝑃 , given that 𝑚 is part
of 𝑠𝑗 ∈ 𝑆. Computing the initial score for component 𝑚 at time 𝑡, denoted 𝛿(𝑚, 𝑡),
consists of taking the maximum value among active business processes, given that
the building service of which component 𝑚 is part, is also active at time 𝑡. Formally,

𝛿(𝑚, 𝑡) =

{

max1≤𝑖≤𝑛(𝛽(𝑝𝑖) ⋅ 𝛾(𝑠𝑗 , 𝑝𝑖)) if time(𝑝𝑖, 𝑡) = time(𝑚, 𝑡) = 1,
0 otherwise.

5.2.4 Graph Centrality Measure Requirements

We propose to estimate the propagation effect of unavailable components by means
of a graph centrality metric. Before describing the requirements for such centrality
metric we introduce some definitions.
Definition (Component equivalence). Two components𝑚1, 𝑚2 ∈ 𝑉 are equivalent
(at time t) (denoted as 𝑚1 ≡ 𝑚2) if all of the following properties hold:

𝑁+(𝑚1) = 𝑁+(𝑚2) (5.1)
𝑁−(𝑚1) = 𝑁−(𝑚2) (5.2)

∀𝑒𝑚1,𝑛 ∈ Γ+(𝑚1), 𝑒𝑚2,𝑛 ∈ Γ+(𝑚2) ∶ 𝜔(𝑒𝑚1,𝑛) = 𝜔(𝑒𝑚2,𝑛) (5.3)
∀𝑒𝑛,𝑚1

∈ Γ−(𝑚1), 𝑒𝑛,𝑚2
∈ Γ−(𝑚2) ∶ 𝜔(𝑒𝑛,𝑚1

) = 𝜔(𝑒𝑛,𝑚2
) (5.4)

𝛿(𝑚1, 𝑡) = 𝛿(𝑚2, 𝑡) (5.5)
Due to properties 5.1–5.4, components𝑚1 and𝑚2 have the same n-degree neigh-

borhood for all possible 𝑛 values (immediate neighbors, neighbors of neighbors,
etc.).

78



5.2. Proposed Sensitivity Assessment Approach

Definition (Component equivalence with exception). Two components 𝑚1, 𝑚2 ∈
𝑉 are called equivalent with exception if at least one of the above equivalence
properties is violated. In this case, we explicitly mention the exception and denote
this as 𝑚1 ≡𝑒 𝑚2 (exception).

In what follows, we define three basic requirements that a centrality measure
Δ(𝑚, 𝑡) for component 𝑚 at time 𝑡, must satisfy to coherently measure the sensitivity
of smart building components.

1. For any two active components one of which, ceteris paribus, has higher initial
score, must score higher.
The aim of the first requirement is to ensure that the sensitivity score difference of
two components with identical topological features in the graph is determined by
their initial score. Formally, for all active components 𝑚1, 𝑚2:

𝑚1 ≡𝑒 𝑚2 (𝛿(𝑚1, 𝑡) > 𝛿(𝑚2, 𝑡)) ⇒ Δ(𝑚1, 𝑡) > Δ(𝑚2, 𝑡)

2. For any two active components one of which, ceteris paribus, sends information
to an active component with higher sensitivity score than its parallel, must score
higher.
The goal of the second requirement is to acknowledge that feedback plays an
important role in components dependency graphs. Unlike web centrality metrics,
where a node’s feedback contribution comes from other nodes that point to it [24],
components in our setting get their contribution from the components they send
information to. The rationale being that the receiving components depend on the
input provided to execute their functions. Formally, for all active components
𝑚1, 𝑚2:
𝑚1 ≡𝑒 𝑚2 (∃𝑛1 ∈ 𝑁+(𝑚1), 𝑛2 ∈ 𝑁+(𝑚2) ∶ 𝑁+(𝑚1) ⧵ {𝑛1} = 𝑁+(𝑚2) ⧵ {𝑛2} ∧

𝜔(𝑒𝑚1,𝑛1) = 𝜔(𝑒𝑚2,𝑛2) ∧ Δ(𝑛1, 𝑡) > Δ(𝑛2, 𝑡)) ⇒ Δ(𝑚1, 𝑡) > Δ(𝑚2, 𝑡)

3. For any two active components one of which, ceteris paribus, sends information
to an active component with stronger dependency than its parallel, must score
higher.
The purpose of the third requirement is to emphasize that the link strength regulates
the fraction of the sensitivity score to be transferred from the destination vertex to
the source vertex. Formally, for all active components 𝑚1, 𝑚2:
𝑚1 ≡𝑒 𝑚2 (∃!𝑛′ ∈ 𝑁+(𝑚1) = 𝑁+(𝑚2) ∶ 𝜔(𝑒𝑚1,𝑛′) > 𝜔(𝑒𝑚2,𝑛′)) ⇒

Δ(𝑚1, 𝑡) > Δ(𝑚2, 𝑡)
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5.2.5 BACRank

Taking into account the requirements stated before, we define a new graph centrality
measure called BACRank. The BACRank score of vertex 𝑚 at time 𝑡, is computed
as its initial score 𝛿(𝑚, 𝑡) plus a contribution from the vertices 𝑚 points to. From
those vertices, 𝑚 will get a percentage of their BACRank score determined by the
strength of the link, represented by 𝜔(𝑒𝑚,𝑛). This mechanism boosts the scores of
vertices that are highly important from a sensitivity standpoint. The algorithm is
defined as

BACRank(𝑚, 𝑡; 𝑖) =
{

𝛿(𝑚, 𝑡), at iteration 𝑖 = 0,
𝛿(𝑚, 𝑡) +

∑

𝑛∈𝑁+(𝑚) BACRank(𝑛, 𝑡; 𝑖 − 1) ⋅ 𝜔(𝑒𝑚,𝑛), for 𝑖 > 0.
The BACRank scores are computed iteratively. The algorithm is said to converge
if for all vertices their score difference in two consecutive iterations is less than a
small value 𝜀. An empirical convergence proof is provided in Section 5.4, as shown
in Figure 5.3. To keep BACRank scores bounded, all of them are normalized in
the range [0, 1] after every iteration.

In what follows, we formally proof the requirements from Sec. 5.2.4. For the
sake of brevity, in the proofs we refer to BACRank simply as BR.

Proof of requirement 1. Let 𝑚1, 𝑚2 be two active components such that:
𝑚1 ≡𝑒 𝑚2 (𝛿(𝑚1, 𝑡) > 𝛿(𝑚2, 𝑡)) (5.6)

Then the following holds for any iteration 𝑖 > 0:
BR(𝑚1, 𝑡; 𝑖) > 𝛿(𝑚2, 𝑡) +

∑

𝑛∈𝑁+(𝑚1)
BR(𝑛, 𝑡; 𝑖) ⋅ 𝜔(𝑒𝑚1,𝑛) (by (5.6))

= 𝛿(𝑚2, 𝑡) +
∑

𝑛∈𝑁+(𝑚2)
BR(𝑛, 𝑡; 𝑖) ⋅ 𝜔(𝑒𝑚1,𝑛) (by equiv. prop. (5.1))

= 𝛿(𝑚2, 𝑡) +
∑

𝑛∈𝑁+(𝑚2)
BR(𝑛, 𝑡; 𝑖) ⋅ 𝜔(𝑒𝑚2,𝑛) = BR(𝑚2, 𝑡; 𝑖)

(by equiv. prop. (5.3))

Proof of requirement 2. Let 𝑚1, 𝑚2 be two active components such that:

𝑚1 ≡𝑒 𝑚2 (∃𝑛1 ∈ 𝑁+(𝑚1), 𝑛2 ∈ 𝑁+(𝑚2) ∶ 𝑁+(𝑚1) ⧵ {𝑛1} = 𝑁+(𝑚2) ⧵ {𝑛2}∧
𝜔(𝑒𝑚1,𝑛1) = 𝜔(𝑒𝑚2,𝑛2) ∧ BR(𝑛1, 𝑡; 𝑖) > BR(𝑛2, 𝑡; 𝑖)) (5.7)
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Then the following holds for any iteration 𝑖 > 0:
BR(𝑚1, 𝑡; 𝑖) > 𝛿(𝑚1, 𝑡) +

∑

𝑛∈𝑁+(𝑚1)⧵{𝑛1}
BR(𝑛, 𝑡; 𝑖) ⋅ 𝜔(𝑒𝑚1,𝑛) + BR(𝑛2, 𝑡; 𝑖) ⋅ 𝜔(𝑒𝑚2,𝑛2)

