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This paper introduces mathematical models that support dynamic fair balancing of COVID-19 patients
over hospitals in a region and across regions. Patient flow is captured in an infinite server queueing
network. The dynamic fair balancing model within a region is a load balancing model incorporating a
forecast of the bed occupancy, while across regions, it is a stochastic program taking into account sce-
narios of the future bed surpluses or shortages. Our dynamic fair balancing models yield decision rules
for patient allocation to hospitals within the region and reallocation across regions based on safety levels
and forecast bed surplus or bed shortage for each hospital or region.
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Input for the model is an accurate real-time forecast of the number of COVID-19 patients hospitalised in
the ward and the Intensive Care Unit (ICU) of the hospitals based on the predicted inflow of patients,
their Length of Stay and patient transfer probabilities among ward and ICU. The required data is obtained
from the hospitals’ data warehouses and regional infection data as recorded in the Netherlands.

The algorithm is evaluated in Dutch regions for allocation of COVID-19 patients to hospitals within the

region and reallocation across regions using data from the second COVID-19 peak.
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1. Introduction

Confronted with a pandemic or the outbreak of a severe and
highly contagious disease on a national level, governments and or-
ganisations must implement appropriate countermeasures [1]. Ac-
curate estimation of disease prevalence is essential for monitor-
ing and decision making [2], as is optimal distribution of vac-
cines [3,4]. Despite these efforts, hospitals may be overwhelmed
by infected patients. These patients arrive in addition to hospi-
tals’ regular patients, increasing the strain on hospital staff and re-
sources [5,6]. Alternative resources such as backup and field hos-
pitals or student nurses may offer additional capacity [7]. Despite
such measures, hospitals may have no other option than to tem-
porarily decrease the number of regular patients treated [8,9]. A
reduction in regular care has serious consequences, in particular
for oncology patients and others whose condition may worsen ir-
reversibly if treatment is postponed [10], but also in other medical
specialties healthy life years are lost due to fewer treatments [9].
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Hospitals may defer infected patients to other hospitals facing a
less severe surge in infected patients, either inside or outside their
region, to avoid exceeding their maximum capacity [11]. Next to
being unavoidable in certain cases, redistributing patients may also
balance the staff work pressure across regions and may avoid po-
tentially unethical differences in the accessibility of regular care
across regions. Redistributing infected patients according to a fair
balancing policy provides the opportunity to share and thus reduce
the burden of the pandemic on regular patients as well as hospital
staff.

When the COVID-19 pandemic reached the Netherlands, the
Dutch government erected a national coordination centre for pa-
tient reallocation (in Dutch: ‘Landelijk Codrdinatie-centrum Patién-
tenspreiding’, LCPS) with exactly these aims [12]. To fulfil its
mission, LCPS cooperates with the twelve ‘ROAZ’ regions of the
country, where each ROAZ (in Dutch: ‘Regionaal Overleg Acute
Zorgketen’) region has its own consultative body for the acute care
chain [13]. When a hospital requests to reallocate one of its COVID-
19 patients, other hospitals within the same region are considered
first, as an intra-regional reallocation is the least burdensome for
the patient, his or her relatives, and the ambulance transportation
service. If an intra-regional reallocation is not possible, the patient
is reallocated to another region in the Netherlands, or to Germany
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as a last resort. As outlined in Bekker et al. [14], reallocation of
patients is based on separate forecasts of the COVID-19 bed occu-
pancy at the ward and Intensive Care Unit at the regional level,
but neither a detailed model to fairly balance patients across re-
gions taking into account these predictions, nor a model to fairly
allocate patients to hospitals within a region taking into account
bed occupancy predictions per hospital are included.

To facilitate the reallocation process, hospitals are required to
report their bed surplus that is available for COVID-19 ward and
ICU patients daily at 10 AM. Physicians report the bed surplus by
observing the current situation and likely incorporating some form
of safety margin. Bed surplus and bed shortage are influenced by
several factors. The surplus of COVID-19 ward beds, for example,
increases due to discharges and transfers to the ICU, while it de-
creases by transfers from the ICU, possible reallocations from other
hospitals and new admissions, where the latter depends on the
number of COVID-19 infections in the region some days ago. It is
infeasible for a physician to gauge and incorporate the combined
effect of all these factors when reporting the bed surplus. Conse-
quently, the number of patient reallocations will likely be higher
than necessary. For example, a hospital may report ICU bed sur-
plus today and thus receive a COVID-19 ICU patient from another
hospital, while that results in ICU bed shortage two days from now,
necessitating to reallocate a COVID-19 ward patient that needs ICU
care.

This paper presents mathematical models and resulting deci-
sion rules that support fair balancing of COVID-19 patients over
hospitals in a region and across regions. In these models, the flow
of COVID-19 patients is captured in a network of infinite server
queues. The first model, at the regional level, is a load balancing
model that supports dynamic fair balancing of COVID-19 patients
over hospitals in a region. The second model, at the inter-regional
level, is a stochastic program that minimises the costs of patient
reallocations across regions. Input for the models is the inflow of
patients, their Length of Stay (LoS) in the ward and ICU and trans-
fer of patients between these units. To this end, our method is aug-
mented by accurate statistical methods to predict patient arrivals,
estimate LoS and transfer probabilities, and forecast the number of
COVID-19 patients hospitalised in the ward and ICU of a hospital.
Our results are cast in real-time decision rules for patient alloca-
tion to hospitals in a region or reallocation across regions based
on safety levels that determine the bed surplus or bed shortage
for each hospital or region during the next couple of days.

1.1. Literature

Dynamic load balancing Our fair balancing of COVID-19 patients
over hospitals within a region falls in the class of load balanc-
ing methods that are well-known in communication systems, see,
e.g., Ross [15], Zachary and Ziedins [16], van der Boor et al. [17] for
an introduction to basic load balancing scenarios, that states: “Load
balancing can be broadly categorised as static, dynamic, or some
intermediate blend, depending on the amount of state informa-
tion that is taken into account”. Below, in line with our approach,
we focus on dynamic load balancing. Dynamic load balancing algo-
rithms aim at improving the system throughput and reducing the
job response time by relocating application tasks among the nodes
using information on the instantaneous system load to decide
how to relocate the jobs [18]. Sender-initiated strategies (congested
nodes push work to lightly loaded nodes) outperform receiver-
initiated strategies (lightly loaded nodes pull work from highly
loaded nodes) at light to moderate system loads, whereas receiver-
initiated strategies are preferable at high system loads [18,19]. Ob-
serve that dynamic load balancing may be hindered by incomplete
state information [20,21]. Exact performance analysis of dynamic
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load balancing policies is argued to be difficult due to multidimen-
sional state spaces, see [22,23].

Dynamic load balancing algorithms are developed for sys-
tems with stationary arrival and service rates, including web
servers [24-26] and large (virtual) call centres [27,28]. Typically,
these methods involve large Erlang loss systems and servers with
multiple skills as in call centres, involve a queue as in web
servers, or introduce replicas of jobs that are sent to join the
queue at different servers and upon completion of service of the
first replica delete all other replicas. Typical ingredients for load
balancing approaches are setting and adjusting routing probabil-
ities [29] or routing policies [22,30,31] and job migration algo-
rithms [32]. The Join-the-Shortest-Queue (JSQ) policy is a cen-
tralised dynamic load balancing algorithm, where a dispatcher
must immediately forward tasks upon arrival to one of the servers.
Implementation of JSQ policies becomes difficult when the number
of stations becomes large, in which case asymptotic methods may
be used [17,20,21,33].

Our dynamic load balancing method is developed for systems
under high load that do not allow for queueing, in which case a
receiver-initiated strategy is preferable, which is implemented via
a centralised approach to allocate patients to hospitals. We assume
complete state information and use simulation to assess perfor-
mance measures. Our fair balancing method across regions is a
stochastic program taking into account forecasts of the future bed
surplus or shortage. It is related to mixed integer recourse mod-
els [34, Chapter 3]. Typically, solving such models requires sce-
narios or pre-specified input processes and does not include dy-
namical statistical methods for real-time forecasts of occupancy
and safety levels which is included in our approach. We further
show that our stochastic program may be well approximated by a
mixed integer program (MIP) that facilitates a direct relation with
the way hospitals report bed shortages/surpluses.

Forecast and queueing model Our fair balancing method re-
quires accurate forecasts of the patient arrival rates. Several stud-
ies have developed prediction models for the number of hospi-
talised COVID-19 patients. Focusing solely on predicting ICU oc-
cupancy, Farcomeni et al. [35], Goic et al. [36], Manca et al. [37],
Massonnaud et al. [38] develop prediction models at the regional
level, while [39] provides predictions for individual hospitals. Other
studies predict both COVID-19 ward and ICU occupancy [14,40-43].
The prediction in Roimi et al. [42], Zhao et al. [43] is based on
regression analysis or epidemic models. Queueing models for pre-
dicting ward and ICU occupancy in the Netherlands at the regional
and national level are developed in Bekker et al. [14]; their mod-
els do not incorporate patient transfers from ward to ICU and vice
versa. Transfer probabilities between COVID-19 ward and ICU are
derived based on a Markov chain analysis in Foucrier et al. [41].
In a previous paper, Baas et al. [40], we have developed forecasts
of COVID-19 ward and ICU occupancy at the individual hospital
level, incorporating patient transfers between the ward and ICU.
That method uses a Richards’ curve [44] to predict the arrival rates
of COVID-19 patients, a Kaplan-Meier estimator [45] to estimate
the distribution of the LoS in both the COVID-19 ward and ICU,
and we sample patient trajectories in the Poisson Arrival Location
Model [46] that determines the queue occupancy in a network of
infinite server queues representing the COVID-19 ward and ICU. In
this paper, we build on our previous work by significantly improv-
ing the forecasts of ward and ICU occupancy and by using these
forecasts as a basis for decision rules that facilitate fair balancing
of COVID-19 patients over hospitals.

1.2. Contribution

Our contribution in this paper is threefold. First, we develop
a load balancing method that incorporates bed occupancy fore-



S. Dijkstra, S. Baas, A. Braaksma et al.

casts to fairly balance COVID-19 patients over hospitals in a region.
These results extend load balancing results in literature to incor-
porate forecast occupancy and safety levels. Second, we propose a
stochastic program taking into account scenarios of the future bed
surpluses or shortages to optimally distribute COVID-19 patients
that cannot be accommodated within a region over multiple re-
gions taking into account travelling distances and other differences
between regions; the currently available COVID-19 bed-capacity in
each region; as well as scenarios of the maximum bed-occupancy
over several days. Third, as our models require accurate forecasts
of the COVID-19 patient arrival rate, we extend the results of Baas
et al. [40] on the prediction of the arrival rate in the network of
infinite server queues that we use in the bed occupancy forecasts.
Originally, in Baas et al. [40], a Richards’ curve was fit to data from
the hospitals’ data warehouse to predict the COVID-19 patient ar-
rival rate, while in this paper we develop a time-delaying and fil-
tration procedure applied to the exponentially weighted moving
average of regional infection data, which results in more accurate
bed occupancy forecasts.

Section 2 presents our hierarchical modelling and decision
approach. We propose decision rules for individual hospitals in
Section 2.1, within a region in Section 2.2, and across regions in
Section 2.3. Our load balancing procedure is based on arrival rate
scaling, see Appendix A. Appendix D summarises notation used in
these models. Section 3 presents our prediction of COVID-19 pa-
tient arrival rates from regional infection data and considers the
accuracy of our bed occupancy forecasts. Section 4 presents nu-
merical results and illustrates the performance of our models and
decision rules: Section 4.1 presents the inter-regional patient allo-
cation results and Section 4.2 considers reallocating patients across
regions. Section 5 concludes the paper.

2. Model and decision rules

This section presents our hierarchical modelling and decision
approach. Section 2.1 briefly reviews the essential elements of our
model for forecasts of the occupancy in the ward and ICU at an in-
dividual hospital [40], and introduces a decision rule to determine
available capacity for patients from other hospitals. Section 2.2 in-
troduces a load-balancing rule for allocation of patients to hos-
pitals in a region and a decision rule when combining hospitals
into one regional hospital exploiting the statistical multiplexing
gain [15]. Section 2.3 introduces a recourse model to optimally
distribute COVID-19 patients that cannot be accommodated within
a region over multiple regions taking into account travelling dis-
tances, the currently available COVID-19 bed-capacity in each re-
gion, as well as the forecast maximum bed-occupancy over several
days.

