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a b s t r a c t 

This paper introduces mathematical models that support dynamic fair balancing of COVID-19 patients 

over hospitals in a region and across regions. Patient flow is captured in an infinite server queueing 

network. The dynamic fair balancing model within a region is a load balancing model incorporating a 

forecast of the bed occupancy, while across regions, it is a stochastic program taking into account sce- 

narios of the future bed surpluses or shortages. Our dynamic fair balancing models yield decision rules 

for patient allocation to hospitals within the region and reallocation across regions based on safety levels 

and forecast bed surplus or bed shortage for each hospital or region. 

Input for the model is an accurate real-time forecast of the number of COVID-19 patients hospitalised in 

the ward and the Intensive Care Unit (ICU) of the hospitals based on the predicted inflow of patients, 

their Length of Stay and patient transfer probabilities among ward and ICU. The required data is obtained 

from the hospitals’ data warehouses and regional infection data as recorded in the Netherlands. 

The algorithm is evaluated in Dutch regions for allocation of COVID-19 patients to hospitals within the 

region and reallocation across regions using data from the second COVID-19 peak. 

© 2022 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Confronted with a pandemic or the outbreak of a severe and 

ighly contagious disease on a national level, governments and or- 

anisations must implement appropriate countermeasures [1] . Ac- 

urate estimation of disease prevalence is essential for monitor- 

ng and decision making [2] , as is optimal distribution of vac- 

ines [3,4] . Despite these effort s, hospit als may be overwhelmed 

y infected patients. These patients arrive in addition to hospi- 

als’ regular patients, increasing the strain on hospital staff and re- 

ources [5,6] . Alternative resources such as backup and field hos- 

itals or student nurses may offer additional capacity [7] . Despite 

uch measures, hospitals may have no other option than to tem- 

orarily decrease the number of regular patients treated [8,9] . A 

eduction in regular care has serious consequences, in particular 

or oncology patients and others whose condition may worsen ir- 

eversibly if treatment is postponed [10] , but also in other medical 

pecialties healthy life years are lost due to fewer treatments [9] . 
� Area - Production Management, Scheduling and Logistics This manuscript was 
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Hospitals may defer infected patients to other hospitals facing a 

ess severe surge in infected patients, either inside or outside their 

egion, to avoid exceeding their maximum capacity [11] . Next to 

eing unavoidable in certain cases, redistributing patients may also 

alance the staff work pressure across regions and may avoid po- 

entially unethical differences in the accessibility of regular care 

cross regions. Redistributing infected patients according to a fair 

alancing policy provides the opportunity to share and thus reduce 

he burden of the pandemic on regular patients as well as hospital 

taff. 

When the COVID-19 pandemic reached the Netherlands, the 

utch government erected a national coordination centre for pa- 

ient reallocation (in Dutch: ‘Landelijk Coördinatie-centrum Patiën- 

enspreiding’, LCPS) with exactly these aims [12] . To fulfil its 

ission, LCPS cooperates with the twelve ‘ROAZ’ regions of the 

ountry, where each ROAZ (in Dutch: ‘Regionaal Overleg Acute 

orgketen’) region has its own consultative body for the acute care 

hain [13] . When a hospital requests to reallocate one of its COVID- 

9 patients, other hospitals within the same region are considered 

rst, as an intra-regional reallocation is the least burdensome for 

he patient, his or her relatives, and the ambulance transportation 

ervice. If an intra-regional reallocation is not possible, the patient 

s reallocated to another region in the Netherlands, or to Germany 
nder the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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s a last resort. As outlined in Bekker et al. [14] , reallocation of

atients is based on separate forecasts of the COVID-19 bed occu- 

ancy at the ward and Intensive Care Unit at the regional level, 

ut neither a detailed model to fairly balance patients across re- 

ions taking into account these predictions, nor a model to fairly 

llocate patients to hospitals within a region taking into account 

ed occupancy predictions per hospital are included. 

To facilitate the reallocation process, hospitals are required to 

eport their bed surplus that is available for COVID-19 ward and 

CU patients daily at 10 AM. Physicians report the bed surplus by 

bserving the current situation and likely incorporating some form 

f safety margin. Bed surplus and bed shortage are influenced by 

everal factors. The surplus of COVID-19 ward beds, for example, 

ncreases due to discharges and transfers to the ICU, while it de- 

reases by transfers from the ICU, possible reallocations from other 

ospitals and new admissions, where the latter depends on the 

umber of COVID-19 infections in the region some days ago. It is 

nfeasible for a physician to gauge and incorporate the combined 

ffect of all these factors when reporting the bed surplus. Conse- 

uently, the number of patient reallocations will likely be higher 

han necessary. For example, a hospital may report ICU bed sur- 

lus today and thus receive a COVID-19 ICU patient from another 

ospital, while that results in ICU bed shortage two days from now, 

ecessitating to reallocate a COVID-19 ward patient that needs ICU 

are. 

This paper presents mathematical models and resulting deci- 

ion rules that support fair balancing of COVID-19 patients over 

ospitals in a region and across regions. In these models, the flow 

f COVID-19 patients is captured in a network of infinite server 

ueues. The first model, at the regional level, is a load balancing 

odel that supports dynamic fair balancing of COVID-19 patients 

ver hospitals in a region. The second model, at the inter-regional 

evel, is a stochastic program that minimises the costs of patient 

eallocations across regions. Input for the models is the inflow of 

atients, their Length of Stay (LoS) in the ward and ICU and trans- 

er of patients between these units. To this end, our method is aug- 

ented by accurate statistical methods to predict patient arrivals, 

stimate LoS and transfer probabilities, and forecast the number of 

OVID-19 patients hospitalised in the ward and ICU of a hospital. 

ur results are cast in real-time decision rules for patient alloca- 

ion to hospitals in a region or reallocation across regions based 

n safety levels that determine the bed surplus or bed shortage 

or each hospital or region during the next couple of days. 

.1. Literature 

Dynamic load balancing Our fair balancing of COVID-19 patients 

ver hospitals within a region falls in the class of load balanc- 

ng methods that are well-known in communication systems, see, 

.g., Ross [15] , Zachary and Ziedins [16] , van der Boor et al. [17] for

n introduction to basic load balancing scenarios, that states: “Load 

alancing can be broadly categorised as static, dynamic, or some 

ntermediate blend, depending on the amount of state informa- 

ion that is taken into account”. Below, in line with our approach, 

e focus on dynamic load balancing. Dynamic load balancing algo- 

ithms aim at improving the system throughput and reducing the 

ob response time by relocating application tasks among the nodes 

sing information on the instantaneous system load to decide 

ow to relocate the jobs [18] . Sender-initiated strategies (congested 

odes push work to lightly loaded nodes) outperform receiver- 

nitiated strategies (lightly loaded nodes pull work from highly 

oaded nodes) at light to moderate system loads, whereas receiver- 

nitiated strategies are preferable at high system loads [18,19] . Ob- 

erve that dynamic load balancing may be hindered by incomplete 

tate information [20,21] . Exact performance analysis of dynamic 
2

oad balancing policies is argued to be difficult due to multidimen- 

ional state spaces, see [22,23] . 

Dynamic load balancing algorithms are developed for sys- 

ems with stationary arrival and service rates, including web 

ervers [24–26] and large (virtual) call centres [27,28] . Typically, 

hese methods involve large Erlang loss systems and servers with 

ultiple skills as in call centres, involve a queue as in web 

ervers, or introduce replicas of jobs that are sent to join the 

ueue at different servers and upon completion of service of the 

rst replica delete all other replicas. Typical ingredients for load 

alancing approaches are setting and adjusting routing probabil- 

ties [29] or routing policies [22,30,31] and job migration algo- 

ithms [32] . The Join-the-Shortest-Queue (JSQ) policy is a cen- 

ralised dynamic load balancing algorithm, where a dispatcher 

ust immediately forward tasks upon arrival to one of the servers. 

mplementation of JSQ policies becomes difficult when the number 

f stations becomes large, in which case asymptotic methods may 

e used [17,20,21,33] . 

Our dynamic load balancing method is developed for systems 

nder high load that do not allow for queueing, in which case a 

eceiver-initiated strategy is preferable, which is implemented via 

 centralised approach to allocate patients to hospitals. We assume 

omplete state information and use simulation to assess perfor- 

ance measures. Our fair balancing method across regions is a 

tochastic program taking into account forecasts of the future bed 

urplus or shortage. It is related to mixed integer recourse mod- 

ls [34, Chapter 3] . Typically, solving such models requires sce- 

arios or pre-specified input processes and does not include dy- 

amical statistical methods for real-time forecasts of occupancy 

nd safety levels which is included in our approach. We further 

how that our stochastic program may be well approximated by a 

ixed integer program (MIP) that facilitates a direct relation with 

he way hospitals report bed shortages/surpluses. 

Forecast and queueing model Our fair balancing method re- 

uires accurate forecasts of the patient arrival rates. Several stud- 

es have developed prediction models for the number of hospi- 

alised COVID-19 patients. Focusing solely on predicting ICU oc- 

upancy, Farcomeni et al. [35] , Goic et al. [36] , Manca et al. [37] ,

assonnaud et al. [38] develop prediction models at the regional 

evel, while [39] provides predictions for individual hospitals. Other 

tudies predict both COVID-19 ward and ICU occupancy [14,40–43] . 

he prediction in Roimi et al. [42] , Zhao et al. [43] is based on

egression analysis or epidemic models. Queueing models for pre- 

icting ward and ICU occupancy in the Netherlands at the regional 

nd national level are developed in Bekker et al. [14] ; their mod- 

ls do not incorporate patient transfers from ward to ICU and vice 

ersa. Transfer probabilities between COVID-19 ward and ICU are 

erived based on a Markov chain analysis in Foucrier et al. [41] . 

n a previous paper, Baas et al. [40] , we have developed forecasts 

f COVID-19 ward and ICU occupancy at the individual hospital 

evel, incorporating patient transfers between the ward and ICU. 

hat method uses a Richards’ curve [44] to predict the arrival rates 

f COVID-19 patients, a Kaplan–Meier estimator [45] to estimate 

he distribution of the LoS in both the COVID-19 ward and ICU, 

nd we sample patient trajectories in the Poisson Arrival Location 

odel [46] that determines the queue occupancy in a network of 

nfinite server queues representing the COVID-19 ward and ICU. In 

his paper, we build on our previous work by significantly improv- 

ng the forecasts of ward and ICU occupancy and by using these 

orecasts as a basis for decision rules that facilitate fair balancing 

f COVID-19 patients over hospitals. 

.2. Contribution 

Our contribution in this paper is threefold. First, we develop 

 load balancing method that incorporates bed occupancy fore- 
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asts to fairly balance COVID-19 patients over hospitals in a region. 

hese results extend load balancing results in literature to incor- 

orate forecast occupancy and safety levels. Second, we propose a 

tochastic program taking into account scenarios of the future bed 

urpluses or shortages to optimally distribute COVID-19 patients 

hat cannot be accommodated within a region over multiple re- 

ions taking into account travelling distances and other differences 

etween regions; the currently available COVID-19 bed-capacity in 

ach region; as well as scenarios of the maximum bed-occupancy 

ver several days. Third, as our models require accurate forecasts 

f the COVID-19 patient arrival rate, we extend the results of Baas 

t al. [40] on the prediction of the arrival rate in the network of 

nfinite server queues that we use in the bed occupancy forecasts. 

riginally, in Baas et al. [40] , a Richards’ curve was fit to data from

he hospitals’ data warehouse to predict the COVID-19 patient ar- 

ival rate, while in this paper we develop a time-delaying and fil- 

ration procedure applied to the exponentially weighted moving 

verage of regional infection data, which results in more accurate 

ed occupancy forecasts. 

Section 2 presents our hierarchical modelling and decision 

pproach. We propose decision rules for individual hospitals in 

ection 2.1 , within a region in Section 2.2 , and across regions in

ection 2.3 . Our load balancing procedure is based on arrival rate 

caling, see Appendix A . Appendix D summarises notation used in 

hese models. Section 3 presents our prediction of COVID-19 pa- 

ient arrival rates from regional infection data and considers the 

ccuracy of our bed occupancy forecasts. Section 4 presents nu- 

erical results and illustrates the performance of our models and 

ecision rules: Section 4.1 presents the inter-regional patient allo- 

ation results and Section 4.2 considers reallocating patients across 

egions. Section 5 concludes the paper. 

. Model and decision rules 

This section presents our hierarchical modelling and decision 

pproach. Section 2.1 briefly reviews the essential elements of our 

odel for forecasts of the occupancy in the ward and ICU at an in-

ividual hospital [40] , and introduces a decision rule to determine 

vailable capacity for patients from other hospitals. Section 2.2 in- 

roduces a load-balancing rule for allocation of patients to hos- 

itals in a region and a decision rule when combining hospitals 

nto one regional hospital exploiting the statistical multiplexing 

ain [15] . Section 2.3 introduces a recourse model to optimally 

istribute COVID-19 patients that cannot be accommodated within 

 region over multiple regions taking into account travelling dis- 

ances, the currently available COVID-19 bed-capacity in each re- 

ion, as well as the forecast maximum bed-occupancy over several 

ays. 

.1. Bed surplus or shortage for an individual hospital 

Consider a hospital with dedicated COVID-19 ward and ICU, in- 

exed by h , that admits a fraction of COVID-19 patients from its 

ervice region as determined by the regional number of infected 

atients (autonomous arrivals). Following [40] , we model the hos- 

ital as a network of two infinite server queues that records the 

umber of hospitalised COVID-19 patients. The network includes 

atient-characteristics c ∈ C (e.g., age, gender, weight) that may af- 

ect the hospitalisation rate and the patient journey in the hos- 

ital, a time-dependent Poisson arrival process with rate λhc (t) , 

ith fraction p hc (t) admitted to the ward, fraction 1 − p hc (t) to the

CU, general and time-dependent LoS L hcW 

(t) and L hcI (t) at ward 

nd ICU, and discharge probabilities q hcW 

(t) , resp. q hcI (t) . The as-

umption of Poisson arrivals was shown to be justified for arrivals 

o Emergency Departments [47] . The number of patients N hcW 

(t) 

nd N (t) with characteristics c at time t have a time-dependent 
hcI 

3 
oisson distribution with means ρhcW 

(t) , ρhcI (t) that are deter- 

ined via the Poisson Arrival Location Model (PALM), see [46, The- 

rem 2.1] . The total number of patients in the ward, N hW 

(t) , and

CU, N hI (t) , have time-dependent Poisson distributions with means 

hW 

(t) = 

∑ 

c∈ C ρhcW 

(t) , and ρhI (t) = 

∑ 

c∈ C ρhcI (t) , see [40] . 