(by (5.7))
= 𝛿(𝑚1, 𝑡) +

∑

𝑛∈𝑁+(𝑚2)
BR(𝑛, 𝑡; 𝑖) ⋅ 𝜔(𝑒𝑚2,𝑛)

(by (5.7) and equiv. prop. (5.3))
= 𝛿(𝑚2, 𝑡) +

∑

𝑛∈𝑁+(𝑚2)
BR(𝑛, 𝑡; 𝑖) ⋅ 𝜔(𝑒𝑚2,𝑛) = BR(𝑚2, 𝑡; 𝑖)

(by equiv. prop. (5.5))

Proof of requirement 3. Let 𝑚1, 𝑚2 be two active components such that:
𝑚1 ≡𝑒 𝑚2 (∃!𝑛′ ∈ 𝑁+(𝑚1) = 𝑁+(𝑚2) ∶ 𝜔(𝑒𝑚1,𝑛′) > 𝜔(𝑒𝑚2,𝑛′)) (5.8)

Then the following holds for any iteration 𝑖 > 0:
BR(𝑚1, 𝑡; 𝑖) > 𝛿(𝑚1, 𝑡) +

∑

𝑛∈𝑁+(𝑚1)⧵{𝑛′}
BR(𝑛, 𝑡; 𝑖) ⋅ 𝜔(𝑒𝑚1,𝑛) + BR(𝑛′, 𝑡; 𝑖) ⋅ 𝜔(𝑒𝑚2,𝑛′)

(by (5.8))
= 𝛿(𝑚1, 𝑡) +

∑

𝑛∈𝑁+(𝑚2)
BR(𝑛, 𝑡; 𝑖) ⋅ 𝜔(𝑒𝑚2,𝑛) (by equiv. prop. (5.1))

= 𝛿(𝑚2, 𝑡) +
∑

𝑛∈𝑁+(𝑚2)
BR(𝑛, 𝑡; 𝑖) ⋅ 𝜔(𝑒𝑚2,𝑛) = BR(𝑚2, 𝑡; 𝑖)

(by equiv. prop. (5.5))

5.3 Sensitivity Assessment Implementation

We implement the proposed approach as a set of Python scripts. We leverage
Python’s networkx library to manipulate the graph, i.e., computing BACRank,
normalizing the scores, creating visualizations, etc. The main function, in charge
of computing BACRank, is shown in code Listing 5.1. This function is called
as many times as needed until the desired convergence level 𝜖 is reached. In
our implementation, we define an 𝜖 < 10−6 to stop the components’ sensitivity
estimation at any given time 𝑡.

The components’ graph is stored in a Neo4j database [100]. Neo4j is a noSQL
database engine specialized in graph data structures. Specifically, we use Neo4j
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version 4.1.2. The Neo4j database is queried (read and updated) from our Python
scripts using the official driver.1 We use Neo4j to store each node’s BIA score
(based on their related business processes), calendars (of both, building services
and related business processes), and their final sensitivity score. Moreover, the
weight of the edges is also stored in the database.
def bac_rank(G):

# Variable to keep the max score among all the nodes
current_max = 0

# New BACRank iteration for each node
for s in G.nodes ():

# A node’s base score is its BIA
s_score = G.node[s][’BIA’]

# For each of its destination nodes , add their score * edge weight
for d in G[s]:

s_score += float(G.node[d][’score’] * G[s][d][’weight ’])

current_max = s_score if s_score > current_max else current_max
# Save the new score in temp variable
# Score updates happen in the next loop because current
# scores are computed based on the previous iteration scores
G.node[s][’tmp’] = s_score

# Scores normalization in range [0,1]
for s in G.nodes ():

G.node[s][’score ’] = G.node[s][’tmp’]
if current_max > 0:

G.node[s][’score ’] = float(G.node[s][’score ’] / current_max)

return G

Listing 5.1: Python code that computes the BACRank centrality metric on a smart building
components’ graph stored in Neo4j.

Our implementation uses software modules as components (nodes of our graph).
These software modules run in BACnet controllers and comprise multiple individual
data points (e.g., sensors, setpoints, and actuators). Our BACnet controllers are
manufactured by Priva, whose programming interface provides pictures of the
information flow relationships among software modules. This eases the extraction
of the graph under study. The information flow pictures, however, are not exportable
to other file formats and had to be manually added to the Neo4j database. A concrete
example of such pictures is shown in Figure 5.1, where each box represents a
software module and the arrows represent the direction of information flows.

1https://neo4j.com/docs/api/python-driver/current/.
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Figure 5.1: Priva programming interface screenshot. Centered on one particular software
module (Gezamelijke IO), it shows two other software modules that send information to it
(LBK6 and Brandmeldcentrale) and one software module that receives information from it
(EduCafe Hal).

Table 5.2: Business Processes (BPs) and their corresponding BIA scores.

No Business Process Score
1 Research 0,63
2 Application / admission 0,27
3 Accounting 0,60
4 Technical support 0,43
5 Courses and others (periodic) 0,73
6 Trainings and others (non-periodic) 0,70
7 Introduction week 0,60
8 Administrative support 0,47
9 Education advisory 0,53
10 Marketing & communication 0,43
11 Catering 1,00
12 Student associations 0,50

5.4 Evaluation of the Proposed Sensitivity Assessment

Environment Description. We executed our proposed approach on a 5-story
smart building at the University of Twente, hosting 375 employees in 252 rooms.
The local building manager provided assistance with the required expert-based
information. We identified 12 business processes that take place in this building,
some of them running only at specific periods of the year. The BIA revealed the
corresponding sensitivity scores as presented in Table 5.2.

The main services of the smart building are implemented using the BACnet
protocol [15]. The BACnet system controls the heating, ventilation, cooling, and
lighting services. Other building services, such as physical access control, are
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Figure 5.2: Real software modules dependency graph.

implemented using different protocols and tools we did not have access to. Here
we consider only the building services implemented using the BACnet system,
however, it is worth noting that our proposed approach is protocol-agnostic.

The assets considered in our evaluation are software modules. The BACnet
system is comprised of 160 software modules running in 5 multi-purpose controllers
(BACnet profile B-BC) and 28 application-specific controllers (BACnet profile B-
ASC). Figure 5.2 shows the software modules dependency graph where 22 vertices
are isolated and the remaining 138 are connected in the main subgraph. Vertex
colors indicate the device they run in. Red modules are part of the heating controller,
whereas blue modules are part of the cooling controller. The lighting system is
controlled by the yellow modules. Green modules run in a controller in charge
of multiple services throughout the building (ventilation, heating, and cooling).
Purple modules also implement multiple services but in one specific location of the
building. Finally, each gray module represents one application-specific controller
running exactly one software module (thermostats).
Results. We used a weekly time resolution in our evaluation, based on the activity
of the business processes and software modules analyzed. For this reason, a new
sensitivity estimation is computed every week of the year to take into account
business processes that start or stop execution. Additionally, it is important to take
into consideration only the software modules that implement services needed during
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each particular week (e.g., due seasonal climate conditions). The weekly sensitivity
estimation can be computed in advance given that the required information is
available. For each week, BACRank is executed a number of iterations until the
scores’ convergence is reached. After the tenth iteration, on average, the difference
between two consecutive scores (𝜖) is smaller than 0.0006. After 60 iterations
𝜖 = 0. To run our evaluation we defined an 𝜖 < 10−6, which is achieved after only
20 iterations. Figure 5.3 shows the quick convergence of BACRank on our real
software modules graph.

The weekly sensitivity estimation of software modules allows us to rank them
and analyze the rank changes along the time. Figure 5.4a illustrates the 52 rankings
obtained throughout the year, where each colored line represents a software module
(following the same color scheme used in Figure 5.2). The vertical axis represents
the ranking position where top ranked modules start at position 1. Modules with
identical scores in Figure 5.4a are arbitrarily assigned a slot next to their analogous.
Figure 5.4b on the other hand, shows the actual BACRank score for each module.
The impression of having fewer lines in Figure 5.4b than in Figure 5.4a is due to
multiple overlapping lines (i.e., modules with identical score).

BACRank successfully identifies software modules that are part of relevant
business processes, and are required by other relevant modules in the infrastructure.
Throughout the experiments, module “Multi-purpose Substation” (vertex A in
Figure 5.2) was considered the most sensitive because, among others, it supports
the most sensitive business process according to the BIA (𝐵𝑃11) and it provides
information required by 19 other important modules in 7 different devices. Vertex
A is depicted as an horizontal green line at the top of Figure 5.4a and Figure 5.4b.