2.1. Bed surplus or shortage for an individual hospital

Consider a hospital with dedicated COVID-19 ward and ICU, in-
dexed by h, that admits a fraction of COVID-19 patients from its
service region as determined by the regional number of infected
patients (autonomous arrivals). Following [40], we model the hos-
pital as a network of two infinite server queues that records the
number of hospitalised COVID-19 patients. The network includes
patient-characteristics ¢ € C (e.g., age, gender, weight) that may af-
fect the hospitalisation rate and the patient journey in the hos-
pital, a time-dependent Poisson arrival process with rate Ay (t),
with fraction pp,.(t) admitted to the ward, fraction 1 — py.(t) to the
ICU, general and time-dependent LoS L.y (t) and Lpy(t) at ward
and ICU, and discharge probabilities qpqy (), resp. gu(t). The as-
sumption of Poisson arrivals was shown to be justified for arrivals
to Emergency Departments [47]. The number of patients Njqy, (£)
and Ny (t) with characteristics ¢ at time t have a time-dependent
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Poisson distribution with means ppqy (t), Pp(t) that are deter-
mined via the Poisson Arrival Location Model (PALM), see [46, The-
orem 2.1]. The total number of patients in the ward, Ny (t), and
ICU, Ny (t), have time-dependent Poisson distributions with means
P (©) = Xcec Prew (8), and ppy(£) = 3= coc Pper (£), see [40].

The Poisson distributions for Ny, (t) and Ny, (t) allow us to ex-
plicitly evaluate relevant performance measures. Let L, (s) be tu-
ples of the location and realised LoSs (up to time s) of all patients
residing in hospital h. The expected occupancy at time s + ¢ is:

E[Npw (s +1t) | Ly(s) = €], E[Np(s+1t) | Ly(s) = £4]. (1)

The expected maximum occupancy in [s, s + t] is:

E|: max Npy (1) | Ly(s) = £hi|v E|: max Ny (u) | Ly(s) = fhi|~
uels,s+t] uels,s+t]
(2)

The oy -quantile, nyy g, (s.t), and the ap-quantile, ny 4 (s, 1),
for respectively the maximum occupancy in the ward and ICU at
hospital h in [s,s +t],

MW,y (S, £) = Min {n : ]P’|: max Ny (u) <n ’ Ly(s) = lh] > Oy }

uels,s+t]

My g, (S, £) = min {n: P[ max Np(u) <n ‘ Ly(s) = eh] > am},
uels,s+t]

determine the required capacity npy g, (S.), Ny g, (s.t) in the
ward and ICU to accommodate all autonomous arrivals in [s,s +
t] with probability at least o, oy, respectively. We will refer
to oy, ap as the safety levels.

Let nf, (s, t) be the number of beds in the ICU of hospital h in
the time-interval [s,s+t]. If Mh1.g,, (5, 1) <1y (s,t) we may argue
that at safety level ap a number of beds fi g, (s, 1) =ny (s, t) —
My g, (5, t) may be considered unoccupied in [s, s + t]. This bed sur-
plus may then be allocated to COVID-19 patients from other hos-
pitals. If Mg, (s,t) = ny, (s, t), hospital h may be confronted with
bed shortage (at safety level o), and will not offer any beds to
ICU patients from other hospitals. A similar reasoning applies to
the ward. Note that we do not assume a fixed number of beds,
but include dependence on s, t in the number i (s, t), ny, (s,t) of
beds in [s, s +t]. This allows the number of beds to be scaled up
or down over time. We arrive at the following decision rule to de-
termine the bed surplus. We introduce the following notation. Let
[x]T = max{0, x}, [x]~ = max{0, —x}, for all x € R.

Decision Rule 1 (Individual hospital). Consider hospital h, with
nyy, (s, ), nf (s, t) beds in the ward resp. ICU in [s, s + t]. Consider
safety levels apy, oy Let npy g, (5,1), Ny g, (s.1) be the apy-,
op-quantiles for the maximum occupancy at hospital h, (see (3)).
At safety levels oy, oy, hospital h has bed surplus of

~ +
.y (S £) = [Ny (5, £) = w5, 0]

it (5. 1) = [ (5. 6) — M, (5.D] (4)

available beds for COVID-19 patients from other hospitals in [s, s +
t].

Remark 1 (Bed surplus; safety levels). Observe that the bed surplus
T,y 82 O Tprg, (5. t) takes autonomous patient arrivals, trans-
fers between ward and ICU and patient discharges for hospital h in
[s,s +t] into account. Admitting a patient from another hospital to a
bed in the ward then assumes that this additional patient will not be
transferred to the ICU between time s and s + t, which may be reason-
able if t is small. Including this possible transfer requires that an ad-
ditional bed is available in the ICU too, ie., that also fiy g, (s.t) = 1.
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The bed surplus is determined at safety levels oy, ap. These lev-
els may include the hospital’s policy for bed allocation, treatment pro-
tocols, or case mix, but may also incorporate the size of the hospital.
As an extreme case, we may set oy = 0 to indicate that we only
focus on overcrowding of the ICU at hospital h.

2.2. Patient reallocation within an individual region

This section extends the decision rule for an individual hospi-
tal to a decision rule for an individual region to allocate COVID-19
patients among the hospitals in that region during a time inter-
val [s,s+t]. Consider a region, indexed by r, containing H; hos-
pitals, indexed h =1,..., H,, where each hospital is modelled as
described in Section 2.1. We will first determine the autonomous
arrival rate for each hospital as fraction of the regional patients in
Section 2.2.1. Then, in Section 2.2.2, we determine for each hospi-
tal the bed surplus according to Decision Rule 1 and subsequently
present a load-balancing Decision Rule 2 based on the bed surplus
for the region. In Section 2.2.3, we assume that hospitals disclose
all information on the number of beds and hospitalised COVID-
19 patients, which allows viewing the COVID-19 wards and ICUs
in a region as single merged ward and ICU. This may be viewed to
correspond to a regional coordination centre that optimally assigns
patients to hospitals, resulting in a lower bound on the number of
patients reallocated out of a region.

2.2.1. Autonomous arrival rates

Let Arc(u) denote the time-dependent rate at which COVID-
19 patients with characteristics ¢ € C request to be hospitalised in
region r, and let Ar(u) =Y ..c Acr(u) be the total arrival rate of
COVID-19 patients in region r. Consider hospital h, with nj,, (s, t),
ny, (s, t) beds in the ward and ICU in [s, s + t]. At safety levels gy,
oy, hospital h may admit a fraction 6,4, o, (5, t) of these regional
patients in the ward and ICU such that the ward can accommodate
all autonomous arrivals with rate Qh,ahwyam(s,t)Ar(u) in [s,s+t]
with probability at least ayy, and similarly for the ICU. Let Py
denote the distribution of the number of patients for hospital h
in [s,s +t] given arrival rates Ay (u) = O Arc(u), uels,s+t], ceC.
Then 6y o, ,, (S: ) may be determined as

Oh.cpy .y (S, ) = Max {9 : ]P’911|: mﬂX”th(u) <njy (s, 1) ‘ Ly(s) = fh] > Opy s

uels.s+

Py p Li’[flés\i(t]Nm(u) <np(s.t) ‘ L,(s) = zh:| > Olm}-
(5)

Let Orq, (s, t) = Zﬁ’;] Oh.apyy iy (S 1), With o = {apw, ot h=
1,...,H;} be the set containing all safety levels of region r.

If 6,0, (s,t) < 1, region r has insufficient capacity to accommo-
date all arrivals during [s, s +t] at safety levels «;. Hospital h ad-
mits the fraction eh.anw.am (s,t) of autonomous regional patients
arriving in [s,s+t] corresponding to its safety levels opy, op.
Thus, the autonomous arrival rate of patients with characteristics ¢
for hospital h is

(W) = Op gy e, (S D Arc(u), h=1,... H. (6)

At safety levels «;, the remaining fraction of patients arriving at
rate [1 — 6.4, (s, t)]Ar(u) must be accommodated in hospitals out-
side region .

If O4,(s,t) > 1, region r has sufficient capacity to accommo-
date all autonomous arrivals. A fair or load-balancing distribu-
tion of COVID-19 patients over the hospitals in the region accord-
ing to their safety levels o is obtained by admitting the frac-
tion O o, ., (5. 1)/r.a, (s, ) of patients in hospital h. Thus, the au-
tonomous arrival rate of patients with characteristics ¢ for hospi-
tal h is
)‘-hc(u) _ Qh,ahw,ah, (S, t)

Bran (5.0 re(®):

h=1,... H. (7)
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In Section 2.2.2, we use (6) and (7) to determine the region’s
ward and ICU bed shortage or bed surplus.

Remark 2 (Fraction of admitted regional patients). Observe that
eh,ahwﬂm (s,t) in (5) determines the fraction of patients admitted in
hospital h irrespective of admittance to ward or ICU. This is a natu-
ral choice, as in most cases hospitals first admit regional patients and
then perform triage (i.e., determine whether the patient is admitted to
the ward or ICU). Our model includes transfers between ward and ICU
that may occur in [s,s + t], so that 9h~ahW-ahl (s,t) yields the fraction
of admitted patients at the safety levels of the ward and ICU.

Observe that the arrival rates Ap.(u) in (6) and (7) imply that the
probability that hospital h cannot accommodate its autonomous ar-
rivals in [s,s +t] at its ward, resp. ICU, is at most 1 — oy, resp. 1 —
ap. Clearly, if Orq, (s, t) > 1, with arrival rates Ap.(u) in (7), these
probabilities will most likely be even smaller, as the arrival rates
Apc(u) are smaller than the arrival rates eh-anw-am (s,t)Arc(u) that
hospital h can accommodate at safety levels oy, oy

If 6rq,(s,t) <1, it may occur that hospital h could admit pa-
tients to its ward at higher rates than under Ap.(u) (from (6)),
but not to its ICU, or vice versa. This follows from (5), as, at some
point, either the ward or the ICU is the bottleneck to further in-
crease Gh-ahw'am (s,t) (ie., one of the two inequalities in (5) is tight).
It then follows from Decision Rule 1 that hospital h has bed surplus of
fipw, (8- ) > 0 ward beds or fipy g, (s,t) > 0 ICU beds. Note that
accepting additional patients in the ward in case fipy g, (s,t) >0
might result in overcrowding of the ICU due to these patients trans-
ferring from ward to ICU.

We may extend our model to include different QhWﬂhw (s,t) and
Gh,_am (s, t) for a hospital’s ward and ICU, respectively, defined as

Onw .y (S, £) = Max {9 1 Pop L!Eii‘qN“W(”) < My (5, 1) ‘ Ly(s) = ln] > Olnw}-

Ont (5. 1) = max {0 : Pe.h[ max Ny (u) <y 5,0) | 1y(5) = eh] z Otm}< (8)
UE[S, S+

This may allow more flexibility in accepting COVID-19 patients in the

ward when the ICU has reached its capacity, and vice versa, but may

also result in overcrowding of either the ward or the ICU.

2.2.2. Load balancing rule to fairly allocate patients to hospitals

Section 2.2.1 has established whether or not the hospitals in a
region r may admit all autonomous arrivals at safety levels . If
0oy (s, t) < 1, the autonomous arrival rates (6) determine the re-
gion’s bed shortage in [s,s +t] at safety levels o. If Oy, (s, t) > 1,
the rates (7) determine the hospitals’ bed surplus in [s,s+t] and
hence the bed surplus of region r. This section presents a load bal-
ancing rule for fair allocation of patients to the hospitals in a re-
gion.

First, if Orq,(s,t) > 1, we invoke Decision Rule 1 with patient
arrival rates (7) to determine the bed surplus for each hospital h in
region r and add these numbers to obtain the region’s bed surplus
in ward, resp. ICU, in [s, s + t] at safety levels o as

H, Hy
fiw.a, (S, ) = Z ﬁhW,oz,,W (s,8), Tpe, (s, t) = Z ﬁhl,oz,,, (s.1).
h=1 h=1

Second, consider the case 6rq,(s,t) < 1. At safety levels o, the
remaining fraction of patients arriving at rate [1 — 6y, (s, t)]Ar(u)
must be accommodated in hospitals outside region r for each u e
[s,s+t]. Our model requires discrimination between the number
of patients admitted at the ward and the ICU. To this end, observe
that 64, «,, (5. 1)/0r.a (s, t) is the fraction of patients that would
be admitted to hospital h if all hospitals would have ample ca-
pacity. For each u € [s,s +t] the fraction of patients with charac-
teristics ¢ admitted to all wards of hospitals in region r at safety
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levels oy may be obtained as

h U & ,(S t)
Z 9rla, (; t) phc(u)' (9)

If the fractlons Pre(u) for all hospitals in the region coincide, say
Phe(1) = pc(u), then (9) reduces to prc(u) = pe(u).