The Poisson distributions for N hW 

(t) and N hI (t) allow us to ex- 

licitly evaluate relevant performance measures. Let L h (s ) be tu- 

les of the location and realised LoSs (up to time s ) of all patients

esiding in hospital h . The expected occupancy at time s + t is: 

 [ N hW 

(s + t) | L h (s ) = � h ] , E [ N hI (s + t) | L h (s ) = � h ] . (1)

he expected maximum occupancy in [ s, s + t] is: 

 

[
max 

u ∈ [ s,s + t] 
N hW 

(u ) | L h (s ) = � h 

]
, E 

[
max 

u ∈ [ s,s + t] 
N hI (u ) | L h (s ) = � h 

]
. 

(2) 

he αhW 

-quantile, n hW,αhW 

(s, t) , and the αhI -quantile, n hI,αhI 
(s, t) , 

or respectively the maximum occupancy in the ward and ICU at 

ospital h in [ s, s + t] , 

 hW,αhW 
(s, t) = min 

{
n : P 

[
max 

u ∈ [ s,s + t] 
N hW 

(u ) ≤ n 

∣∣∣ L h (s ) = � h 

]
≥ αhW 

}
, 

n hI,αhI 
(s, t) = min 

{
n : P 

[
max 

u ∈ [ s,s + t] 
N hI (u ) ≤ n 

∣∣∣ L h (s ) = � h 

]
≥ αhI 

}
, 

(3) 

etermine the required capacity n hW,αhW 

(s, t) , n hI,αhI 
(s, t) in the 

ard and ICU to accommodate all autonomous arrivals in [ s, s + 

] with probability at least αhW 

, αhI , respectively. We will refer 

o αhW 

, αhI as the safety levels . 

Let n ∗
hI 
(s, t) be the number of beds in the ICU of hospital h in

he time-interval [ s, s + t ] . If n hI,αhI 
(s, t ) < n ∗

hI 
(s, t) we may argue

hat at safety level αhI a number of beds ˜ n hI,αhI 
(s, t) = n ∗

hI 
(s, t) −

 hI,αhI 
(s, t) may be considered unoccupied in [ s, s + t] . This bed sur-

lus may then be allocated to COVID-19 patients from other hos- 

itals. If n hI,αhI 
(s, t) ≥ n ∗

hI 
(s, t) , hospital h may be confronted with

ed shortage (at safety level αhI ), and will not offer any beds to 

CU patients from other hospitals. A similar reasoning applies to 

he ward. Note that we do not assume a fixed number of beds, 

ut include dependence on s, t in the number n ∗
hW 

(s, t) , n ∗
hI 
(s, t) of

eds in [ s, s + t] . This allows the number of beds to be scaled up

r down over time. We arrive at the following decision rule to de- 

ermine the bed surplus. We introduce the following notation. Let 

 x ] + = max { 0 , x } , [ x ] − = max { 0 , −x } , for all x ∈ R . 

ecision Rule 1 (Individual hospital) . Consider hospital h , with 

 

∗
hW 

(s, t) , n ∗
hI 
(s, t) beds in the ward resp. ICU in [ s, s + t] . Consider

afety levels αhW 

, αhI . Let n hW,αhW 

(s, t) , n hI,αhI 
(s, t) be the αhW 

-,

hI -quantiles for the maximum occupancy at hospital h , (see (3) ). 

t safety levels αhW 

, αhI , hospital h has bed surplus of 

˜ 
 hW,αhW 

(s, t) = 

[
n 

∗
hW 

(s, t) − n hW,αhW 
(s, t) 

]+ 
, 

˜ n hI,αhI 
(s, t) = 

[
n 

∗
hI (s, t) − n hI,αhI 

(s, t) 
]+ 

, (4) 

vailable beds for COVID-19 patients from other hospitals in [ s, s + 

] . 

emark 1 (Bed surplus; safety levels) . Observe that the bed surplus 

˜  hW,αhW 

(s, t) , ˜ n hI,αhI 
(s, t) takes autonomous patient arrivals, trans- 

ers between ward and ICU and patient discharges for hospital h in 

 s, s + t] into account. Admitting a patient from another hospital to a

ed in the ward then assumes that this additional patient will not be 

ransferred to the ICU between time s and s + t , which may be reason-

ble if t is small. Including this possible transfer requires that an ad- 

itional bed is available in the ICU too, i.e., that also ˜ n hI,α (s, t) ≥ 1 . 

hI 
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The bed surplus is determined at safety levels αhW 

, αhI . These lev- 

ls may include the hospital’s policy for bed allocation, treatment pro- 

ocols, or case mix, but may also incorporate the size of the hospital. 

s an extreme case, we may set αhW 

= 0 to indicate that we only

ocus on overcrowding of the ICU at hospital h . 

.2. Patient reallocation within an individual region 

This section extends the decision rule for an individual hospi- 

al to a decision rule for an individual region to allocate COVID-19 

atients among the hospitals in that region during a time inter- 

al [ s, s + t] . Consider a region, indexed by r, containing H r hos-

itals, indexed h = 1 , . . . , H r , where each hospital is modelled as

escribed in Section 2.1 . We will first determine the autonomous 

rrival rate for each hospital as fraction of the regional patients in 

ection 2.2.1 . Then, in Section 2.2.2 , we determine for each hospi- 

al the bed surplus according to Decision Rule 1 and subsequently 

resent a load-balancing Decision Rule 2 based on the bed surplus 

or the region. In Section 2.2.3 , we assume that hospitals disclose 

ll information on the number of beds and hospitalised COVID- 

9 patients, which allows viewing the COVID-19 wards and ICUs 

n a region as single merged ward and ICU. This may be viewed to 

orrespond to a regional coordination centre that optimally assigns 

atients to hospitals, resulting in a lower bound on the number of 

atients reallocated out of a region. 

.2.1. Autonomous arrival rates 

Let �rc (u ) denote the time-dependent rate at which COVID- 

9 patients with characteristics c ∈ C request to be hospitalised in 

egion r, and let �r (u ) = 

∑ 

c∈ C �cr (u ) be the total arrival rate of

OVID-19 patients in region r. Consider hospital h , with n ∗
hW 

(s, t) ,

 

∗
hI 
(s, t) beds in the ward and ICU in [ s, s + t] . At safety levels αhW 

,

hI , hospital h may admit a fraction θh,αhW 

,αhI 
(s, t) of these regional 

atients in the ward and ICU such that the ward can accommodate 

ll autonomous arrivals with rate θh,αhW 

,αhI 
(s, t)�r (u ) in [ s, s + t]

ith probability at least αhW 

, and similarly for the ICU. Let P θ,h 

enote the distribution of the number of patients for hospital h 

n [ s, s + t] given arrival rates λhc (u ) = θ�rc (u ) , u ∈ [ s, s + t] , c ∈ C.

hen θh,αhW 

,αhI 
(s, t) may be determined as 

h,αhW ,αhI 
(s, t) = max 

{
θ : P θ,h 

[
max 

u ∈ [ s,s + t] 
N hW (u ) ≤ n ∗hW (s, t) 

∣∣∣ L h (s ) = � h 

]
≥ αhW , 

P θ,h 

[
max 

u ∈ [ s,s + t] 
N hI (u ) ≤ n ∗hI (s, t) 

∣∣∣ L h (s ) = � h 

]
≥ αhI 

}
. 

(5) 

Let θr,αr (s, t) = 

∑ H r 
h =1 

θh,αhW 

,αhI 
(s, t) , with αr = { αhW 

, αhI : h =
 , . . . , H r } be the set containing all safety levels of region r. 

If θr,αr (s, t) < 1 , region r has insufficient capacity to accommo- 

ate all arrivals during [ s, s + t] at safety levels αr . Hospital h ad-

its the fraction θh,αhW 

,αhI 
(s, t) of autonomous regional patients 

rriving in [ s, s + t] corresponding to its safety levels αhW 

, αhI .

hus, the autonomous arrival rate of patients with characteristics c

or hospital h is 

hc (u ) = θh,αhW ,αhI 
(s, t)�rc (u ) , h = 1 , . . . , H r . (6)

t safety levels αr , the remaining fraction of patients arriving at 

ate [ 1 − θr,αr (s, t) ] �r (u ) must be accommodated in hospitals out- 

ide region r. 

If θr,αr (s, t) ≥ 1 , region r has sufficient capacity to accommo- 

ate all autonomous arrivals. A fair or load-balancing distribu- 

ion of COVID-19 patients over the hospitals in the region accord- 

ng to their safety levels αr is obtained by admitting the frac- 

ion θh,αhW 

,αhI 
(s, t) /θr,αr (s, t) of patients in hospital h . Thus, the au- 

onomous arrival rate of patients with characteristics c for hospi- 

al h is 

hc (u ) = 

θh,αhW ,αhI 
(s, t) 

θr,α (s, t) 
�rc (u ) , h = 1 , . . . , H r . (7)
r 

4 
In Section 2.2.2 , we use (6) and (7) to determine the region’s 

ard and ICU bed shortage or bed surplus. 

emark 2 (Fraction of admitted regional patients) . Observe that 

h,αhW 

,αhI 
(s, t) in (5) determines the fraction of patients admitted in 

ospital h irrespective of admittance to ward or ICU. This is a natu- 

al choice, as in most cases hospitals first admit regional patients and 

hen perform triage (i.e., determine whether the patient is admitted to 

he ward or ICU). Our model includes transfers between ward and ICU 

hat may occur in [ s, s + t ] , so that θh,αhW 

,αhI 
(s, t ) yields the fraction

f admitted patients at the safety levels of the ward and ICU . 

Observe that the arrival rates λhc (u ) in (6) and (7) imply that the 

robability that hospital h cannot accommodate its autonomous ar- 

ivals in [ s, s + t] at its ward, resp. ICU, is at most 1 − αhW 

, resp. 1 −
hI . Clearly, if θr,αr (s, t) ≥ 1 , with arrival rates λhc (u ) in (7) , these

robabilities will most likely be even smaller, as the arrival rates 

hc (u ) are smaller than the arrival rates θh,αhW 

,αhI 
(s, t)�rc (u ) that 

ospital h can accommodate at safety levels αhW 

, αhI . 

If θr,αr (s, t) < 1 , it may occur that hospital h could admit pa-

ients to its ward at higher rates than under λhc (u ) (from (6) ),

ut not to its ICU, or vice versa. This follows from (5) , as, at some

oint, either the ward or the ICU is the bottleneck to further in- 

rease θh,αhW 

,αhI 
(s, t) (i.e., one of the two inequalities in (5) is tight). 

t then follows from Decision Rule 1 that hospital h has bed surplus of 

˜  hW,αhW 

(s, t) > 0 ward beds or ˜ n hI,αhI 
(s, t) > 0 ICU beds. Note that

ccepting additional patients in the ward in case ˜ n hW,αhW 

(s, t) > 0 

ight result in overcrowding of the ICU due to these patients trans- 

erring from ward to ICU . 

We may extend our model to include different θhW,αhW 

(s, t) and 

hI,αhI 
(s, t) for a hospital ’ s ward and ICU, respectively, defined as 

hW,αhW 
(s, t) = max 

{
θ : P θ,h 

[
max 

u ∈ [ s,s + t] 
N hW (u ) ≤ n ∗hW (s, t) 

∣∣∣ L h (s ) = � h 

]
≥ αhW 

}
, 

θhI,αhI 
(s, t) = max 

{
θ : P θ,h 

[
max 

u ∈ [ s,s + t] 
N hI (u ) ≤ n ∗hI (s, t) 

∣∣∣ L h (s ) = � h 

]
≥ αhI 

}
. (8) 

his may allow more flexibility in accepting COVID-19 patients in the 

ard when the ICU has reached its capacity, and vice versa, but may 

lso result in overcrowding of either the ward or the ICU . 

.2.2. Load balancing rule to fairly allocate patients to hospitals 

Section 2.2.1 has established whether or not the hospitals in a 

egion r may admit all autonomous arrivals at safety levels αr . If 

r,αr (s, t) < 1 , the autonomous arrival rates (6) determine the re- 

ion’s bed shortage in [ s, s + t ] at safety levels αr . If θr,αr (s, t ) ≥ 1 ,

he rates (7) determine the hospitals’ bed surplus in [ s, s + t] and

ence the bed surplus of region r. This section presents a load bal- 

ncing rule for fair allocation of patients to the hospitals in a re- 

ion. 

First, if θr,αr (s, t) ≥ 1 , we invoke Decision Rule 1 with patient 

rrival rates (7) to determine the bed surplus for each hospital h in 

egion r and add these numbers to obtain the region’s bed surplus 

n ward, resp. ICU, in [ s, s + t] at safety levels αr as 

˜ 
 rW,αr 

(s, t) = 

H r ∑ 

h =1 

˜ n hW,αhW 
(s, t) , ˜ n rI,αr 

(s, t) = 

H r ∑ 

h =1 

˜ n hI,αhI 
(s, t) . 

Second, consider the case θr,αr (s, t) < 1 . At safety levels αr , the

emaining fraction of patients arriving at rate [ 1 − θr,αr (s, t) ] �r (u ) 

ust be accommodated in hospitals outside region r for each u ∈ 

 s, s + t] . Our model requires discrimination between the number 

f patients admitted at the ward and the ICU. To this end, observe 

hat θh,αhW 

,αhI 
(s, t) /θr,αr (s, t) is the fraction of patients that would 

e admitted to hospital h if all hospitals would have ample ca- 

acity. For each u ∈ [ s, s + t] the fraction of patients with charac-

eristics c admitted to all wards of hospitals in region r at safety 
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evels αr may be obtained as 

p rc (u ) = 

H r ∑ 

h =1 

θh,αhW ,αhI 
(s, t) 

θr,αr 
(s, t) 

p hc(u ) . (9) 

f the fractions p hc (u ) for all hospitals in the region coincide, say

p hc (u ) = p c (u ) , then (9) reduces to p rc (u ) = p c (u ) . 

Let M rW,αr 
(s, t) , resp. M rI,αr 

(s, t) , be the regional bed shortage

n ward, resp. ICU, in [ s, s + t] at safety levels αr . Then, M rW,αr 
(s, t) ,

esp. M rI,αr 
(s, t) , are Poisson distributed random variables with 

eans m rW,αr 
(s, t) , resp. m rI,αr 

(s, t) : 

 rW,αr 
(s, t) = [ 1 − θr,αr 

(s, t) ] 

∫ s + t 

s 

∑ 

c∈ C 
p rc (u )�rc (u ) du, (10) 

 rI,αr 
(s, t) = [ 1 − θr,αr 

(s, t) ] 

∫ s + t 

s 

∑ 

c∈ C 
( 1 − p rc (u ) ) �rc (u ) du, (11) 

o that the expected regional bed shortage in ward, resp. ICU, in 

 s, s + t] at safety levels αr is m rW,αr 
(s, t) , resp. m rI,αr 

(s, t) . 