At the bottom of the ranking there is a set of approximately 30 modules consist-
ently low ranked. Some of them, starting from the last one—“AirExtraction”—and
ascending with “Electricitymeter Experiments”, “CoolSection 1_Log”, “CoolSec-
tion 2_Log”, “CoolSection 3_Log”, and “CoolSection 4_Log”, are shown in Fig-
ure 5.2 as Z, Y, X, W, V, and U, respectively. In general, there are two main aspects
that justify the poor scoring performance of smart building components. First,
vertices whose out-degree is 0 are likely to be low ranked because an important
source of BACRank score comes from other vertices that depend on it. In this
case, the final BACRank score is derived exclusively from the initial score which
is, in turn, based on the related business processes sensitivity. Second, if there
are no related business processes, as in the case of safety oriented modules; or the
module’s participation in the business processes is marginal, then the module in
question will get a low BACRank score.

Time-independent software modules are typically ranked in similar positions
throughout the year. Figure 5.4a shows that lighting and thermostat modules (yel-
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Figure 5.3: BACRank Scores Convergence.

low and gray lines) are good examples of time-independent modules. Their minor
shifts up and down respond mostly to score changes in other modules rather than
their own scores.

Time-dependent modules, on the other hand, are visible in Figure 5.4a between
weeks 14 and 39 of the year. This represents roughly the period between April and
September, which is warmer than the range between October and March, taking
into account the geographical location of the building. Figure 5.4a shows that
most cooling modules increase their sensitivity score in this period whereas some
heating modules suffer a substantial decrease (blue vs. red lines). Heating modules
that remain similar or even increase their rank in the April–September period are
benefited from neighboring cooling modules that got their rank increased. For
example, heating modules “Radiatorgroup South” and “Radiatorgroup North” in
positions 15 and 16 in Weeks 1–13, climbed to positions 9 and 10 in Weeks 14–
39. These two modules are labeled as B and C in Figure 5.2, which shows their
proximity to cooling modules. Exactly 4 cooling modules—D, E, F, G—depend
on B and C.

Weeks 32–35 of the year (August) are part of the organization’s summer break
in which some of the business processes stop execution. Student related processes
(𝐵𝑃5 and 𝐵𝑃12) do not run in this period and, therefore, the related software mod-
ules lower their ranking positions. Module “AHU WestLectRoom”, for example,
decreases its rank from position 13 in week 31 to position 34 in week 32. The main
reason for its descend is its support to the halted 𝐵𝑃5. This module is labeled with
the letter H in Figure 5.2.

In weeks 40–51 all software modules rank in the same order they ranked at the
start of the year, due to identical conditions in terms of business processes running
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(a) Rank variation in time.

(b) Score variation in time.
Figure 5.4: Software modules impact variation in time. Plots only legible in color.
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and software modules needed. Week 40 marks the start of the winter period in
which cooling modules decrease their relevance in favor of heating modules as
shown in Figure 5.4a and Figure 5.4b.

Finally, in week 52 the organization is closed and no business processes are
running in this building. As explained before, Figure 5.4a will simply assign an
arbitrary order to equally ranked modules, whereas Figure 5.4b shows that all the
modules get a score of 0 which means that from a sensitivity viewpoint all modules
are “equally unimportant”.

5.5 Related Work

The prioritization of security weaknesses has been studied mostly in the IT domain.
The Common Vulnerability Scoring System (CVSS) is a de-facto standard spe-
cifically tailored for IT vulnerabilities, whereas the Common Weakness Scoring
System (CWSS) is similar to the CVSS but for IT security weaknesses [47, 95].
However, neither of them considers the intrinsic features of cyber-physical systems
(e.g., the impact of cyber-physical attacks), which makes them unsuitable for smart
buildings and other OT systems.

Still in the IT domain, other strategies have been proposed in literature to
prioritize software vulnerabilities. For instance, in [97] the authors propose a
prioritization method based on an estimation of the time that an attacker would
spend in the exploitation process. They do so taking into account, among other
aspects, the network topology of the targeted system, which allows to estimate
the attacker’s lateral movement time required to reach the vulnerable computer.
Another work considers social media discussions to estimate (1) if and when
a CVE will be exploited; and (2) its CVSS severity score and attributes [32].
Additionally, several proprietary products have developed their own methods to
prioritize vulnerabilities [109, 110, 129], possibly combining other approaches as
in [9].

On the other hand, the prioritization of security weaknesses in the OT domain
is still an understudied topic. One way to do so, is to estimate the potential effect
of exploited weaknesses, which has been mostly analyzed for ICSs [51, 26, 102].
These works are based on the observation of cause-and-effect relations between
data points representing sensors and actuators. The observations are taken from
simulated environments where changes are induced to log the corresponding effects.
Knowing the limits of the physical process (e.g., what is the threshold before the
power plant explodes?), data points with the higher potential to reach those limits are
prioritized. The only work that is focused on smart buildings prioritizes component
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categories rather than individual assets [141]. They automatically analyze work-
orders describing building’s routine and maintenance operations. Based on the
information recorded in the work-orders, such as location, problem description,
and priority, they rank equipment categories like “fans”, “valves”, “pumps”, and
others.

According to ISO and NIST risk-based activities and controls, we argue that the
prioritization of security weaknesses in smart buildings must be based on the risk
that they represent for the affected organization [21, 69, 127]. However, an accurate
estimation of risk requires the analysis of several other aspects [73]. One of such
aspects is the sensitivity of assets, which is the particular focus of this chapter.

STRIDE2 and DREAD3 have been used to identify and score CPS threats,
respectively [125, 145]. These approaches leverage data flow diagrams similar to
the graphs used in this chapter. However, it is worth recalling that a comprehensive
risk assessment involves the analysis of weaknesses/vulnerabilities, assets, and
threats [73]. Unlike STRIDE and DREAD, which focus on threats, the proposed
approach a aims at estimating one particular property of assets, namely, their
sensitivity.

5.6 Discussion

The prioritization of security weaknesses in smart buildings must be based on the
risk that each of them poses for the affected organization. To estimate the risk,
however, is not an easy task. Literature considers at least 29 factors that influence
the probability and impact of loss events, i.e., the main two components of risk.
As a consequence, an accurate estimation of all those factors might be costly yet
necessary for critical organizations. Our observation is that the information needed
to estimate one of the crucial factors might already be available and, therefore, can
be used as part of the overall risk estimation of security weaknesses. The risk factor
that we refer to is sensitivity.

The sensitivity of smart building components can be derived from the or-
ganization’s business impact analysis (BIA). The goal of the BIA is to score the
sensitivity of business processes for the organization and is not related to any tech-
nologies by itself. However, the fact that the technologies in place support—or
even enable—business processes, creates an indirect link between the BIA scores
and the corresponding technological assets. We leverage this link to set up the

2Mnemonic for Spoofing, Tampering, Repudiation, Information disclosure, Denial of service,
and Elevation of privilege.

3Mnemonic for Damage, Reproducibility, Exploitability, Affected users, and Discoverability.
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initial scores of smart building components.
The BIA is an expensive step in the implementation of a business continuity

management system (BCMS). It involves the identification of business processes,
the development of questionnaires, interviews with stake holders, and the post-
processing and analysis of the questionnaires’ answers. Although the BIA is very
likely available in critical and mature organizations, this might not be the case for
other organizations. Depending on the nature and resources of the organization
hosted in a smart building, it might be difficult to implement our proposed approach.

The sensitivity alone is insufficient to prioritize security weaknesses. Although
it is a crucial factor to estimate the potential impact of exploited weaknesses,
there are other aspects to consider. For example, the assets’ criticality (impact on
the organization’s productivity) and cost (intrinsic value in case a replacement is
needed) should also be taken into account [73]. Moreover, regarding the probability
of loss events, aspects such as contact (the probable frequency, within a given time
frame, that a threat agent will come into contact with an asset) and action (the
probability that a threat agent will act against an asset once contact occurs) are also
crucial [73]. The overall prioritization of security weaknesses must be based on
potential high-impact and high-probability loss events.

Besides the initial sensitivity score that is assigned to smart building assets,
we propose to adjust these values according to the technical implementation of
the system. There are 3 of these technical aspects where an expert judgment is
required, namely, the dependency strength between components, the support that
building services offer to business processes, and the duty cycle of building services
(i.e., building services activity throughout time). Although an ideal estimation
of risk is fully objective, the involvement of a domain expert is often needed,
which introduces subjectivity in the process. This is a common problem even in
well-known industry standards such as CVSS [75].

The automation of our sensitivity assessment can only be partially achieved.
The information gathering phase, that involves the BIA and the domain expert
assessments, is a manual process. However, thanks to our graph-based modeling
of smart building components, the adjustment of the initial scores is done through
an automatable graph centrality metric. Given that the business and technical
conditions do not change, the estimation of sensitivity can be fully automated
throughout time, as we showed by computing in advance the sensitivity of software
modules 52 times per year (i.e., on a weekly basis).