Let Myw o, (5. £), Tesp. M4, (s, t), be the regional bed shortage
in ward, resp. ICU, in [s, s + t] at safety levels . Then, My 4, (s, 1),
resp. My, (. t), are Poisson distributed random variables with
means My g, (S, ), 1€SP. My 4, (S, 1):

Prc(u) =

M, (5, 8) = [1 = Ora, (5, t)]/ D pre(W) Arc(u)du, (10)

ceC

Myt (5.6 = [1 = Br 5, 6)] / 3 (1= pre(@)Arc(w)du, (11)
ceC

so that the expected regional bed shortage in ward, resp. ICU, in

[s,s +t] at safety levels o is Myy g, (S, £), T€SP. My 4, (S, ).
Combining the results above with those of Section 2.2.1 we ob-

tain the following load balancing decision rule to allocate patients

to hospitals in a region and determining the regional bed shortage

or surplus.

Decision Rule 2 (Individual region; load balancing; hospital safety
levels). Consider region r with n},, (s, t), nhl(s t) beds in the ward
and ICU in [s, s + t] at hospitals h =1, ..., Hy. Consider safety levels
o ={opw, ap, h=1,..., H;}.

If 64, (s,t) > 1, allocate a fraction

Qh-ahwﬂm (s.t)

er,ar (Ss t)
of the regional patients to hospital h and report bed surplus of
ﬁrW,a, (S, t), ﬁrl,ozr (5» t),

beds in ward and ICU in [s, s + t] for reallocation of COVID-19 pa-
tients from other regions.
If 0.0, (s,t) < 1, allocate a fraction

eh,ahw,oth, (S, t)
of the regional patients to hospital h and report bed shortage of

M., (S, ), Mg, (S,1)

beds in [s,s+t] at ward and ICU for reallocation of COVID-19 pa-
tients to other regions.

Remark 3 (Dynamic load balancing algorithm). Decision Rule 2 al-
locates patients to hospitals using a dynamic rule based on the max-
imum occupancy in the wards and ICUs in [s,s+t] as determined
by ehvathahl(s’t)’ h=1,...,Hy, and may therefore be viewed as a
dynamic load balancing algorithm. For a recent overview of load bal-
ancing algorithms, see [17], and see [16] for a general reference on
load balancing for loss networks.

2.2.3. Merging all wards and all ICUs in a region

This section introduces regional control of COVID-19 beds.
Merging the ICU bed-capacity of individual hospitals into a re-
gional ICU may considerably reduce the number of patients real-
located out of the region, see [48]. We will exploit the so-called
statistical multiplexing gain [15], and merge all wards, resp. ICUs,
into a single (virtual) regional ward, resp. ICU.

Assume that the hospitals h =1, ..., Hy in region r agree on re-
gional safety levels oy and «,; for their wards and ICUs and (vir-
tually) merge their COVID-19 wards, resp. ICUs, into a single re-
gional ward and ICU, with capacities

H H
My (s, 6) =Y My, (s.t), Tesp. my(s,t) = ny(s.t),
h=1 h=1
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in [s,s+t]. We may now view the region as a single hospital (as
described in Section 2.1) with autonomous arrival rates Arc(u),
c € C, where a fraction P(u), resp. 1 — P(u) is admitted to the
regional ward, resp. ICU. Let Ny (u), Nyy(u) record the number of
patients present in the (virtual) regional COVID-19 ward and ICU
at time u, respectively. The o, -quantile, nyy 4, (s, t), and the oy~
quantile, ny 4 (s, t), for the maximum occupancy in [s, s + ¢] follow
by analogy with the single hospital model of Section 2.1.

For region r, (5) determines the fraction of autonomous regional
arrivals that may be accommodated by hospital h, h=1,..., H;, at
its safety levels. Cooperation among the hospitals allows a more
refined rule to distribute patients over the hospitals of a region. To
this end, first observe that if region r accepts autonomous arrivals
to its ward, resp. ICU, at safety levels «,,, resp. o, then the hos-
pitals in the region must have sufficient beds to accept these pa-
tients in their wards and ICUs. We may, therefore, at safety levels
o, oy, distribute patients according to the fractions Oy o, (5, t),
Ohi., (5, t) defined in (8), while still avoiding overcrowding of the
wards and ICUs, recall Remark 2. Region r allocates the fractions

é\hW-OZrW (5, t) = M, é\h’ oy (S, t) = M
' =1 ehW.a,W (S, t) Y Zhr:] ehl,aﬂ (S, t)
(12)

of the autonomous arrivals that are hospitalised in region r to the
ward, resp. ICU, of hospital h, h=1,..., H;, if the denominators
are positive. If 27’19;1‘,\,& 4w = 0, we determine safety level o, =
sup {& < ey @ MaXpe(r  py) Ohw,o (5, t) > €} for small € > 0. Pa-
tients are then allocated uniformly at random to hospitals where
0“W~°‘§w > 0, and similarly for the ICU.

Combining the results above we obtain the following decision
rule for allocation of patients to hospitals in a region and deter-
mining the regional bed shortage or bed surplus.

Decision Rule 3 (Individual region; regional safety lev-
els). Consider a region r with nf, (s,t), nj(s,t) beds in the
(virtual) ward and ICU in [s,s+t], and safety levels oy, oy
Let nyw g, (S.t), Mg, (s,t) be determined based on (3), and
Onw. ey (5. ), Opr g, (5. t) according to (12).

If Ny oy, (S, t) > 13y, (5, t), report a bed shortage

MW,y (S, £) — My (S, 1)

in the wards of region r in [s, s + t]. Otherwise, report bed surplus

M (S, £) — Ny (S, 1)

in the wards of region r in [s, s+ t]. In both cases, allocate a frac-
tion

ehW,C(rW (57 t)

of the regional autonomous arrivals that are hospitalised in the
wards in region r to hospital h.
For the ICU, the rules above apply with W replaced by I.

Remark 4 (Statistical multiplexing gain; comparison of Decision
Rules 2, 3). Merging the wards, resp. ICUs, of the hospitals into a re-
gional ward, resp. ICU, exploits the so-called statistical multiplexing
gain, see [15,48,49]. In particular, it avoids that one hospital has bed
shortage, while another hospital has a bed surplus.
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Decision Rule 2 uses the safety levels of the individual hospitals to determine the bed surplus for each hospital, whereas Decision Rule 3 uses
the safety levels of the merged hospitals to determine the regional bed surplus. A merged hospital requires fewer beds to accommodate patients
at the same safety level, see [15,49] and therefore the bed surplus under Decision Rule 3 exceeds the bed surplus under Decision Rule 2.

2.3. Patient reallocation across multiple regions

This section builds on the bed surplus and bed shortage for individual regions as determined under Decision Rule 2 or 3 to obtain a
decision rule for (part of) a country consisting of R regions with n¥, (s, t), resp. n¥ (s, t), beds in the ward, resp. ICU, in [s,s +t], r=1,...,R.
This decision rule determines the number of patients to be reallocated across the regions at each decision epoch s, taking into account the
current number of hospitalised patients as well as the maximum number of patients hospitalised in the regions in [s, s + t]. Patients that
cannot be accommodated in the regions may be reallocated to an external region.

Let fiy (s), resp. fi,(s), be the current (at epoch s) bed shortage (i < 0) or bed surplus (fi > 0) in the ward, resp. ICU, of region r. Let
the random variables Ny (s, t), resp. N, (s, t), be the bed shortage (N < 0) or bed surplus (N > 0) in the ward, resp. ICU, of region r from
decision epoch s up to time s+t taking into account the patients reallocated out of region r at decision epoch s determined by

Now (s.6) = iy (5. £) — Naw (s, £) — [l (5)] 7,
er(sﬁ t) = n?](s’ t) - Nr’(S, t) - [ﬁrl(s)]_-

In the above, Ny (s, t), Ny (s, t) represent the maximum occupancy at the ward and ICU for region r respectively, during the period [t, s + t]
under the regional hospital model introduced in Section 2.2.3. For computational tractability reasons, we propose to employ the regional
model of Section 2.2.3 with corresponding Decision Rule 3 within the model for patient reallocation across multiple regions. The more
detailed and computationally more intensive load balancing model of Section 2.2.2 with corresponding Decision Rule 2 can subsequently
be used within each region for allocating the patients assigned to that region to hospitals. The external region has ample capacity, i.e.,
figi,w (S) = fipy1,1(S) = oo as well as figy 1w (S, t) = figy1,1(S, t) = co.

Reallocation of a patient from region r to region r’ incurs cost y, . incorporating, for example, travel distance for reallocation of the
patient or travel distance for his or her relatives, and differences between regions r and 1’ with respect to the number or size of hospitals.
We may impose the (strict) triangle inequality on the costs y;.

Viirs < Vi + Ver Vri.r,r3e{l,2,....R+1}, 1 #nr#r3, (13)

to avoid that region r, functions as an intermediate stop for reallocation of patients from region r; to region r3, which may happen, for
example, if 1, r, = ¥r,.r; =2 and ¥y, r, =5, which is excluded by (13).
We will now develop a recourse model with objective to

minimise the costs of patient reallocations across regions at the current decision epoch s as well as during [s, s +t]

such that

(i) patients are distributed over regions such that the current bed shortages are resolved, taking into account the bed shortages in [s, s + t],
and
(ii) the relative remaining bed surplus (detailed below) is balanced over the regions.

The here-and-now decision variables fy, ;. (s), resp. f;,(s), are the number of ward, resp. ICU, patients to reallocate from region r
to region 1’ at decision epoch s. The wait-and-see decision variables Fy ;. (s.t), resp. F . ./(s.t), are the number of potentially required
additional reallocations among the wards, resp. ICUs, of regions r and r’ in [s,s +t] based on the bed surplus or shortage Ny g, (s, t),

Niw o, (s, £) in [s, s + t] for all regions r. To penalise the imbalance in bed surplus in the wards and ICUs across the regions, we introduce a
penalty function g(-) (e.g. g(x) = x2 or g(x) = x). The optimal number of patients fw.rr(8), resp. f . (s), reallocated from the ward, resp.

ICU, of region r to the ward, resp. ICU, of region r/, r,’ = 1,...,R+ 1, is determined as the argmin of the following recourse model:
min Z Yrr (fW,r,r’ (5) + fl,r.r’ (S) + IE[ﬁ/‘/,r.r’ (S, t) + ﬁ,r,r/ (57 t)]) (P)
rr
R
+) 80w (5)) +&(81r(5)) + E[g(Aw,r (5, £)) + (AL (5. 1))]
r=1
S.t.
(Here-and-now constraints, resolve current shortages in original ward and ICU)
wa,nr’ (S) - [ﬁrw(s)]f =0, vr
T'#r
> firr (s) = [fin(s)]” = 0, vr
r'#r
(Here-and-now constraints, donf cause shortages in destination ward and ICU)
[firw ()] — wa‘r’,r(s) > 0, vr
r'#r
[ﬁrl(s)]Jr - Zfl.r’,r(s) >0, vr
r'#r

(Here-and-now constraints, transport to external region only if strictly necessary)

6
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D fwrra(s) - |: > ﬁrW(S):| =0, vr

r#R+1 r#R+1
> firre () = | Y fin(s)| =0, "
T#R+1 r#R+1

(Wait-and-see constraints, anticipate on future shortages in ward and ICU)

NrW (s.t)+ Z {[fW,r,r’ (s) - fW,r’.r(s)] + [Bwrr (S, t) — Ry 1 (5, t)]} >0, vr
r'#r
Nr’(S, t) + Z {[fl,r.r’ (5) - fI.r’,r(s)] + [Fl.r.r’ (S, t) - Fl,r’.r(s’ t)]} > 0, vr
r'#r
(Domain constraints) fw,rr (s). fir.r (). Fwrr(s.t), Frr(s.t) € No, vr,r,

where we have used the additional notation for the current and future relative remaining bed surplus Sy (s), 81,(S), Aw (s, t), Ap,(s.t)
in region r,

8W,r(s) _ ﬁrW (S) + Zr’#r [fW.r.r’ (5) — fW.r’,r(S)]7

iy (s, t)
iy (5) + v [frr () = frrr($)]
al,r(s) = n;‘,(s, t) s
NrW (5’ t) + Zr/;ér {[fW,r.r’ (S) - fW,r’.r(S)] + [E/V,r,r’ (5: t) - E/V,r’.r(ss t)]}
Aw,r(s,t) = G0 ,
Wi
AI,T(Sa t) _ er(ss t) + Zr’#r {[fl.r,r’ (S) _'ﬁr(’sr(:))] + [Fl,r,r’ (5» t) - FI.r’,r(S, t)]}

=

Note that the wait-and-see and domain constraints hold point-wise on the sample space, i.e.,, for every possible outcome of
Nay (s, t), Ny (s, t). The above program is a mixed integer recourse model (see e.g. [34, Chapter 3]), where all possible outcomes for the
maximum occupancy are considered at the second decision stage at time s + t.