Combining the results above with those of Section 2.2.1 we ob- 

ain the following load balancing decision rule to allocate patients 

o hospitals in a region and determining the regional bed shortage 

r surplus. 

ecision Rule 2 (Individual region; load balancing; hospital safety 

evels) . Consider region r with n ∗
hW 

(s, t) , n ∗
hI 
(s, t) beds in the ward

nd ICU in [ s, s + t] at hospitals h = 1 , . . . , H r . Consider safety levels

r = { αhW 

, αhI , h = 1 , . . . , H r } . 
If θr,αr (s, t) ≥ 1 , allocate a fraction 

θh,αhW ,αhI 
(s, t) 

θr,αr 
(s, t) 

f the regional patients to hospital h and report bed surplus of 

˜ 
 rW,αr 

(s, t) , ˜ n rI,αr 
(s, t) , 

eds in ward and ICU in [ s, s + t] for reallocation of COVID-19 pa-

ients from other regions. 

If θr,αr (s, t) < 1 , allocate a fraction 

h,αhW ,αhI 
(s, t) 

f the regional patients to hospital h and report bed shortage of 

 rW,αr 
(s, t) , m rI,αr 

(s, t) 

eds in [ s, s + t] at ward and ICU for reallocation of COVID-19 pa-

ients to other regions. 

emark 3 (Dynamic load balancing algorithm) . Decision Rule 2 al- 

ocates patients to hospitals using a dynamic rule based on the max- 

mum occupancy in the wards and ICUs in [ s, s + t] as determined

y θh,αhW 

,αhI 
(s, t) , h = 1 , . . . , H r , and may therefore be viewed as a

ynamic load balancing algorithm. For a recent overview of load bal- 

ncing algorithms, see [17] , and see [16] for a general reference on 

oad balancing for loss networks . 

.2.3. Merging all wards and all ICUs in a region 

This section introduces regional control of COVID-19 beds. 

erging the ICU bed-capacity of individual hospitals into a re- 

ional ICU may considerably reduce the number of patients real- 

ocated out of the region, see [48] . We will exploit the so-called 

tatistical multiplexing gain [15] , and merge all wards, resp. ICUs, 

nto a single (virtual) regional ward, resp. ICU. 

Assume that the hospitals h = 1 , . . . , H r in region r agree on re-

ional safety levels αrW 

and αrI for their wards and ICUs and (vir- 

ually) merge their COVID-19 wards, resp. ICUs, into a single re- 

ional ward and ICU, with capacities 

 

∗
rW 

(s, t) = 

H ∑ 

h =1 

n 

∗
hW 

(s, t) , resp. n 

∗
rI (s, t) = 

H ∑ 

h =1 

n 

∗
hI (s, t) , 
5 
n [ s, s + t] . We may now view the region as a single hospital (as

escribed in Section 2.1 ) with autonomous arrival rates �rc (u ) , 

 ∈ C, where a fraction P rc (u ) , resp. 1 − P rc (u ) is admitted to the

egional ward, resp. ICU. Let N rW 

(u ) , N rI (u ) record the number of

atients present in the (virtual) regional COVID-19 ward and ICU 

t time u , respectively. The αrW 

-quantile, n rW,αrW 

(s, t) , and the αrI -

uantile, n rI,αrI 
(s, t) , for the maximum occupancy in [ s, s + t] follow

y analogy with the single hospital model of Section 2.1 . 

For region r, (5) determines the fraction of autonomous regional 

rrivals that may be accommodated by hospital h , h = 1 , . . . , H r , at

ts safety levels. Cooperation among the hospitals allows a more 

efined rule to distribute patients over the hospitals of a region. To 

his end, first observe that if region r accepts autonomous arrivals 

o its ward, resp. ICU, at safety levels αrW 

, resp. αrI , then the hos- 

itals in the region must have sufficient beds to accept these pa- 

ients in their wards and ICUs. We may, therefore, at safety levels 

rW 

, αrI , distribute patients according to the fractions θhW,αrW 

(s, t) , 

hI,αrI 
(s, t) defined in (8) , while still avoiding overcrowding of the 

ards and ICUs, recall Remark 2 . Region r allocates the fractions 

 

hW,αrW 
(s, t) = 

θhW,αrW 
(s, t) ∑ H r 

h =1 
θhW,αrW 

(s, t) 
, ̂ θhI,αrI 

(s, t) = 

θhI,αrI 
(s, t) ∑ H r 

h =1 
θhI,αrI 

(s, t)

(12) 

f the autonomous arrivals that are hospitalised in region r to the 

ard, resp. ICU, of hospital h , h = 1 , . . . , H r , if the denominators

re positive. If 
∑ H r 

h =1 
θhW,αrW 

= 0 , we determine safety level α′ 
rW 

= 

up 

{
α < αrW 

: max h ∈{ 1 , ... ,H r } θhW,α (s, t) > ε
}

for small ε > 0 . Pa- 

ients are then allocated uniformly at random to hospitals where 

hW,α′ 
rW 

> 0 , and similarly for the ICU. 

Combining the results above we obtain the following decision 

ule for allocation of patients to hospitals in a region and deter- 

ining the regional bed shortage or bed surplus. 

ecision Rule 3 (Individual region; regional safety lev- 

ls) . Consider a region r with n ∗rW 

(s, t) , n ∗rI (s, t) beds in the

virtual) ward and ICU in [ s, s + t] , and safety levels αrW 

, αrI .

et n rW,αrW 

(s, t) , n rI,αrI 
(s, t) be determined based on (3) , and

 

hW,αrW 

(s, t) , ̂ θhI,αrI 
(s, t) according to (12) . 

If n rW,αrW 

(s, t) > n ∗rW 

(s, t) , report a bed shortage 

 rW,αrW 
(s, t) − n 

∗
rW 

(s, t) 

n the wards of region r in [ s, s + t] . Otherwise, report bed surplus

 

∗
rW 

(s, t) − n rW,αrW 
(s, t) 

n the wards of region r in [ s, s + t] . In both cases, allocate a frac-

ion 

 

hW,αrW 
(s, t) 

f the regional autonomous arrivals that are hospitalised in the 

ards in region r to hospital h . 

For the ICU, the rules above apply with W replaced by I. 

emark 4 (Statistical multiplexing gain; comparison of Decision 

ules 2, 3) . Merging the wards, resp. ICUs, of the hospitals into a re-

ional ward, resp. ICU, exploits the so-called statistical multiplexing 

ain, see [15,4 8,4 9] . In particular, it avoids that one hospital has bed

hortage, while another hospital has a bed surplus . 
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determine the bed surplus for each hospital, whereas Decision Rule 3 uses 

t  surplus. A merged hospital requires fewer beds to accommodate patients 

a er Decision Rule 3 exceeds the bed surplus under Decision Rule 2 . 

2

dividual regions as determined under Decision Rule 2 or 3 to obtain a 

d
 

(s, t) , resp. n ∗
rI 
(s, t) , beds in the ward, resp. ICU, in [ s, s + t] , r = 1 , . . . , R . 

T ted across the regions at each decision epoch s , taking into account the 

c umber of patients hospitalised in the regions in [ s, s + t] . Patients that 

c xternal region. 

e ( ̃  n < 0 ) or bed surplus ( ̃  n ≥ 0 ) in the ward, resp. ICU, of region r. Let 

t ( ̃  N < 0 ) or bed surplus ( ̃  N ≥ 0 ) in the ward, resp. ICU, of region r from 

d eallocated out of region r at decision epoch s determined by 

N

I at the ward and ICU for region r respectively, during the period [ t, s + t] 

u computational tractability reasons, we propose to employ the regional 

m  the model for patient reallocation across multiple regions. The more 

d  of Section 2.2.2 with corresponding Decision Rule 2 can subsequently 

b  that region to hospitals. The external region has ample capacity, i.e., 

n  

 γr,r ′ incorporating, for example, travel distance for reallocation of the 

p tween regions r and r ′ with respect to the number or size of hospitals. 

W

γ  (13) 

t cation of patients from region r 1 to region r 3 , which may happen, for 

e 13) . 

the current decision epoch s as well as during [ s, s + t] 

( hortages are resolved, taking into account the bed shortages in [ s, s + t] , 

(  over the regions. 

e the number of ward, resp. ICU, patients to reallocate from region r

t les F W,r,r ′ (s, t) , resp. F I,r,r ′ (s, t) , are the number of potentially required 

a and r ′ in [ s, s + t] based on the bed surplus or shortage ˜ N rW,αr 
(s, t) , 

N n bed surplus in the wards and ICUs across the regions, we introduce a 

p er of patients f W,r,r ′ (s ) , resp. f I,r,r ′ (s ) , reallocated from the ward, resp. 

I  1 , is determined as the argmin of the following recourse model: 

(P ) 

 

s

( l ward and ICU) 

∀ r 

∀ r 

(  ward and ICU) 

∀ r 

∀ r 

( strictly necessary) 
Decision Rule 2 uses the safety levels of the individual hospitals to 

he safety levels of the merged hospitals to determine the regional bed

t the same safety level, see [15,49] and therefore the bed surplus und

.3. Patient reallocation across multiple regions 

This section builds on the bed surplus and bed shortage for in

ecision rule for (part of) a country consisting of R regions with n ∗
rW

his decision rule determines the number of patients to be realloca

urrent number of hospitalised patients as well as the maximum n

annot be accommodated in the regions may be reallocated to an e

Let ˜ n rW 

(s ) , resp. ˜ n rI (s ) , be the current (at epoch s ) bed shortag

he random variables ˜ N rW 

(s, t) , resp. ˜ N rI (s, t) , be the bed shortage 

ecision epoch s up to time s + t taking into account the patients r

˜ 
 rW 

(s, t) = n 

∗
rW 

(s, t) − N rW 

(s, t) − [ ̃  n rW 

(s )] −, 

˜ N rI (s, t) = n 

∗
rI (s, t) − N rI (s, t) − [ ̃  n rI (s )] −. 

n the above, N rW 

(s, t) , N rI (s, t) represent the maximum occupancy 

nder the regional hospital model introduced in Section 2.2.3 . For 

odel of Section 2.2.3 with corresponding Decision Rule 3 within

etailed and computationally more intensive load balancing model

e used within each region for allocating the patients assigned to

˜  R +1 ,W 

(s ) = ˜ n R +1 ,I (s ) = ∞ as well as ˜ n R +1 ,W 

(s, t) = ˜ n R +1 ,I (s, t) = ∞ .

Reallocation of a patient from region r to region r ′ incurs cost

atient or travel distance for his or her relatives, and differences be

e may impose the (strict) triangle inequality on the costs γr,r ′ : 

r 1 ,r 3 < γr 1 ,r 2 + γr 2 ,r 3 ∀ r 1 , r 2 , r 3 ∈ { 1 , 2 , . . . , R + 1 } , r 1 	 = r 2 	 = r 3 ,

o avoid that region r 2 functions as an intermediate stop for reallo

xample, if γr 1 ,r 2 = γr 2 ,r 3 = 2 and γr 1 ,r 3 = 5 , which is excluded by (

We will now develop a recourse model with objective to 

minimise the costs of patient reallocations across regions at 

such that 

i) patients are distributed over regions such that the current bed s

and 

ii) the relative remaining bed surplus (detailed below) is balanced

The here-and-now decision variables f W,r,r ′ (s ) , resp. f I,r,r ′ (s ) , ar

o region r ′ at decision epoch s . The wait-and-see decision variab

dditional reallocations among the wards, resp. ICUs, of regions r
˜ 
 rW,αr 

(s, t) in [ s, s + t] for all regions r. To penalise the imbalance i

enalty function g(·) (e.g. g(x ) = x 2 or g(x ) = x ). The optimal numb

CU, of region r to the ward, resp. ICU, of region r ′ , r, r ′ = 1 , . . . , R +
min 

∑ 

r,r ′ 
γr,r ′ ( f W,r,r ′ (s ) + f I,r,r ′ (s ) + E [ F W,r,r ′ (s, t) + F I,r,r ′ (s, t) ] ) 

+ 

R ∑ 

r=1 

g(δW,r (s )) + g(δI,r (s )) + E [ g(
W,r (s, t)) + g(
I,r (s, t)) ]

.t. 

Here-and-now constraints, resolve current shortages in origina∑ 

r ′ 	 = r 
f W,r,r ′ (s ) − [ ̃  n rW 

(s )] − = 0 , 

∑ 

r ′ 	 = r 
f I,r,r ′ (s ) − [ ̃  n rI (s )] − = 0 , 

Here-and-now constraints, don ́t cause shortages in destination

[ ̃  n rW 

(s )] + −
∑ 

r ′ 	 = r 
f W,r ′ ,r (s ) ≥ 0 , 

[ ̃  n rI (s )] + −
∑ 

r ′ 	 = r 
f I,r ′ ,r (s ) ≥ 0 , 

Here-and-now constraints, transport to external region only if 
6 
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∀ r 

∀ r 

( rd and ICU) 

 t) ] } ≥ 0 , ∀ r 

0 , ∀ r 

(
 

, ∀ r, r ′ , 
w ture relative remaining bed surplus δW,r (s ) , δI,r (s ) , 
W,r (s, t) , 
I,r (s, t) 

i



 − F W,r ′ ,r (s, t) ] } 

, 

 I,r ′ ,r (s, t) ] } 
. 

int-wise on the sample space, i.e., for every possible outcome of 

N  model (see e.g. [34, Chapter 3] ), where all possible outcomes for the 

m t time s + t . 

Rule 2 or 3 that are amenable for practical implementation. To incor- 

p P) by the integer program described below that is based on the safety 

l y the regions. 

ecast bed shortage ( ̃  n < 0 ) or bed surplus ( ̃  n ≥ 0 ) in the ward, resp. ICU, 

o unt the patients reallocated out of region r at decision epoch s . Thus, 

u

n

n

a

n

n

s f W,r,r ′ (s, t) , f I,r,r ′ (s, t) according to wait-and-see constraints: 

ard and ICU) 

) ] } ≥ 0 , ∀ r, 

0 , ∀ r. 

g bed surpluses 

δ
− f W,r ′ ,r (s, t) ] } 

, 

r ′ ,r (s, t) ] } 
. 