Although the sensitivity is just one component of the overall risk estimation
needed to prioritize security weaknesses, it might be, on its own, a good indicator
to perform other cybersecurity tasks. For instance, to schedule the appropriate
time to apply updates or patches on high demand systems. As we showed in our
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evaluation, the sensitivity of software modules changes throughout the time based
on the activity of business processes and the need of building services. Thus,
the updates of these modules can be planned ahead during the period when their
sensitivity is at a minimum.

5.7 Conclusion

In Chapter 3 and Chapter 4 we proposed two methods to identify security weak-
nesses in smart building applications and configurations, respectively. The identi-
fication of security weaknesses is crucial in any vulnerability management process
because all subsequent activities revolve around the weaknesses initially found. The
next step after the identification of security weaknesses is their prioritization. The
risk that security weaknesses pose for organizations is the recommended criteria
to prioritize them according to the consensus reflected in international standards
and best practices guides. In line with this view, the sensitivity is one of the main
factors to consider in the overall estimation of security risks.

In this chapter, we addressed Research Question 3: How to (semi-) automate
a sensitivity assessment for smart building components? To answer this question,
our proposed approach takes into account business and technical aspects from
diverse information sources. More concretely, our proposed method to measure
the sensitivity of smart building components considers their support to business
processes and neighboring components.

In summary, our proposed method is modeled as a graph centrality measure.
The reason behind this decision is that smart building components constitute a
dependency graph and that such dependencies might lead to chain reactions. Thus,
the components’ dependencies must be a core aspect to estimate their sensitivity.
To make explicit the role of such dependencies, we formally defined the general
requirements that a centrality measure must satisfy to compute scores that reflect
the components’ sensitivity. Finally, we developed one instance of such a cent-
rality measure, which we called BACRank and formally proved that it satisfies
the defined general requirements. We implemented our proposed approach and
performed an evaluation in a real smart building. In this setting, we found out the
sensitivity of smart building components throughout a year considering the time di-
mension in both, building services and business processes. The evaluation showed
that BACRank successfully prioritizes the most sensitive components (software
modules) for the organization.

The match between the criteria typically used in business impact analyses and
the criteria needed to estimate the assets’ sensitivity, allows us to reuse the business
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impact analysis (BIA) results as part of the prioritization of security weaknesses.
Moreover, modeling the final sensitivity estimation as a graph centrality measure
enables the automation of this task: a transversal goal of all the approaches proposed
in this thesis. The business and technical criteria behind the results produced by
our approach were ratified by the local smart building administrators.

Beyond the technical aspects, often emphasized in OT security research, we
realized that the business aspects play a major role in the assessment of components’
sensitivity. For this reason, in Chapter 6 we deepen our analysis on the sensitivity
assessment proposed in this chapter by creating a smart building testbed capable
of adopting the configuration of diverse business environments. We then use it to
estimate the sensitivity of the same infrastructure components from the viewpoint
of different organizations.
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Chapter 6

An Extended Multi-Context
Evaluation of BACRank

In Chapter 5 we introduced a method to estimate the sensitivity of smart building
components. The sensitivity is the harm that a loss event might cause in terms of,
e.g., legal/regulatory consequences, reputational damage, fines, and others [73].
Moreover, it is an important factor of the overall risk assessment needed to prioritize
weaknesses for remediation. In the method proposed in Chapter 5, we modeled the
smart building infrastructure as a graph data structure where the nodes represent the
components of interest that will be assessed, and the edges represent the functional
dependencies between them. To perform the assessment, first we set an initial
score to each component in the graph based on their support to sensitive business
processes, i.e., business processes prone to cause sensitivity-related consequences
if halted. Then, we refined such scores by means of a graph centrality measure that
we called BACRank, which considers the chain reactions that are triggered after
the availability or integrity of a component is compromised.

Our evaluation of BACRank in a real smart building led us to realize the
importance of the business context to prioritize weaknesses for later remediation.
Thus, the goal of this chapter is to explore BACRank’s sensitivity quantification
upon different contexts but on the same smart building infrastructure. Although it
is possible to apply BACRank on any real environment (e.g., hospitals, airports,
data centers, etc.), the smart building infrastructure is different for all of them, even
for those buildings of the same organization type. To analyze the sensitivity score
variations of a fixed infrastructure under diverse business contexts, we create a
testbed comprised of four basic building services common to several organization
types.
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Table 6.1: Required environmental conditions for diverse business process locations.

Business Process Business Process
Location

Illumination
(lux)

Ventilation
(CO2 ppm)

Temperature
(°C)

Surgeries Operating Room [500-600] ≤ 770 [20-24]
Teaching Lecture Hall [300-500] ≤ 1400 [20-27]
Server hosting Data Center [50-100] - [18-27]
Blood tests Laboratory [750-1200] ≤ 1400 [20-27]
Physical condi-
tioning

Fitness Gym [200-300] ≤ 880 [20-22]

The testbed described in this chapter implements ventilation, heating, cool-
ing, and illumination services 6.3. These services are extensively used in smart
buildings hosting diverse organizations. Each organization, however, has different
requirements for these building services. For instance, the illumination require-
ments in a hospital operating room are significantly different from the illumination
requirements in a data center. This is, precisely, the contrast that we aim to explore
through BACRank’s sensitivity assessment.

6.1 Preliminaries

Building services play an important role in organizations, supporting the execution
of their business processes [4]. However, the configuration of smart building ser-
vices is different depending on the supported business processes. Each business
process location has a set of desired or, in many cases, required environmental
conditions that it must comply with in order to fit its purpose. Ventilation, temper-
ature, illumination, among other conditions, are specified for different locations in
diverse documents such as standards, regulations, and best practices guides. Thus,
setpoints, thresholds, and control algorithms change depending on the particular
setting. Examples of regulated environmental conditions are shown in Table 6.1,
taken from [16, 17, 18, 19, 111, 118]. From the examples in Table 6.1, it is worth
noting that there are no ventilation requirements for data centers due to the rare
presence of people in such locations.

The recommended environmental conditions for different business process loc-
ations are stipulated in domain-specific or service-specific documents. Among the
domain-specific documents are ANSI/TIA-569-C-1 (“Revised Temperature and Hu-
midity Requirements for Telecommunications Spaces”) [19], ANSI/ASHRAE/ASHE
standard 170-2017 (“Ventilation of Health Care Facilities”) [17], and “Health/Fit-
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ness Facility Standards and Guidelines” by the American College of Sports Medi-
cine [118]. On the other hand, among the service-specific documents are “The
IESNA lighting handbook: reference & application” [111] and ANSI/ASHRAE
standard 62.1-2016 (“Ventilation for Acceptable Indoor Air Quality”) [16]. Table 6.1
shows just a few business processes and their recommended environmental condi-
tions. Our goal is simply to illustrate that business process locations are generally
linked to particular environmental conditions, rather than to provide an exhaustive
list.

6.2 Testbed for Sensitivity Assessment

Most security testbeds in the smart buildings domain focus on the demonstration
of defensive tools. Such demonstrations typically compare the set of attacks that
the tools can handle with the set of attacks that it cannot. These attack-based
demonstrations draw all the attention to the technicalities of the attack without any
business context in place. The smart building testbed described in this chapter adds
the context needed to perform a sensitivity assessment, alongside the technical
features commonly found in other testbeds.

There are two main goals for our tested:
1. To use the testbed’s infrastructure as a reference to estimate the sensitivity

of its components under different business contexts.
2. To execute attacks that clearly show the conditions in which organizations

are actually affected due to their intrinsic building service requirements.
Although the component’s sensitivity is independent of any attacks, it allows to

demonstrate their impact in a tangible way. In this section, we describe the develop-
ment process of our testbed, covering its requirements, design, and implementation.