The stochastic program does not directly incorporate Decision Rule 2 or 3 that are amenable for practical implementation. To incor-
porate these rules in our optimisation approach, we approximate (P) by the integer program described below that is based on the safety
levels oy, oy, and the expected shortages or surpluses reported by the regions.

From Decision Rule 2 or 3, let i,y (s, t), resp. fi;;(s, t), be the forecast bed shortage (i1 < 0) or bed surplus (fi > 0) in the ward, resp. ICU,
of region r from decision epoch s up to time s+t taking into account the patients reallocated out of region r at decision epoch s. Thus,
under Decision Rule 2:

fi (S t) _ ﬁrW,ot,(s, t) - [ﬁrW(s)]is if ﬁrWu,(s’ t) >0,
WEHT ) Mg, (5.8) — [faw (s)]~,  otherwise,

fip (s, t) = ﬁrl,ozr (s.t) - [ﬁrl(s)]is if ﬁrl.a, (.S, t) > 0,
L —Myy g, (5, t) — [ (S)], otherwise,

and under Decision Rule 3:
flaw (s, t) = n;ﬁw (s, t) — MW oy (s.t) = [fw ()],
fig(s,t) = n;}(s’ t) — Nyl oy (s, t) = [fin(s)]".
The forecast shortages are resolved by the wait-and-see variables fy, .. (s.t), fi .. (s.t) according to wait-and-see constraints:

(Wait-and-see constraints, anticipate on future shortages in ward and ICU)

ﬁrW (S, t) + Z {[fW,r,r’ (S) - fW.r’,r(S)] + [fW,r,r’ (5, t) - fW.r’,r(s’ t)]} B O’ VT,
r'#r
fi (s, t) + Z {[fl,r,r’ (s) — fl,r’,r(s)] +[firr(s,t) — fI,r’,r(S, )]} =0, vr.
r'#r

The wait-and-see outcomes then induce future relative remaining bed surpluses

ﬁrw(S, t) + Zr’#.r {[fW,r,r’ (S) - fW,rCr(s)] + [fW,r,r/ (S, t) - fW,r’,r(sa t)]}

(SW,r(Sv t) =

4y (s, 1) ’
Tl (8, 8) + 2y {Lf1e (8) = fro s O+ [fraw (8,8) = frr e (s, O}
8”(5, t) = e (S l') .
I\
The objective is now reformulated as
R
min Z Vrr (fW.r.r’ (S) + fl,r,r’ (5) + fW.r,r’ (S, t) + fl.r,r’ (S, t)) + Zg(aw,r(s)) JFg((sl,r(s)) +g(8W,r(Ss t)) +g(81,r(5s t)) (P/)
rr r=1
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All constraints in the optimisation model are automatically sat-
isfied for external region R+ 1 because n;;“‘w(s) = ”i*e+1,1(5) =00
and Mg 1w (S t) =ng (s, t) = oco. Due to the first set of here-and-
now constraints, in the optimisation model it is optimal to set
fwritr () = firs1.v(s) =0 for all 7/, ie., patients are not reallo-
cated from the external region R+ 1 to a region r’. Moreover, the
optimum cannot include both fyy .~(s) >0 and fy () >0 or
both f;,,/(s) >0 and f; . ,.(s) > 0, i.e,, patients are not exchanged
between regions. A feasible solution to the above program is guar-
anteed since the number of patients reallocated to the external re-
gion is not restricted.

Decision Rule 4 (Multiple regions; reallocation based on. (P’)
) Consider (part [4] of) a country consisting of R regions with
n4,y (s, t), resp. n(s.t), beds in the ward, resp. ICU, in [s,s+t],
r=1,...,R, and safety levels ay, o, augmented with an exter-
nal region R+ 1, that has ample capacity. Let 7i,y (s), fi;(s) be the
observed bed shortage | bed surplus at decision epoch s in region
r,r=1,...,R. Then, as obtained from (P’), at decision epoch s re-
allocate

Jwrr (s), resp. firr(s),

patients from the ward, resp. ICU, of region r to the ward, resp.
ICU, of region 1/, r, 7’ =1,...,R+1, r#71.

Remark 5 (Patient reallocation at decision epoch. s) Under Deci-
sion Rule 4 patients are reallocated across regions at decision epoch
s taking into account bed shortage and bed surplus in all regions in
[s,s + t]. Decisions on patient reallocation at a later epoch, e.g., s + 1,
in the interval [s, s + t] will be taken at that epoch taking into account
the state at s+ 1 and the interval [s+1,s+t +1].

Remark 6 (Generalisations). We have presented the optimisation
model of Decision Rule 4 in a relatively simple form. The model may
readily be generalised to include, e.g., different costs or penalty func-
tions for current and future reallocations, different costs for ward and
ICU reallocations, or different loss functions for ward and ICU.

3. Predicting arrival rates and forecasting bed occupancy

The effectiveness of the decision rules developed in
Section 2 relies on an accurate real-time forecast of the COVID-19
bed occupancy, and therefore on an accurate prediction of the
arrival rate and estimation of the LoS. This section considers
prediction of arrival rates for a region and a single hospital, as
well as generation of bed occupancy forecasts.

For each ROAZ region, the number of positive COVID-19 tests is
available on a daily basis on the website of the Dutch National In-
stitute for Public Health and the Environment (RIVM) [50]. In this
data set, the number of infections on a given day represents the
number of people that (retrospectively) tested positive for COVID-
19 on that day. In addition to infection data, national hospital ad-
mission data per region, collected by the Dutch foundation for Na-
tional Intensive Care Evaluation (NICE) is available on the website
of the RIVM [51]. The number of admissions per day represents
the number of patients who have tested positive for COVID-19 and
are admitted to a hospital in the respective region. For our arrival
rate prediction, we focus on data of the ROAZ region Netwerk Acute
Zorg (NAZ) West, containing the hospitals Groene Hart Ziekenhuis
(GHZ), HagaZiekenhuis (Haga) and Leiden University Medical Cen-
ter (LUMC). To evaluate the accuracy of our prediction, in this sec-
tion we focus on Haga, a 600-bed hospital in The Hague that ad-
mits approximately 29,000 inpatients per year. For this hospital,
relevant data is available to us from September 4, 2020 until Jan-
uary 31, 2021.
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3.1. Prediction of the arrival rates

In this section, we develop a new arrival rate predictor based on
regional infection data, and compare its performance to the pre-
dictor in Baas et al. [40] that was shown to result in accurate bed
occupancy forecasts. The new predictor makes explicit use of the
delay between COVID-19 infection and hospitalisation, and enables
us to predict the arrival rate at the (virtual) merged regional ward
and ICU.

An increase in the number of COVID-19 infections results some
days later in an increasing number of hospital admissions. As a
consequence, we may expect a filtration and time-delay between
the number of infections and the number of hospitalised patients.
We assume the number of infections to be a Poisson process with
time-dependent rate, so that the resulting autonomous regional
arrival rate of COVID-19 patients is again a Poisson process, see,
e.g., Chiu et al. [52]. We estimate the time-delay and filtration
between COVID-19 infections and hospitalisations directly on the
data for NAZ West in the RIVM data set [50]. The time-delay that
gives the best fit is defined as the value between two and fourteen
days resulting in the minimal mean squared error (MSE) when
performing ordinary least squares (OLS) between a weekly mov-
ing average of the regional infections and a delayed exponentially
weighted moving average (coefficient 0.1) of the regional hospi-
talisations [51]. The filtration that gives the best fit is the coeffi-
cient resulting from the OLS procedure corresponding to the opti-
mal time-delay.

The result of this time-delaying and filtration procedure applied
to NAZ West data is shown in the top graphs in Fig. 1. The black
dots in the top left, resp. top right, graph of represent the re-
alised number of infections, resp. hospitalisations, per day in NAZ
West. The red line in the top left graph shows the 7-day mov-
ing average (MA) of the number of infections and the red line in
the top right graph shows an exponentially weighted moving av-
erage (EWMA; coefficient 0.1) of the number of hospitalisations,
both to indicate the trend. These trend lines already reveal the
time-delay and filtration between the number of infections and
hospitalisations. The purple line in the top right graph is the re-
sult of the time-delaying and filtration procedure applied to the
(averaged) daily number of infections displayed as the red line in
the top left graph. The best-fit time-delay equals 7 days, which
is in accordance with a recent study performed in Belgium [53],
where an average time-delay of 5.74 days is estimated, with me-
dians ranging from 3 to 10.4 days, depending on patient charac-
teristics. The best-fit filtration factor is found to be 3.1%. The ex-
tremes of the purple line in the top right graph of Fig. 1 coincide
with the extremes of the number of hospitalisations (red line), but
additional fine-tuning is required since the extremes over- and un-
dershoot those of the number of hospitalisations.

To this end, we develop an t-days ahead prediction of the num-
ber of hospitalisations displayed (for t = 3) as the purple curve in
the bottom left graph in Fig. 1. The static predictor (purple line
in the top right graph) is corrected by estimating the scaling fac-
tor of the infections using weighted least squares between delayed
infection and arrival data up to time s. The weights used for this
least squares procedure are normalised exponential weights with
base 1.2 so that errors in the fit for recent hospitalisations are pe-
nalised more than those for earlier hospitalisations. The effect of
the weighted least squares procedure is that for each time s the
t-days ahead prediction starts around the trend in the number of
hospitalisations at time s. Hence, in our t-days ahead prediction
the daily number of infections up to time s have a larger influ-
ence on the slope of the fine-tuned purple curve in the bottom
left graph than on the starting point for the prediction determined
by the number of hospitalisations (orange). This is motivated by
the observation that the regional fraction of hospitalised patients
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Fig. 1. ROAZ region NAZ West, hospital Haga, September 4, 2020 until January 31, 2021. Top left: Regional infections (black) and 7-day moving average (MA) of the realisations
(red). Top right: Regional hospitalisations (black), exponentially weighted moving average (EWMA; coefficient 0.1) of realised regional hospitalisations (red) and filtered/scaled
7-day moving average of infection data (purple). Bottom left: Regional hospitalisations (black), EWMA (coefficient 0.1) of realised regional hospitalisations (red), 3-days ahead
expanding window predictions of the arrival rate by the Richards’ curve model (orange) and 3-days ahead expanding window predictions of the arrival rate from regional
infections (purple). The purple line is made thinner to distinguish it from the other two (this is also the case in Fig. 3). Bottom right: Autonomous arrivals to hospital Haga
(black), EWMA (coefficient 0.1) of realised autonomous arrivals (red), 3-days ahead expanding window predictions of the arrival rate by the Richards’ curve model (orange)
and 3-days ahead expanding window predictions of the arrival rate from regional infections (purple). (For interpretation of the references to colour in this figure legend, the

reader is referred to the web version of this article.)

is determined to a large extent by unknown factors (e.g. current
regional shortage/surplus), while daily infections remain a good
indicator for whether hospitalisations will go up or down. In ad-
dition, we have implemented an improved version of our t-days
ahead prediction using a 5-parameter Richards’ curve [40]. The im-
provements include the possibility of estimating a mixture of mul-
tiple Richards’ curves, and to return a logistic, exponential or lin-
ear fit through (early-stage) data if this results in a smaller mean
squared error (similar to the procedure described in Lee et al. [54]).
The Richards’ curve predictions were quite sensitive to outliers oc-
curring around the time of prediction. To account for this, the
Richards’ curve was estimated on the arrival data up to point s,
augmented with 7 days of arrival data set equal to the weighted
average of the number of arrivals at time s.