T

 

 

g(δW,r (s )) + g(δI,r (s )) + g(δW,r (s, t)) + g(δI,r (s, t)) (P ′ ) 
∑ 

r 	 = R +1 

f W,r,R +1 (s ) −
[ ∑ 

r 	 = R +1 

˜ n rW 

(s ) 

] −

= 0 , 

∑ 

r 	 = R +1 

f I,r,R +1 (s ) −
[ ∑ 

r 	 = R +1 

˜ n rI (s ) 

] −

= 0 , 

Wait-and-see constraints, anticipate on future shortages in wa

˜ N rW 

(s, t) + 

∑ 

r ′ 	 = r 
{ [ f W,r,r ′ (s ) − f W,r ′ ,r (s ) ] + [ F W,r,r ′ (s, t) − F W,r ′ ,r (s,

˜ N rI (s, t) + 

∑ 

r ′ 	 = r 
{ [ f I,r,r ′ (s ) − f I,r ′ ,r (s ) ] + [ F I,r,r ′ (s, t) − F I,r ′ ,r (s, t) ] } ≥

Domain constraints) f W,r,r ′ (s ) , f I,r,r ′ (s ) , F W,r,r ′ (s, t) , F I,r,r ′ (s, t) ∈ N 0

here we have used the additional notation for the current and fu

n region r, 

δW,r (s ) = 

˜ n rW 

(s ) + 

∑ 

r ′ 	 = r [ f W,r,r ′ (s ) − f W,r ′ ,r (s ) ] 

n 

∗
rW 

(s, t) 
, 

δI,r (s ) = 

˜ n rI (s ) + 

∑ 

r ′ 	 = r [ f I,r,r ′ (s ) − f I,r ′ ,r (s ) ] 

n 

∗
rI 
(s, t) 

, 

W,r (s, t) = 

˜ N rW 

(s, t) + 

∑ 

r ′ 	 = r { [ f W,r,r ′ (s ) − f W,r ′ ,r (s ) ] + [ F W,r,r ′ (s, t)

n 

∗
rW 

(s, t) 


I,r (s, t) = 

˜ N rI (s, t) + 

∑ 

r ′ 	 = r { [ f I,r,r ′ (s ) − f I,r ′ ,r (s ) ] + [ F I,r,r ′ (s, t) − F

n 

∗
rI 
(s, t) 

Note that the wait-and-see and domain constraints hold po
˜ 
 rW 

(s, t) , ˜ N rI (s, t) . The above program is a mixed integer recourse

aximum occupancy are considered at the second decision stage a

The stochastic program does not directly incorporate Decision 

orate these rules in our optimisation approach, we approximate (

evels αrW 

, αrI , and the expected shortages or surpluses reported b

From Decision Rule 2 or 3 , let ˜ n rW 

(s, t) , resp. ˜ n rI (s, t) , be the for

f region r from decision epoch s up to time s + t taking into acco

nder Decision Rule 2 : 

˜ 
 rW 

(s, t) = 

{
˜ n rW,αr 

(s, t) − [ ̃  n rW 

(s )] −, if ˜ n rW,αr 
(s, t) > 0 , 

−m rW,αr 
(s, t) − [ ̃  n rW 

(s )] −, otherwise, 

˜ 
 rI (s, t) = 

{
˜ n rI,αr 

(s, t) − [ ̃  n rI (s )] −, if ˜ n rI,αr 
(s, t) > 0 , 

−m rI,αr 
(s, t) − [ ̃  n rI (s )] −, otherwise, 

nd under Decision Rule 3: 

˜ 
 rW 

(s, t) = n 

∗
rW 

(s, t) − n rW,αrW 
(s, t) − [ ̃  n rW 

(s )] −, 

˜ 
 rI (s, t) = n 

∗
rI (s, t) − n rI,αrI 

(s, t) − [ ̃  n rI (s )] −. 

The forecast shortages are resolved by the wait-and-see variable

(Wait-and-see constraints, anticipate on future shortages in w

˜ n rW 

(s, t) + 

∑ 

r ′ 	 = r 
{ [ f W,r,r ′ (s ) − f W,r ′ ,r (s ) ] + [ f W,r,r ′ (s, t) − f W,r ′ ,r (s, t

˜ n rI (s, t) + 

∑ 

r ′ 	 = r 
{ [ f I,r,r ′ (s ) − f I,r ′ ,r (s ) ] + [ f I,r,r ′ (s, t) − f I,r ′ ,r (s, t) ] } ≥

The wait-and-see outcomes then induce future relative remainin

W,r (s, t) = 

˜ n rW 

(s, t) + 

∑ 

r ′ 	 = r { [ f W,r,r ′ (s ) − f W,r ′ ,r (s ) ] + [ f W,r,r ′ (s, t) 

n 

∗
rW 

(s, t) 

δI,r (s, t) = 

˜ n rI (s, t) + 

∑ 

r ′ 	 = r { [ f I,r,r ′ (s ) − f I,r ′ ,r (s ) ] + [ f I,r,r ′ (s, t) − f I,

n 

∗
rI 
(s, t) 

he objective is now reformulated as 

min 

∑ 

r,r ′ 
γr,r ′ ( f W,r,r ′ (s ) + f I,r,r ′ (s ) + f W,r,r ′ (s, t) + f I,r,r ′ (s, t) ) + 

R ∑
r=1
7
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All constraints in the optimisation model are automatically sat- 

sfied for external region R + 1 because n ∗R +1 ,W 

(s ) = n ∗R +1 ,I (s ) = ∞
nd n ∗

R +1 ,W 

(s, t) = n ∗
R +1 ,I 

(s, t) = ∞ . Due to the first set of here-and-

ow constraints, in the optimisation model it is optimal to set 

f W,R +1 ,r ′ (s ) = f I,R +1 ,r ′ (s ) = 0 for all r ′ , i.e., patients are not reallo-

ated from the external region R + 1 to a region r ′ . Moreover, the

ptimum cannot include both f W,r,r ′ (s ) > 0 and f W,r ′ ,r (s ) > 0 or

oth f I,r,r ′ (s ) > 0 and f I,r ′ ,r (s ) > 0 , i.e., patients are not exchanged

etween regions. A feasible solution to the above program is guar- 

nteed since the number of patients reallocated to the external re- 

ion is not restricted. 

ecision Rule 4 (Multiple regions; reallocation based on. (P 

′ ) 
 Consider (part [4] of) a country consisting of R regions with 

 

∗
rW 

(s, t) , resp. n ∗rI (s, t) , beds in the ward, resp. ICU, in [ s, s + t] ,

 = 1 , . . . , R , and safety levels αrW 

, αrI , augmented with an exter-

al region R + 1 , that has ample capacity. Let ˜ n rW 

(s ) , ˜ n rI (s ) be the

bserved bed shortage / bed surplus at decision epoch s in region 

, r = 1 , . . . , R . Then, as obtained from ( P ′ ), at decision epoch s re-

llocate 

f W,r,r ′ (s ) , resp. f I,r,r ′ (s ) , 

atients from the ward, resp. ICU, of region r to the ward, resp. 

CU, of region r ′ , r, r ′ = 1 , . . . , R + 1 , r 	 = r ′ . 

emark 5 (Patient reallocation at decision epoch. s ) Under Deci- 

ion Rule 4 patients are reallocated across regions at decision epoch 

 taking into account bed shortage and bed surplus in all regions in 

 s, s + t] . Decisions on patient reallocation at a later epoch, e.g. , s + 1 ,

n the interval [ s, s + t] will be taken at that epoch taking into account

he state at s + 1 and the interval [ s + 1 , s + t + 1] . 

emark 6 (Generalisations) . We have presented the optimisation 

odel of Decision Rule 4 in a relatively simple form. The model may 

eadily be generalised to include, e.g., different costs or penalty func- 

ions for current and future reallocations, different costs for ward and 

CU reallocations, or different loss functions for ward and ICU . 

. Predicting arrival rates and forecasting bed occupancy 

The effectiveness of the decision rules developed in 

ection 2 relies on an accurate real-time forecast of the COVID-19 

ed occupancy, and therefore on an accurate prediction of the 

rrival rate and estimation of the LoS. This section considers 

rediction of arrival rates for a region and a single hospital, as 

ell as generation of bed occupancy forecasts. 

For each ROAZ region, the number of positive COVID-19 tests is 

vailable on a daily basis on the website of the Dutch National In- 

titute for Public Health and the Environment (RIVM) [50] . In this 

ata set, the number of infections on a given day represents the 

umber of people that (retrospectively) tested positive for COVID- 

9 on that day. In addition to infection data, national hospital ad- 

ission data per region, collected by the Dutch foundation for Na- 

ional Intensive Care Evaluation (NICE) is available on the website 

f the RIVM [51] . The number of admissions per day represents 

he number of patients who have tested positive for COVID-19 and 

re admitted to a hospital in the respective region. For our arrival 

ate prediction, we focus on data of the ROAZ region Netwerk Acute 

org (NAZ) West , containing the hospitals Groene Hart Ziekenhuis 

GHZ), HagaZiekenhuis (Haga) and Leiden University Medical Cen- 

er (LUMC). To evaluate the accuracy of our prediction, in this sec- 

ion we focus on Haga, a 600-bed hospital in The Hague that ad- 

its approximately 29,0 0 0 inpatients per year. For this hospital, 

elevant data is available to us from September 4, 2020 until Jan- 

ary 31, 2021. 
8 
.1. Prediction of the arrival rates 

In this section, we develop a new arrival rate predictor based on 

egional infection data, and compare its performance to the pre- 

ictor in Baas et al. [40] that was shown to result in accurate bed

ccupancy forecasts. The new predictor makes explicit use of the 

elay between COVID-19 infection and hospitalisation, and enables 

s to predict the arrival rate at the (virtual) merged regional ward 

nd ICU. 

An increase in the number of COVID-19 infections results some 

ays later in an increasing number of hospital admissions. As a 

onsequence, we may expect a filtration and time-delay between 

he number of infections and the number of hospitalised patients. 

e assume the number of infections to be a Poisson process with 

ime-dependent rate, so that the resulting autonomous regional 

rrival rate of COVID-19 patients is again a Poisson process, see, 

.g., Chiu et al. [52] . We estimate the time-delay and filtration 

etween COVID-19 infections and hospitalisations directly on the 

ata for NAZ West in the RIVM data set [50] . The time-delay that 

ives the best fit is defined as the value between two and fourteen 

ays resulting in the minimal mean squared error (MSE) when 

erforming ordinary least squares (OLS) between a weekly mov- 

ng average of the regional infections and a delayed exponentially 

eighted moving average (coefficient 0.1) of the regional hospi- 

alisations [51] . The filtration that gives the best fit is the coeffi- 

ient resulting from the OLS procedure corresponding to the opti- 

al time-delay. 

The result of this time-delaying and filtration procedure applied 

o NAZ West data is shown in the top graphs in Fig. 1 . The black

ots in the top left, resp. top right, graph of represent the re- 

lised number of infections, resp. hospitalisations, per day in NAZ 

est. The red line in the top left graph shows the 7-day mov- 

ng average (MA) of the number of infections and the red line in 

he top right graph shows an exponentially weighted moving av- 

rage (EWMA; coefficient 0.1) of the number of hospitalisations, 

oth to indicate the trend. These trend lines already reveal the 

ime-delay and filtration between the number of infections and 

ospitalisations. The purple line in the top right graph is the re- 

ult of the time-delaying and filtration procedure applied to the 

averaged) daily number of infections displayed as the red line in 

he top left graph. The best-fit time-delay equals 7 days, which 

s in accordance with a recent study performed in Belgium [53] , 

here an average time-delay of 5.74 days is estimated, with me- 

ians ranging from 3 to 10.4 days, depending on patient charac- 

eristics. The best-fit filtration factor is found to be 3 . 1% . The ex-

remes of the purple line in the top right graph of Fig. 1 coincide

ith the extremes of the number of hospitalisations (red line), but 

dditional fine-tuning is required since the extremes over- and un- 

ershoot those of the number of hospitalisations. 

To this end, we develop an t-days ahead prediction of the num- 

er of hospitalisations displayed (for t = 3 ) as the purple curve in

he bottom left graph in Fig. 1 . The static predictor (purple line 

n the top right graph) is corrected by estimating the scaling fac- 

or of the infections using weighted least squares between delayed 

nfection and arrival data up to time s . The weights used for this 

east squares procedure are normalised exponential weights with 

ase 1.2 so that errors in the fit for recent hospitalisations are pe- 

alised more than those for earlier hospitalisations. The effect of 

he weighted least squares procedure is that for each time s the 

-days ahead prediction starts around the trend in the number of 

ospitalisations at time s . Hence, in our t-days ahead prediction 

he daily number of infections up to time s have a larger influ- 

nce on the slope of the fine-tuned purple curve in the bottom 

eft graph than on the starting point for the prediction determined 

y the number of hospitalisations (orange). This is motivated by 

he observation that the regional fraction of hospitalised patients 
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Fig. 1. ROAZ region NAZ West, hospital Haga, September 4, 2020 until January 31, 2021. Top left: Regional infections (black) and 7-day moving average (MA) of the realisations 

(red). Top right: Regional hospitalisations (black), exponentially weighted moving average (EWMA; coefficient 0.1) of realised regional hospitalisations (red) and filtered/scaled 

7-day moving average of infection data (purple). Bottom left: Regional hospitalisations (black), EWMA (coefficient 0.1) of realised regional hospitalisations (red), 3-days ahead 

expanding window predictions of the arrival rate by the Richards’ curve model (orange) and 3-days ahead expanding window predictions of the arrival rate from regional 

infections (purple). The purple line is made thinner to distinguish it from the other two (this is also the case in Fig. 3 ). Bottom right: Autonomous arrivals to hospital Haga 

(black), EWMA (coefficient 0.1) of realised autonomous arrivals (red), 3-days ahead expanding window predictions of the arrival rate by the Richards’ curve model (orange) 

and 3-days ahead expanding window predictions of the arrival rate from regional infections (purple). (For interpretation of the references to colour in this figure legend, the 

reader is referred to the web version of this article.) 
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s determined to a large extent by unknown factors (e.g. current 

egional shortage/surplus), while daily infections remain a good 

ndicator for whether hospitalisations will go up or down. In ad- 

ition, we have implemented an improved version of our t-days 

head prediction using a 5-parameter Richards’ curve [40] . The im- 

rovements include the possibility of estimating a mixture of mul- 

iple Richards’ curves, and to return a logistic, exponential or lin- 

ar fit through (early-stage) data if this results in a smaller mean 

quared error (similar to the procedure described in Lee et al. [54] ). 

he Richards’ curve predictions were quite sensitive to outliers oc- 

urring around the time of prediction. To account for this, the 

ichards’ curve was estimated on the arrival data up to point s , 

ugmented with 7 days of arrival data set equal to the weighted 

verage of the number of arrivals at time s . 