6.2.1 Requirements

Scenarios. Our testbed must serve as a platform to assess the sensitivity of smart
building components in different business contexts. We define scenario as the
combination of a business process location (in previous sections regarded as the
context) and its supporting building services. Our observation, as can be derived
from Table 6.1, is that a subset of core building services can abstractly represent
different business process locations. Based on this observation, the requirement for
our testbed is to implement automated illumination, ventilation, and temperature
control, so it can reproduce the environmental conditions of diverse locations such
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Figure 6.1: Requirements of our testbed: (1) Reproducibility of diverse scenarios modeled
through building services; (2) Smart building infrastructure comprised of multiple com-
ponents; and (3) A measure of the components’ sensitivity on multiple scenarios.

as, but not limited to, those listed in Table 6.1. To emulate a particular context in
our testbed, a software tool is needed to reconfigure the testbed’s building services
according to the requirements of that context. Only one scenario at a time can be
configured in the testbed.
Smart Building Components. Our tested must be built using real smart building
infrastructure. This infrastructure will be comprised of diverse physical and abstract
components at different granularity levels (e.g., building services, software modules,
data points). Any of these component types can be used later on to estimate their
sensitivity (the first goal of our testbed). Also, a concrete implementation of a
smart building testbed would allow us to execute real attacks and link the estimated
sensitivity of the targeted component with the physical effects observed after the
attack (the second goal of our testbed).
Sensitivity Assessment. We use the method proposed in Chapter 5 to estimate the
sensitivity of smart building components in our testbed. This approach is based on
the BACRank centrality measure. Using this method, we would be able to compare
the sensitivity of the same smart building components under different contexts.

To summarize our requirements, Figure 6.1 shows the relation between com-
ponents, scenarios, and the sensitivity assessment, where 𝐼𝑖,𝑗 is the sensitivity
estimated for component 𝑖 under scenario 𝑗.

6.2.2 Design

Our testbed integrates illumination, ventilation, heating, and cooling as building
services. Figure 6.2 depicts these services as implementations of an abstract
BuildingService. Whereas each Scenario uses one or more BuildingService(s), a
BuildingService might not necessarily model a Scenario. This is how smart building
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Figure 6.2: UML diagram depicting the high level design of our testbed.

testbeds have been built in the past. It is only by configuring the environmental
conditions of a BusinessProcessLocation that the overall Scenario is embodied
in the testbed. From a design perspective, we do not limit the business process
locations that can be emulated in our testbed.

The control algorithms differ per building service. Whereas some services are
activated upon specific time conditions, others require feedback from the envir-
onment. The former is known as open control loop (see Alg. 1) and the latter as
closed control loop (see Alg. 2). In our testbed, the illumination service is handled
by an open control loop, whereas the ventilation and temperature control use closed
control loops.
Algorithm 1 Simplified open control loop.

while 𝑇 𝑟𝑢𝑒 do
if 𝑡𝑖𝑚𝑒_𝑓𝑜𝑟_𝑎𝑐𝑡𝑖𝑜𝑛 then

𝑡𝑎𝑘𝑒_𝑎𝑐𝑡𝑖𝑜𝑛()
else
𝑠𝑡𝑜𝑝_𝑎𝑐𝑡𝑖𝑜𝑛()

end if
end while

6.2.3 Implementation

Hardware. Smart buildings comprise diverse components in a 3-layered hierarch-
ical arrangement. At the bottom are sensors and actuators commonly referred to
as field devices. In the middle, embedded computers in charge of taking inputs
from sensors and sending output signals to actuators make up the control layer. On
top, there is a management layer which provides unified control and monitoring to
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Algorithm 2 Simplified closed control loop.
while 𝑇 𝑟𝑢𝑒 do

if 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑑_𝑣𝑎𝑟 > 𝑢𝑝𝑝𝑒𝑟_𝑙𝑖𝑚𝑖𝑡 then
𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒_𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑑_𝑣𝑎𝑟()

else if 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑑_𝑣𝑎𝑟 < 𝑙𝑜𝑤𝑒𝑟_𝑙𝑖𝑚𝑖𝑡 then
𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒_𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑑_𝑣𝑎𝑟()

end if
end while

smart building administrators.
In our testbed, we use the BACnet communication protocol at the control and

management layers [15]. Although at these layers we use software and hardware
commonly used in real smart buildings, at the field level we use smaller actuators
than those used in real buildings. This is due to our down-scaled version of building
rooms.

We built two physical modules that represent real building rooms. The first
module is a mechanical room that contains heating and cooling hardware that
emulates a building’s boiler and chiller, respectively. The second module is a
generic building room that requires heating and cooling services from the first
module. Moreover, it has a thermostat, illumination, and ventilation hardware. The
thermostat contains, among others, temperature and CO2 sensors (inputs) and relays
to interact with the actuators (outputs). Both modules are physically connected to
allow the heat/cold transfer. Figure 6.3 shows a picture of both physical modules.1

Since the illumination service must be adapted to different lighting requirements,
it is controlled by an analog output that regulates the light intensity. The analog
output provides a maximum of 20 mA at [0-12] VDC, which is too low to feed the
high power LEDs installed in the building room. A customized electronic circuit
was designed to dim the lights according to the driving analog output. The other
actuators are controlled using binary outputs linked to the relays in the thermostat
controller. Thus, avoiding the need for additional circuitry.

The cost of the testbed’s hardware can be divided in three parts. First, the
structural components, which includes the aluminum base, profiles, plexiglass,
and others, have an approximate cost of $700 USD. Second, the BACnet specific
hardware and software cost approximately $3.500 USD (see Table 6.2). Finally,
other components including power supplies, actuators, and relays have an approx-
imate cost of $500 USD. After considering outsourced services (e.g., plexiglass

1The 3D computer-aided designs, schematics of custom electronics, and bill of materials are
published in https://www.utwente.nl/en/eemcs/scs/downloads/2020_BACS_testbed/.
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Table 6.2: BACnet components used in our testbed.

Vendor Product BACnet Profile Approximate Cost
KMC BAC-5050 Router $1.000 USD
KMC FlexStat BAC-131136CEW B-ASC $1.000 USD
MBS BACeye version 2.1.0.15 B-OWS $500 USD
Janitza UMG 604-PRO B-SA $1.000 USD

Figure 6.3: Testbed modules. The building room (on the right) is physically connected to
the mechanical room (on the left) to allow air flow.

laser cutting), the overall cost of the physical components of the testbed is about
$5.000 USD. We consider this as reasonable costs for a small testbed and it should
allow other research groups to replicate our testbed.
Communication. As stated above, the chosen smart building communication
protocol is BACnet [15]. The underlying protocols include UDP, IP, ICMP, Ethernet,
and MS/TP. Moreover, there is a modem connection to the telephone network. A
network diagram of our testbed is shown in Figure 6.4.

The IP network implements a star topology. The core switch has been configured
with a mirroring port to collect all the network traffic exchanged in the system.
Software. The most important software applications used in our testbed are BACeye
2.1.0.15 and bacnet-stack 0.8.6 [74]. Using bacnet-stack we implement a Linux-
based operator work station (OWS 1 in Figure 6.4). It runs a custom application
developed to quickly reconfigure the testbed to meet the environmental requirements
of predefined business process locations. Additionally, BACeye runs on a Windows-
based OWS (OWS 2 in Figure 6.4).
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Figure 6.4: Network topology (including electrical signals to actuators).

The firmware version of the FlexStat controller is R2.1.0.18. The BAC-5050
router runs firmware build R1.8.0.1.

6.3 Testbed-based Evaluation of BACRank

As it was mentioned in Chapter 5, the granularity of the components whose sensit-
ivity will be assessed depends on the needs of the organization. To simplify our
discussion, in this chapter we use building services as high level components to be
assessed. This decision reduces the graph size to only three nodes: illumination,
ventilation, and temperature control; this last one includes the heating and cooling
services.

To achieve our goal of assessing the sensitivity of the same smart building
components under different scenarios, we pick three business process locations
from Table 6.1, namely the operating room, lecture hall, and data center. These
locations are chosen due to their distinctive building service requirements.

To achieve our goal of showing the diverse conditions in which organizations are
actually affected by cyber attacks, we target the illumination (I), ventilation (V), and
temperature control (T) services implemented in our testbed. The attacks used in our
experiments are based on a technique called Unauthorized Command Message in
which “[a]dversaries may send unauthorized command messages to instruct control
systems devices to perform actions outside their expected functionality for process
control.”.2 More specifically, we perform a data manipulation attack leveraging
BACnet’s WriteProperty service [76]. This attack consists of a syntactically valid

2https://collaborate.mitre.org/attackics/index.php/Technique/T855
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BACnet message that changes a property in a BACnet object.
The sensitivity of smart building components can be estimated in advance by

understanding the requirements of business processes on building services. Build-
ing services that, if halted, affect business processes in terms of e.g., reputational
damage, legal consequences, and fines, are deemed of greater sensitivity that other
services. The sensitivity levels assigned to building services are technically-backed
choices made by domain experts. In what follows, we present a short description of
such technically-backed choices for each location assessed. A summary is presented
in Table 6.3.
Operating Room. The World Health Organization deems illumination as “one of
the major nonstructural elements in a hospital” [140]. While most people would
agree that all environmental conditions in operating rooms are important, the
severity and immediacy of an attack on the illumination service are key factors to
consider it as the highest priority service, above the ventilation and temperature
control, both considered of medium impact.
Lecture Hall. The concern for air quality is common in densely occupied indoor
spaces [16]. A high concentration of CO2 (e.g., ≥ 1400 ppm) might lead to illness
symptoms such as headaches and dizziness. Moreover, the ventilation is considered
a high priority service in lecture halls because it has been shown that improving
the air quality increases the students performance [42]. Although illumination and
temperature are also relevant, they have been scored as medium impact services.
Data Center. Data centers are extremely sensitive to temperature [18]. Whereas
low temperatures increase the chances of electrostatic discharges, high temperatures
might damage the servers’ hardware, or trigger safety mechanisms to automatically
power them off. For these reasons, temperature control is by far considered the most
sensitive building service in a data centers. Data centers do not have ventilation
requirements (see Table 6.1) mainly because servers do not produce CO2 in-situ.
Finally, the illumination service is primarily used to enable video surveillance. For
these reasons, the ventilation and illumination are deemed as low impact services.