The bottom row of Fig. 1 displays 3-days ahead expanding win-
dow predictions [40] of the arrival rate for NAZ West (left) and

Haga hospital (right) in the period September 4, 2020 until Jan-
uary 31, 2021. The bottom left graph also includes the hospitalisa-
tions (dots) and the trend (red) from the top right graph. The or-
ange line corresponds to the expanding window prediction of the
arrival rates by the Richards’ curve estimator. The purple line cor-
responds to the predictions generated from the daily number of
infections. Observe that the predictions resulting from the infec-
tion data are less extreme when compared to those made by the
Richards’ curve predictor. This sensitivity of Richards curve fore-
casts to the prediction date (especially before the inflection point)
was also seen in Wu et al. [55]. Furthermore, observe that the daily
infections predictor shows an earlier increase around mid Decem-
ber, when the number of hospitalisations starts to increase again.
We conclude that the prediction based on daily infections outper-
forms the prediction based on the Richards’ curve using patient
arrivals in the Hospital Information System.
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Table 1
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Accuracy measures for our forecasting method based on arrivals predicted by a Richards’
curve, regional infections and the oracle for Haga hospital. CR: coverage rate of occu-
pancy - 95% prediction interval; bias: estimated by averaging errors; MAE: mean abso-

lute error.
Ward ICU
Method Type CR Bias MAE CR Bias MAE
Richards’ Curve 1 day ah. 0.95 -0.09 203 097 0.15 0.62
2 days ah. 0.91 —0.50 3.02 0.98 0.28 0.84
3 days ah. 0.89 —0.88 3.80 0.96 0.40 0.98
5 days ah. 0.83 -1.64 4.51 0.96 0.61 1.30
7 days ah. 0.75 -3.85 5.30 0.96 0.70 1.53
Max. 3d. ah. 0.69 1.63 3.39 0.87 0.44 0.87
Max. 5d. ah. 0.74 1.31 3.77 0.91 0.58 1.07
Max. 7d. ah. 0.75 0.92 3.90 0.93 0.67 1.23
Reg. Infections 1 day ah. 0.97 -0.17 2.12 0.97 0.14 0.62
2 days ah. 0.93 -0.57 2.92 0.98 0.27 0.85
3 days ah. 0.92 -0.79 3.32 0.95 0.40 0.99
5 days ah. 0.92 —0.98 3.49 0.95 0.64 1.28
7 days ah. 0.88 —2.64 3.91 0.97 0.78 1.51
Max. 3d. ah. 0.72 142 3.21 0.87 0.42 0.88
Max. 5d. ah. 0.81 1.16 3.38 0.91 0.58 1.06
Max. 7d. ah. 0.81 1.00 3.42 0.93 0.70 1.21
True Arrivals 1 day ah. 0.93 -0.03 1.80 0.98 0.14 0.53
2 days ah. 0.87 -0.31 2.37 0.96 0.25 0.73
3 days ah. 0.90 —0.47 2.74 0.96 0.35 0.87
5 days ah. 0.89 —0.65 3.02 0.97 0.48 1.08
7 days ah. 0.87 -0.76 3.32 0.96 0.55 1.29
Max. 3d. ah. 0.53 2.26 2.92 0.87 0.39 0.74
Max. 5d. ah. 0.61 2.07 2.95 0.91 0.48 0.81
Max. 7d. ah. 0.62 2.02 3.05 0.93 0.53 0.90

3.2. Forecast of bed occupancy

This section investigates the forecasting power of bed occu-
pancy of our method and compares it to the improved version of
the Richards’ curve predictor of [40]. To evaluate the maximum
possible gain in forecasting power, we compare our results with
an oracle predictor of the arrivals, that uses the actual realised pa-
tient arrivals to forecast bed occupancy. The forecasts of bed occu-
pancy used in this section are obtained by the sampling method
presented in Baas et al. [40] for patient trajectories in the Poisson
Arrival Location Model (PALM). We consider 3-days ahead expand-
ing window forecasts for the daily and maximum occupancy for
the Haga hospital in the period September 4, 2020 until January
31, 2021 as displayed in Fig. 2, and include Table 1 containing cov-
erage rates, bias and MAE for the forecast occupancy.

The top row of Fig. 2 contains daily occupancy forecasts made
by the oracle forecaster (cyan) and the daily infections forecaster
(purple) for the ward (left) and ICU (right). The forecasts for the
ICU lie closer to each other (Pearson correlation coefficient 0.96)
than those for the ward (Pearson correlation coefficient 0.91). This
might be due to the smaller number of direct autonomous arrivals
to the ICU (28%) than to the ward (90%). Hence, the difference in
predicted arrival rates is expected to have the largest influence on
occupancy forecasts for the ward. Note that the pattern seen in the
oracle forecast

for the ward is also seen in the daily infections predictions with
a delay of three days, which makes sense as we are considering a
3-days ahead expanding windows forecast.

The middle row of Fig. 2 shows forecasts for the Richards’ curve
(orange) and daily infections (purple) along with the realised oc-
cupancy (red) in the ward (left) and ICU (right). The reported oc-
cupancy excludes patients reallocated from/to other hospitals. The
two forecasts lie very close to each other (Pearson correlation co-
efficient 0.97 for the ward and 1.00 for the ICU), and close to
the oracle. In accordance with the predictions for the arrival rates,
the Richards’ curve forecasts have a more fluctuating behaviour in
comparison to the daily infections forecasts. The forecasts are close
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to the realised daily occupancy with a delay of 3 days and have
a higher forecasting power when the occupancy decreases. A de-
tailed comparison is included in Table 1. The difference between
occupancy forecasts is again largest for the ward, which can be ex-
plained by the larger fraction of direct arrivals at the ward. Observe
that the fluctuations in the arrival rate predictions in Fig. 1 are
dampened in the forecast in Fig. 2, which may be partially ex-
plained as the load is obtained as integral over the arrival rates [46,
Theorem 1.2].

The bottom row of Fig. 2 shows forecasts of the maximum oc-
cupancy over 3 days and their realisations in the ward (left) and
ICU (right). The forecasts for maximum occupancy lie very close
to each other for both ward (Pearson correlation coefficient 0.99)
and ICU (Pearson correlation coefficient 1.00). Clearly, fluctuations
in the maximum occupancy over 3 days are lower than those for
daily occupancy predictions.

Table 1 presents a detailed overview and comparison of the
quality of the forecasting results for our Richards’ curve, daily in-
fections and oracle forecasting methods for COVID-19 bed occu-
pancy. We show results for coverage rate (CR), bias and mean ab-
solute error (MAE), of which MAE is the most important measure
as it captures the average absolute difference (distance) between
forecast and realisation. For the ICU, we observe that the Richards’
curve and regional infections forecast show similar results for all
measures, and are outperformed by the oracle forecaster as is to
be expected since the oracle forecaster uses the exact values for
the number of patients in the hospital. For the ward, with re-
spect to MAE an ordering can be found in the quality of the fore-
cast: the oracle forecast outperforms the daily infections forecast,
which in turn outperforms the Richards’ curve forecast. This is not
seen when looking at the 1-day ahead MAE for the Richards’ curve
and daily infections forecasts, as the Richards’ curve is explicitly
designed to extrapolate the current trend. The regional infections
forecast also outperforms

the Richards’ curve forecast for CR and bias when forecasting
the maximum 3—, 5— and 7-days ahead. Note that the CR increases
and bias decreases in the horizon for the ward for all forecasts.
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Fig. 3. Daily regional arrival rates of ward (left) and ICU (right) patients in the region for the simulation study of Section 4.1.

Apparently, the maximum occupancy forecast tends to overesti-
mate the realisation for shorter horizons, while this bias lessens
for longer horizons. Observe that the oracle forecast shows a larger
bias in the expected maximum occupancy forecasts. This is be-
cause maximum occupancy forecasts are always higher than or
equal to the current occupancy. Hence forecasts for the maximum
often point in the right direction (less negative bias) when occu-
pancy increases and in the wrong direction (more positive bias)
when occupancy decreases. This effect occurs to a larger extent for
the oracle, as it can better forecast increases in occupancy. As we
are mainly interested in forecasts of the maximum occupancy, we
conclude that the daily infections forecast is to be preferred over
the Richards’ curve forecast and will be used in subsequent sec-
tions.

Remark 7 (Possibility of Overfitting). A question that might arise
is whether there might be an overfitting issue under the proposed
method. While this is indeed a possibility when fitting the arrival pre-
dictor, this cannot be the case for the occupancy forecasts as we do
not directly use occupancy data in the forecasts. Furthermore, all our
evaluations are expanding window out-of-sample forecast evaluations,
meaning that we never train and evaluate the model on the same
data. Looking at the outcomes for the Haga data, the Richards’ curve
and regional infections forecasts for the realised arrivals are likely not
an overfit on that data set as the forecasts follow the trend and clearly
have less variance than the actual realisations, which would be the
case with an extreme overfit.

4. Numerical results

This section presents numerical results illustrating the per-
formance of our hierarchical model that fairly balances COVID-
19 patients over hospitals in a region and across regions.
Section 4.1 considers allocation of patients to hospitals within a
region, and Section 4.2 considers optimal reallocation of patients
across regions.

4.1. Allocating regional COVID-19 patients to hospitals in a region

This section compares the impact of the three levels of re-
gional coordination described in Section 2.2: individual hospitals
(Section 2.2.1), load balancing (Section 2.2.2), and merging all hos-
pitals into a regional hospital (Section 2.2.3) on the allocation of
patients to hospitals in a region via a simulation study.
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Table 2

Capacity and initial occupancy for each hospital
used for the simulation study of Section 4.1. The
capacity chosen here is not directly based on
the actual capacity at the hospitals and merely
chosen as such for the simulation study.

Capacity Init. occupancy
Hospital ~ Ward ICU Ward ICU
LUMC 29 11 22 7
Haga 41 17 30 13
GHZ 31 13 25 8

We consider occupancy by COVID-19 patients in the period 8
November 2020 until 7 January 2021 (60 days) at three hospi-
tals in ROAZ region NAZ West: Groene Hart Ziekenhuis (GHZ),
HagaZiekenhuis (Haga) and Leiden University Medical Center
(LUMC). Each hospital is modelled as described in Section 2.1. The
probability of class assignment and class-dependent LoS distribu-
tions are estimated using the estimation procedure from Baas et al.
[40] from pooled data collected from the hospital data warehouses
of the three hospitals. For each patient class, the same fixed alloca-
tion probability and LoS distribution is assumed for each hospital
as well as for the merged regional hospital. Table 2 presents the
number of beds and initial occupancy for each hospital that are
used in our simulation study. The number of beds chosen here is
of the order of magnitude of the actual capacity at the hospitals,
but is chosen fixed to reveal the differences in the allocation meth-
ods. In practice, the number of beds may have fluctuated over the
days.

The arrival process of patients to the ward and ICU is found to
be a non-homogeneous Poisson process with arrival rates displayed
in Fig. 3. These arrival rates are obtained using an exponentially
weighted moving average (coefficient 0.3 for the ward and 0.1 for
the ICU), and scaling (0.95) of the daily hospitalisations, obtained
as described in Section 3.1. In the considered period, on average
around 12 ward patients arrive per day with a fluctuating rate, and
one ICU patient arrives every three days, with fewer patients arriv-
ing towards the end of the considered period.

Using the arrival processes, LoS distributions and transition
probabilities, the PALM of the system of infinite server queues cor-
responding to each hospital can now be simulated on a day-to-day
basis according to three levels of regional coordination, using the
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Average number of over-bed days and over-beds (with 95% confidence interval) for safety

level 0.9 for each hospital.

Hospital ~ KPI Indiv. hospitals  Load balancing  Reg. hospital
LUMC Over-bed Days Ward 11.80+2.35 5.70 £0.76 -
Over-beds Ward 1.414+0.41 0.40+0.10 -
Over-bed Days ICU 15.51 £2.53 443+0.73 -
Over-beds ICU 1.22+0.29 0.13 £ 0.04 -
Haga Over-bed Days Ward 9.37+£1.92 3.80+£0.55 -
Over-beds Ward 1.17+0.35 0.24+0.04 -
Over-bed Days ICU 14.70 £2.37 4.43+0.84 -
Over-beds ICU 1.15+£0.26 0.16 = 0.05 -
GHz Over-bed Days Ward 12.514+2.24 6.58 +£0.85 -
Over-beds Ward 1.22+0.32 0.47 +0.09 -
Over-bed Days ICU 9.32+1.98 3.10 £0.57 -
Over-beds ICU 0.57+0.16 0.09 +0.02 -
Region Over-bed Days Ward 30.58 +2.34 13.14+1.23 2.07 +£0.55
Over-beds Ward 3.80+£0.52 1.12+£0.17 0.22+£0.10
Over-bed Days ICU 36.62 +2.02 9.91+1.17 2.56 £0.60
Over-beds ICU 2.95+0.33 0.38 £0.07 0.124+0.03

method proposed in Baas et al. [40]. The time of evaluation for
each day is set to 10 AM, in accordance with the time that Dutch
hospitals report their occupancy. The three levels of regional coor-
dination are as follows:

» Individual Hospitals: Patients are randomly allocated to hospi-
tals according to fixed probabilities equal to fraction of COVID-
19 patients allocated to that hospital over the evaluation pe-
riod: 0.30 for LUMC, 0.43 for Haga and 0.27 for GHZ.

o Load Balancing: Patients are allocated to hospitals accord-
ing to the load balancing Decision Rule 2. The estimation
procedure for ehvathahl(s’ t) is given in Appendix A and is
based on the daily infections predictor, see Section 3. The
safety levels oy, ap were set to 0.9 for each hospital. When
gh-ahw-am (s,t) = 0 for each hospital the allocation probabilities
are set equal to those under the rule “Individual Hospitals”.