The bottom row of Fig. 1 displays 3-days ahead expanding win- 

ow predictions [40] of the arrival rate for NAZ West (left) and 
9 
aga hospital (right) in the period September 4, 2020 until Jan- 

ary 31, 2021. The bottom left graph also includes the hospitalisa- 

ions (dots) and the trend (red) from the top right graph. The or- 

nge line corresponds to the expanding window prediction of the 

rrival rates by the Richards’ curve estimator. The purple line cor- 

esponds to the predictions generated from the daily number of 

nfections. Observe that the predictions resulting from the infec- 

ion data are less extreme when compared to those made by the 

ichards’ curve predictor. This sensitivity of Richards curve fore- 

asts to the prediction date (especially before the inflection point) 

as also seen in Wu et al. [55] . Furthermore, observe that the daily 

nfections predictor shows an earlier increase around mid Decem- 

er, when the number of hospitalisations starts to increase again. 

e conclude that the prediction based on daily infections outper- 

orms the prediction based on the Richards’ curve using patient 

rrivals in the Hospital Information System. 
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Table 1 

Accuracy measures for our forecasting method based on arrivals predicted by a Richards’ 

curve, regional infections and the oracle for Haga hospital. CR: coverage rate of occu- 

pancy – 95% prediction interval; bias: estimated by averaging errors; MAE: mean abso- 

lute error. 

Ward ICU 

Method Type CR Bias MAE CR Bias MAE 

Richards’ Curve 1 day ah. 0.95 −0 . 09 2.03 0.97 0.15 0.62 

2 days ah. 0.91 −0 . 50 3.02 0.98 0.28 0.84 

3 days ah. 0.89 −0 . 88 3.80 0.96 0.40 0.98 

5 days ah. 0.83 −1 . 64 4.51 0.96 0.61 1.30 

7 days ah. 0.75 −3 . 85 5.30 0.96 0.70 1.53 

Max. 3d. ah. 0.69 1.63 3.39 0.87 0.44 0.87 

Max. 5d. ah. 0.74 1.31 3.77 0.91 0.58 1.07 

Max. 7d. ah. 0.75 0.92 3.90 0.93 0.67 1.23 

Reg. Infections 1 day ah. 0.97 −0 . 17 2.12 0.97 0.14 0.62 

2 days ah. 0.93 −0 . 57 2.92 0.98 0.27 0.85 

3 days ah. 0.92 −0 . 79 3.32 0.95 0.40 0.99 

5 days ah. 0.92 −0 . 98 3.49 0.95 0.64 1.28 

7 days ah. 0.88 −2 . 64 3.91 0.97 0.78 1.51 

Max. 3d. ah. 0.72 1.42 3.21 0.87 0.42 0.88 

Max. 5d. ah. 0.81 1.16 3.38 0.91 0.58 1.06 

Max. 7d. ah. 0.81 1.00 3.42 0.93 0.70 1.21 

True Arrivals 1 day ah. 0.93 −0 . 03 1.80 0.98 0.14 0.53 

2 days ah. 0.87 −0 . 31 2.37 0.96 0.25 0.73 

3 days ah. 0.90 −0 . 47 2.74 0.96 0.35 0.87 

5 days ah. 0.89 −0 . 65 3.02 0.97 0.48 1.08 

7 days ah. 0.87 −0 . 76 3.32 0.96 0.55 1.29 

Max. 3d. ah. 0.53 2.26 2.92 0.87 0.39 0.74 

Max. 5d. ah. 0.61 2.07 2.95 0.91 0.48 0.81 

Max. 7d. ah. 0.62 2.02 3.05 0.93 0.53 0.90 
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and bias decreases in the horizon for the ward for all forecasts. 
.2. Forecast of bed occupancy 

This section investigates the forecasting power of bed occu- 

ancy of our method and compares it to the improved version of 

he Richards’ curve predictor of [40] . To evaluate the maximum 

ossible gain in forecasting power, we compare our results with 

n oracle predictor of the arrivals, that uses the actual realised pa- 

ient arrivals to forecast bed occupancy. The forecasts of bed occu- 

ancy used in this section are obtained by the sampling method 

resented in Baas et al. [40] for patient trajectories in the Poisson 

rrival Location Model (PALM). We consider 3-days ahead expand- 

ng window forecasts for the daily and maximum occupancy for 

he Haga hospital in the period September 4, 2020 until January 

1, 2021 as displayed in Fig. 2 , and include Table 1 containing cov-

rage rates, bias and MAE for the forecast occupancy. 

The top row of Fig. 2 contains daily occupancy forecasts made 

y the oracle forecaster (cyan) and the daily infections forecaster 

purple) for the ward (left) and ICU (right). The forecasts for the 

CU lie closer to each other (Pearson correlation coefficient 0.96) 

han those for the ward (Pearson correlation coefficient 0.91). This 

ight be due to the smaller number of direct autonomous arrivals 

o the ICU ( 28% ) than to the ward ( 90% ). Hence, the difference in

redicted arrival rates is expected to have the largest influence on 

ccupancy forecasts for the ward. Note that the pattern seen in the 

racle forecast 

for the ward is also seen in the daily infections predictions with 

 delay of three days, which makes sense as we are considering a 

-days ahead expanding windows forecast. 

The middle row of Fig. 2 shows forecasts for the Richards’ curve 

orange) and daily infections (purple) along with the realised oc- 

upancy (red) in the ward (left) and ICU (right). The reported oc- 

upancy excludes patients reallocated from/to other hospitals. The 

wo forecasts lie very close to each other (Pearson correlation co- 

fficient 0.97 for the ward and 1.00 for the ICU), and close to 

he oracle. In accordance with the predictions for the arrival rates, 

he Richards’ curve forecasts have a more fluctuating behaviour in 

omparison to the daily infections forecasts. The forecasts are close 
10 
o the realised daily occupancy with a delay of 3 days and have 

 higher forecasting power when the occupancy decreases. A de- 

ailed comparison is included in Table 1 . The difference between 

ccupancy forecasts is again largest for the ward, which can be ex- 

lained by the larger fraction of direct arrivals at the ward. Observe 

hat the fluctuations in the arrival rate predictions in Fig. 1 are 

ampened in the forecast in Fig. 2 , which may be partially ex- 

lained as the load is obtained as integral over the arrival rates [46, 

heorem 1.2] . 

The bottom row of Fig. 2 shows forecasts of the maximum oc- 

upancy over 3 days and their realisations in the ward (left) and 

CU (right). The forecasts for maximum occupancy lie very close 

o each other for both ward (Pearson correlation coefficient 0.99) 

nd ICU (Pearson correlation coefficient 1.00). Clearly, fluctuations 

n the maximum occupancy over 3 days are lower than those for 

aily occupancy predictions. 

Table 1 presents a detailed overview and comparison of the 

uality of the forecasting results for our Richards’ curve, daily in- 

ections and oracle forecasting methods for COVID-19 bed occu- 

ancy. We show results for coverage rate (CR), bias and mean ab- 

olute error (MAE), of which MAE is the most important measure 

s it captures the average absolute difference (distance) between 

orecast and realisation. For the ICU, we observe that the Richards’ 

urve and regional infections forecast show similar results for all 

easures, and are outperformed by the oracle forecaster as is to 

e expected since the oracle forecaster uses the exact values for 

he number of patients in the hospital. For the ward, with re- 

pect to MAE an ordering can be found in the quality of the fore- 

ast: the oracle forecast outperforms the daily infections forecast, 

hich in turn outperforms the Richards’ curve forecast. This is not 

een when looking at the 1-day ahead MAE for the Richards’ curve 

nd daily infections forecasts, as the Richards’ curve is explicitly 

esigned to extrapolate the current trend. The regional infections 

orecast also outperforms 

the Richards’ curve forecast for CR and bias when forecasting 

he maximum 3 −, 5 − and 7-days ahead. Note that the CR increases 
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Fig. 2. Haga hospital, September 4, 2020 until January 31, 2021. Top row: 3 day ahead forecasts of the COVID-19 occupancy for the oracle (cyan) and daily infections (purple) 

forecasters. Middle row: 3 day ahead forecasts vs realised occupancy (red) for the Richards’ curve (orange) and daily infections forecasters (purple). Bottom row: forecasts 

and realisations (red) of the maximum occupancy over the last 3 days for the Richards’ curve (orange) and daily infections forecasters (purple). (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version of this article.) 

11
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Fig. 3. Daily regional arrival rates of ward (left) and ICU (right) patients in the region for the simulation study of Section 4.1 . 
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Table 2 

Capacity and initial occupancy for each hospital 

used for the simulation study of Section 4.1 . The 

capacity chosen here is not directly based on 

the actual capacity at the hospitals and merely 

chosen as such for the simulation study. 

Capacity Init. occupancy 

Hospital Ward ICU Ward ICU 

LUMC 29 11 22 7 

Haga 41 17 30 13 

GHZ 31 13 25 8 

N
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H
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pparently, the maximum occupancy forecast tends to overesti- 

ate the realisation for shorter horizons, while this bias lessens 

or longer horizons. Observe that the oracle forecast shows a larger 

ias in the expected maximum occupancy forecasts. This is be- 

ause maximum occupancy forecasts are always higher than or 

qual to the current occupancy. Hence forecasts for the maximum 

ften point in the right direction (less negative bias) when occu- 

ancy increases and in the wrong direction (more positive bias) 

hen occupancy decreases. This effect occurs to a larger extent for 

he oracle, as it can better forecast increases in occupancy. As we 

re mainly interested in forecasts of the maximum occupancy, we 

onclude that the daily infections forecast is to be preferred over 

he Richards’ curve forecast and will be used in subsequent sec- 

ions. 

emark 7 (Possibility of Overfitting) . A question that might arise 

s whether there might be an overfitting issue under the proposed 

ethod. While this is indeed a possibility when fitting the arrival pre- 

ictor, this cannot be the case for the occupancy forecasts as we do 

ot directly use occupancy data in the forecasts. Furthermore, all our 

valuations are expanding window out-of-sample forecast evaluations, 

eaning that we never train and evaluate the model on the same 

ata. Looking at the outcomes for the Haga data, the Richards ’ curve 

nd regional infections forecasts for the realised arrivals are likely not 

n overfit on that data set as the forecasts follow the trend and clearly

ave less variance than the actual realisations, which would be the 

ase with an extreme overfit . 

. Numerical results 

This section presents numerical results illustrating the per- 

ormance of our hierarchical model that fairly balances COVID- 

9 patients over hospitals in a region and across regions. 

ection 4.1 considers allocation of patients to hospitals within a 

egion, and Section 4.2 considers optimal reallocation of patients 

cross regions. 

.1. Allocating regional COVID-19 patients to hospitals in a region 

This section compares the impact of the three levels of re- 

ional coordination described in Section 2.2 : individual hospitals 

 Section 2.2.1 ), load balancing ( Section 2.2.2 ), and merging all hos-

itals into a regional hospital ( Section 2.2.3 ) on the allocation of 

atients to hospitals in a region via a simulation study. 
12 
We consider occupancy by COVID-19 patients in the period 8 

ovember 2020 until 7 January 2021 (60 days) at three hospi- 

als in ROAZ region NAZ West: Groene Hart Ziekenhuis (GHZ), 

agaZiekenhuis (Haga) and Leiden University Medical Center 

LUMC). Each hospital is modelled as described in Section 2.1 . The 

robability of class assignment and class-dependent LoS distribu- 

ions are estimated using the estimation procedure from Baas et al. 

40] from pooled data collected from the hospital data warehouses 

f the three hospitals. For each patient class, the same fixed alloca- 

ion probability and LoS distribution is assumed for each hospital 

s well as for the merged regional hospital. Table 2 presents the 

umber of beds and initial occupancy for each hospital that are 

sed in our simulation study. The number of beds chosen here is 

f the order of magnitude of the actual capacity at the hospitals, 

ut is chosen fixed to reveal the differences in the allocation meth- 

ds. In practice, the number of beds may have fluctuated over the 

ays. 

The arrival process of patients to the ward and ICU is found to 

e a non-homogeneous Poisson process with arrival rates displayed 

n Fig. 3 . These arrival rates are obtained using an exponentially 

eighted moving average (coefficient 0.3 for the ward and 0.1 for 

he ICU), and scaling (0.95) of the daily hospitalisations, obtained 

s described in Section 3.1 . In the considered period, on average 

round 12 ward patients arrive per day with a fluctuating rate, and 

ne ICU patient arrives every three days, with fewer patients arriv- 

ng towards the end of the considered period. 

Using the arrival processes, LoS distributions and transition 

robabilities, the PALM of the system of infinite server queues cor- 

esponding to each hospital can now be simulated on a day-to-day 

asis according to three levels of regional coordination, using the 
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Table 3 

Average number of over-bed days and over-beds (with 95% confidence interval) for safety 

level 0.9 for each hospital. 

Hospital KPI Indiv. hospitals Load balancing Reg. hospital 

LUMC Over-bed Days Ward 11 . 80 ± 2 . 35 5 . 70 ± 0 . 76 −
Over-beds Ward 1 . 41 ± 0 . 41 0 . 40 ± 0 . 10 −
Over-bed Days ICU 15 . 51 ± 2 . 53 4 . 43 ± 0 . 73 −
Over-beds ICU 1 . 22 ± 0 . 29 0 . 13 ± 0 . 04 −

Haga Over-bed Days Ward 9 . 37 ± 1 . 92 3 . 80 ± 0 . 55 −
Over-beds Ward 1 . 17 ± 0 . 35 0 . 24 ± 0 . 04 −
Over-bed Days ICU 14 . 70 ± 2 . 37 4 . 43 ± 0 . 84 −
Over-beds ICU 1 . 15 ± 0 . 26 0 . 16 ± 0 . 05 −

GHZ Over-bed Days Ward 12 . 51 ± 2 . 24 6 . 58 ± 0 . 85 −
Over-beds Ward 1 . 22 ± 0 . 32 0 . 47 ± 0 . 09 −
Over-bed Days ICU 9 . 32 ± 1 . 98 3 . 10 ± 0 . 57 −
Over-beds ICU 0 . 57 ± 0 . 16 0 . 09 ± 0 . 02 −

Region Over-bed Days Ward 30 . 58 ± 2 . 34 13 . 14 ± 1 . 23 2 . 07 ± 0 . 55 

Over-beds Ward 3 . 80 ± 0 . 52 1 . 12 ± 0 . 17 0 . 22 ± 0 . 10 

Over-bed Days ICU 36 . 62 ± 2 . 02 9 . 91 ± 1 . 17 2 . 56 ± 0 . 60 

Over-beds ICU 2 . 95 ± 0 . 33 0 . 38 ± 0 . 07 0 . 12 ± 0 . 03 
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ethod proposed in Baas et al. [40] . The time of evaluation for 

ach day is set to 10 AM, in accordance with the time that Dutch 

ospitals report their occupancy. The three levels of regional coor- 

ination are as follows: 

• Individual Hospitals: Patients are randomly allocated to hospi- 

tals according to fixed probabilities equal to fraction of COVID- 

19 patients allocated to that hospital over the evaluation pe- 

riod: 0.30 for LUMC, 0.43 for Haga and 0.27 for GHZ. 
• Load Balancing: Patients are allocated to hospitals accord- 

ing to the load balancing Decision Rule 2 . The estimation 

procedure for θh,αhW 

,αhI 
(s, t) is given in Appendix A and is 

based on the daily infections predictor, see Section 3 . The 

safety levels αhW 

, αhI were set to 0.9 for each hospital. When 

θh,αhW 

,αhI 
(s, t) = 0 for each hospital the allocation probabilities 

are set equal to those under the rule “Individual Hospitals”. 
• Regional Hospital: All wards and ICUs are merged into a re- 

gional ward and ICU as described in Section 2.2.3 . Patients are 

distributed over the hospitals according to Decision Rule 3 . 