6.3.1 Sensitivity Assessment of Smart Building Components using
BACRank

In this section we follow the methodology described in Chapter 5 to estimate the
sensitivity of smart building services. To do so, the building services must be
modeled as nodes in a graph data structure, i.e., illumination, ventilation, and tem-
perature control. The edges of the graph represent the information flows according
to the specific smart building implementation. In our testbed, the illumination and
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Table 6.3: Sensitivity level of building services on different contexts without consideration
of the technical implementation. The high sensitivity services per location are highlighted
in bold font.

Attack Operating Room Lecture Hall Data Center
Illumination High Medium Low
Ventilation Medium High Low
Temperature Medium Medium High

TI V

100%

Figure 6.5: Graph used to compute the sensitivity of the illumination (I), ventilation (V),
and temperature control (T).

ventilation services do not have external dependencies. The temperature control
service, on the other hand, depends on the ventilation service to make the heat/cold
transfer from the mechanical room to the building room. From an implementation
point of view, the strength of such dependency is 100%. A graphical representation
of the graph is shown in Figure. 6.5.

According to the method proposed in Chapter 5, the initial score given to each
node (denoted as 𝛿) at time 𝑡 is defined as:

𝛿(𝑚, 𝑡) =

{

max1≤𝑖≤𝑛(𝛽(𝑝𝑖) ⋅ 𝛾(𝑠𝑗 , 𝑝𝑖)) if time(𝑝𝑖, 𝑡) = time(𝑚, 𝑡) = 1,
0 otherwise,

where function 𝛽 returns the business impact analysis (BIA) score of business
process 𝑝𝑖, out of 𝑛 business processes in the organization. Moreover, function
𝛾 encodes the support of building service 𝑠𝑗 (of which 𝑚 is part) onto business
process 𝑝𝑖. Finally, 𝑡𝑖𝑚𝑒 is a binary function that is overloaded to take as input a
business process or a smart building component. 𝑡𝑖𝑚𝑒(𝑝𝑖, 𝑡) = 1means that business
process 𝑝𝑖 is runs at time 𝑡, and 𝑡𝑖𝑚𝑒(𝑝𝑖, 𝑡) = 0 means that business process 𝑝𝑖 does
not run at time 𝑡. Similarly, 𝑡𝑖𝑚𝑒(𝑚, 𝑡) = 1 means that component 𝑚 is needed at
time 𝑡, and 𝑡𝑖𝑚𝑒(𝑚, 𝑡) = 0 means that component 𝑚 is not needed at time 𝑡.

Three components of the 𝛿 function are simplified in this evaluation with respect
to the evaluation in Chapter 5:
Assets. In this chapter we use building services as coarse grained components to
assess. This decision simplifies our discussion while preserving all the properties
of the original method.
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Business processes. Since we consider only one business process per organization
(i.e., hospital→operating room, hosting company→data center, and university→lecture
hall), subscripts are not needed for business processes. Furthermore, since the
BIA scores of different organizations are not comparable, we assume each business
process to have identical values for 𝛽, i.e., 𝛽(𝑝) = 1.
Time. We assume that all building services and business processes are needed/act-
ive at the time of the assessment.
These changes lead to a simplified version of the original function:

𝛿(𝑠𝑗) = 𝛾(𝑠𝑗 , 𝑝).

Thus, it is clear that the initial score of each building service 𝑠𝑗 is determined by
its support to business process 𝑝. Table 6.4 specifies the initial scores of the building
services implemented in our testbed. Moreover, it contains the final sensitivity
score of each service.
Table 6.4: Initial and final sensitivity scores of the implemented building services. The
high sensitivity services from Table 6.3 are also highlighted here in bold font.

Location 𝛿(𝐼) 𝛿(𝑉 ) 𝛿(𝑇 ) BACRank(I) BACRank(V) BACRank(T)
Operating Room 1.0 0.5 0.5 1.0 1.0 0.5
Lecture Hall 0.5 1.0 0.5 0.3 1.0 0.3
Data Center 0.1 0.1 1.0 0.1 1.0 1.0

The BACRank-based sensitivity score is normalized in the range [0-1] per organ-
ization. By comparing the sensitivity scores from Table 6.4 with the expert-based
assessments from Table 6.3, it is possible to observe a match in the most sensitive
building services. That is not the case for other services previously considered of
medium or low sensitivity. This is because in addition to business aspects, BACRank
considers technical aspects omitted in the first assessment. The BACRank-based
sensitivity assessment tends to increase the ventilation service score because other
building service (i.e., temperature control) as a strong dependency on it.

6.3.2 Attacks on Smart Building Components

We configured our testbed according to the chosen scenarios to launch three attacks
in each of them: turning the illumination off, stopping the ventilation service,
and stopping the temperature control service. All attacks are executed against the
thermostat FlexStat BAC-131136CEW (BACnet Application-Specific Controller).
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Figure 6.6: Illumination attack on different scenarios. The y-axis represents lux units
for all scenarios. Data points collected during the experiment are shown using the “+”
character. Dashed horizontal lines show the minimum and maximum required values.

The specifics of each attack are detailed in Table 6.5. These attacks do not exploit
vulnerabilities particular to this device but leverage on the prevalent unauthenticated
messages exchanged in the BACnet protocol.3
Table 6.5: Attack procedures against the building controller. Object types and instance
numbers provided to ease the analysis of the corresponding pcap files.

No. Attack BACnet Service Object Type Object
Instance

Written
Value

1 Illumination WriteProperty Analog Output 5 0
2 Ventilation WriteProperty Binary Output 1 0
3 Temperature WriteProperty Binary Output 2,1 0

Illumination. The ambient light in the room where the testbed is located is meas-
ured in the range of [46, 52] lux. All the illumination experiments start with sensor
readings in this range. After approximately 40 samples of ambient light, the illu-
mination service is turned on at the intensity needed to meet the requirements of
each specific scenario. Approximately 40 samples later the first attack is executed,
which causes the sensor to report the ambient light intensity again, confirming
thus the attack. Figure 6.6 shows the illumination samples collected during our
experiments for each scenario.
Ventilation. Unlike lecture halls and operating rooms, data centers do not have CO2
requirements (see Table 6.1). Since there are no consequences from the business
perspective, we did not execute a ventilation attack on the data center scenario.

3Network captures of each attack are published in pcap format at https://www.utwente.nl/
en/eemcs/scs/downloads/2020_BACS_testbed/.
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Figure 6.7: Ventilation attack on the lecture hall and operating room scenarios. The data
center scenario is excluded since it does not have specific CO2 requirements. The y-axis
represents CO2 ppm units for both scenarios. Data points collected during the experiment
are shown using the “+” character. The dashed horizontal line shows the maximum required
values.

During the experiments, the ambient CO2 level is in the range of [632, 674] ppm.
For both ventilation attacks we take approximately 10 sensor readings before
leaking CO2 inside the testbed’s building room. We use 16 gram cylinders of CO2
commonly found in bike shops to inflate tires. As expected, the CO2 values increase
but are quickly returned to normal by the ventilation service. Once the CO2 values
are below the threshold, the fan is automatically deactivated which causes the CO2
level to rise above the maximum limit again. The maximum limit violation triggers
the ventilation service a second time. At this point, the attack is executed (i.e., the
ventilation is turned off) which causes the CO2 level to keep increasing. Finally, the
CO2 source depletes its content which drops the sensor readings again. Figure 6.7
shows the CO2 level in our testbed during both experiments simulating the lecture
hall and operating room locations.
Temperature Control. Each experiment starts by recording the ambient temperat-
ure of the testbed’s building room. Afterwards, a source of heat is placed inside the
room. For these experiments, three anti-spill aluminum bottles filled with boiling
water are used as heat source.