Regional Hospital: All wards and ICUs are merged into a re-

gional ward and ICU as described in Section 2.2.3. Patients are

distributed over the hospitals according to Decision Rule 3.

In the simulation study, all patients are distributed over beds
at hospitals in the region, and hence cannot be reallocated outside
the region. If the capacity of a hospital is exceeded, patients stay
at a so-called over-bed until the hospital’s bed shortage is resolved.
An over-bed is an originally unequipped, non-staffed bed which is
forcefully brought into operation.

For the three coordination levels, Table 3 presents average Key
Performance Indicators (KPIs) with 95% confidence intervals based
on Student’s t-distribution. The averages and confidence intervals
are calculated based on 250 independent simulation replications
under each policy, generated as described above. For each hospital,
the number of over-bed days (days with a bed shortage) was deter-
mined for the ward and ICU. This KPI does not reveal the number
of over-beds. To this end, the average daily number of over-beds
(averaged number of occupied over-beds per day averaged over
the evaluation period) was also determined for both departments
at each hospital. Under the rules “Individual Hospitals” and “Load
Balancing” the total number of over-bed days and over-beds for
the region was determined by summing the KPIs for the individual
hospitals. The last column of Table 3 includes only the number of
over-bed days and the number of over-beds for the region as under
Decision Rule 3 patients are allocated to an over-bed only if none
of the hospitals in the region has a bed surplus.

We observe a clear ordering in the performance of the alloca-
tion rules. At all hospitals, Load Balancing yields a significant re-
duction of the number of over-bed days of around 50% for the
ward and around 60-75% for the ICU when compared to Indi-
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vidual Hospitals. This also holds for the average number of over-
beds with an approximate 60-70% reduction for the ward and 80-
90% reduction for the ICU. Regional Hospital further significantly
improves performance, reducing the number of over-bed days to
around 2 for the regional ward and ICU, with on average only 0.22
(ward) and 0.12 (ICU) over-beds needed per day. Appendix B con-
tains a plot displaying the evolution of the occupancy under the
regimes Load Balancing and Individual Hospitals, as well as a plot
of the evolution of the allocation probabilities under Decision Rule
2. These results show the clear advantage of regional collaboration.

4.2. Reallocating COVID-19 patients across regions

This section considers four policies for reallocating patients
across regions to alleviate bed shortages. We consider occupancy
in the period 8 November 2020 until 7 January 2021 (60 days) for
four ROAZ regions: Acute Zorgregio Oost (region 1), Netwerk Acute
Zorg Brabant (region 2), Netwerk Acute Zorg West (region 3) and
Traumazorgnetwerk Midden-Nederland (region 4), augmented with
an external region. The LoS and transition probabilities are esti-
mated from the data warehouses of a representative large hospital
in each region. To focus on the reallocation across regions, each re-
gion is modelled as a (virtual) regional ward and ICU, as described
in Section 2.2.3.

Patients arrive autonomously to either the ward or ICU in
each region according to the arrival rates displayed in Fig. 4.
These arrival rates are predicted using the procedure outlined in
Section 3.1 using an exponentially weighted average (coefficient
0.3) of the hospital admissions reported in the data set with daily
infections for each ROAZ region [50]. This regional arrival rate is
then multiplied with the historical fraction (from the hospital data
warehouses) of patients allocated to the ward and ICU to obtain
the autonomous arrival rates to the wards and ICUs. To take into
account that COVID-19 beds are occupied by both COVID-19 con-
firmed and non-confirmed COVID-19 patients, the hospitals’ arrival
rates are scaled to obtain autonomous arrival rates close to those
reported in (for instance) the dashboard [56] for the evaluation pe-
riod. The capacity and initial occupancy, as well as the scaling fac-
tor used for the arrival rate for both departments at each of the
regions is given in Table 4.

If the occupancy in a region exceeds capacity (measured at
10 AM, the evaluation time), a patient has to be reallocated to an-
other region. We consider the following policies:

o Any Surplus: A region has sufficient surplus at a department
(ward or ICU) when the surplus of beds exceeds a safety
threshold kgs, which in our experiments is set to kg € {0, 1, 2}.



S. Dijkstra, S. Baas, A. Braaksma et al.

801

S (o]
o o
1 1

Regional Ward Arrival Rate
N
o

Dec 15 Jan 01

date

Nov 15 Dec 01

Omega 116 (2023) 102801

10.0-
Q9
(] m
S 75
©
=
£
<
S 504
o
©
[
K]
S 25
g 2

0.0+

Novi5  Dec01  Dec15 Jan 01
date

Fig. 4. Daily regional arrival rates to the ward (left) and ICU (right) to region 1 (black), 2 (green), 3 (blue) and 4 (dark red) in the period 8 November 2020 until 7 January
2021. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 4
Capacity, initial occupancy and scaling factor for each region.

Capacity Init. occupancy  Scaling factor
Region Ward ICU Ward ICU Ward  ICU
1 183 61 155 55 8.0 20
2 371 165 305 92 5.0 2
3 212 114 162 63 2.5 10
4 170 80 151 58 2.5 10

This minimal surplus is included to guarantee bed-capacity for
autonomous arrivals in the region during the day. If a region
r has bed shortage in ward and/or ICU at the evaluation time
and other regions have sufficient bed surplus at the respective
departments, a patient from region r is reallocated with equal
probability to any of the regions having sufficient surplus at the
respective departments. Decisions for reallocation of patients
are taken one-by-one, such that for the next patient reallocated
the occupancy of the regions takes into account the previous
reallocation decisions. If after patient reallocation to a region
the surplus of the department in that region is no longer suf-
ficient (i.e., less than kg), the department at that region is no
longer considered for reallocation. If there is no region with a
sufficient surplus for the respective department, the patient is
reallocated to the external region.

Number of Beds: This policy differs from the Any Surplus pol-
icy in that patients are reallocated with equal probability to any
of the available (surplus) beds in the regions with a sufficient
surplus. The effect of this is that regions with a larger bed sur-
plus at the respective department have a larger probability to
receive patients.

Stochastic Program: This policy reallocates patients to regions
according to the here-and-now decision coming from Program
(P), which is a stochastic program. To approximate the opti-
mal solution to the stochastic program, sample average approx-
imation is used for the second stage. The scenarios are deter-
mined from Decision Rule 3 using 1000 samples of the maxi-
mum occupancy obtained from the PALM of the system of infi-
nite server queues for the daily infections forecast and a hori-
zon of 3 days. The costs y;,» of patient reallocation from region
r to r’ are given in Table 5. This cost matrix indicates that re-
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gions 1, 4 and regions 2, 3 lie close to each other, i.e., the re-
gions are clustered in clusters of two. Next, we take g = x — x2.
Integer Program: This policy reallocates patients to regions
according to the here-and-now decision coming from Program
(P’), which is an integer program. The forecasts are determined
from Decision Rule 3 using 1000 samples of the maximum
occupancy obtained from the PALM of the system of infinite
server queues for the daily infections forecast and a horizon of
3 days. The costs of patient reallocation and g are the same as
in the stochastic program.

Given the initial occupancy, arrival rates, LoS distribution and
probabilities of transfers to other departments, the PALM of the
system of infinite server queues corresponding to each region
modelled as a single hospital is simulated according to the method
described in Baas et al. [40] on a day-to-day basis for each day in
the evaluation period. The results of the simulation study are re-
ported in Tables 6 and 7. The policies are evaluated on the average
(over 250 replications) total amount of reallocated patients (Total),
amount of patients reallocated to the external region, amount of
patients reallocated across regions within the clusters (across re-
gions 1 and 4 and across regions 2 and 3, In clusters), between
clusters (Btw. clusters) and the average cost per reallocation, de-
fined as Y s, Vi fwrr (8)/ Xsrr fw.rp(s) for the ward and by
analogy for the ICU. To evaluate the significance of differences in
the averages, the 95% confidence interval based on Student’s t-
distribution is also shown in the tables.

Table 6 includes results for kg =2, i.e., for regions that re-
serve 2 ward and ICU beds for autonomous same-day admissions.
The four policies do not show a significant difference in the av-
erage total number of reallocated patients in the wards and ICUs
(confidence intervals are overlapping), but do show a clear differ-
ence in number of patients reallocated to the external region, and
most importantly, both optimisation models considerably reduce
the number of patients reallocated out of a cluster (by roughly
50%) compared to the other methods and thereby also the aver-
age reallocation cost. Most of the KPIs do not differ significantly
between the stochastic program (Stoch. Prog.) and the integer pro-
gram (Int. Prog.). It is seen that under the stochastic program, more
patients are reallocated across regions in the clusters, and on aver-
age, more patients are reallocated in total. Further, there is a signif-
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Cost of patient reallocation across regions.
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From/To Region 1 Region 2 Region 3  Region 4  External region
Region 1 10 50 50 10 100
Region 2 50 10 10 50 100
Region 3 50 10 10 50 100
Region 4 10 50 50 10 100
External region 100 100 100 100 100

Table 6
Average number of patient reallocations across regions (with 95% confidence interval) for kg =
2.
KPI Dept.  Any Surplus Num. Beds Stoch. Prog. Int. Prog.
Total Ward  186.14+7.60 178.43+7.43  179.92+7.48 173.80 £ 6.37
ICU 96.91 £5.25 92.66 +5.13 101.76 £5.65  100.40 &+ 5.92
External Ward 8.74 +1.55 6.44+1.45 467+1.19 3.50 +£1.05
ICU 21.10+2.83 17.92 £ 2.56 12.70 £2.07 14.14+2.31
In clusters Ward 63.37 £2.81 61.20+2.66 134.53+£5.10 122.11+4.26
ICU 27.09 £1.54 27.20 £ 1.59 55.96 +2.68 50.90 +2.83
Btw. clusters ~ Ward 114.04 +£ 491 110.80 £ 4.91 40.72 +£3.72 48.20+3.75
ICU 48.72+2.24 47.54 £2.38 33.10 +2.46 35.37 +£2.32
Average cost Ward 38.51+0.59 37.69+0.58 20.51 +£0.77 22.25+0.77
ICU 46.92 +1.28 45.56 +1.25 31.22+1.36 33.98+1.25
Table 7
Average number of patient reallocations across regions (with 95% confidence interval) for kqs =
0,1,2.
Kes =0 kes =1 Kas =2
KPI Dept. Num. Beds Num. Beds Num. Beds Int. Prog.
External Ward 434+1.11 6.04 +1.40 6.44 +1.45 3.50+1.05
ICU 12.65+£2.25 16.95 +2.39 17.92 +£2.56 14.14+2.31
In clusters Ward 62.33+£2.94 63.18 +3.01 61.20+2.66 122.11+4.26
ICU 31.32+1.87 29.64 +£1.60 27.20 £1.59 50.90 +2.83
Btw. clusters ~ Ward  115.14+535 116.02+4.98  110.80 +4.91 48.20 +3.75
ICU 55.84+2.92 51.12+2.55 47.54 +2.38 35.37+2.32
Average cost ~ Ward 37.12+0.49 37.76 £ 0.57 37.69 £0.58 22.25+0.77
ICU 41.56 £0.97 4422 +1.12 45.56 +£1.25 33.98+1.25

icantly lower average reallocation cost. This is due to the stochastic
program being less conservative than the integer program.

Table 7 presents the results of bed reservation via the thresh-
olds kg for the Number of Beds policy (that outperforms the Any
Surplus policy) and the integer program. With increasing kqs the
number of patients reallocated to the external region increases,
as is to be expected. Our optimisation model slightly outperforms
the Number of Beds policy. The Number of Beds policy may be a
good heuristic if hospitals and regions may be convinced to not use
safety beds, that are not required in our collaborative optimisation
policy.