In the simulation study, all patients are distributed over beds 

t hospitals in the region, and hence cannot be reallocated outside 

he region. If the capacity of a hospital is exceeded, patients stay 

t a so-called over-bed until the hospital’s bed shortage is resolved. 

n over-bed is an originally unequipped, non-staffed bed which is 

orcefully brought into operation. 

For the three coordination levels, Table 3 presents average Key 

erformance Indicators (KPIs) with 95% confidence intervals based 

n Student’s t-distribution. The averages and confidence intervals 

re calculated based on 250 independent simulation replications 

nder each policy, generated as described above. For each hospital, 

he number of over-bed days (days with a bed shortage) was deter- 

ined for the ward and ICU. This KPI does not reveal the number 

f over-beds. To this end, the average daily number of over-beds 

averaged number of occupied over-beds per day averaged over 

he evaluation period) was also determined for both departments 

t each hospital. Under the rules “Individual Hospitals” and “Load 

alancing” the total number of over-bed days and over-beds for 

he region was determined by summing the KPIs for the individual 

ospitals. The last column of Table 3 includes only the number of 

ver-bed days and the number of over-beds for the region as under 

ecision Rule 3 patients are allocated to an over-bed only if none 

f the hospitals in the region has a bed surplus. 

We observe a clear ordering in the performance of the alloca- 

ion rules. At all hospitals, Load Balancing yields a significant re- 

uction of the number of over-bed days of around 50% for the 

ard and around 60–75% for the ICU when compared to Indi- 
13 
idual Hospitals. This also holds for the average number of over- 

eds with an approximate 60–70% reduction for the ward and 80–

0% reduction for the ICU. Regional Hospital further significantly 

mproves performance, reducing the number of over-bed days to 

round 2 for the regional ward and ICU, with on average only 0.22 

ward) and 0.12 (ICU) over-beds needed per day. Appendix B con- 

ains a plot displaying the evolution of the occupancy under the 

egimes Load Balancing and Individual Hospitals, as well as a plot 

f the evolution of the allocation probabilities under Decision Rule 

 . These results show the clear advantage of regional collaboration. 

.2. Reallocating COVID-19 patients across regions 

This section considers four policies for reallocating patients 

cross regions to alleviate bed shortages. We consider occupancy 

n the period 8 November 2020 until 7 January 2021 (60 days) for 

our ROAZ regions: Acute Zorgregio Oost (region 1), Netwerk Acute 

org Brabant (region 2), Netwerk Acute Zorg West (region 3) and 

raumazorgnetwerk Midden-Nederland (region 4), augmented with 

n external region. The LoS and transition probabilities are esti- 

ated from the data warehouses of a representative large hospital 

n each region. To focus on the reallocation across regions, each re- 

ion is modelled as a (virtual) regional ward and ICU, as described 

n Section 2.2.3 . 

Patients arrive autonomously to either the ward or ICU in 

ach region according to the arrival rates displayed in Fig. 4 . 

hese arrival rates are predicted using the procedure outlined in 

ection 3.1 using an exponentially weighted average (coefficient 

.3) of the hospital admissions reported in the data set with daily 

nfections for each ROAZ region [50] . This regional arrival rate is 

hen multiplied with the historical fraction (from the hospital data 

arehouses) of patients allocated to the ward and ICU to obtain 

he autonomous arrival rates to the wards and ICUs. To take into 

ccount that COVID-19 beds are occupied by both COVID-19 con- 

rmed and non-confirmed COVID-19 patients, the hospitals’ arrival 

ates are scaled to obtain autonomous arrival rates close to those 

eported in (for instance) the dashboard [56] for the evaluation pe- 

iod. The capacity and initial occupancy, as well as the scaling fac- 

or used for the arrival rate for both departments at each of the 

egions is given in Table 4 . 

If the occupancy in a region exceeds capacity (measured at 

0 AM, the evaluation time), a patient has to be reallocated to an- 

ther region. We consider the following policies: 

• Any Surplus: A region has sufficient surplus at a department 

(ward or ICU) when the surplus of beds exceeds a safety 

threshold k as , which in our experiments is set to k as ∈ { 0 , 1 , 2 } .
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Fig. 4. Daily regional arrival rates to the ward (left) and ICU (right) to region 1 (black), 2 (green), 3 (blue) and 4 (dark red) in the period 8 November 2020 until 7 January 

2021. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 4 

Capacity, initial occupancy and scaling factor for each region. 

Capacity Init. occupancy Scaling factor 

Region Ward ICU Ward ICU Ward ICU 

1 183 61 155 55 8.0 20 

2 371 165 305 92 5.0 2 

3 212 114 162 63 2.5 10 

4 170 80 151 58 2.5 10 
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This minimal surplus is included to guarantee bed-capacity for 

autonomous arrivals in the region during the day. If a region 

r has bed shortage in ward and/or ICU at the evaluation time 

and other regions have sufficient bed surplus at the respective 

departments, a patient from region r is reallocated with equal 

probability to any of the regions having sufficient surplus at the 

respective departments. Decisions for reallocation of patients 

are taken one-by-one, such that for the next patient reallocated 

the occupancy of the regions takes into account the previous 

reallocation decisions. If after patient reallocation to a region 

the surplus of the department in that region is no longer suf- 

ficient (i.e., less than k as ), the department at that region is no 

longer considered for reallocation. If there is no region with a 

sufficient surplus for the respective department, the patient is 

reallocated to the external region. 
• Number of Beds: This policy differs from the Any Surplus pol- 

icy in that patients are reallocated with equal probability to any 

of the available (surplus) beds in the regions with a sufficient 

surplus. The effect of this is that regions with a larger bed sur- 

plus at the respective department have a larger probability to 

receive patients. 
• Stochastic Program: This policy reallocates patients to regions 

according to the here-and-now decision coming from Program 

(P), which is a stochastic program. To approximate the opti- 

mal solution to the stochastic program, sample average approx- 

imation is used for the second stage. The scenarios are deter- 

mined from Decision Rule 3 using 10 0 0 samples of the maxi- 

mum occupancy obtained from the PALM of the system of infi- 

nite server queues for the daily infections forecast and a hori- 

zon of 3 days. The costs γr,r ′ of patient reallocation from region 

r to r ′ are given in Table 5 . This cost matrix indicates that re-
14 
gions 1, 4 and regions 2, 3 lie close to each other, i.e., the re-

gions are clustered in clusters of two. Next, we take g = x 
→ x 2 .
• Integer Program: This policy reallocates patients to regions 

according to the here-and-now decision coming from Program 

(P ′ ), which is an integer program. The forecasts are determined 

from Decision Rule 3 using 10 0 0 samples of the maximum 

occupancy obtained from the PALM of the system of infinite 

server queues for the daily infections forecast and a horizon of 

3 days. The costs of patient reallocation and g are the same as 

in the stochastic program. 

Given the initial occupancy, arrival rates, LoS distribution and 

robabilities of transfers to other departments, the PALM of the 

ystem of infinite server queues corresponding to each region 

odelled as a single hospital is simulated according to the method 

escribed in Baas et al. [40] on a day-to-day basis for each day in

he evaluation period. The results of the simulation study are re- 

orted in Tables 6 and 7 . The policies are evaluated on the average

over 250 replications) total amount of reallocated patients (Total), 

mount of patients reallocated to the external region, amount of 

atients reallocated across regions within the clusters (across re- 

ions 1 and 4 and across regions 2 and 3, In clusters), between 

lusters (Btw. clusters) and the average cost per reallocation, de- 

ned as 
∑ 

s,r,r ′ γr,r ′ f W,r,r ′ (s ) / 
∑ 

s,r,r ′ f W,r,r ′ (s ) for the ward and by 

nalogy for the ICU. To evaluate the significance of differences in 

he averages, the 95% confidence interval based on Student’s t- 

istribution is also shown in the tables. 

Table 6 includes results for k as = 2 , i.e., for regions that re- 

erve 2 ward and ICU beds for autonomous same-day admissions. 

he four policies do not show a significant difference in the av- 

rage total number of reallocated patients in the wards and ICUs 

confidence intervals are overlapping), but do show a clear differ- 

nce in number of patients reallocated to the external region, and 

ost importantly, both optimisation models considerably reduce 

he number of patients reallocated out of a cluster (by roughly 

0%) compared to the other methods and thereby also the aver- 

ge reallocation cost. Most of the KPIs do not differ significantly 

etween the stochastic program (Stoch. Prog.) and the integer pro- 

ram (Int. Prog.). It is seen that under the stochastic program, more 

atients are reallocated across regions in the clusters, and on aver- 

ge, more patients are reallocated in total. Further, there is a signif- 
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Table 5 

Cost of patient reallocation across regions. 

From/To Region 1 Region 2 Region 3 Region 4 External region 

Region 1 10 50 50 10 100 

Region 2 50 10 10 50 100 

Region 3 50 10 10 50 100 

Region 4 10 50 50 10 100 

External region 100 100 100 100 100 

Table 6 

Average number of patient reallocations across regions (with 95% confidence interval) for k as = 

2 . 

KPI Dept. Any Surplus Num. Beds Stoch. Prog. Int. Prog. 

Total Ward 186 . 14 ± 7 . 60 178 . 43 ± 7 . 43 179 . 92 ± 7 . 48 173 . 80 ± 6 . 37 

ICU 96 . 91 ± 5 . 25 92 . 66 ± 5 . 13 101 . 76 ± 5 . 65 100 . 40 ± 5 . 92 

External Ward 8 . 74 ± 1 . 55 6 . 44 ± 1 . 45 4 . 67 ± 1 . 19 3 . 50 ± 1 . 05 

ICU 21 . 10 ± 2 . 83 17 . 92 ± 2 . 56 12 . 70 ± 2 . 07 14 . 14 ± 2 . 31 

In clusters Ward 63 . 37 ± 2 . 81 61 . 20 ± 2 . 66 134 . 53 ± 5 . 10 122 . 11 ± 4 . 26 

ICU 27 . 09 ± 1 . 54 27 . 20 ± 1 . 59 55 . 96 ± 2 . 68 50 . 90 ± 2 . 83 

Btw. clusters Ward 114 . 04 ± 4 . 91 110 . 80 ± 4 . 91 40 . 72 ± 3 . 72 48 . 20 ± 3 . 75 

ICU 48 . 72 ± 2 . 24 47 . 54 ± 2 . 38 33 . 10 ± 2 . 46 35 . 37 ± 2 . 32 

Average cost Ward 38 . 51 ± 0 . 59 37 . 69 ± 0 . 58 20 . 51 ± 0 . 77 22 . 25 ± 0 . 77 

ICU 46 . 92 ± 1 . 28 45 . 56 ± 1 . 25 31 . 22 ± 1 . 36 33 . 98 ± 1 . 25 

Table 7 

Average number of patient reallocations across regions (with 95% confidence interval) for k as = 

0 , 1 , 2 . 

k as = 0 k as = 1 k as = 2 

KPI Dept. Num. Beds Num. Beds Num. Beds Int. Prog. 

External Ward 4 . 34 ± 1 . 11 6 . 04 ± 1 . 40 6 . 44 ± 1 . 45 3 . 50 ± 1 . 05 

ICU 12 . 65 ± 2 . 25 16 . 95 ± 2 . 39 17 . 92 ± 2 . 56 14 . 14 ± 2 . 31 

In clusters Ward 62 . 33 ± 2 . 94 63 . 18 ± 3 . 01 61 . 20 ± 2 . 66 122 . 11 ± 4 . 26 

ICU 31 . 32 ± 1 . 87 29 . 64 ± 1 . 60 27 . 20 ± 1 . 59 50 . 90 ± 2 . 83 

Btw. clusters Ward 115 . 14 ± 5 . 35 116 . 02 ± 4 . 98 110 . 80 ± 4 . 91 48 . 20 ± 3 . 75 

ICU 55 . 84 ± 2 . 92 51 . 12 ± 2 . 55 47 . 54 ± 2 . 38 35 . 37 ± 2 . 32 

Average cost Ward 37 . 12 ± 0 . 49 37 . 76 ± 0 . 57 37 . 69 ± 0 . 58 22 . 25 ± 0 . 77 

ICU 41 . 56 ± 0 . 97 44 . 22 ± 1 . 12 45 . 56 ± 1 . 25 33 . 98 ± 1 . 25 
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cantly lower average reallocation cost. This is due to the stochastic 

rogram being less conservative than the integer program. 

Table 7 presents the results of bed reservation via the thresh- 

lds k as for the Number of Beds policy (that outperforms the Any 

urplus policy) and the integer program. With increasing k as the 

umber of patients reallocated to the external region increases, 

s is to be expected. Our optimisation model slightly outperforms 

he Number of Beds policy. The Number of Beds policy may be a 

ood heuristic if hospitals and regions may be convinced to not use 

afety beds, that are not required in our collaborative optimisation 

olicy. 

In conclusion, the integer program is a good approximation of 

he stochastic program, that avoids reallocations to the external re- 

ion and is able to reallocate patients to closer regions, while keep- 

ng the total number of reallocations at roughly the same level. 

Sensitivity analyses, evaluating the results presented in this and 

he previous subsections under different horizons and safety levels 

re presented in Appendix C . 