As in the previous experiments, we first let the system react as it was designed
to work. Later on, the third attack is executed which turns off both the cooler,
physically located in the testbed’s mechanical room, and the fan, located in the
testbed’s building room. Both devices are controlled from the thermostat by binary
output object instances 2 and 1, respectively. Although the attack comprises two
components, the goal is to increase the temperature regardless of the CO2 level
measured by the ventilation service. Figure 6.8 shows the temperature plots of our
three experiments.
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Figure 6.8: Temperature attack on different scenarios. The y-axis represents degrees
Celsius for all scenarios. Data points collected during the experiment are shown using the
“+” character. Dashed horizontal lines show the minimum and maximum required values.

6.4 Related Work

Testbeds. The common objective of all OT security testbeds is to execute attacks
and to evaluate defenses. On top of that, different goals are set which yield different
testbed implementations. Not necessarily mutually exclusive, typical testbed goals
are demonstration, education, and impact assessment [77, 131]. Demonstration
testbeds are built to convince stakeholders of the applicability of both offensive
and defensive research findings [131]. Education testbeds are skill-development
platforms where students, researchers, and practitioners can learn hands-on [13,
78]. Finally, impact assessment testbeds use a variety of metrics to quantify the
consequences of cyber attacks [10, 87, 107].

Smart building testbeds in particular, have overlooked the relevance of sens-
itivity analyses to mostly focus on the demonstration of security solutions [2, 44,
103]. To show the strengths and weaknesses of these tools, they launch attacks
to exemplify success and failure cases. Although we acknowledge the illustrative
value of such testbeds, the lack of context makes it difficult to recognize the attacks’
potential impact in real-world scenarios and to realize the actual value of the pro-
posed defenses. Our testbed addresses this limitation by incorporating context as
part of its default operation.
Impact Metrics. Several Industrial Control System (ICS) testbeds have been built
to study the physical impact of cyber attacks. For instance, a water treatment testbed
is used in [133], where the impact is defined as the deviation in the pre-established
pH level of the water. In [10], a water distribution testbed is presented where the
impact of attacks is measured as the decrease in the supplied water with respect to
the normal capacity of the system. Yet another example are the smart-grid testbeds
presented in [87, 107], where the impact of attacks is measured in terms of voltage
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instability, generation loss, and load shedding increment. Similar metrics have also
been proposed for IoT-based smart buildings [40]. In this case, using the Samsung
SmartThings platform, the authors compute a physical impact metric proportional to
the distance between risky inter-app interactions and benign inter-app interactions.

Other kinds of impact have been analyzed as well. Packet delays have been
measured as the impact of communication outages [87], and even the perform-
ance decrease after introducing cybersecurity controls has been considered [25].
However, most impact metrics have not considered the sensitivity of organizational
assets as it was proposed in Chapter 5.

6.5 Conclusion

In this chapter, we have presented an extended evaluation of the sensitivity metric
proposed in Chapter 5, using a smart building testbed. The unique feature of our
testbed is its capability to emulate different scenarios by automatically configuring
the building services according to the requirements of specific business processes.
Using our testbed, we showed that the addition of context is required to properly
assess the sensitivity of smart building components. More than a requirement, such
context is a crucial aspect that can swing a component’s assessment from high
sensitivity (e.g., illumination in an operating room) to low sensitivity (e.g., the
same illumination attack in a data center).

There is no degree of sensitivity inherently attached to any building component;
it is always context dependent. Although, intuitively, it would have been possible
to assume that there is a baseline sensitivity score for smart building components,
and that the context only has a minor influence on such a score, our assessments
under different scenarios show otherwise.

The hardware of our testbed is essentially similar to the hardware used in
other testbeds. This allows us to perform realistic attacks against the testbed’s
infrastructure in the same way that previous works have done it, although with an
additional feature: the victim’s perspective. Beyond its usefulness to estimate the
sensitivity of smart building components, the perspective given by specific contexts
allows to fully illustrate the potential impact of cyber attacks.

Not all attacks yield a sensitivity impact. Only in those cases where the attacker
manages to manipulate the targeted physical variable out of the business-specific
limits, the organization is prone to suffer negative consequences. Attacks that do
not drift physical variables out of the required limits may even be tolerated in order
to keep the availability of building services. This may happen, e.g., when the smart
building defenses counteract the attack or the attack simply lacks the “force” to
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push the variable beyond these limits. The sensitivity impact materializes only
after the physical variable crosses its predefined limits, whatever the means.

This chapter concludes our contributions on the assessment of security weak-
nesses, thus, closing the scope of this work. The next chapter presents the main
conclusions of the overall thesis, including the main lessons of our research and
promising future work directions.
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Chapter 7

Concluding Remarks

We now present the main conclusions of this thesis. Moreover, we outline future
research directions that would complement our current work.

7.1 Summary of Contributions

With the raising popularity of smart buildings, there is an urgent need to improve
their current security posture. However, their increased connectivity has only
worsened the risk of cyber attacks against them, now possible even from remote
locations. This situation positions critical buildings such as hospitals, airports,
and data centers as attractive targets for cyber attackers. To solve this problem,
the adoption of IT security controls and processes to the smart buildings domain
has been tried with limited success [53]. Instead, smart buildings security has
developed its own body of knowledge by (1) adapting existing defensive methods
to the peculiarities of this domain; and (2) developing new defensive methods
specifically tailored for smart buildings. Among the peculiarities of smart building
systems are the use of specialized protocols and programming environments, their
physical interactions with the real world, and the heterogeneous components that
take part of the network.

Academic and industrial research on smart buildings security has focused
mostly on the detection of cyber attacks but little efforts have been made on their
prevention. An effective way to prevent cyber attacks is by preemptively handling
their vulnerabilities. Regardless of the specific domain, software vulnerabilities
are typically handled by means of a vulnerability management process: a 3-step
cyclic process that identifies, prioritizes, and remediates vulnerabilities. However,
existing methods to implement this process mostly apply to IT systems and are
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unfit for smart buildings. For instance, the identification of weaknesses using
vulnerability scanners is ineffective for customized smart building applications that
lack CVE records; IT prioritization approaches (e.g., CVSS) do not consider the
diverse consequences of cyber-physical attacks; and update servers to remediate
vulnerabilities are not available for heterogeneous components many of which only
support manual updates through physical connections. Therefore, new methods
were needed for smart buildings. The development and (semi-) automated imple-
mentation of these methods were the primary concern of this thesis. According
to RFC 4949, vulnerabilities are the subset of exploitable weaknesses in a sys-
tem [124]. Beyond just vulnerabilities, in this thesis we widened the reach of the
traditional vulnerability management process to also consider the weaknesses that
originate vulnerabilities. In particular, the scope of our work focuses on the first
two stages of the vulnerability management process, namely, the identification and
prioritization of security weaknesses.

In this context, the main research question addressed in our work was:

How to (semi-) automatically identify and assess security weaknesses in
smart building applications and their configuration?

We divided this general question into three specific subquestions, the first of
which focuses on the identification of security weaknesses:

Research Question 1. How to (semi-) automate the identification of weaknesses in
smart building applications?

Smart building applications are typically developed in-house to satisfy specific
building requirements [66]. Unfortunately, the security of smart buildings’ software
is rarely a priority [136]. On top of it, the application development process often
involves proprietary and menu-based programming environments. This poses
a serious challenge to create a generalizable application analysis method as it
would be done in the IT and even the Industrial Control System (ICS) domains.
We observed, however, that smart building applications are often built using a
programming pattern known as closed control loop (CCL), where sensors, setpoints,
actuators, and control functions interact in complex relationships. Leveraging these
relationships we created an abstract model of smart building applications as graph
data structures where the components and relationships are represented by nodes
and edges, respectively. In this way, the CCL graph exposes the application’s
architecture, which is the basis of our proposed approach to identify security
weaknesses.
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Inspired by well-known IT security weaknesses listed in Mitre’s Common
Weakness Enumeration (CWE), we aimed at identifying weaknesses related to
global variables (CWE-1108), multi-purpose variables (CWE-1109), circular
dependencies (CWE-1047), and others, just by analyzing the application’s graph.
To do so, we look for specific patterns in the graph such as node cycles and central
nodes. This approach allows us to encode weakness-related patterns as graph
queries based on graph-theoretic algorithms.

The automated creation of CCL graphs was a challenge on its own. This is
important because CCL graphs of real applications are typically comprised of
thousands of nodes and edges. To address this problem, we developed a novel
approach to automatically extract such graphs from smart buildings implemented
using the BACnet protocol.