In conclusion, the integer program is a good approximation of
the stochastic program, that avoids reallocations to the external re-
gion and is able to reallocate patients to closer regions, while keep-
ing the total number of reallocations at roughly the same level.

Sensitivity analyses, evaluating the results presented in this and
the previous subsections under different horizons and safety levels
are presented in Appendix C.

5. Discussion and conclusion

This paper has introduced mathematical models and decision
rules for dynamic fair balancing of COVID-19 patients over hospi-
tals in a region and across regions. Patient flow is captured in the
Poisson Arrival Location Model (PALM) and the corresponding net-
work of infinite server queues for the ward and Intensive Care Unit
(ICU) of a single hospital. The model includes transfers between
ward and ICU and allows determining safety levels for ward and
ICU bed occupancy and corresponding forecasts of bed surplus or
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bed shortage in the ward and ICU of each hospital or region. The
dynamic fair balancing approach within a region is based on a dy-
namic predictive load balancing model incorporating a forecast of
the occupancy based on publicly available regional infection data
and Length of Stay (LoS) and transfer probabilities obtained from
the Hospital Information System (HIS). This model extends load
balancing models in literature to include real-time estimations of
the arrival process, service and routing processes and their impact
on forecast occupancy. The dynamic fair balancing model across re-
gions is a stochastic program that may be accurately approximated
by a mixed integer program taking into account forecasts of the
future bed surpluses or shortages. It hence takes into account both
the current occupancy and the forecast maximum occupancy over
the next couple of days.

Our mathematical model is augmented by accurate statisti-
cal methods to predict patient arrivals, estimate LoS and transfer
probabilities. For LoS and transfer probabilities, we have used the
Kaplan-Meier estimators for censored data as developed in Baas
et al. [40]. For patient arrivals, we have both improved prediction
of patient arrivals based on the HIS and Richards’ curves that was
developed and shown to be very accurate in Baas et al. [40] and
developed prediction of patient arrivals based on regional infec-
tion data. We have found that the latter provides better results as
it captures changing trends in hospitals’ arrival rates a few days
earlier than the HIS data. In addition, for our dynamic load balanc-
ing model, we have developed an estimator of the load balancing
dynamic allocation fractions of patients to hospitals in a region.
Our forecasting method for bed occupancy is based on simulation
of the PALM as developed in Baas et al. [40] using the estimated
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LoS and transfer probabilities and predicted arrivals based on re-
gional infection data.

Our dynamic fair balancing models and statistical methods
yield implementable decision rules for patient allocation to hos-
pitals in a region or reallocation across regions based on safety
levels and forecast bed surplus or bed shortage for each hospi-
tal or region. We have tested accuracy of our forecast using HIS
data from September 4, 2020 until January 31, 2021 of hospitals in
the ROAZ region Netwerk Acute Zorg West, containing the hospitals
Groene Hart Ziekenhuis (GHZ), HagaZiekenhuis (Haga) and Leiden
University Medical Center (LUMC). Our forecast of bed occupancy
and of maximum bed occupancy over the next couple of days are
shown to be very accurate. Using these forecasts, we have investi-
gated the benefits of three levels of regional collaboration: individ-
ual hospitals (or no collaboration among hospitals), dynamic load
balancing and merging all hospitals into a (virtual) regional hospi-
tal. The regional hospital exploits the statistical multiplexing gain
and clearly makes optimal use of available beds, but may include
patient transfers from the ward of one hospital to the ICU of an-
other and requires hospitals to give complete control over patient
admission to a regional dispatcher. Load balancing allows hospitals
to govern their own policy and has clear and substantial benefits
with respect to levelling the load over hospitals in the region.

The intra-regional load balancing decision rule may be devel-
oped into a decision support tool and incorporated in the ROAZ
dashboard for allocating patients to hospitals. First steps in this di-
rection have been set in collaboration with ROAZ region Netwerk
Acute Zorg West. We have explored optimal reallocation of patients
across regions based on current and forecast load in the regions
and found that our decision rule that takes into account reallo-
cation costs across regions and the current and forecast load in
the regions results in fewer reallocations to regions far away. This
inter-regional reallocation rule requires the same information as
shared with the Landelijk Coordinatie-centrum Patiéntenspreiding
(LCPS) and may be developed into a decision support tool for pa-
tient reallocation.

In addition to developing our results into decision support tools,
several points for further research or improvement may be ad-
dressed. In our simulation study we considered a fixed decision
epoch at 10 AM each day. As a consequence, a patient arriving in-
between two decision epochs is admitted to an over-bed until the
next decision epoch. Immediate reallocation of this patient may
be included in our simulation approach. However, this requires a
real-time update of new admissions, discharges and reallocations
among hospitals for all hospitals or all regions. As this results in
increased dependence among decision epochs, a Markov decision
process approach might also be investigated. In our hierarchical
model, we split the decisions for inter-regional reallocations and
load balancing within the region. As long as we consider the region
as a single hospital, this does not influence the number of inter-
regional reallocations since the bed surplus/shortage of a region is
independent of (and determined prior to) the load-balancing allo-
cation of patients to hospitals. Integrating the intra-regional and
inter-regional decision levels is an open question for further re-
search.

Given the quality of our forecasts, the significant reduction in
reallocations to distant regions and the significant improvement of
balanced load among hospitals within a region, we are confident
that our decision rules provide an important step towards prac-
tical implementation of a decision support tool for real-time re-
allocation of COVID-19 patients. Moreover, our methodology may
also be beneficial for patient reallocation during future pandemics
or national outbreaks, with fine-tuning of the statistical methods.
Our mathematical models are generic and not specific to COVID-
19; all they require is data from which patient arrival rates can
be predicted as well as in-hospital data on patient transfers and
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discharges. Lastly, we envision our dynamic load balancing proce-
dure to be applicable well beyond the scope of patient reallocation.
We aim to unlock this potential in future research, by incorporat-
ing our dynamic load balancing procedure in a generic queueing
framework.

Data availability

Data will be made available on request.
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Appendix A. Dynamic scaling of arrival rates under load
balancing

Allocation of patients to hospitals in a region under Deci-
sion Rules 2 and 3 requires estimation of the allocation fractions
eh’ahwahl' This appendix presents an estimation procedure to ob-
tain 6y o, o, from the sample paths of the PALM.

Consider day s and forecast horizon t. Recall the notation in-
troduced in Section 2. Fix h, &, apw, @y, 0y, (s, £), 0y (s, £) and let

T (0) =Py p [ui}lii‘r]N”W(”) <Ny (s, 0) | Ly(s) = Eh} —

and define 7y (6) similarly.
If Nuw (5) > njy, (5) or Ny (s) > ny (s), we set o, o, = 0. Oth-
erwise, we estimate 6,,_ahwﬂm as described below. Given an initial

value xp o, consider the sequence (xp ,)n:

Xhns1 = Xnn + @() Min (w5 (€XP(Xh.n)), Fnt.n (€XP(Xn.n)))-

(14)
with step-size a(n) satisfying the Robbins-Monro condi-
tions [57] and

1 Min
rwn(€Xp(Xnn)) = | 77— ) 1 ni -
hwW,n P(Xn.n M, L [maxue[s;sﬁ]N)(]W)(u)fnrlw(svt)] hw
1 Min
TTh.n (€XP(Xnn)) = 1 " :
hl.n Xhn Min = [maXuE[sAwlN,ﬂ,')(u)sn;;,(s.t)] i

In the above, (le‘r/'\',i) (u),N}g?‘i)(u)) is a sampled trajectory
uels,s+t]

of the occupancy in the period [s, s + t] given the current state ¢,
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and scaling factor 6 = exp(xy ) for the arrival rate. The trajecto-
ries are independent over i,n and can be sampled according to
the PALM simulation method given in Baas et al. [40]. The param-
eter M;, denotes a number of inner simulations, which are per-
formed for each iterate in (14). From the above, it can be seen
that 7y, (€XP(Xp.n))s Thin(€XP(Xp,)) are bounded random vari-
ables with expectation equal to 7wy (€Xp(Xp ). Toh (€XP(Xp.n))-
The sequence defined by (14) is a Robbins-Monro sequence [57],
for which we verify (almost sure) convergence below.
Let

1(x) = E[min (Zuw 1 (€XP(x)), 1 (Xp(x)))].

If n(x) =0 for some x and myy, (0), 7wy (0) > 0, all assumptions in
Blum [58] are satisfied, so that (x,,)n converges (almost surely)
to a constant limit xj such that n(x,) = 0.

Next, consider the case 1(x) # 0 for all x > 0. It can be shown
that 7 is a decreasing, differentiable function with limy_, ., 7(x) =
min(—oyy, —o). Hence if n(x) # 0 for all x > 0, we have that 5 is
negative everywhere. The minimum in (14) can be decomposed in
n(xnn) and a martingale difference €y, ,(x,), from which it fol-
lows that xj, is the sum of an almost surely converging martin-
gale (bounded in [? as ¥, «(n)? < c0) and a deterministic series
with negative increments. From this, it follows that y, , — —ooc al-
most surely.
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Now, set 0, , =exp(xy).- By the above discussion it follows
that either 6, — 0 in the case of bed shortage or

min (E[ 7w (6p.n) |, E[71(6r.n)])
> E[min (7w (Op.n). 1 (Onn)] = 0 (Xnn) = 0 (15)

in the case of bed surplus at hospital h. Hence, in the latter case,
the limit of the sequence 6y, satisfies the condition given in (5).
We estimate 6y, o, , o, as the almost sure limit of 6y, in the man-
ner described below.

For each day s, we sample the sequence defined in (14) with
Xno the logarithm of 64, ~obtained for day s —1. For day 0,
we set xpo equal to the logarithm of the historical fraction of
COVID-19 patients allocated to the hospital. We chose step-size
a(n) = n~95! (satisfying the Robbins-Monro conditions [57]) and
M;, = 5, which was seen to result in fast convergence of the iter-
ates to a stationary point. Convergence of the sampler is assessed
by checking for every batch of 300 iterations whether the batch-
mean of exp(xy ) is smaller than 10> or whether the batch-mean
of the residuals min (., (€XP(Xn.n)): Fnin (€XP(Xnn))) is smaller
than 0.01. After diagnosing convergence on a batch of iterations,
Oh.cyy ., 1S stimated as the mean of samples 6, , for that batch.
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Appendix B. Sample path of hospitals’ occupancy in single
region

Fig. 5 presents a sample path of the ward and ICU occupancy
for all hospitals in a region for the coordination levels Load Bal-
ancing (left) and Individual Hospitals (right) under the simulation
study described in Section 4.1. Jumps occur on a daily basis, start-
ing at November 8, 2020, 10:00. The evolution of the allocation
probabilities is included in the bottom row of the figure.

Under Load Balancing, an inverse proportional relation may be
observed between occupancy at a certain hospital and its alloca-
tion probability. Note that as Ghvahwﬂhl (s,t) aims to control both
the occupancy in the ward and ICU, Oy, o, (5.1) is low (often
zero) when one of these departments reaches a bed shortage. It
is seen in this sample path that the ICU at LUMC is often full,
hence the corresponding allocation probability is also often set to
zero. Note that it seems harder to control the occupancy at the
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ICU using the allocation probability, as most of the patients at the
ICU originate from the ward. During periods when every hospital
has a crowded department, the allocation probabilities are seen
to have a fluctuating behaviour, often sending all patients to one
hospital one day, and the next day to another. This can some-
times lead to a large increase in over-beds, for instance in the
ward around January 5, for Haga. Around December 21, 2020, there
were bed shortages at the ICU of hospitals GHZ and LUMC and in
the ward at Haga, as a result the historical allocation probabilities
(0.30,0.43,0.27 for hospitals GHZ, Haga and LUMC resp.) were used
around this period. Note that as departments at the hospitals are
already over-occupied during this period, setting these probabili-
ties larger than zero will lead to an even larger bed shortage. This
is a consequence of the setup in Section 4.1, where patients have
to be admitted to a hospital in the region. In reality, as is also con-
sidered in Section 4.2, patients will be allocated out of the region.
From the sample path it can be seen that bed shortages are often
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Fig. 5. One sample path of occupancy (solid) in the ward (top) and ICU (middle) over the simulation period of the simulation study from Section 4.1 for hospitals GHZ
(orange), Haga (green) and LUMC (blue) under the Load Balancing dynamic allocation rule (left) and the Individual Hospital rule (right). The dashed lines represent the
capacity at the respective departments and hospitals and the (dynamic) allocation probabilities are shown in the bottom plot with colours matching those for the hospitals.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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resolved quickly, often in a matter of a few days. Under the Indi-
vidual Hospitals scenario, the allocation probabilities stay constant
over time. The result is that there are long periods of bed short-
ages, as can be seen from Fig. 5. The ICU is often overcrowded at
GHZ, while the ICUs at the other hospitals become almost empty.
On a sample path level, the Load Balancing rule indeed seems to
show a more balanced behaviour of the occupancy over time.