. Discussion and conclusion 

This paper has introduced mathematical models and decision 

ules for dynamic fair balancing of COVID-19 patients over hospi- 

als in a region and across regions. Patient flow is captured in the 

oisson Arrival Location Model (PALM) and the corresponding net- 

ork of infinite server queues for the ward and Intensive Care Unit 

ICU) of a single hospital. The model includes transfers between 

ard and ICU and allows determining safety levels for ward and 

CU bed occupancy and corresponding forecasts of bed surplus or 
15 
ed shortage in the ward and ICU of each hospital or region. The 

ynamic fair balancing approach within a region is based on a dy- 

amic predictive load balancing model incorporating a forecast of 

he occupancy based on publicly available regional infection data 

nd Length of Stay (LoS) and transfer probabilities obtained from 

he Hospital Information System (HIS). This model extends load 

alancing models in literature to include real-time estimations of 

he arrival process, service and routing processes and their impact 

n forecast occupancy. The dynamic fair balancing model across re- 

ions is a stochastic program that may be accurately approximated 

y a mixed integer program taking into account forecasts of the 

uture bed surpluses or shortages. It hence takes into account both 

he current occupancy and the forecast maximum occupancy over 

he next couple of days. 

Our mathematical model is augmented by accurate statisti- 

al methods to predict patient arrivals, estimate LoS and transfer 

robabilities. For LoS and transfer probabilities, we have used the 

aplan-Meier estimators for censored data as developed in Baas 

t al. [40] . For patient arrivals, we have both improved prediction 

f patient arrivals based on the HIS and Richards’ curves that was 

eveloped and shown to be very accurate in Baas et al. [40] and 

eveloped prediction of patient arrivals based on regional infec- 

ion data. We have found that the latter provides better results as 

t captures changing trends in hospitals’ arrival rates a few days 

arlier than the HIS data. In addition, for our dynamic load balanc- 

ng model, we have developed an estimator of the load balancing 

ynamic allocation fractions of patients to hospitals in a region. 

ur forecasting method for bed occupancy is based on simulation 

f the PALM as developed in Baas et al. [40] using the estimated 
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oS and transfer probabilities and predicted arrivals based on re- 

ional infection data. 

Our dynamic fair balancing models and statistical methods 

ield implementable decision rules for patient allocation to hos- 

itals in a region or reallocation across regions based on safety 

evels and forecast bed surplus or bed shortage for each hospi- 

al or region. We have tested accuracy of our forecast using HIS 

ata from September 4, 2020 until January 31, 2021 of hospitals in 

he ROAZ region Netwerk Acute Zorg West , containing the hospitals 

roene Hart Ziekenhuis (GHZ), HagaZiekenhuis (Haga) and Leiden 

niversity Medical Center (LUMC). Our forecast of bed occupancy 

nd of maximum bed occupancy over the next couple of days are 

hown to be very accurate. Using these forecasts, we have investi- 

ated the benefits of three levels of regional collaboration: individ- 

al hospitals (or no collaboration among hospitals), dynamic load 

alancing and merging all hospitals into a (virtual) regional hospi- 

al. The regional hospital exploits the statistical multiplexing gain 

nd clearly makes optimal use of available beds, but may include 

atient transfers from the ward of one hospital to the ICU of an- 

ther and requires hospitals to give complete control over patient 

dmission to a regional dispatcher. Load balancing allows hospitals 

o govern their own policy and has clear and substantial benefits 

ith respect to levelling the load over hospitals in the region. 

The intra-regional load balancing decision rule may be devel- 

ped into a decision support tool and incorporated in the ROAZ 

ashboard for allocating patients to hospitals. First steps in this di- 

ection have been set in collaboration with ROAZ region Netwerk 

cute Zorg West . We have explored optimal reallocation of patients 

cross regions based on current and forecast load in the regions 

nd found that our decision rule that takes into account reallo- 

ation costs across regions and the current and forecast load in 

he regions results in fewer reallocations to regions far away. This 

nter-regional reallocation rule requires the same information as 

hared with the Landelijk Coördinatie-centrum Patiëntenspreiding 

LCPS) and may be developed into a decision support tool for pa- 

ient reallocation. 

In addition to developing our results into decision support tools, 

everal points for further research or improvement may be ad- 

ressed. In our simulation study we considered a fixed decision 

poch at 10 AM each day. As a consequence, a patient arriving in- 

etween two decision epochs is admitted to an over-bed until the 

ext decision epoch. Immediate reallocation of this patient may 

e included in our simulation approach. However, this requires a 

eal-time update of new admissions, discharges and reallocations 

mong hospitals for all hospitals or all regions. As this results in 

ncreased dependence among decision epochs, a Markov decision 

rocess approach might also be investigated. In our hierarchical 

odel, we split the decisions for inter-regional reallocations and 

oad balancing within the region. As long as we consider the region 

s a single hospital, this does not influence the number of inter- 

egional reallocations since the bed surplus/shortage of a region is 

ndependent of (and determined prior to) the load-balancing allo- 

ation of patients to hospitals. Integrating the intra-regional and 

nter-regional decision levels is an open question for further re- 

earch. 

Given the quality of our forecasts, the significant reduction in 

eallocations to distant regions and the significant improvement of 

alanced load among hospitals within a region, we are confident 

hat our decision rules provide an important step towards prac- 

ical implementation of a decision support tool for real-time re- 

llocation of COVID-19 patients. Moreover, our methodology may 

lso be beneficial for patient reallocation during future pandemics 

r national outbreaks, with fine-tuning of the statistical methods. 

ur mathematical models are generic and not specific to COVID- 

9; all they require is data from which patient arrival rates can 

e predicted as well as in-hospital data on patient transfers and 
16 
ischarges. Lastly, we envision our dynamic load balancing proce- 

ure to be applicable well beyond the scope of patient reallocation. 

e aim to unlock this potential in future research, by incorporat- 

ng our dynamic load balancing procedure in a generic queueing 

ramework. 
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ppendix A. Dynamic scaling of arrival rates under load 

alancing 

Allocation of patients to hospitals in a region under Deci- 

ion Rules 2 and 3 requires estimation of the allocation fractions 

h,αhW 

,αhI 
. This appendix presents an estimation procedure to ob- 

ain θh,αhW 

,αhI 
from the sample paths of the PALM. 

Consider day s and forecast horizon t . Recall the notation in- 

roduced in Section 2 . Fix h, � h , αhW 

, αhI , n 
∗
hW 

(s, t) , n ∗
hI 
(s, t) and let

hW 

(θ ) = P θ,h 

[
max 

u ∈ [ s,s + t] 
N hW 

(u ) ≤ n 

∗
hW 

(s, t) | L h (s ) = � h 

]
− αhW 

nd define πhI (θ ) similarly. 

If N hW 

(s ) > n ∗
hW 

(s ) or N hI (s ) > n ∗
hI 
(s ) , we set θh,αhW 

,αhI 
= 0 . Oth-

rwise, we estimate θh,αhW 

,αhI 
as described below. Given an initial 

alue χh, 0 , consider the sequence (χh,n ) n : 

h,n +1 = χh,n + a (n ) min 

(
˜ πhW,n ( exp (χh,n )) , ˜ πhI,n ( exp (χh,n )) 

)
, 

(14) 

ith step-size a (n ) satisfying the Robbins-Monro condi- 

ions [57] and 

˜ hW,n ( exp (χh,n )) = 

[ 

1 

M in 

M in ∑ 

i =1 

1 [ 
max u ∈ [ s,s + t] N 

(n,i ) 
hW 

(u ) ≤n ∗
hW 

(s,t) 
] 
] 

− αhW 

˜ πhI,n ( exp (χh,n )) = 

[ 

1 

M in 

M in ∑ 

i =1 

1 [ 
max u ∈ [ s,s + t] N 

(n,i ) 
hI 

(u ) ≤n ∗
hI 
(s,t) 

] 
] 

− αhI . 

n the above, 

(
N 

(n,i ) 
hW 

(u ) , N 

(n,i ) 
hI 

(u ) 
)

u ∈ [ s,s + t] 
is a sampled trajectory 

f the occupancy in the period [ s, s + t] given the current state � 
h 
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nd scaling factor θ = exp (χh,n ) for the arrival rate. The trajecto- 

ies are independent over i, n and can be sampled according to 

he PALM simulation method given in Baas et al. [40] . The param- 

ter M in denotes a number of inner simulations, which are per- 

ormed for each iterate in (14) . From the above, it can be seen

hat ˜ πhW,n ( exp (χh,n )) , ˜ πhI,n ( exp (χh,n )) are bounded random vari- 

bles with expectation equal to πhW 

( exp (χh,n )) , πhI ( exp (χh,n )) . 

he sequence defined by (14) is a Robbins-Monro sequence [57] , 

or which we verify (almost sure) convergence below. 

Let 

(x ) = E [ min 

(
˜ πhW, 1 ( exp (x )) , ˜ πhI, 1 ( exp (x )) 

)
] . 

f η(x ) = 0 for some x and πhW 

(0) , πhI (0) ≥ 0 , all assumptions in

lum [58] are satisfied, so that (χh,n ) n converges (almost surely) 

o a constant limit χh such that η(χh ) = 0 . 

Next, consider the case η(x ) 	 = 0 for all x ≥ 0 . It can be shown

hat η is a decreasing, differentiable function with lim x →∞ 

η(x ) = 

in (−αhW 

, −αhI ) . Hence if η(x ) 	 = 0 for all x ≥ 0 , we have that η is

egative everywhere. The minimum in (14) can be decomposed in 

(χh,n ) and a martingale difference εh,n (χh,n ) , from which it fol- 

ows that χh,n is the sum of an almost surely converging martin- 

ale (bounded in L 2 as 
∑ 

n α(n ) 2 < ∞ ) and a deterministic series

ith negative increments. From this, it follows that χh,n → −∞ al- 

ost surely. 
17 
Now, set θh,n = exp (χh,n ) . By the above discussion it follows 

hat either θh,n → 0 in the case of bed shortage or 

in 

(
E 

[
˜ πW 

(θh,n ) 
]
, E 

[
˜ πI (θh,n ) 

])
≥ E [ min 

(
˜ πW 

(θh,n ) , ˜ πI (θh,n 

)
] = η(χh,n ) → 0 (15) 

n the case of bed surplus at hospital h . Hence, in the latter case,

he limit of the sequence θh,n satisfies the condition given in (5) . 

e estimate θh,αhW 

,αhI 
as the almost sure limit of θh,n in the man- 

er described below. 

For each day s , we sample the sequence defined in (14) with 

h, 0 the logarithm of θh,αhW 

,αhI 
obtained for day s − 1 . For day 0, 

e set χh, 0 equal to the logarithm of the historical fraction of 

OVID-19 patients allocated to the hospital. We chose step-size 

 (n ) = n −0 . 51 (satisfying the Robbins–Monro conditions [57] ) and 

 in = 5 , which was seen to result in fast convergence of the iter-

tes to a stationary point. Convergence of the sampler is assessed 

y checking for every batch of 300 iterations whether the batch- 

ean of exp (χh,n ) is smaller than 10 −5 or whether the batch-mean 

f the residuals min 

(
˜ πhW,n ( exp (χh,n )) , ˜ πhI,n ( exp (χh,n )) 

)
is smaller 

han 0.01. After diagnosing convergence on a batch of iterations, 

h,αhW 

,αhI 
is estimated as the mean of samples θh,n for that batch. 
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ppendix B. Sample path of hospitals’ occupancy in single 

egion 

Fig. 5 presents a sample path of the ward and ICU occupancy 

or all hospitals in a region for the coordination levels Load Bal- 

ncing (left) and Individual Hospitals (right) under the simulation 

tudy described in Section 4.1 . Jumps occur on a daily basis, start- 

ng at November 8, 2020, 10:00. The evolution of the allocation 

robabilities is included in the bottom row of the figure. 

Under Load Balancing, an inverse proportional relation may be 

bserved between occupancy at a certain hospital and its alloca- 

ion probability. Note that as θh,αhW 

,αhI 
(s, t) aims to control both 

he occupancy in the ward and ICU, θh,αhW 

,αhI 
(s, t) is low (often 

ero) when one of these departments reaches a bed shortage. It 

s seen in this sample path that the ICU at LUMC is often full, 

ence the corresponding allocation probability is also often set to 

ero. Note that it seems harder to control the occupancy at the 
ig. 5. One sample path of occupancy (solid) in the ward (top) and ICU (middle) over 

orange), Haga (green) and LUMC (blue) under the Load Balancing dynamic allocation r

apacity at the respective departments and hospitals and the (dynamic) allocation probab

For interpretation of the references to colour in this figure legend, the reader is referred 

18
CU using the allocation probability, as most of the patients at the 

CU originate from the ward. During periods when every hospital 

as a crowded department, the allocation probabilities are seen 

o have a fluctuating behaviour, often sending all patients to one 

ospital one day, and the next day to another. This can some- 

imes lead to a large increase in over-beds, for instance in the 

ard around January 5, for Haga. Around December 21, 2020, there 

ere bed shortages at the ICU of hospitals GHZ and LUMC and in 

he ward at Haga, as a result the historical allocation probabilities 

0.30,0.43,0.27 for hospitals GHZ, Haga and LUMC resp.) were used 

round this period. Note that as departments at the hospitals are 

lready over-occupied during this period, setting these probabili- 

ies larger than zero will lead to an even larger bed shortage. This 

s a consequence of the setup in Section 4.1 , where patients have 

o be admitted to a hospital in the region. In reality, as is also con-

idered in Section 4.2 , patients will be allocated out of the region. 

rom the sample path it can be seen that bed shortages are often 
the simulation period of the simulation study from Section 4.1 for hospitals GHZ 

ule (left) and the Individual Hospital rule (right). The dashed lines represent the 

ilities are shown in the bottom plot with colours matching those for the hospitals. 

to the web version of this article.) 
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Table 9 

KPIs for the load balancing allocation rule for patients to hospitals 

for forecasting horizons 3 and 5 under the simulation study setup of 

Section 4.1 . 