Our proposed approach has advantages and disadvantages. Its main draw-
back is that some weaknesses can only be identified through detailed (insider-like)
knowledge of the system that is not available in our high level graph abstrac-
tions. For example, a potential division by zero (CWE-369) in the CCL control
function. On the other hand, leveraging generic CCL graphs allowed us to apply
our approach to diverse Cyber-Physical Systems (CPSs). Besides one real smart
building application, we analyzed two simulated ICS control applications. We
identified weakness-related patterns in all of them. Particularly, weaknesses related
to (1) global variables caused by sensors/setpoints that feed multiple CCLs; and
(2) multi-purpose variables caused by override controllers. Moreover, our evalu-
ations showed a correlation between the weaknesses automatically identified by
our approach and their potential to cause security breaches.

We deem our proposed approach as a simple and fast method to identify security
weaknesses. Similar approaches on the ICS domain require much more informa-
tion and manual work to achieve comparable results [80, 81]. From a defensive
viewpoint, this is an important contribution to incentivize the addition of cyber
security activities as part of the regular smart building management tasks. It is
worth noting, however, that from an offensive perspective the same approach could
be used to identify potential targets without an extensive reconnaissance of the
system. This challenges the long-standing claim that a thorough reconnaissance
phase is always required to execute successful CPS attacks.

The goal of the second subquestion is to identify security weaknesses in smart
building configurations:

Research Question 2. How to (semi-) automate the identification of weaknesses in
smart building configurations?
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Adversaries can leverage configuration weaknesses in smart buildings to launch
attacks or to conceal malicious behavior. Such weaknesses may occur in com-
ponents that take part of the management, automation, and field layers of smart
building systems; for instance, operator work stations (OWSs), building controllers,
and smart sensors. In particular, we look for configuration weaknesses that mani-
fest as invalid behavior of smart building components; specifically, their network
interactions with other components. The ground-truth of valid behavior is taken
from official documentation issued by the components’ manufacturers.

Our proposed approach compares the documented capabilities of smart building
components with their actual behavior as observed in the network traffic. Thus, our
approach can identify weakness such as expected behavior violation (CWE-440)
and inclusion of undocumented features or chicken bits (CWE-1242). To automate
this idea, the main challenge was to automatically interpret the components’ docu-
mentation, which is only available in PDF and without a standardized structure. To
solve this problem, we developed a novel information retrieval method to extract
the list of documented valid behavior for diverse smart building components. This
list is used to create component behavior rules that are loaded into a network mon-
itoring system (Zeek). We demonstrated our proposed approach in the context of
BACnet-based smart buildings. Nonetheless, it could be applied to other systems
based on similar protocols such as EtherNet/IP.

The main limitation of our approach is that it cannot extract valid behavior
rules of arbitrary components, but only those for which there are network traffic
traces showing their typical (yet not necessarily complete) behavior. However,
if these network traces are available, our method is capable of extracting valid
behavior rules with high precision and recall (above 99.5%). This leads to an
effective identification of weaknesses as we showed in our evaluation in a real smart
buildings network, where we found instances of both CWE-440 and CWE-1242. In
the analyzed system, we found components that request capabilities unavailable in
other components; thus, showing an expected behavior violation (CWE-440). All
instances of this kind of weaknesses were found on local smart building management
software. Regarding CWE-1242, we listed 128 instances of undocumented features
in components from some of the most important manufacturers worldwide.

Finally, the third research subquestion dealt with the assessment of smart
building components, which might be affected by application or configuration
weaknesses:

Research Question 3. How to (semi-) automate a sensitivity assessment for smart
building components?
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Security weaknesses can be found on any of the components that take part of a
smart building. The risk that such weaknesses represent for the organization hosted
in the smart building must be the guiding principle to triage them. However, there
are multiple factors that influence the estimated risk of a particular weakness. One
of the most important risk factors is the sensitivity of the affected assets, i.e., the
harm that a loss event might cause in terms of legal/regulatory consequences,
reputational damage, fines, and others. Nonetheless, other important aspects of
risk involve an assessment of weaknesses/vulnerabilities and an assessment of
the threats that might exploit them. Whereas methodologies such as STRIDE and
DREAD could be used to assess the threats, we believe that more research is needed
regarding the assessment of smart building weaknesses and vulnerabilities.

To estimate the sensitivity of smart building components, we take business
and technical aspects into consideration. On the business side, we consider the
different business processes that are part of the organization and their requirements
from the smart building, i.e., the building services needed to execute business
processes. Furthermore, we leverage a business impact analysis to identify the
sensitivity of business processes. Using this information, we can link the sensitivity
of business processes to their required building services. On the technical side, we
create a graph data structure where smart building components and their functional
dependencies are represented by nodes and edges, respectively. We proposed three
basic requirements that a graph centrality algorithm must satisfy to estimate the
sensitivity of the components in the graph. Finally, we developed a graph centrality
algorithm that complies with such requirements (BACRank). The proposed cent-
rality metric summarizes the sensitivity of smart building components in a numeric
score.

Despite our efforts to ease the sensitivity assessment of smart building com-
ponents through automated tools, most of the information required to execute the
proposed approach must be gathered manually. For instance, the business impact
analysis is typically based on personal interviews with the organization managers.
Nevertheless, a business impact analysis is usually already available in critical
organizations such as hospitals, airports, and others. For smaller organizations,
however, the difficulty to obtain some of the required information might impose a
serious limitation to implement the proposed approach.

We executed the proposed assessment of smart building components in a real
smart building. This evaluation showed that our approach successfully prioritizes
the most sensitive components for the organization, i.e., the components that support
the catering service: a business processes with strong contractual obligations
between the host organization (building owner) and the external companies that
offer the service. The business and technical aspects behind the results produced by
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our approach were ratified by the local smart building administrators. Furthermore,
we extended our evaluation of BACRank by developing a specialized testbed capable
of emulating diverse realistic environments.

Summarizing, this thesis presents concrete methods to identify and assess
security weaknesses in smart building applications. Along with the proposed
methods, we provide software prototypes that (semi-) automate them. The proposed
approach to assess security weaknesses is based on a comprehensive combination of
business-related and technical information. On the other hand, our two approaches
to identify security weaknesses map CWE entries to the smart buildings domain. In
May 2 022, Mitre independently established the CWE-CAPEC Industrial Control
System and Operational Technology Special Interest Group, whose work includes a
similar mapping of CWE weaknesses to the ICS/OT domain. Thus, our pioneering
contributions fit into a wider and current effort to improve the security of industrial
and OT systems, where smart buildings are part of.

7.2 Future Research Directions

Throughout our work, we identified interesting future research directions for the
identification, prioritization, and remediation of security weaknesses in smart
buildings. Here we list potential research ideas that would complement our current
work.

• Weakness identification: In Chapter 3, we discussed the analysis of smart
building applications created using a widespread programming pattern known
as closed control loop (CCL). There are, however, new trends in the develop-
ment of CPS applications. One of them is intelligent control, which leverages
artificial intelligence computing approaches like neural networks. As it has
been documented in other domains, neural networks are susceptible to ad-
versarial attacks that can dangerously alter their expected behavior. Thus,
the identification of security weaknesses in intelligent control-based systems
will require new analysis techniques for smart buildings and other CPSs. The
use of digital twins could be a promising direction to empirically explore the
security risks of complex and obscure control approaches like those based on
neural networks [12]. The use of AI-based approaches to identify weaknesses
in smart buildings might also be an interesting research direction given the
latest advances in this domain [123].

• Weakness prioritization: As discussed in Chapter 5, the prioritization of
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security weaknesses should be based on the risk that such weaknesses rep-
resent for the affected organization. However, the concept of risk comprises
several factors that must be estimated as accurately as possible to obtain a
truthful overall risk estimation. In this thesis, we explored the estimation of
one of these factors, namely, the sensitivity of smart building components.
Other risk factors that are worth exploring in the context of smart buildings
security are, for example, the probability of threat agents being in contact
with vulnerable/weak components and the probability of threat agents taking
action against them after the initial contact. We envision a honeypot-based
study to estimate the attackers’ contact and action probabilities against smart
buildings. Additionally, it would be interesting to analyze to what extent
the attackers’ action leverages known vulnerabilities (i.e., those with a CVE
record) or living-off-the-land utilities (e.g., valid read and write commands).

• Weakness remediation: After the identification and assessment of security
weaknesses, their remediation closes the cycle. There are multiple challenges
regarding the remediation of weaknesses, particularly on the automation layer,
where building controllers reside. One of such challenges is the application
of security patches, which often requires to stop the physical processes under
control. Thus, affecting the building services and users. We envision a patch
scheduling approach that aims to optimize different objectives such as (1) the
technical compatibility between updated and still outdated components; and
(2) the downtime of building services and their supported business processes.
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