Appendix C. Sensitivity analyses

In this Appendix sensitivity analyses are performed, showing
what the results in Sections 4.1 and 4.2 look like under different
horizons and safety levels.

We first evaluate the results for our load balancing method
under different scenarios for the safety levels while keeping the
rest of the setup in Section 4.1 the same. In scenario 1 we set all
safety levels to 0.9, in scenario 2 we set @j,g, = 0.7 and all other
safety levels to 0.9 and in scenario 3 we set ajymc = 0.99, 0aga =
0.7, agyz = 0.9, these safety levels hold both for the ward and the
ICU. These scenarios were chosen as Haga (LUMC) is the largest
(smallest) hospital out of the three, hence it might be tempted to
set a lower (higher) safety level than the other hospitals in prac-
tice. The results are given in Table 8, where we have also shown
the average occupancy at both the ward and ICU and the average
load fraction (64 4, , ¢, (5. £))-

When comparing scenario 1 with scenario 2, no significant dif-
ferences are seen for the over-beds and the occupancy. On average,
the over-beds, occupancy and load coefficient for Haga are higher,
while these measures stay roughly the same for the other hospi-
tals.

When comparing scenario 1 with scenario 3, significant differ-
ences are seen, the occupancy at both departments at LUMC is
significantly lower, while the KPIs for over-beds stay roughly the
same. For Haga, the over-bed (days) and occupancy significantly in-
crease for the ward, while they stay about the same for the ICU as
occupancy at the ICU is less sensitive to the direct arrivals. Finally,
the number of over-bed days at the ward of GHZ also significantly

Table 8

KPIs for the load balancing allocation rule for patients to hospitals. In scenario 1
we set all safety levels to 0.9, in scenario 2 we set ay,g, = 0.7 and all other safety
levels to 0.9 and in scenario 3 we set ayypc = 0.99, Aaga = 0.7, aguz = 0.9.

Hospital ~ KPI Scenario 1 Scenario 2 Scenario 3
LUMC Over-bed Days Ward 5.70+0.76 5.28 +£0.67 5.26+0.71
Over-bed Days ICU 443 +0.73 4.82+0.93 3.82+0.81
Over-beds Ward 0.40+0.10 0.38 £0.08 0.41+0.07
Over-beds ICU 0.13+£0.04 0.16 £ 0.05 0.12+0.03
Occupancy Ward 20.42+0.50 20.12+0.51 18.31 £0.50
Occupancy ICU 7.95+0.21 7.90+0.23 7.33+0.20
Load Fraction 0.26 +0.01 0.28 +£0.02 0.17 +£0.01
Haga Over-bed Days Ward 3.80+0.55 4394+ 0.64 5.81+£0.73
Over-bed Days ICU 443 +£0.84 5.06 +£0.91 5.00+0.72
Over-beds Ward 0.24 +0.04 0.26 +0.05 0.37 £ 0.06
Over-beds ICU 0.16 +£0.05 0.17 +£0.04 0.14+0.03
Occupancy Ward 30.04+050 30.58+0.53 31.59+0.49
Occupancy ICU 13.02+0.26 13.10+0.29 13.44+0.25
Load Fraction 0.41 +0.02 0.49 +0.02 0.44 +0.02
GHZ Over-bed Days Ward 6.58 +0.85 6.57 +£0.95 8.14+0.83
Over-bed Days ICU 3.10+0.57 3.13+0.58 3.54 +0.65
Over-beds Ward 0.47 +£0.09 0.48 £0.10 0.57 +£0.08
Over-beds ICU 0.09 +0.02 0.08 +0.02 0.10+0.03
Occupancy Ward 23.51+048 23.04+052 24.01+047
Occupancy ICU 9.11 £0.22 8.87+0.25 9.23+0.23
Load Fraction 0.29 +0.01 0.30+0.02 0.27 +£0.01
Region Over-bed Days Ward 13.14+1.23 1349+133 16.11+1.29
Over-bed Days ICU 991+1.17 10.66+1.31 10.13 £1.17
Over-beds Ward 1.12+0.17 1.12+0.17 1.35+0.16
Over-beds ICU 0.38 +0.07 0.41 +£0.08 0.35+0.06
Occupancy Ward 7397 +097 73.74+1.02 73.92+0097
Occupancy ICU 30.07+045 29.87+049 30.00+0.45
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KPIs for the load balancing allocation rule for patients to hospitals
for forecasting horizons 3 and 5 under the simulation study setup of

Section 4.1.

Hospital KPI s=3 s=5

LUMC Over-bed Days Ward 5.70+£0.76 5.98 +0.82
Over-bed Days ICU 443 +0.73 4.54 +0.84
Over-beds Ward 0.40+0.10 044 +0.14
Over-beds ICU 0.13+0.04 0.14+0.04
Occupancy Ward 20.42+0.50 20.60 +0.54
Occupancy ICU 7.95+0.21 7.89 +£0.21
Load Fraction 0.26 +0.01 0.21+0.01

Haga Over-bed Days Ward 3.80+0.55 3.89+0.55
Over-bed Days ICU 4.4340.84 468 +£0.93
Over-beds Ward 0.24 +0.04 0.25+0.04
Over-beds ICU 0.16 £+ 0.05 0.17 £ 0.07
Occupancy Ward 30.04 +0.50 30.05 +£0.51
Occupancy ICU 13.02+0.26 12.97 £ 0.29
Load Fraction 0.414+0.02 0.33+£0.02

GHZ Over-bed Days Ward 6.58 +0.85 6.94 +0.97
Over-bed Days ICU 3.10+0.57 3.47 £0.58
Over-beds Ward 0.47 £0.09 0.52+0.13
Over-beds ICU 0.09 +0.02 0.10 +£0.02
Occupancy Ward 23.51+0.48 23.41+0.52
Occupancy ICU 9.11+£0.22 9.17 £ 0.22
Load Fraction 0.29+0.01 0.234+0.01

Region Over-bed Days Ward 13.14+1.23 1416 £1.35
Over-bed Days ICU 9.91+1.17 10.20 +1.26
Over-beds Ward 1.124+0.17 1.214+0.22
Over-beds ICU 0.38 +0.07 0.41 +£0.09
Occupancy Ward 73.97 £0.97 74.07 +0.98
Occupancy ICU 30.07 £0.45 30.03 +£0.47

Table 10

Average number of patient reallocations across regions (with
95% confidence interval) according to the simulation study of
Section 4.2 for horizons s set to 3 and 5.

KPI Dept. Horizon 3 Horizon 5
Total Ward 173.80 £ 6.37  177.70 £ 6.90
ICU 100.40 +5.92 99.31+5.36
External Ward 3.50 +1.05 493 +1.20
ICU 14.14 +£2.31 12.27 £2.03
In Clusters Ward 122.11 +£4.26  124.51+4.63
ICU 50.90 +2.83 52.56 +2.60
Btw. Clusters ~ Ward 48.20+3.75 48.26 +3.69
ICU 35.37+2.32 34.48 +2.29
Average Cost Ward 22.25+0.77 22.66 +£0.77
ICU 33.98+1.25 32.38+1.29

increases. This could be explained by the fact that the load bal-
ancing rule sends patients to Haga most of the time in scenario 3,
and if bed shortages occur there almost all patients will go to GHZ
as the safety level of LUMC is a lot higher. A significantly lower
(higher) load coefficient is seen at LUMC (Haga) for scenario 3 than
for scenario 1, while the load coefficient for GHZ decreases slightly.
When comparing the KPIs for the region as a whole for the three
scenarios, scenario 1 is the preferred choice as it has the lowest
amount of over-bed (days) on average.

Next, in Table 9, results are shown for the simulation study of
Section 4.1 for horizons 3 and 5 days. No significant differences
(95%) are seen in the KPIs, the load balancing policy is seen to per-
form slightly worse on average for a horizon of 5 days when look-
ing at the regional numbers. The samples of maximum occupancy
over 5 days are larger than over 3 days, hence the load coefficients
are significantly smaller for a horizon of 5 days.

Finally, in Table 10, the results for the simulation study of
Section 4.2 are shown for horizons 3 and 5. The policies show a
similar performance, no significant differences were found. Slight
increases are seen on average when looking at the number of pa-
tients reallocated in the clusters and the total number of reallo-
cated patients.
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Appendix D. List of symbols

General indices

r regions, r=1,...,R

h hospitals (within a region r), h=1,..., H,

ceC patient class determined by
characteristics ¢

s.t,u time; usually, s denotes the current time

and u is in the time interval [s,s +t]

Individual hospital model

)

arrival rate of ¢ patients at hospital h

Dhe (t)

fraction of ¢ patients admitted to
hospital h’s ward

Ghew (€, Gner ()

probability that a ¢ patient is discharged

LhCW (t) Lhcl ([)

length of stay (LoS) of ¢ patients admitted
to the ward, ICU of hospital h

L, (s), ¢, tuples of patients’ location and realised
LoSs (up to time s) in hospital h.
Apw s O safety levels of the ward, ICU of hospital h

Npew (£), Nier (£)

number of ¢ patients in hospital h

ny, (s, ), ny (s, t)

number of beds in hospital h in [s, s + t]

M.y (S5 £), Mgy, (S, £)

apw-quantile, oy-quantile for maximum
occupancy in ward, resp. ICU of hospital h
in [s,s+t]

Tl oy (S5 £)s Tiht.a (S, 8)

bed surplus in the ward, ICU of hospital h
in [s,s +t] at safety levels oy, resp. oy

Individual region model

Arc(t) arrival rate of ¢ patients in region r

Ar(t) Dcec Arc(t)

Dre(t) fraction of ¢ patients admitted to the
ward of hospitals in region r

P (t) fraction of (regional) ¢ patients admitted
to the virtually merged regional ward of
region r

or set containing all safety levels of
individual hospitals in region r:
oy ={apw, oy s h=1,... H}

ow, Ay safety levels of the (virtually merged)

ward, ICU of region r

eh.a,,w gy (s.t)

fraction of regional arrivals that hospital h
can accommodate in [s, s + t] at safety
levels oy, oy

Ora, (5, 1)

Orar (5. 8) = S0 Oh iy (- 1)

Ottty (5. £). Oy (5.1)

fraction of regional patients hospitalised
in the ward, ICU of hospital h after
admittance to the virtually merged
regional ward, ICU of region r

fliw., (S, £), fiyga, (S, 1)

bed surplus in the ward, ICU of region r
in [s,s +t] at individual hospital safety
levels a;.

My (s, 0), ny (s, t)

number of beds in the virtually merged
regional ward, ICU of region r in [s, s +t]

MW gy (S, £), M1 g, (S, T)

aw-quantile, ay-quantile for maximum
occupancy in the virtually merged ward,
resp. ICU of region r in [s, s + t]

MrW‘a, (5’ t)~ Mrl.at, (S; t)

regional bed shortage in the ward, ICU of
region r in the time-interval [s, s+ t] at all
individual hospital safety levels

Mg, (5. 1), Mg, (S, 1)

mean regional bed shortage in the ward,
ICU of region r in [s,s +t] (belonging to
M., (5, t), Tesp. My q, (s, 1))

(continued on next page)
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Multiple regions model

firw (5). i ()

bed surplus (> 0) or shortage (< 0) in the
ward(s), ICU(s) of region r at time s

i (S, £), ﬁ,—[(SA, t)

forecast of the bed surplus (> 0) or
shortage (< 0) in the ward(s), ICU(s) of
region r in [s,s +t].

Ve costs for reallocating a patient from

region r to region r’

fW,r‘r’ (S), fI,r,r’ (S)

the number of ward, ICU patients to
reallocate from region r to region r’ at
time s

Jwrr (5.6), frrr (s, 0)

the number of potentially additionally
required reallocations of ward, ICU
patients from region r to region r’ in
[s,s+t] based on the bed forecasts

g() penalty function to balance/level bed

surpluses across regions

Sw,r(5), 81,r(5)

relative remaining bed surplus in the
ward, ICU of region r at (current) time s

Sw.r(s. 1), 81 (s, 1)

forecast relative remaining bed surplus in
the ward, ICU of region r in [s, s+ t]
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