Hospital KPI s = 3 s = 5 

LUMC Over-bed Days Ward 5 . 70 ± 0 . 76 5 . 98 ± 0 . 82 

Over-bed Days ICU 4 . 43 ± 0 . 73 4 . 54 ± 0 . 84 

Over-beds Ward 0 . 40 ± 0 . 10 0 . 44 ± 0 . 14 

Over-beds ICU 0 . 13 ± 0 . 04 0 . 14 ± 0 . 04 

Occupancy Ward 20 . 42 ± 0 . 50 20 . 60 ± 0 . 54 

Occupancy ICU 7 . 95 ± 0 . 21 7 . 89 ± 0 . 21 

Load Fraction 0 . 26 ± 0 . 01 0 . 21 ± 0 . 01 

Haga Over-bed Days Ward 3 . 80 ± 0 . 55 3 . 89 ± 0 . 55 

Over-bed Days ICU 4 . 43 ± 0 . 84 4 . 68 ± 0 . 93 

Over-beds Ward 0 . 24 ± 0 . 04 0 . 25 ± 0 . 04 

Over-beds ICU 0 . 16 ± 0 . 05 0 . 17 ± 0 . 07 

Occupancy Ward 30 . 04 ± 0 . 50 30 . 05 ± 0 . 51 

Occupancy ICU 13 . 02 ± 0 . 26 12 . 97 ± 0 . 29 

Load Fraction 0 . 41 ± 0 . 02 0 . 33 ± 0 . 02 

GHZ Over-bed Days Ward 6 . 58 ± 0 . 85 6 . 94 ± 0 . 97 

Over-bed Days ICU 3 . 10 ± 0 . 57 3 . 47 ± 0 . 58 

Over-beds Ward 0 . 47 ± 0 . 09 0 . 52 ± 0 . 13 

Over-beds ICU 0 . 09 ± 0 . 02 0 . 10 ± 0 . 02 

Occupancy Ward 23 . 51 ± 0 . 48 23 . 41 ± 0 . 52 

Occupancy ICU 9 . 11 ± 0 . 22 9 . 17 ± 0 . 22 

Load Fraction 0 . 29 ± 0 . 01 0 . 23 ± 0 . 01 

Region Over-bed Days Ward 13 . 14 ± 1 . 23 14 . 16 ± 1 . 35 

Over-bed Days ICU 9 . 91 ± 1 . 17 10 . 20 ± 1 . 26 

Over-beds Ward 1 . 12 ± 0 . 17 1 . 21 ± 0 . 22 

Over-beds ICU 0 . 38 ± 0 . 07 0 . 41 ± 0 . 09 

Occupancy Ward 73 . 97 ± 0 . 97 74 . 07 ± 0 . 98 

Occupancy ICU 30 . 07 ± 0 . 45 30 . 03 ± 0 . 47 

Table 10 

Average number of patient reallocations across regions (with 

95% confidence interval) according to the simulation study of 

Section 4.2 for horizons s set to 3 and 5. 

KPI Dept. Horizon 3 Horizon 5 

Total Ward 173 . 80 ± 6 . 37 177 . 70 ± 6 . 90 

ICU 100 . 40 ± 5 . 92 99 . 31 ± 5 . 36 

External Ward 3 . 50 ± 1 . 05 4 . 93 ± 1 . 20 

ICU 14 . 14 ± 2 . 31 12 . 27 ± 2 . 03 
esolved quickly, often in a matter of a few days. Under the Indi- 

idual Hospitals scenario, the allocation probabilities stay constant 

ver time. The result is that there are long periods of bed short- 

ges, as can be seen from Fig. 5 . The ICU is often overcrowded at

HZ, while the ICUs at the other hospitals become almost empty. 

n a sample path level, the Load Balancing rule indeed seems to 

how a more balanced behaviour of the occupancy over time. 

ppendix C. Sensitivity analyses 

In this Appendix sensitivity analyses are performed, showing 

hat the results in Sections 4.1 and 4.2 look like under different 

orizons and safety levels. 

We first evaluate the results for our load balancing method 

nder different scenarios for the safety levels while keeping the 

est of the setup in Section 4.1 the same. In scenario 1 we set all

afety levels to 0.9, in scenario 2 we set αHaga = 0 . 7 and all other

afety levels to 0.9 and in scenario 3 we set αLUMC = 0 . 99 , αHaga =
 . 7 , αGHZ = 0 . 9 , these safety levels hold both for the ward and the

CU. These scenarios were chosen as Haga (LUMC) is the largest 

smallest) hospital out of the three, hence it might be tempted to 

et a lower (higher) safety level than the other hospitals in prac- 

ice. The results are given in Table 8 , where we have also shown

he average occupancy at both the ward and ICU and the average 

oad fraction ( θh,αhW 

,αhI 
(s, t) ). 

When comparing scenario 1 with scenario 2, no significant dif- 

erences are seen for the over-beds and the occupancy. On average, 

he over-beds, occupancy and load coefficient for Haga are higher, 

hile these measures stay roughly the same for the other hospi- 

als. 

When comparing scenario 1 with scenario 3, significant differ- 

nces are seen, the occupancy at both departments at LUMC is 

ignificantly lower, while the KPIs for over-beds stay roughly the 

ame. For Haga, the over-bed (days) and occupancy significantly in- 

rease for the ward, while they stay about the same for the ICU as 

ccupancy at the ICU is less sensitive to the direct arrivals. Finally, 

he number of over-bed days at the ward of GHZ also significantly 
able 8 

PIs for the load balancing allocation rule for patients to hospitals. In scenario 1 

e set all safety levels to 0.9, in scenario 2 we set αHaga = 0 . 7 and all other safety 

evels to 0.9 and in scenario 3 we set αLUMC = 0 . 99 , αHaga = 0 . 7 , αGHZ = 0 . 9 . 

Hospital KPI Scenario 1 Scenario 2 Scenario 3 

LUMC Over-bed Days Ward 5 . 70 ± 0 . 76 5 . 28 ± 0 . 67 5 . 26 ± 0 . 71 

Over-bed Days ICU 4 . 43 ± 0 . 73 4 . 82 ± 0 . 93 3 . 82 ± 0 . 81 

Over-beds Ward 0 . 40 ± 0 . 10 0 . 38 ± 0 . 08 0 . 41 ± 0 . 07 

Over-beds ICU 0 . 13 ± 0 . 04 0 . 16 ± 0 . 05 0 . 12 ± 0 . 03 

Occupancy Ward 20 . 42 ± 0 . 50 20 . 12 ± 0 . 51 18 . 31 ± 0 . 50 

Occupancy ICU 7 . 95 ± 0 . 21 7 . 90 ± 0 . 23 7 . 33 ± 0 . 20 

Load Fraction 0 . 26 ± 0 . 01 0 . 28 ± 0 . 02 0 . 17 ± 0 . 01 

Haga Over-bed Days Ward 3 . 80 ± 0 . 55 4 . 39 ± 0 . 64 5 . 81 ± 0 . 73 

Over-bed Days ICU 4 . 43 ± 0 . 84 5 . 06 ± 0 . 91 5 . 00 ± 0 . 72 

Over-beds Ward 0 . 24 ± 0 . 04 0 . 26 ± 0 . 05 0 . 37 ± 0 . 06 

Over-beds ICU 0 . 16 ± 0 . 05 0 . 17 ± 0 . 04 0 . 14 ± 0 . 03 

Occupancy Ward 30 . 04 ± 0 . 50 30 . 58 ± 0 . 53 31 . 59 ± 0 . 49 

Occupancy ICU 13 . 02 ± 0 . 26 13 . 10 ± 0 . 29 13 . 44 ± 0 . 25 

Load Fraction 0 . 41 ± 0 . 02 0 . 49 ± 0 . 02 0 . 44 ± 0 . 02 

GHZ Over-bed Days Ward 6 . 58 ± 0 . 85 6 . 57 ± 0 . 95 8 . 14 ± 0 . 83 

Over-bed Days ICU 3 . 10 ± 0 . 57 3 . 13 ± 0 . 58 3 . 54 ± 0 . 65 

Over-beds Ward 0 . 47 ± 0 . 09 0 . 48 ± 0 . 10 0 . 57 ± 0 . 08 

Over-beds ICU 0 . 09 ± 0 . 02 0 . 08 ± 0 . 02 0 . 10 ± 0 . 03 

Occupancy Ward 23 . 51 ± 0 . 48 23 . 04 ± 0 . 52 24 . 01 ± 0 . 47 

Occupancy ICU 9 . 11 ± 0 . 22 8 . 87 ± 0 . 25 9 . 23 ± 0 . 23 

Load Fraction 0 . 29 ± 0 . 01 0 . 30 ± 0 . 02 0 . 27 ± 0 . 01 

Region Over-bed Days Ward 13 . 14 ± 1 . 23 13 . 49 ± 1 . 33 16 . 11 ± 1 . 29 

Over-bed Days ICU 9 . 91 ± 1 . 17 10 . 66 ± 1 . 31 10 . 13 ± 1 . 17 

Over-beds Ward 1 . 12 ± 0 . 17 1 . 12 ± 0 . 17 1 . 35 ± 0 . 16 

Over-beds ICU 0 . 38 ± 0 . 07 0 . 41 ± 0 . 08 0 . 35 ± 0 . 06 

Occupancy Ward 73 . 97 ± 0 . 97 73 . 74 ± 1 . 02 73 . 92 ± 0 . 97 

Occupancy ICU 30 . 07 ± 0 . 45 29 . 87 ± 0 . 49 30 . 00 ± 0 . 45 

In Clusters Ward 122 . 11 ± 4 . 26 124 . 51 ± 4 . 63 

ICU 50 . 90 ± 2 . 83 52 . 56 ± 2 . 60 

Btw. Clusters Ward 48 . 20 ± 3 . 75 48 . 26 ± 3 . 69 

ICU 35 . 37 ± 2 . 32 34 . 48 ± 2 . 29 

Average Cost Ward 22 . 25 ± 0 . 77 22 . 66 ± 0 . 77 

ICU 33 . 98 ± 1 . 25 32 . 38 ± 1 . 29 
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ncreases. This could be explained by the fact that the load bal- 

ncing rule sends patients to Haga most of the time in scenario 3, 

nd if bed shortages occur there almost all patients will go to GHZ 

s the safety level of LUMC is a lot higher. A significantly lower 

higher) load coefficient is seen at LUMC (Haga) for scenario 3 than 

or scenario 1, while the load coefficient for GHZ decreases slightly. 

hen comparing the KPIs for the region as a whole for the three 

cenarios, scenario 1 is the preferred choice as it has the lowest 

mount of over-bed (days) on average. 

Next, in Table 9 , results are shown for the simulation study of 

ection 4.1 for horizons 3 and 5 days. No significant differences 

 95% ) are seen in the KPIs, the load balancing policy is seen to per-

orm slightly worse on average for a horizon of 5 days when look- 

ng at the regional numbers. The samples of maximum occupancy 

ver 5 days are larger than over 3 days, hence the load coefficients 

re significantly smaller for a horizon of 5 days. 

Finally, in Table 10 , the results for the simulation study of 

ection 4.2 are shown for horizons 3 and 5. The policies show a 

imilar performance, no significant differences were found. Slight 

ncreases are seen on average when looking at the number of pa- 

ients reallocated in the clusters and the total number of reallo- 

ated patients. 
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ppendix D. List of symbols 

General indices 

r regions, r = 1 , . . . , R 

h hospitals (within a region r), h = 1 , . . . , H r 

c ∈ C patient class determined by 

characteristics c

s, t, u time; usually, s denotes the current time 

and u is in the time interval [ s, s + t] 

Individual hospital model 

λhc (t) arrival rate of c patients at hospital h 

p hc (t) fraction of c patients admitted to 

hospital h ’s ward 

q hcW (t) , q hcI (t) probability that a c patient is discharged 

L hcW (t) , L hcI (t) length of stay (LoS) of c patients admitted 

to the ward, ICU of hospital h 

L h (s ) , � h tuples of patients’ location and realised 

LoSs (up to time s ) in hospital h . 

αhW , αhI safety levels of the ward, ICU of hospital h 

N hcW (t) , N hcI (t) number of c patients in hospital h 

n ∗
hW 

(s, t) , n ∗
hI 
(s, t) number of beds in hospital h in [ s, s + t] 

n hW,αhW 
(s, t) , n hI,αhI 

(s, t) αhW -quantile, αhI -quantile for maximum 

occupancy in ward, resp. ICU of hospital h 

in [ s, s + t] 

˜ n hW,αhW 
(s, t) , ˜ n hI,αhI 

(s, t) bed surplus in the ward, ICU of hospital h 

in [ s, s + t] at safety levels αhW , resp. αhI 

Individual region model 

�rc (t) arrival rate of c patients in region r

�r (t) 
∑ 

c∈ C �rc (t) 

p rc (t) fraction of c patients admitted to the 

ward of hospitals in region r

P rc (t) fraction of (regional) c patients admitted 

to the virtually merged regional ward of 

region r

αr set containing all safety levels of 

individual hospitals in region r: 

αr = { αhW , αhI : h = 1 , . . . , H r } 
αrW , αrI safety levels of the (virtually merged) 

ward, ICU of region r

θh,αhW ,αhI 
(s, t) fraction of regional arrivals that hospital h 

can accommodate in [ s, s + t] at safety 

levels αhW , αhI 

θr,αr 
(s, t) θr,αr 

(s, t) = 

∑ H r 
h =1 

θh,αhW ,αhI 
(s, t) ̂ θhW,αrW 

(s, t) , ̂  θhI,αrI 
(s, t) fraction of regional patients hospitalised 

in the ward, ICU of hospital h after 

admittance to the virtually merged 

regional ward, ICU of region r

˜ n rW,αr 
(s, t) , ˜ n rI,αr 

(s, t) bed surplus in the ward, ICU of region r

in [ s, s + t] at individual hospital safety 

levels αr . 

n ∗rW (s, t) , n ∗rI (s, t) number of beds in the virtually merged 

regional ward, ICU of region r in [ s, s + t] 

n rW,αrW 
(s, t) , n rI,αrI 

(s, t) αrW -quantile, αrI -quantile for maximum 

occupancy in the virtually merged ward, 

resp. ICU of region r in [ s, s + t] 

M rW,αr 
(s, t) , M rI,αr 

(s, t) regional bed shortage in the ward, ICU of 

region r in the time-interval [ s, s + t] at all 

individual hospital safety levels αr 

m rW,αr 
(s, t) , m rW,αr 

(s, t) mean regional bed shortage in the ward, 

ICU of region r in [ s, s + t] (belonging to 

M rW,αr 
(s, t) , resp. M rI,αr 

(s, t) ) 

( continued on next page ) 
20 
Multiple regions model 

˜ n rW (s ) , ˜ n rI (s ) bed surplus ( ≥ 0 ) or shortage ( < 0 ) in the 

ward(s), ICU(s) of region r at time s 

˜ n rW (s, t) , ˜ n rI (s, t) forecast of the bed surplus ( ≥ 0 ) or 

shortage ( < 0 ) in the ward(s), ICU(s) of 

region r in [ s, s + t] . 

γr,r ′ costs for reallocating a patient from 

region r to region r ′ 

f W,r,r ′ (s ) , f I,r,r ′ (s ) the number of ward, ICU patients to 

reallocate from region r to region r ′ at 

time s 

f W,r,r ′ (s, t) , f I,r,r ′ (s, t) the number of potentially additionally 

required reallocations of ward, ICU 

patients from region r to region r ′ in 

[ s, s + t] based on the bed forecasts 

g(·) penalty function to balance/level bed 

surpluses across regions 

δW,r (s ) , δI,r (s ) relative remaining bed surplus in the 

ward, ICU of region r at (current) time s 

δW,r (s, t) , δI,r (s, t) forecast relative remaining bed surplus in 

the ward, ICU of region r in [ s, s + t] 
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